
A TECHNIQUE FOR SOLVING RATIONAL EXPECTATION MODELS

Jean-Louis BRILLET

Institut National de la Statistique et des Etudes Economiques (INSEE), BP 100, 15 bd Gabriel P�ri, 92244
Malakoff Cedex, France

e-mail : jean-louis.brillet@insee.fr

Abstract : Solving large rational expectation models is now feasible on microcomputers, using the traditional
Fair Taylor or the newer stacked-time algorithms. We propose another technique, which could present
additional improvements both in convergence speed and in solution reliability. It is based on the notion of loop
variable, and solves the system with a sequence of Newton-Raphson iterations based on a Jacobian matrix of
reduced size. Practical tests are conducted at present, and results should be available soon. Copyright 1999
IFAC

Keywords : algorithms, simulation, Jacobian, modelling, economics, estimation.

1 INTRODUCTION
In past years, the increase in computer speed and available memory has allowed solving rational expectations by
another method than Fair-Taylor, even for large models on a large number of periods. And these methods,
globally called ÇÊstacked-timeÊÈ seem to be generally more efficient.

Our purpose is to consider a slightly different method, based on the notion of "loop variables", which limits the
size of the technical problem, and hopefully speeds up the process.

2 THE GENERAL PROBLEM
Before trying to solve a rational expectation model, we can generally, through the addition of identities,
eliminate its lags or leads larger than one, leading to a ÒBlanchard Ð KahnÓ specification:

(1) ft (yt , yt-1, yt+1, xt) = 0

with

• t representing a time index varying from 1 to T

• y a vector of endogenous variables (dimension n)
• x a vector of exogenous variables

y0 and yT+1 are known.

Two methods are generally considered for solving such a system.

Fair - Taylor : starting from initial leads, each ft is solved in turn from 1 to T, using a Newton-Raphson
algorithm until the leads converge

Stacked-Time : The whole system is solved directly, by linearization of the system, block-triangularization, and
global application of Newton-Raphson. See for instance Laffargue JP (1990), Hollinger P (1996).

Of these methods, enforcing the Blanchard Kahn conditions is more essential to the second one.

For a comparison of these algorithms, one can refer to Juillard M; Laxton D, (1996) or Juillard M, et al. (1996).

3 THE LOOP VARIABLES
This technique was first introduced by Gabay, et al. (1978).

 Let us consider the model (without rational expectations):

(2) yt = ft (yt , yt-1, xt)

Let us consider a particular ordering of the equations, and observe their formulations from the top down. The
loop variables are defined as the ones that appear on the right hand side through their present value, before they
are computed. Solving the model for one particular period we can drop the time indexes, leading to:

(3) y = f (y)

Calling yb the subset of loop variables (cardinal nb), it would be technically feasible to transform the set of
formulations by replacing in turn, in the chosen order, the right-hand side variables of lower rank by their
expressions (themselves possibly already modified). This process would leave only loop variables on the right
side.

(4) y = g (yb)

But of course the expressions would be much too complex for this system to be managed analytically. However,
we can compute the value of y associated through g to a starting value of yb through a very simple process: one
has just to use the last computed values instead of the initial ones, which means performing a Gauss-Seidel (and
not Ritz-Jordan) iteration.

This has important implications for the solution of the Newton-Raphson algorithm. By shocking each loop
variable in turn, performing a single Gauss-Seidel iteration, and computing the difference to a non shocked
iteration (in other words, through finite differences), we can compute each column of the Jacobian of

(5) yb = g (yb)

This allows applying the Newton-Raphson algorithm to a problem with the size of the number of loop variables.
Dropping the b index in favor of the number of the iteration k, this gives:

(6) y = y - (I - g / y) (y - g(y))k k-1
y= y
-1 k-1 k-1

k-1ƒ ƒ

or (7) :

 y = (I - g / y) (g(y) - (g / y) y)k
y =y
-1 k-1

y=y
-1 k -1

k-1 k-1ƒ ƒ ƒ ƒ

In other words for a Newton - Raphson iteration we shall need:

• nb + 1 Gauss Seidel iterations
• inverting a matrix of dimension nb (a polynomial of degree three in nb).

