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Abstract

In this paper, the relation between the N-person IPD game and the N-person oligopoly

game is rigorously addressed. Our analytical framework shows that due to the path-

dependence of the payo� matrix of the oligopoly game, the two games in general are not

close in spirit. We then further explore the signi�cance of the path-dependence property

to the rich ecology of oligopoly from an evolutionary perspective. More precisely, we

simulated the evolution of a 3-person oligopoly game, and showed that the rich ecology

of oligopoly can be exhibited by modelling the adaptive behaviour of oligopolists with

genetic algorithms. The emergent behaviour of oligopolists are presented and analyzed.

We indicate how the path-dependence nature may shed light on the phenotypes and

genotypes coming into existence.
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1 Motivation and Introduction

In industrial economics, modelling a market consisting of only a few �rms, i.e., oligopolistic
industry, is a highly indeterminate subject. In this area, economists are at variance with each
other even on the most basic issue, i.e., how price is determined? 1 Since the indeterminacy
of this subject may arise from the perplexing interdependent relations and interactions among
�rms, the relevance of game theory to oligopoly theory seems to be quite obvious. (Fudenberg
and Tirole, 1989) In fact, a game known as the iterated prisoner's dilemma (IPD) game is
frequently cited as an e�ective abstraction of the oligopoly pricing problem in many textbooks.
Rephrasing the oligopoly pricing problem in the game context, many economists consider the
oligopoly game and the IPD game close in spirit. Implicitly, it is assumed that players in
the N-person oligopoly game are facing a pretty similar situation as players in the N-person
oligopoly game.

Recently, the n-person IPD game was studied in Yao and Darwen (1994). Using genetic
algorithms (GAs), they showed that cooperation can still be evolved in a large group, but that
it is more di�cult to evolve cooperation as the group size increases. Considering this result
as a guideline for the oligopoly pricing problem, then what the n-person IPD game tells us
is that when the number of oligopolists is small, say 3, it is very likely to see the emergence
of collusive pricing (cooperation). Real data, however, usually shows that even in a three-
oligopolist industry the observed pricing pattern is not that simple. (Midgely, Marks and
Cooper, 1997)2

� First, while collusive pricing is frequently observed, it is continually interrupted by the
occurrence of predatory pricing (price wars).

� Second, it is not always true that oligopolists are collectively charging high prices (collusive
pricing) or low prices (price wars). In fact, a dispersion of prices can persistently exist,
i.e., some �rms are charging high prices, whilst others are charging low prices.

� Third, the �rms who charge low prices may switch to high prices in a later stage, and
vice versa.

These features may be best summarized by a quotation from Scherer and Ross (1990), a leading
textbook in industrial economics.

Casual observation suggests that in oligopoly virtually anything can happen. Some
industries{cigarettes and breakfast cereals come readily to mind{succeed in main-
taining prices well above production costs for years. Others, despite conditions that
would appear at �rst glance to encourage cooperative behaviour, gravitate toward
price warfare." (ibid, p.199; Italics added)

Nonetheless, \virtually anything can happen" is not the property which one may experience from
a 3-person IPD game (See Yao and Darwen, ibid, Figure 5), and this gives us two questions.

1For a survey of the oligopoly literature, see Shapiro (1989).
2The overall patterns of prices and sales for the three major brands of co�ee, Maxwell House Regular, Folgers,

and Chock Full O'Nuts, can be found in Midgely, Marks and Cooper (1997).
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� Is the N-person oligopoly game close in spirit to the N-person IPD game?

� If not, can we replicate the rich ecology of the N-person oligopoly game by just simulating
the evolution of the oligopoly game?

The contribution of this paper is two-fold. First, contrary to some people's presumption,
we show that the N-person oligopoly game is in general not close in spirit to the N-person IPD
game. This may not be a revelation. However, what was not seen in the past is a rigorous
analysis of the argument, and this paper �lled the gap. In Section 2, we propose a very simple
oligopoly game with 3 oligopolists. In this game, the payo� matrix is determined by the market
share dynamics, which is characterized by a time-variant state-dependent Markov transition
matrix. This framework enables us to see an important property of the game, i.e., the path-
dependence of the game. Through this property, we can see that while these two games in
general are not close in spirit, there does exist a trivial path on which these two games are
e�ectively the same. Therefore, we believe that our analysis provides a general picture of the
relation between the two games.

Given the path-dependence property of the oligopoly game, we further explore its signi�cance
to the ecology of the oligopoly game from an evolutionary perspective. By that we mean to
account for the rich ecology of oligopoly solely from an evolutionary standpoint. In other words,
unlike many conventional studies in this area, we do not attempt to build up an explanation by
introducing outside factors, such as economic 
uctuations, structural changes and institutional
arrangements. (Green and Porter,1984; Abreu, Pearce and Stacchetti, 1986) Instead, we are
asking: other things being equal, can we still have a rich ecology of oligopoly? We consider this
e�ort a search for a more fundamental cause. This comes to the second contribution of this
paper.

In section 3, we illustrate the use of the genetic algorithm (GAs) to model the adaptive be-
haviour of oligopolists. The application of GAs to the oligopoly game is nothing new. Midgely,
Marks and Cooper (1997) pioneered this line of this research. While, we follows the ideas em-
ployed in their paper in many aspects, there is an important distinction: what Midgely et al.
did was to use historical market data to breed GA-based oligopolists for the purpose of develop-
ing competitive marketing strategies; our paper has a di�erent focus. We are not studying how
GA-based oligopolists can compete with real managers, which is more like an application in the
machine-learning style and Midgely et al. already did an excellent job on it. What concerns us
instead is to use the GA to make histories of the oligopoly game on its own and see how rich
these ecologies can be. Therefore, it is enough to just let our GA-based oligopolists learn from
their own experiences and acquire expertise without being exposed to real data.

As what we shall see in Section 4, what were demonstrated from our simulations is a very
rich ecology of oligopoly. Our analysis of the simulation results shows how this rich ecology can
be related to the path-dependent property of the oloigopoly game. Some interesting patterns
such as the market-share �rst strtegy, nonagreesion argeement, unbalanced market power and
death of �rms are also discussed. Concluding remarks are given in Section 5.
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2 The Analytical Model

For simplicity, an oligopoly industry is assumed to consist of three �rms, say i = 1; 2; 3. At each
period, a �rm can either charge a high price Ph or a low price Pl. Let ati be the action taken by
�rm i at time t. ati = 1 if the �rm i charges Ph and ati = 0 if it charges Pl. To simplify notations,
let St denote the row vector (at1; a

t
2; a

t
3). To characterize the price competition among �rms,

the market share dynamics of these three �rms are summarized by the following time-variant
state-dependent Markov transition matrix,

Mt =

2
64 mt

11 mt
12 mt

13

mt
21 mt

22 mt
23

mt
31 mt

32 mt
33

3
75 (1)

where mt
ij, the transition probability from state i to state j, denotes the proportion of the

customers of �rm i switching to �rm j at time period t. Let nti (i=1,2,3) be the number
of customers of �rm i at time period t, and Nt the row vector [nt1; n

t
2; n

t
3]. Without loss of

generality, we assume that each consumer will purchase only one unit of the commodity. In
this case, Nt is also the vector of quantities consumed. With Nt and Mt, the customers of each
�rm at period t+ 1 can be updated by:

Nt+1 = NtMt (2)

To see the e�ect of price competition on the market share dynamics, the transition proba-
bilitiesmt

ij are assumed to be dependent on the pricing strategy vector St. If three �rms charge
the same price, then Mt is an identity matrix. Furthermore, if �rm i charges Ph, then it will
lose �

2 � 100 percent of its consumers each to �rms j and k, who charge Pl. Furthermore, if
�rms i and j charge Ph, then they each will lose � � 100 percent of their consumers to �rm k,
who charges Pl. These assumptions can be summarized by the following transition matrices.