This method is obviously faster than the normal application of Newton - Raphson, which involves the inversion
of a matrix of degree n1

1. But the actual diagnosis is not clear, as the larger matrix is also much sparser, and specific

4 APPLICATION TO RATIONAL EXPECTATIONS MODELS
The above technique can easily be applied to rational expectations models. We shall suppose for now that they
appear under the identified form:

(8) yt = ft (yt , yt-1, ... yt-k, yt+1, xt)

which is very often the case2.

We shall suppose for now that the expectation variables appear with only one forward lag, but the lagged
variables can appear with any number of backward ones.

It is well known, however, that a multi-period lag can be contracted to one by steps, by introducing additional
identities. Applying this technique would have provided a Blanchard-Kahn form, useful for the application of
some method, like the stacked-time algorithm.

(9) yt = ft (yt , yt-1, yt+1, xt)

But we shall see that this technique does not bring any improvement to our method.

Let us now consider the global model, built by stacking one-period models. An equation is now associated with
a variable and a period.

Its incidence matrix takes the following form (five periods is enough to present the general case).

In this model, the notion of loop variable can still be applied to the variables "which are used for computations
in an equation before they are computed themselves". To the set of original loop variables, we must now add the
ones with a forward lag. There is a good chance, however, that variables have both characteristics, which apply
generally to important elements of the model. Value added for instance can be an anticipated element, and appear
in the Keynesian loop. This will reduce the size of the transformed problem, and the cost of subsequent
computations.

We could consider applying the same method as above:

• Computing the Jacobian of the full system, by finite differences. We just have to apply a Gauss Seidel
iteration to the full system, then shock in turn each of the new "loop" variables and compute the difference to
the base values.

• Applying the standard Newton formula,

(6) y = y - (I - g / y) (y - g(y))k k-1
y= y
-1 k-1 k-1

k-1ƒ ƒ

in which the dimension of the Jacobian is the product of the number of loop variables by the number of periods.

• Iterating until the solution is found.

One can see immediately the problem of this method. Solving rational expectations models often require a large
number of periods, to eliminate terminal condition problems. Even with a moderate number of loop variables,
the size of the problem can be quite big. For instance, a 300-equation model might have ten loop variables and
five forward ones. Solving it for 50 periods would mean a Jacobian with dimension 750. This can still be
manageable, but can prove expensive in computing time.

To improve the method, we shall follow the steps of the other algorithms in the field, and take into account the
particular shape of the matrix.

A A

A A A

A A A A

A A A A A

A A A A A

11 12

21 22 23

31 32 33 34

41 42 43 44 45

51 52 53 54 55

0 0 0

0 0

0

↵

√
√
√
√
√
√

If we compute the Jacobian according to our usual method, we shall get a matrix with the same shape as before,
but with a considerably reduced size.

A Newton iteration consists in applying to y a variation such that:

(I-B) ∆y = (y-g(y))

Instead of inverting (I-B), we shall transform it to simplify the computation of ∆y.

We have :

We shall start with the last line: by multiplying it on the left side by the inverse of (I-B55) we get :

With

Let us now proceed to line 4.

We want both to eliminate the term above the diagonal, and transform the diagonal term to I. For this we can
apply to the fourth period lines of our Jacobian on the left by a transformation based on the last two periods:

Such that

B B

B B B

B B B B

B B B B B

B B B B B

11 12

21 22 23

31 32 33 34

41 42 43 44 45

51 52 53 54 55

0 0 0

0 0

0

↵

√
√
√
√
√
√

I B B

B I B B

B B I B B

B B B I B B

B B B B I B

y

y g

y g

y g

y g

y g

− −
− − −
− − − −
− − − − −
− − − − −

↵

√
√
√
√
√
√

=

−
−
−
−
−

↵

√
√
√
√
√
√

11 12

21 22 23

31 32 33 34

41 42 43 44 45

51 52 53 54 55

1 1

2 2

3 3

4 4

5 5

0 0 0

0 0

0 ∆

I B B

B I B B

B B I B B

B B B I B B

C C C C I

y

y g

y g

y g

y g

d

− −
− − −
− − − −
− − − − −

↵

√
√
√
√
√
√

=

−
−
−
−

↵

√
√
√
√
√
√

11 12

21 22 23

31 32 33 34

41 42 43 44 45

51 52 53 54

1 1

2 2

3 3

4 4

5

0 0 0

0 0

0 ∆

C I B Bi i5 55
1

5= − − −()