Mt(1; 1; 1) =Mt(0; 0; 0) =

2
64 1 0 0
0 1 0
0 0 1

3
75

Mt(1; 0; 0) =

2
64 1 � � �

2
�
2

0 1 0
0 0 1

3
75 ; Mt(0; 1; 0) =

2
64 1 0 0

�

2
1 � � �

2

0 0 1

3
75 ;

Mt(0; 0; 1) =

2
64 1 0 0
0 1 0
�
2

�
2 1 � �

3
75 ; Mt(1; 1; 0) =

2
64 1� � 0 �

0 1� � �
0 0 1

3
75 ;

Mt(1; 0; 1) =

2
64 1 � � � 0

0 1 0
0 � 1 � �

3
75 ; Mt(0; 1; 1) =

2
64 1 0 0
� 1� � 0
� 0 1� �

3
75
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Given these state-dependent transition matrices, Equation (2) can be rewritten as:

Nt+1 = NtMt(St); (3)

where St = (at1; a
t
2; a

t
3) and a

t
i 2 f0; 1g. Equation (3) summarizes the intra-industry competition

given a number of customers nt =
P3

i=1 n
t
i.

Given Equation (3), the objective of oligopolists is to maximize their pro�ts or the present
value of the �rm, and the pro�ts for a single period is given by Equation (4).

�si = (P s
i � C)n

s
i (4)

where P s
i is the price charged by �rm i at period s, nsi number of customers, and C �xed unit

cost. nsi can be obtained from Equation (3).
Given this simple framework of the oligopoly game, we would like to know, to what extent,

this simple oligopoly game can be related to the n-person IPD game. More precisely, is the
oligopoly game de�ned above necessarily an n-person IPD game? To answer this question, we
have to work out the payo� matrix used to de�ne an N-person IPD game. (Yao and Darwen,
1994) However, due to the dynamics of market shares, the payo� matrix is in general not static.
We, therefore, start our analysis from the �rst-round of the oligopoly game. Suppose that each
round of the oligopoly game consists of r iterations of the game, and that \cooperate" (C)
means \charging high prices for all r periods" and \defect" (D) means \charging low prices for
all r periods".

We can now work out the �rst-round payo� matrix employed by Yao and Darwen (1994).
In our case (3 oligopolists), there are six elements in the payo� matrix, namely Ci and Di (i =
0; 1; 2). Here, Ci (Di) denotes the payo� for a speci�c player who plays C (D) when there are
i players acting cooperatively. Without losing generality, let us assume that n11 = n12 = n13 = 1;
then Ci and Di can be computed from the following four equations:

h
D2 C1 C1

i
=

rX
t=1

h
1 1 1

i
[M(0; 1; 1)]t

2
64 PL � C 0 0

0 PH � C 0
0 PH �C

3
75 (5)

h
C2 C2 C2

i
=

rX
t=1

h
1 1 1

i
[M(1; 1; 1)]t

2
64 PH � C 0 0

0 PH � C 0
0 PH �C

3
75 (6)

h
D1 D1 C0

i
=

rX
t=1

h
1 1 1

i
[M(0; 0; 1)]t

2
64 PL � C 0 0

0 PL � C 0
0 PH �C

3
75 (7)

and

h
D0 D0 D0

i
=

rX
t=1

h
1 1 1

i
[M(0; 0; 0)]t;

2
64 PL � C 0 0

0 PL � C 0
0 PL � C

3
75 (8)
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where

[M(0; 1; 1)]r =

2
64 1 0 0
� 1 � � 0
� 0 1� �

3
75
2
64 1 0 0
� 1� � 0
� 0 1� �

3
75
r�1

=

2
64 1 0 0
�+ �(1 � �) (1 � �)2 0
�+ �(1 � �) 0 (1 � �)2

3
75
2
64 1 0 0
� 1 � � 0
� 0 1� �

3
75
r�2

=

2
64 1 0 0Pr�1

j=0 �(1 � �)
j (1 � �)r 0Pr�1

j=0 �(1 � �)
j 0 (1� �)r

3
75 ;

[M(0; 0; 1)]r =

2
64 1 0 0

0 1 0
�
2

�
2

1 � �

3
75
2
64 1 0 0

0 1 0
�
2

�
2

1 � �

3
75
r�1

=

2
64 1 0 0

0 1 0
�+�(1��)

2
�+�(1��)

2
(1� �)2

3
75
2
64 1 0 0

0 1 0
�

2
�

2
1� �

3
75
r�2

=

2
664

1 0 0
0 1 0Pr�1

j=0
�(1��)j

2

Pr�1

j=0
�(1��)j

2 (1� �)r

3
775 ;

and

[M(1; 1; 1)]r = [M(0; 0; 0)]r =

2
64 1 0 0
0 1 0
0 0 1

3
75
r

:

A few steps of computation will show:

h
D2 C1 C1

i
0

=

2
64 (PL � C)(r + 2

Pr
t=1

Pt�1
s=0 �(1 � �)

s)
(PH � C)(

Pr
t=1(1� �)

t)
(PH � C)(

Pr
t=1(1� �)

t)

3
75

=

2
664
(PL � C)[3r � 2 (1��)�(1��)

r+1

�
]

(PH � C)[
(1��)�(1��)r+1

�
]

(PH � C)[
(1��)�(1��)r+1

�
]

3
775 ; (9)

h
D1 D1 C0

i
0

=

2
64 (PL �C)[r +

1
2

Pr
t=1

Pt�1
s=0 �(1 � �)

s]
(PL �C)[r +

1
2

Pr
t=1

Pt�1
s=0 �(1 � �)

s]
(PH � C)(

Pr
t=1(1� �)

t)

3
75

=

2
64 (PL �C)[r +

1
2r �

1
2

Pr
j=1(1� �)

j]
(PL �C)[r +

1
2r �

1
2

Pr
j=1(1� �)

j]
(PH � C)(

Pr
t=1(1� �)

t)

3
75 ; (10)
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Table 1: Parameters and Payo�s: The First Round of the Game
Set PH PL C � r D2 D1 D0 C2 C1 C0 (D2 + C1)/2 (D1 +C0)/2
1 1.4 1.2 1 0.2 8 3.47 2.07 1.6 3.2 1.33 1.33 2.4 1.70
2 1.4 1.2 1 0.2 25 13.40 7.10 5 10 1.60 1.60 7.50 4.35

h
C2 C2 C2

i
0

=

2
64 (PH � C)r
(PH � C)r
(PH � C)r

3
75 ; h D0 D0 D0

i
0

=

2
64 (PL � C)r
(PL � C)r
(PL � C)r

3
75 : (11)

Based on the derived payo� vector (D2;D1;D0; C2; C1; C0), we can decide whether the
oligopoly game is an n-person IPD game by checking the following criteria (Yao and Darwen,
1994: Figure 2):

� (1) D2 > C2, (2) D1 > C1, and (3) D0 > C0.

� (4) D2 > D1 > D0, and (5) C2 > C1 > C0.

� (6) C2 >
D2+C1

2 , and (7) C1 >
D1+C0

2 .

The �rst �ve conditions feature the con
ict between two forces, namely, the temptation to
defect and the fear of retaliation. The last two conditions are somewhat tricky. They exclude
the possibility of the other type of cooperation, i.e., false defection. In the prisoner's dilemma
game, one prisoner can be willingly betrayed, allowing them to reap the reward. He will then
have a share of the reward as a compensation for his sacri�ce. Like cooperation, false defection
requires a delicate design and is intelligent behaviour. It is interesting to note that, in reality
oiligopolists cut their prices in turn. Super�cially, these actions can be interpreted as a result
of competition, but, in e�ect, they are another type of collusive pricing when the game is not
bounded by the last two conditions. Since the failure to meet the last two conditions implies
another type of intelligent behaviour, it is useful to take a notice of this emergent intelligence
in our simulation to be discussed later.

By Equations (9)-(11), the payo� vector is a function of PH , PL, C, r and �. It is not
di�cult to see that, in general, not all of these conditions can be satis�ed. For example, in
Table 1, two sets of parameters and their associated payo�s are given. The conditions which
can be satis�ed by these two sets of parameters are summarized in Table 2. Among them,
Condition 7 is strictly violated in both cases. Nevertheless, since the �rst �ve conditions are
satis�ed, the oligopoly game shares the essential ingredients of the N-person IPD game, namely,
the temptation to defect and the fear of retaliation.

So far, we have only worked out the payo� vector of the �rst round of the game. The payo�
vector of the second round, and the rounds after, is a little intriguing. Due to the dynamics
of market shares, the payo� vector is not independent of what happened in the �rst round. In
other words, the payo� vector, like the market-share dynamics, is also time-variant and path-
dependent. To see this, it is helpful to work out the second-round payo� vector too. Since there
are six nonredundant histories (paths) in the �rst round, and with each there is a follow-up

7



Table 2: Parameter Sets and Testing Results

Inequality Set 1 Set 2
1. D2 > C2 > >

2. D1 > C1 > >

3. D0 > C0 > >

4. D2 > D1 > D0 >;> >;>

5. C2 > C1 > C0 >;= >;=
6. C2 > 0:5(D2 + C1) > >

7. C1 > 0:5(D1 + C0) < <

The sign > in columns 2 and 3 means the condition is satis�ed. Other signs mean the condition is weakly

violated (=) or strongly violated (<).

payo� vector, the second-round payo�s of the game can be represented by a 6 by 6 payo� table
as shown in Table 3.

Table 3 exhibits the payo� matrix of Parameter Sets 1 and 2. Clearly, this matrix is much
more complicated than the one in the �rst round of the game. It di�ers from the �rst-round
payo� matrix in three ways. First of all, in the �rst round of the game the payo� is symmetric,
while in the second, it depends. For example, if in the �rst round, three �rms all charge the
high price or low price, for that matters, then in the second round, the initial condition for
them is the same, and hence their payo� vectors refer to the same row led by C2 or D0 in Table
3. In this case, the symmetry of payo�s remains unchanged. However, suppose in the �rst
round, two �rms charge the high price, and one �rm charges the low price; then, in the second
round, the payo� vector to the �rm who charges the high price is the one led by C1, while the
one to the �rm who charges the low price is the one led by D2. According to Table 3, there
two rows are not identical; consequently, the symmetric property does not hold. Therefore, in
the oligopoly game, whether the symmetry property will hold depends on the path of the market
dynamics.

Second, in addition to asymmetry of the payo� vectors, it is interesting to notice that in
some cases, the payo� is not unique. For example, in Table 3, if the initial state for the player
is D1, and the current state is also D1, then the payo� can be either 2.34 or 2.93. These
non-unique outcomes result from the fact that after the �rst round of the game, each player
may have di�erent market shares. Therefore, it is not just the number of cooperators (among
the remaining n-1 players) that matters but, most of all, who cooperates. If a �rm with a larger
market share cooperates, then \defection" can be more pro�table because of the proportion of
the market one could seize.

Last, the reversal of the payo� inequality. Based on Table 3, we checked the payo� inequality
under each initial condition, and the results are summarized in Table 4. From Table 4, we �nd
that, depending on the initial conditions, the �rst and the sixth inequality can be reversed
(see the sign in brackets). More precisely, when the initial condition is D2 or D1, instead of
\D2 > C2", we have \D2 < C2", and when the initial condition is C1, \C2 > (D2 + C1)=2".
The reversal of the �rst condition is critical, because if two players choose C, then the dominant
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Table 3: Parameters and Payo�s: The Second Round of the Game

Parameter Set 1:
Round 1/Round 2 D2 D1 D0 C2 C1 C0 (D2 + C1)/2 (D1 + C0)/2

D2 4.58 4.34 4.26 8.53 3.55 3.55 4.06 3.94
D1 3.75 2.34 2.27 4.53 1.89 1.89 2.82 2.11

2.93 2.41
D0 3.47 2.07 1.60 3.20 1.33 1.33 2.40 1.70
C2 3.47 2.07 1.60 3.20 1.33 1.33 2.40 1.70
C1 2.91 0.35 0.27 0.54 0.22 0.22 1.57 0.29

1.51 0.87
C0 2.91 0.93 0.27 0.54 0.22 0.22 1.57 0.58

Parameter Set 2:
Round 1/Round 2 D2 D1 D0 C2 C1 C0 (D2 + C1)/2 (D1 + C0)/2

D2 14.99 14.97 14.96 29.92 4.77 4.77 9.88 9.87
D1 13.80 7.50 7.49 14.98 2.39 2.39 8.10 6.51

10.64 4.94
D0 13.41 7.10 5.00 10.00 1.59 1.59 7.50 4.35
C2 13.41 7.10 5.00 10.00 1.59 1.59 7.50 4.34
C1 12.61 0.03 0.02 0.04 0.01 0.01 6.31 0.02

6.31 3.16
C0 12.61 3.17 0.02 0.04 0.01 0.01 6.31 1.59

option is also C rather than D. If this can happen, then the oligopoly game is essentially not
an IPD game. The reversal of the sixth condition coupled with the original violation of the
seventh condition is far from minor because it de�nes another highly intelligent cooperative
behaviour, i.e., \false defection" as discussed above.