()C E B F Ci i i4 4 5= 〈 − + 〈

()E I B F C I〈 + 〈

()d I B y g5 55
1

5 5=
−− −()

As we have

The second expression gives

And by substitution in the first:

And finally

Of which we can check that

Of course we have to apply the same transformation to the right hand term:

Applying the same recursive method up to the first line::

And finally :

The (forward) solution of the system for ∆y is immediate.

F E B= − 〈 45

I

C I

C C I

C C C I

C C C C I

y

d

d

d

d

d

0 0 0 0

0 0 0

0 0

0

21

31 32

41 42 43

51 52 53 54

1

2

3

4

5

↵

√
√
√
√
√
√

=

↵

√
√
√
√
√
√

∆

C I55 =

F E B= 〈 45

E I B C B= − + −()44 45 54
1

F I B C B B= − + −()44 45 54
1

45

C I B C B I B B Ci
i

i i4 44 45 54
1

4 4 45 5= − + − +−() ()δ

C I B C B I B B C I44 44 45 54
1

44 45 54= − + − + =−() ()

C I B C B B B I45 44 45 54
1

45 45 0= − + − + =−() ()

d I B C B g y B d4 44 45 54
1

4 4 45 5= − + − +−() ()

C I B C B I B B Cj i j j j j j j j
i

j i j j j i, , , , , , ,() ()= − + − ++ +
−

+ +1 1
1

1 1δ

d I B C B g y B dj j j j j j j j j j j j= − + − ++ +
−

+ +() (), , , ,1 1
1

1 1

Comparison with other methods
Actually, this method looks very similar to the stacked time algorithm (Laffargue(1990), Juillard(1996)). The
framework is the same, and the main difference lies in the use of loop variables. This option presents both
plusses and minuses.

 Minus : Plus:

One has to produce Gauss Seidel
iterations on the full model.

The Gauss-Seidel iterations are limited
to the "loop" variables

The elementary matrixes are much fuller The elementary matrixes are much
smaller

The transformed Jacobian matrix must
be full lower triangular with a higher
band, not band triangular. But this
means eliminating lags higher than one
is unnecessary

One does not have to eliminate the lags
higher than one.

One can use a priori knowledge on the
actual forward and backward linkages to
use sparse matrix inversion techniques

The identification of the loop variables
is sufficient (and can be automatized),
not the knowledge and storage of the
lagged and forward individual links.

The lower triangular part of the
Jacobian is full, which increases the
number of computations, the more as
the number of period increases

Formal changes in model equations are
taken into account automatically.

This increases also the number of
elements to be stored

After one period, the Gauss-Seidel
iterations take into account downward
influences which increase the accuracy of
the Jacobian.
The method generalizes to forward
influences from several periods ahead,
without increasing too much
computation costs

5 THE MODEL
To evaluate the efficiency of this method, in terms of computing speed and convergence probability, tests must
be undertaken. And if it is clear that the memory size needed is much lower than for the full problem, using
sparse matrix techniques can also reduce the size of the problem drastically.

For this we shall use a small macro economic model of the French economy, itself a part of a larger multi-
country model developed for the MACSIM project.

The goal of this project is to produce a tool for teaching international macroeconomics, by linking individual
country models. One will find a short description of this package in Brillet (1998).

The international dimension means that the model framework can apply to most industrialized countries.
Another interesting feature is that the behavorial equations in the model generally follow an error correction
(ECM) format.

The initial version does not use rational expectations, and presents three loop variables, associated with the
Keynesian cross, the price-wage interdependence, and (optionally) the exchange rate

In the first phase, we have introduced rational expectations in the following behaviors.

• In the investment equation: the firms are now supposed to know in advance the actual production level
needed in the next period, which determines the optimal capacity level (with a target capacity utilization rate).