In sum, the oligopoly game is not an N-person IPD game. Nevertheless, it is related to the
N-person IPD game in a subtle way. In particular, among innumerable paths of the oligopoly
game, there are many which are e�ectively equivalent to an N-person IPD game. In other words,
the equivalence of the oligopoly game and the N-person IPD game is path dependent. However,
considering learning a stochastic selection process, we cannot restrict our players' evolution only
to those speci�c paths. Hence, the simulation results obtained from the N-person IPD game
may not be applicable to the oligopoly game. For example, the probability of the emergence of
collusive pricing of the 3-person oligopoly game may be quite di�erent from that of a 3-person
IPD game. It is, therefore, interesing to know whether the path-dependence property of the
oligopoly game can generate more complex emergent behaviour than the N-person IPD game,
and if so, what they are and what they mean.
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Table 4: Parameter Sets and Testing Results
Inequality/Initial Condition D2 D1 D0 C2 C1 C0

1. D2 > C2 [<] [<] > > > >

2. D1 > C1 > > > > > >

3. D0 > C0 > > > > > >

4. D2 > D1 > D0 >;> >;> >;> >;> >;> >;>

5. C2 > C1 > C0 >;= >;= >;= >;= >;= >;=
6. C2 > 0:5(D2 + C1) > > > > [<] <

7. C1 > 0:5(D1 + C0) < < < < < <

The sign > in columns 2-7 means the condition is satis�ed. Other signs means the condition is weakly violated

(=) or strongly violated (<). Signs in the brackets refer to the reversals of the payo� inequality in the second

round of the game.

3 Modeling the Adaptive Behavior of Oligopolists with

GAs

In this study, we shall simulate the oligopoly game by using genetic algorithms. The basic idea
is to simulate the dynamics of the oligopoly game as a result of a sequence of interactions among
the local shops owned by di�erent oligopolists (chain stores). Based on her pricing strategy,
each shop interacted locally with other shops' pricing. The price strategy of each shop was
represented by a binary string, and hence the pricing strategies of all the shops owned by the
same oligopolist were nothing but a population of binary strings. The genetic algorithm was
then applied to mimicking the evolution of a collection of pricing strategies by evolving the
population of binary strings.

Formally, the pricing strategy � is a mapping:

� : 
 �! f0; 1g; (12)

where 
 is the collection of all histories of fSjg
t�1
j=1. However, this general version is di�cult to

be coded by genetic algorithms since the memory size required is in�nite. Following Midgley
et al (1997), we consider a special class of pricing strategy  ,

 : 
k �! f0; 1g; (13)

where 
k is the collection of all fSt�jgkj=1. By this simpli�cation, the oligopolist's memory is
assumed to be �nite.

Since each �rm can only take two kinds of actions and there are three �rms, we have 23

possible states in each period and 23k possible states in 
k. Therefore, to encode a pricing
strategy  in 
k, we need a binary string with length 23k. Clearly, the length of the string
increases exponentially with k. While, potentially, di�erent choices of k may lead to quite
di�erent sets of strategies (Beau�ls et al., 1998), the issue concerns us is the smallest value of
k which can reasonably replicate the price dynamics of the oligopoly industry, and as we shall
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Table 5: The Parameters of the GA-based Oligopoly Game
Memory size (k) 1
Number of oligopolists (chain stores) 3
Population size (l) (# of shops in each chain) 30
Number of periods in a single play (r) 8 (25)
Selection Scheme Roulette-wheel selection
�tness function Pro�ts (�)
Number of generations evolved (Gen) 250 (80)
Number of periods (T) 2000
Crossover Style One-Point Crossover
Crossover rate 0.8
Mutation rate 0.001
Immigration rate 0.001

see later, setting k to equal 1 is good enough to achieve this goal. 3 In 
1,  can be coded
with an 8-bit string. For example, an 8-bit string b1b2:::b8 means that if state j (j = 1; 2; :::; 8)
occurs, the oligopolist will take action bj (bj = 0; 1).4 The eight states are ordered as in the
following sequence.

000|{z}
1

001|{z}
2

010|{z}
3

011|{z}
4

100|{z}
5

101|{z}
6

110|{z}
7

111|{z}
8

Each state is represented by a 3-bit string. From the left to the right, the �rst bit refers
to the action taken by �rm 1 in the last period, the second bit refers to the action taken by
�rm 2, and so on. For instance, state \5" encoded as \100" means that the �rm charged a
high price (cooperated), but �rms 2 and 3 charged a low price (defected) in the last period.
If b5 = 0 for �rm 1, then �rm 1 will take a revenge by charging a low price at this period.
Given the encoding scheme described above, oligopolists' adaptive behavior is implemented by
genetic algorithms as follows.

� Step 1:

In the initial generation, a population of  is randomly generated for three oligopolists.
Call it Gen1i (i = 1; 2; 3).

Gen1i = f 
1
i ; :::;  

q
i ; :::;  

l
ig (14)

where l is the size of population (the number of chromosomes).

3It remains to be seen whether a high value of k can signi�cantly change the result. If this is the case, then
we should seriously consider an economic interpretation of the parameter k. We are currently conducting this
line of research.

4As Yao and Darwen (1994) correctly pointed out, the Axelrod-style representation scheme is not the most
e�cient scheme. The reason why we do not use the Yao-Darwen representation scheme here is that we are
restricting our attention to the case of only 3 players (oligopolists).
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� Step 2:

Match these three populations of  into l pairs of players: f�qg
l
q=1, where

�q = f 
q
1;  

q
2;  

q
3g (15)

� Step 3:

Let �q be applied for r periods, and calculate the pro�ts earned by each component of
�q based on Equation (4).

� Step 4:

At the end of a single play (r periods), the new generation Gen2i (i = 1; 2; 3) of the
population of  is generated by the canonical genetic algorithms brie
y denoted by

Gent+1i = fm � fc � fr(Gen
t
i); i = 1; 2; 3; (16)

where fm; fc and fr denote the genetic operators mutation, crossover and reproduction.
The selection scheme employed is roulette-wheel selection and the �tness function is the
pro�t function (11). The relevant control parameters are given in Table 5.

� Step 5:

Repeat Steps 2-4 until the termination criterion is satis�ed. In this paper, a pre-determined
number of generations evolved (T ) is chosen to be the termination criterion.

We have a few remarks on Steps 3 and 4. First, we were not simultaneously evolving the
population while deriving market dynamics. Hence, the time scale of the simulation (T ) is not
the number of generations (Gen). For CASE A with the 8-period evolution cycle (r = 8), we
actually evolved 250 generations, while for CASE B with the 25-period evolution cycle, we only
evolved 80 generations. This naturally leads to a question: Are these numbers of generations
(periods) enough? Due to the \hanging valley" well noticed by Ken Binmore, we can never
be sure about this. Nonetheless, as we shall see later, all our simulation results do have a
convergence result with these limited numbers of periods.

Second, based on Equation (16), the genetic algorithm is employed to evolve each population
separately, i.e., each population is evaluated by how well it performs against itself rather than
other populations. By doing this, we assumed that shops can learn the experiences only from
those shops owned by the same oligopolist. Since in practice pricing strategies are business
secrets, they are not observable and hence not imitable. Therefore, excluding the possibility
of learning from other oligopolists' strategies seems to be a suitable approximation of the real
situation.

Third, given the complexity of the oligopoly game as described in Section 2, it is not entirely
clear whether other shops' experience are relevant. In particular, the complex dynamics of the
game makes each shop's own experience unique. Given their di�erent market shares, payo�
vectors and local competitors, one cannot but question whether di�erent shops can be compared
on a fair ground. Nevertheless, we see no e�ective way to take care of all these path-dependent
attributes. In fact, even in real life, people frequently simplify a complex decision process. A
manager may get sacked not because of her incompetence but simply because of bad luck.

12



Table 6: Experimental Designs

Experiment r # of Runs �

A 8 10 0.2
B 25 10 0.2

Another related and more generic issue is: are the survivors the �ttest? As with all path-
dependent dynamic systems, this is a very complicated di�cult issue. Economic statistics
usually show that income or wealth dynamics are path dependent, and sometimes \social jus-
tice" is required as an external force to slow down the self-reinforcing mechanism of the gap
between the poor and the rich. In our usage of GA, we had a similar problem. Even though
all the shops started with the same market share, the initialization process may quickly drive
them apart. Since the �tness, pro�ts, is calculated based on the market share (Equation 4),
the large shops are loud in everything, which makes small shops' voices di�cult to hear. So,
when a small shop wins a battle with her local competitors, no one will not take notice of it
because it is \puny".

4 Experimental Designs and Results

For all the experiments conducted in this study, Ph was set at \1.4", Pl \1.2" and C \1". Other
control parameters of GAs were set according to Tables 5 and 6. For each set of parameters,
we conducted ten independent runs, with 2000 periods for each.

4.1 Phenotypes

In the following, we shall present our simulation results in terms of the phenotype and the
genotype. Before discussing the results of phenotypes, we need to clarify a few more notations.
Let \W" refer to the state \price war" (0,0,0), \C" the state \collusive price" (1,1,1), \w" the
states which are closer to \W" and \c" the states closer to \C", where \closer" is de�ned in
terms of Hamming distance. Thus, \w" includes states (0,0,1), (0,1,0) and (1,0,0), and \c"
includes (1,1,0), (1,0,1), (0,1,1). Since there are 30 pairs of oligopolists in each market day,
a histogram may make the presentation easier. To do so, let ptW , ptw, p

t
c, and ptC denote the

percentage of the pairs who, in period t, are in the states labeled with \W", \w",\c", and \C"
respectively. Figures 1.1-1.10 and 2.1-2.10 display the time series plot of the histogram of St.
To see what these results suggest, a series of issues are proposed as follows.

� Is the market dynamics likely to converge?

� Is the market dynamics likely to converge to the state of collusive pricing, i.e., the state
S = (1; 1; 1)?

� Is the market dynamics likely to converge to the state of price wars, i.e., the state S =
(0; 0; 0)?

13



� Is the market dynamics likely to converge to any other states?

� Would all three �rms survive to the end?

Is the market dynamics likely to converge to the state of collusive pricing? This is one of
the most absorbing issues because, by Yao and Darwen (1994), \to cooperate" rather than
\to defect" seems to be the most likely result in a 3-person IPD game. However, interestingly
enough, none out of our 20 runs shows a convergence to the state of collusive pricing. This
failure to see any result of collusive pricing is somewhat striking. It immediately drives us to
the following related issue: Is the market dynamics likely to converge to the state of price wars?
The answer seems to be yes. Out of the 20 runs, there are six cases whose market dynamics
coverge to the state of price wars (Cases A1, B2, B6, B7, B8 and B9). Moreover, price wars
seem to be more likely to occur in the case with a longer evolution cycle (Case B, r=25).

While the two questions raised above are fundamental, the market dynamics can be much
richer than that. First, the market dynamics may not converge at all. Second, there is no
guarantee that all three oligopolists can survive to the end. Let us start from the second point.
One of the interesting features which distinguish the oligopoly game from the IPD game is that
players in the oligopoly game may go extinct. This is because the existence of a player (a �rm)
is directly represented by her market share. If her market share becomes zero or in�nitesimal,
then the �rm is e�ectively dead. So, would all �rms survive to the end in our simulation? The
answer is no. Out of the 20 cases, there are six (Cases A2, A8, A9, A10, B3, and B5) where only
one �rm (one oligopolist) survived to the end. In four cases (A6, B1, B4 and B10) one �rm was
out of the game. These ten cases shared a common pattern, i.e., the surviving �rms all charged
the low price, a phenomenon typically known as predatory pricing in industrial economics.

What has been simulated here is a transition from an oligopoly industry to a monopoly or
duopoly industry. The transition process may be described as follows. Some �rms initiated
predatory pricing at the early stage of the game and drove their competitors out of the game.
They continuously kept the price low to prevent the defeated from coming back. This behaviour
is the so called \market share �rst" strategy. Genetic algorithms might help defeated �rms to
react to this strategy, but unlike the IPD games, the path-dependence of the game may not
give players a second chance to regain back their lost market.

Now, back to the convergence issue. Is the market dynamics likely to converge? This
issue is important because it concerns whether the parameter \number of generations" was
appropriately set. If a case has a potential convergence, but we do not give them enough time
to run, then the analysis based on a transient state may be misleading. By taking a quick look
at the �gures of the time series plots (1.1-1.10, 2.1-2.10), one may �nd that 
uctuation appears
in many plots (A2, A6, A7, A10, and B5). But, a careful examination reveals those many of
these cases ended up with either a monopolist or duopolists. In this case, the action taken by
the extinct �rms is no longer e�ective. So, if we exclude the action of the nonactive �rm(s) and
reduce the dimension of the state to one or two, then we shall see that the market dynamics of
Cases A2, A10 and B5, in e�ect, converges to a state of low price.

Cases A6 and A7 also converged, though, instead of a �x point, they converged to a periodic
cycle. Case A6 provides us with another interesting observation. One �rm went extinct in this
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Table 7: Simulation Results: Phenontypes

Case Converge? State Case Converge? State
A1 yes price wars B1 yes duopolist (low price)
A2 yes monopolist (low price) B2 yes price wars
A3 yes weak price wars B3 yes monopolist (low price)
A4 yes weak collusion B4 yes duopolist (low price)
A5 yes weak collusion B5 yes monopolist (low price)
A6 yes duopolist (periodic cycle) B6 yes price wars
A7 yes periodic cycle B7 yes price wars
A8 yes monopolist (low price) B8 yes price wars
A9 yes monopolist (low price) B9 yes price wars
A10 yes monopolist (low price) B10 yes duopolist (low price)

simulation, and the other two surviving �rms synchronized their pricing, i.e., they simultane-
ously charged a high price followed by a low price. By doing this, �rms will not invade each
other's market, which is tantamount to a tacit nonagression agreement frequently observed in
the real world. Case A7 is probably the most complicated steady state to which the market
dynamics converged. It converged to a periodic cycle with periods 5. This case with the three
other convergent cases, Cases A3, A4 and A5, will be discussed in detail in the next subsection.
At this moment, it is enough to point out that Case A3 converged to the state \weak price
wars", and Cases A4 and A5 converged to the state \weak collusion".