• Households know in advance their future revenue, which allows them to optimize their consumption
behaviour.

This means we have five non pre-determined variables per period (actually only two for period 1, and three for
period T).

In a second phase, we shall introduce rational expectations on inflation and interest rates. This will affect the
behaviour of households (through the savings equation) and again the level of productive investment.

6 THE TESTS
Our tests use the following steps.

We produce simulations of the backward looking model over a very long period (several centuries) using
exogenous assumptions compatible with a steady state growth path. This leads us to modify slightly some
coefficients, for instance to eliminate some trends or set them to a theoretical value.

We also formally specify a long-term model, in which all lagged variables have been replaced by present ones,
by applying the steady state growth rate.

 Once we have found for the dynamic model a trajectory which presents growth rates close enough to steady state
values, we compare it to the solution of the formal long-term model, to check that the long term solution has
indeed been reached.

We replace in the appropriate formulations of the dynamic model the backward looking terms by forward-looking
ones, and solve the model again. As we are on the steady state path, the solution will not change.

Finally, we apply a constant change to the long-term assumptions, for a certain number of final periods. We
solve the forward-looking model again, using individual programs associated with one algorithm in the test, but
identical in every other way.

Simulations are being be produced over 20 to 100 periods, comparing, in terms of speed and convergence
reliability, our method with the following:

• Pure Gauss Ð Seidel
• Fair Taylor
• Stacked-time

The conditions of the tests will vary with the number of shocked periods, the horizon.

To get a complete picture, we shall also consider various starting points (at different distances from the solution)
and various accuracy requirements (our method, which is pure Newton, should be more efficient for high accuracy
requirements).

We shall also introduce a weighting parameter allowing to move by steps from a pure backward to a pure forward
looking model, and observe how it affects the diagnosis.

At present, we have produced a program computing a long-term dynamic solution (using Newton and loop
variables), that does indeed converge to the long-term model. And of course introducing rational expectations
leaves the solution unchanged.

We have implemented our algorithm, as well as the Fair Taylor algorithm. The first tests seem to show that for
relatively large numbers of periods (50 for example) our method compares quite well, especially (as could be
expected) if the numerical influence of the forward variables is important3. But we still have to compare with
stacked-time, which uses a block diagonal Jacobian instead of a lower triangular one.

For instance, supposing that wages depend on future inflation (introducing a multi-period wage-price loop) gives
a much bigger advantage to our method than making investment depend on future production (investment is
quite inert, and represents a small share of demand).

The full results will be available for the Boston CEFES meeting, as well as for the July IFAC Conference in
Beijing. They will be updated on the site.

REFERENCES

Brillet JL (1998), Win MCD and MACSIM: Computer tools for teaching macroeconomics, Proceedings of the
3rd Congress on Computing in Economics and Finance, Kluwer Academic Publishers

Gabay D., Nepomiaschy P., Rachdi M., Ravellli A. (1978), Etude, r�solution et optimisation de mod�les
macro�conomiques, INRIA report, 1978.

Hollinger P(1996), The Stacked-Time Simulator in TROLL: A Robust Algorithm for Solving Forward-
Looking Models, paper presented at the Second International Conference on Computing in Economics and
Finance (Geneva, Switzerland).

Juillard, M; and Laxton D, (1996), "A Robust and Efficient Method for Solving Nonlinear Rational Expectations
Models," International Monetary Fund Working Paper WP/96/106

Juillard, Michel; Douglas Laxton, Peter McAdam, and Hope Pioro, (1996), An Algorithm Competition: First-
Order Iterations Versus Newton-Based Techniques, Journal of Economic Dynamics and Control, (forthcoming).

Laffargue, J.P.(1990), R�solution d'un Mod�le Macro�conomique Avec Anticipations Rationnelles, in Annales
d'Economie et Statistique, Vol. 17, pp. 97-119.

Le Van C, Schubert K, Boucekine R (1996), How to Get the Blanchard-Kahn Form from a General Linear
Rational Expectations Model, Proceedings of the Second International Conference on Computing in Economics
and Finance Geneva, Switzerland, 26-28 June 1996