Table 7 summarizes what we found from these 20 simulations. None of them failed to
converge. However, the results are quite diverse. From �xed points to periodic cycles, there
are 7 di�erent kinds of steady state. No state of collusive pricing come up, however, as the
�nal outcome. Instead of cooperative behaviour, the results are overwhelmingly biased toward
predatory behaviour. This is particularly true of Case B, where r was set at 25. The emergence
and prevalence of predatory behaviour may be caused by the path dependence of the game;
in particular, the market once lost may never been regained. This cruel fact allows �rms little
time to �gure out the value of cooperation before taking their last breath.5

4.2 Genotypes

The purpose of this section is to see what kinds of pricing strategies (genotypes) acquired
by �rms lead to the prevalence of predatory behaviour (phenotypes), and to see how these
strategies can be compared with those stereotypes of the IPD game. While dealing with the
dynamics of the population of chromosomes can be a very demanding job, fortunately, in all

5Here, we see the interesting feature to distinguish the oligopoly game from the N-person IPD game. In the
N-person IPD game, if players fail to appreciate the value of cooperation and underestimate the consequence
of defection, there will always be enough time for them to learn because the payo� matrix is time invariant. In
the oligopoly game, however, market shares and payo�s are time variant, and if players do not do it right in
their �rst try, thing can be quite di�cult for them. We shall see more on this in the next subsection.
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Table 8: Simulation Results of Genotypes: CASE A

Case  1  2  3

A1 01101000 (0.33) 01110100 (0.24) 00000100 (0.43)
A2 01000001 (0) 00100001 (1.00) 10000011 (0)
A3 01000000 (0.36) 10011000 (0.31) 00100000 (0.33)
A4 00011000 (0.39) 11001000 (0.22) 01100011 (0.39)
A5 10000010 (0.59) 00100100 (0.32) 10100010 (0.09)
A6 00100100 (0.78) 10101000 (0) 00101000 (0.22)
A7 01001010 (0.20) 00000100 (0.59) 10011011 (0.21)
A8 00000001 (1.00) 01001001 (0) 10110110 (0)
A9 00100000 (0) 10011100 (0) 00000010 (1.00)
A10 10011000 (0) 11001010 (0) 00010000 (1.00)

Inside the bracket is the average market share of the 30 shops owned by each oligopolist. If the game converges

to a �xed point in action space, the average is taken by using the market-share data from the last period. If the

game converges to a periodic cycle, then the average is taken by using the data from periods of the last cycle.

Notice that our computer printouts of these numbers are accurate up to the ninth decimals. However, here, we

only keep the �rst two decimals. Therefore, we use \0.00" when the number is greater than 0.000000000, and

\0" when the number is less.

our simulations, the entire population converges, i.e., the string bias of the population came to
a value very close to 100%.6 Or, roughly speaking,7

lim
t!1

 1;t
i = ::: lim

t!1
 30;t
i =  i; i = 1; 2; 3: (17)

Therefore, we can simply focus on the population of the last generations, f 1;  2;  3g. Tables
8 and 9 exhibit the string to which the population converged. Based on these two tables, we
shall adress the following two questions.

� What do these  s say?

� How do these sets ( 1;  2;  3) behave?

The �rst question is to understand the contents of  from an individual viewpoint. How-
ever, in the context of the game, strategies cannot be well understood without taking mutual
interactions into account. Therefore, the second question is posed from a social viewpoint.

6String bias is a measure of agreement among population. To calculate string bias, we �rst check the spilt
between \0" and \1" at each bit position, called the bit bias. If the split is p%-(1� p)%, then the bit bias is the
either p% or (1� p)%, depending on which one is larger. Bit bias assumes a value between 50 and 100 percent.
The string bias is the average of all bit bias values. For example, in our case, it is the average of the 8 bit bias
values.

7Given the e�ect of mutation disturbance, it is di�cult for the population to converge completely.

16



Table 9: Simulation Results of Genotypes: CASE B

Case  1  2  3

B1 00001010 (0.05) 00110001 (0.95) 00000001 (0)
B2 01000001 (0.45) 00001011 (0.00) 00000001 (0.55)
B3 01100000 (0) 11011000 (0) 00000010 (1.00)
B4 10000001 (0) 00010010 (0.05) 00010000 (0.95)
B5 10010010 (0) 00000010 (1.00) 00101100 (0)
B6 00010001 (0.42) 00000110 (0.10) 00010100 (0.48)
B7 00001000 (0.55) 00000100 (0.18) 00100011 (0.27)
B8 00101001 (0.11) 00000010 (0.70) 00000001 (0.19)
B9 00000111 (0.19) 01011000 (0.00) 00000101 (0.81)
B10 11001000 (0) 01000110 (0.01) 00000000 (0.99)

The instruction to read this table is the same as Table 8.

4.2.1 Analysis from an Individual Viewpoint

What do these  s say? At �rst glance, it seems di�cult to discern any pattern from these two
tables. The genotypes to which the three populations converged are di�erent from one run to
another. In fact, sorting through the strings shows that there are totally 25 di�erent strategies
in Table 8 and 26 in Table 9. Five strategies were used twice in Case A and 2 strategies were
adopted three times in Case B. From such a low frequency of reoccurrence, one may expect
more new strategies to come up in a few more runs of simulation. Since there are too many
strategies shown in these two tables, it would be useful to give some general descriptions of
them instead of going into the detail of each of them.

To have general description of them, we pose a series of questions for each oligopolist. The
oligopolist being questioned is called the host �rm in the question. Also, we use informal words
in the questions. For example, we use \nice" in place of \to charge the high price" (cooperate),
and \mean" in place of \to charge the low price" (defect).

1. If the host �rm is nice to other �rms, and other �rms are mean to the host �rm, would
the host �rm take revenge in the next period? I.e., to check:

Firm1z }| {
000|{z} 001|{z} 010|{z}011|{z}100|{z}

0?

101|{z}110|{z}111|{z};
Firm2z }| {

000|{z} 001|{z} 010|{z}
0?

011|{z} 100|{z} 101|{z} 110|{z} 111|{z};
Firm3z }| {

000|{z} 001|{z}
0?

010|{z} 011|{z} 100|{z} 101|{z} 110|{z} 111|{z}.

2. If all three �rms are mean to each other, would any one like to keep it in the same way
in the next period? I.e., to check:
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Firm1;2;3z }| {
000|{z}
0?

001|{z} 010|{z} 011|{z} 100|{z} 101|{z} 110|{z} 111|{z}.

3. If all the �rms are nice to each other in this period, would any one like to be mean to the
others in the next period? I.e., to check:

Firm1;2;3z }| {
000|{z} 001|{z} 010|{z} 011|{z} 100|{z} 101|{z} 110|{z} 111|{z}

0?

4. If other �rms are nice to the host �rm, and the host �rm is mean to them, would the host
�rm continuously take advantage of the others in the next period? I. e., to check:

Firm1z }| {
000|{z} 001|{z} 010|{z}011|{z}

0?

100|{z}101|{z}110|{z}111|{z};
Firm2z }| {

000|{z} 001|{z} 010|{z} 011|{z} 100|{z} 101|{z}
0?

110|{z} 111|{z};
Firm3z }| {

000|{z} 001|{z} 010|{z} 011|{z} 100|{z} 101|{z} 110|{z}
0?

111|{z}.

For all these questions \0" means a positive answer. The well-known tit-for-tat strategy
has a sequence of answers 0-0-1-1. Using tit-for-tat as a benchmark, a strategy with any \1"
appearing in the �rst two positions can be considered merciful or gentle; a \0" appearing in the
last two posotions can be considered aggressive. Since each strategy may have di�erent answers,
for each questions we simply calculated the proportion of the �rms who have a positive answer.
It was found that the statistics for Case A are 0.73, 0.63, 0.77, 0.60, and for Case B are 0.83, 0.87,
0.60, 0.76. While some of these statistics are not statistically signi�cantly di�erent from 0.5 at
0.05 signi�cance level, all of them are greater than 0.5. Therefore, loosely speaking, strategies
evolved from our two sets of oligopoloy games are not gentle, but a little aggressive. This result
is not surprising and is consistent with the prevalence of predatory behaviour observed.

Of course, not all strategies can help �rms to survive well. To have a vivid picture of this, we
take an average of the market shares of 30 shops own by each oligopolist. If the game converges
to a �xed point in action space, this average is taken by using the market-share data from
the last period. If the game converges to a periodic cycle, then the average is taken by using
the data from periods of the last cycle. These average market shares are reported along with
strategies in Tables 8 and 9. From 0 to 1, these two tables show a great dispersion of market
shares among di�erent runs. Notice that the initial market shares for each �rm is one third,
but only a few runs, e.g., Case A3, ended up with �rms with equal market shares. Instead, the
normal ecology seems to be the one with unbalanced market power.

18



Table 10: Simulation Results: Attractors, CASE A

Case # Attractors
A1 2 000, 100
A2 3 (000 ! 001 ! 100  -), 010, 111
A3 1 (100 ! 010 ! 001  -)
A4 1 (001 ! 011 ! 100 ! 110  -)
A5 1 (000 ! 101 ! 010 ! 011  -)
A6 1 (000 ! 010 ! 111  -)
A7 1 (000 ! 001 ! 100 ! 101 ! 010  - )
A8 1 (010 ! 001  -)
A9 1 (010 ! 100  -)
A10 1 (000 ! 110 ! 010  -)

The sign \ -" refers to the start of another cycle.

At this point, one may be tempted to ask what the most competitive strategy is. However,
in an coevolutionary context, this question is not really well-de�ned, since everything depends
on everything else. As a result, even though the strategy is completely the same, depending on
the strategies it competes against, the associated payo� can be quite di�erent. For example,
both the third oligopolists in Cases B1 and B8 used the strategy \00000001". Nevertheless, the
former went extinct, while the latter had a 20% market share.

Although the best strategy may be ill-de�ned, there is a noticeable di�erence in the char-
acteristic of two extremes of the strategies, i.e., the ones leading to a great success (a 100%
market share), and the ones leading to a great failure (a 0% market share). The di�erence lies
in the frequency of the bit \1" appearing in the strategy. The average number of \1" appearing
in the former cases is 1.16, while it is 2.88 for the latter. More generally, we run a regression of
the average market share against the frequency of \1" appearing in each cases, and the results
are as follows.

Market� Share =

(
0:72 � 0:15(# of 1); for CASE A;
0:78 � 0:22(# of 1); for CASE B:

(18)

In both cases, the regression coe�cient is negative. Therefore, the regression results does
suggest that \cooperate" is a risky play.

4.2.2 Analysis from a Social Viewpoint

How do the sets ( 1;  2;  3) behave? When three strategies are grouped together, given an
initial condition, they will generate a sequence of actions St(= (at1; a

t
2; a

t
3)), and at 2 f0; 1g.

Since all cases converged, we shall only focus on the asymptotic behaviour of St given a speci�c
set ( 1;  2;  3), i.e., the attractors of St. Tables 10 and 11 displays these attractors. For the
case who does not have a unique attractor, we list all of them, while by putting the one which
was actually visited in the �rst place. For example, Case A1 has two attractors \000" and
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Table 11: Simulation Results: Attractors, CASE B

Case # Attractors
B1 3 000, 010, 100
B2 2 000, 111
B3 2 (010 ! 100  - ), (001 ! 110  -)
B4 2 (000 ! 100  -), 011
B5 2 (000 ! 100 ! 001  -), 011
B6 2 000, (011 ! 101  - ), 011
B7 2 000, 100
B8 2 000, 100
B9 2 000, 101
B10 1 100

The sign \ -" refers to the start of another cycle.

\100", but only \000" was realized as the �nal state of the game.
There are two kinds of attractors appearing. The �rst kind of attractors is �xed points. It is

interesting to note that the only �x point which was realized as the �nal state of the outcome
is \000", i.e., price wars (Cases A1, B1, B2, B6, B7, B8, and B9). This result is quite obvious:
if one �rm decide to charge the low price from now on, then the only possibility for other �rms
to survive is to simply join in. Consequently, if \111" does not appear, \000" can be the only
�xed point. However, there is one exception, i.e., Case B10, whose �nal state is \100". But, as
one would expect, the �rst �rm did not survive to the end, and hence the �rst bit of this state
is clearly super
uous.

While the results suggest that it was unlikely for all the �rms to charge the high price all
the time (\111"), it does not necessarily mean that they would always charge the low price
(\000"). The second kind of attractors, i.e., periodic cycles with di�erent periods, indicates
something in between. In these attractors, �rms could charge the high price at the same time,
or at di�erent times. Whichever the case, no �rm would charge the low price at all times.

Let us consider the �rst kind of possibility, i.e., �rms would charge the high price at the
same time. Case A6 is the only example. In this case, the cycle go through the following three
states: \000", \010" and \111". Nevertheless, since the second �rm did not survive to the end,
the cycle can be reduced to a one in the two-dimension state space: \00", \00" and \11". In
such a cycle, the two surviving �rms would concurrently charge the low price for two periods,
then switch to the high price in the following period, and switch back the low price again. This
behaviour can be identi�ed as the nonagression agreement as discussed in Section 2. In Case
6, this nonagression agreement was an emergent behaviour, i.e., the agreement was not made
at the begining of the game. It was achieved in a complex path-dependent dynamics. When
the achievement was made, the �rst �rm was already a big �rm (a 78% market share), and the
third �rm turned out to be a medium one (a 22% market share).

For the second kind of possibility, consider Case A4. The attractor of Case A4 has a periodic
cycle with period four. This cycle go through the following four states: \001", \011", \100",
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and \110". In such a cycle, the sequences of actions taken by the three �rms are \0-0-1-1", \0-
1-0-1" and \1-1-0-0" respectively. In other words, in a four-period cycle, all the �rms charged
both the high price and the low price twice, while at di�erent times.

As we brie
y mentioned above, \charging high prices in turn" in practice can be considered
a collectively intelligent behaviour, because it is a smart idea to avoid the charge of the anti-
trust law. In this coordination, on the table �rms make a �ctitious competition, while under
the table they reach a tacit agreement that one half of the time they can charge a high price.
By the tacit agreement, they are guaranteed to not lose market to each other. Hence, this
kind of behaviour can also be classi�ed as a type of nonagression agreement. Moreover, since
they are charging high prices at di�erent times, unlike Case A6, it is very di�cult to verify
their anti-competition behaviour. Therefore, \charging the high price in turn" is a even more
sophisticated design of cooperation. In addition to Case A4, this type of emergent behaviour
is also observed in Cases A3, A5, and A7. Therefore, cooperative behaviour does emerge in our
simulations, while it is manifested in a much more subtle way as opposed to the IPD game.8

The emergence of periodic cycles can also help us in accounting for the three stylized phe-
nomena of the oligopolistic industry, as we summarized in the �rst section. The periodic cycle
of Case A6,

000|{z}
Price War

! 010! 111|{z}
Collusive Pricing

 -; (19)

is somewhat close the �rst stylized fact, i.e., collusive pricing is frequently interrupted by the
occurrence of predatory pricing. The periodic cycle of Case A4,

001! 011! 100! 110 -; (20)

is pretty much about the second stylized fact, i.e., a dispersion of prices can persistently exist.
As to the third stylized fact, i.e., �rms continuously switch between the high price and the low
price, it is a common property of the second kind of attractors. Of course, the real pricing
patterns of oligopoly is far more complex than what we have shown here. For example, in the
real world, pricing series may not have any regular cycle at all. However, given the simplicity
of our model, our results are encouraging enough to suggest that this is a good starting point
to advance the study of oligopolists' behaviour.

5 Concluding Remarks

In this study, the genetic algorithm was applied to an oligopoly game. While like in the well-
known IPD game �rms (players) encounter a similar subtle decision as to defect or to cooperate,
the Markov-process characterization of �rms' market shares makes the oligopoly game a non-
trivial generalization of the IPD game. First, depending on the initial market shares and
transition rules, the payo� matrix is time-variant and state-dependent. Second, as a result, the
inequalities which de�ne the IPD game may be violated as time goes on, which means even
though an oligopoly game can satisfy the conditions of the IPD game, the learning process

8Apart from not running against the anti-trust law, �rms can bene�t from this tacit agreement if both the
sixth and the seventh condition of the IPD game is violated, as been discussed in Section 3.
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randomly initiated may fail them in a later stage. Due to these extensions, one may hence
conjecture that results of oligopoly games can be too rich to be predicted by a single factor,
such as the number of players, and this conjecture is con�rmed by this paper.

In our simulations, we show that, even in the three-player case, collusive pricing (cooperative
behaviour) is not the dominating result as one may expect from the standard 3-person IPD
game. The results of our 20 simulations are quite divergent, but together they give quite a vivid
replication of what one may observe from a real oligopoly industry. The three characteristics of
the pricing patterns are captured by many of our simulations (Cases A3, A4, A5, and A7). In
addition to this, in many of our simulations, we also experience a transition from an oligopoly
industry to a monopoly (A2, A8, A9, A10, B3, B5) or duopoly industry (A6, B1, B4, B10).
One thing failed to be generated in our simulation is persistent collusive pricing. Persistent
pricing wars instead seem to the dominating outcomes. While a more advanced model could
be attempted with complicated GAs, we very much doubt if the rich nature of the oligopoly
industry would change due to these sophistication.
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case B. alpha=0.2, beta=0
mutation rate = 0.001,r=8,Ph=1.4

Figure A1. Õéæ Åêôõóêãöõêðï ðç Ôõâõæô © ôææå¾¸¹³¸´¯´¹ª
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Figure A6.Õéæ Åêôõóêãöõêðï ðç Ôõâõæô © ôææå¾¶¸¸±³¯¹ª
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Figure A2. Õéæ Åêôõóêãöõêðï ðç Ôõâõæô © ôææå¾¸º³º¸¯¸µª
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Figure A7.Õéæ Åêôõóêãöõêðï ðç Ôõâõæô © ôææå¾¶¸¹·º¯³¸ª
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Figure A3.Õéæ Åêôõóêãöõêðï ðç Ôõâõæô © ôææå¾¸º·´¹¯²³ª
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Figure A8.Õéæ Åêôõóêãöõêðï ðç Ôõâõæô © ôææå¾¶¹³µ²¯±²ª
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Figure A4. Õéæ Åêôõóêãöõêðï ðç Ôõâõæô © ôææå¾¹±²¶²¯¸¹ª
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Figure A5. Õéæ Åêôõóêãöõêðï ðç Ôõâõæô © ôææå¾¹±µ··¯ºµª
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Figure A10. Õéæ Åêôõóêãöõêðï ðç Ôõâõæô © ôææå¾¶¹¸µ·¯¸²ª
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Figure A9.Õéæ Åêôõóêãöõêðï ðç Ôõâõæô © ôææå¾¶¹¶±¸¯²¹ª
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case B. alpha=0.2, beta=0
mutation rate = 0.001,r=25,Ph=1.4

Çêèöóæ Ã²¯Õéæ Åêôõóêãöõêðï ðç Ôõâõæô © ôææå¾¸¹³¸´¯´¹ª
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Figure B6. Õéæ Åêôõóêãöõêðï ðç Ôõâõæô © ôææå¾¶¸¸±³¯¹ª
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Figure B2.Õéæ Åêôõóêãöõêðï ðç Ôõâõæô © ôææå¾¸º³º¸¯¸µª
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Figure B7.Õéæ Åêôõóêãöõêðï ðç Ôõâõæô © ôææå¾¶¸¹·º¯³¸ª
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Figure B3.Õéæ Åêôõóêãöõêðï ðç Ôõâõæô © ôææå¾¸º·´¹¯²³ª
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Figure B8.Õéæ Åêôõóêãöõêðï ðç Ôõâõæô © ôææå¾¶¹³µ²¯±²ª
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Figure B4.Õéæ Åêôõóêãöõêðï ðç Ôõâõæô © ôææå¾¹±²¶²¯¸¹ª
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Figure B5.Õéæ Åêôõóêãöõêðï ðç Ôõâõæô © ôææå¾¹±µ··¯ºµª
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Figure B10.Õéæ Åêôõóêãöõêðï ðç Ôõâõæô © ôææå¾¶¹¸µ·¯¸²ª
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Figure B9.Õéæ Åêôõóêãöõêðï ðç Ôõâõæô © ôææå¾¶¹¶±¸¯²¹ª
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