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Abstract. Trade among individuals occurs either because tastes (risk aver-
sion) di�er, endowments di�er, or beliefs di�er. We study a simple discounted
present value asset price model where agents have heterogeneous beliefs, di�er-
ent risk attitudes and learning schemes. According to di�erent risk attitudes,
agents adapt their beliefs over time by choosing from di�erent predictors or
expectations functions, based upon their past performance as measured by
realized pro�ts. By using both bifurcation theory and numerical analysis, we
�nd that the dynamics of asset pricing is a�ected by the relative risk attitudes
of di�erent types of investors and the external noise and learning schemes can
signi�cantly a�ect the dynamics. Compared with the �ndings of Brock and
Hommes [7] on the dynamics caused by changing of the intensity of choice to
switch predictors, we �nd that many of their insights are robust to the general-
ization we consider, however, the resulting dynamical behavior is considerably
enriched and exhibits some signi�cant di�erences.

Date: First version: Oct. 1998, Latest version: April 16, 1999.

1



2 CARL CHIARELLA AND XUE-ZHONG HE

1. Introduction

In recent years a body of evidence on the role of heterogeneous beliefs in �nancial
markets has presented a sharp challenge to the traditional view that assets in �nan-
cial markets are rationally priced to reect all publicly available information. It is
well known that trade among individuals occurs either because tastes (risk aversion)
di�er, endowments di�er, or beliefs di�er. With di�erent groups of traders having
di�erent expectations about future prices, asset price uctuations can be caused
by an endogenous mechanism. For instance, Beja and Goldman [3] and Chiarella
[9] consider models with interaction of two types of traders, fundamentalists and
chartists. The �rst type base their decision on the deviation of the asset prices from
fundamentals and the second type on simple technical trading rules, extrapolation
of trends and other patterns observed in past prices. The interaction between these
two types may lead to market instability, which is global for Beja and Goldman's
linear model and gives rise to a stable limit cycle for Chiarella's nonlinear model.
For more related work along this line, we refer to Brock and Hommes [5], Day and
Huang [10], Lux [16, 17, 18] and Sethi [22].

Recently, Brock and Hommes [6, 7] have introduced the concept of an adap-

tively rational equilibrium, where agents base decisions upon predictions of future
values of endogenous variables whose actual values are determined by equilibrium
equations. A key aspect of these models is that they exhibit expectations feedback.
Agents adapt their beliefs over time by choosing from di�erent predictors or ex-
pectations functions, based upon their past performance as measured by realized
pro�ts. The resulting dynamical system is nonlinear and as Brock and Hommes [7]
(henceforth BH) show, capable of generating the entire \zoo" of complex behaviour
from local stability to high order cycles and chaos as the intensity of choice to
switch predictors increases.

In this paper we focus on some di�erent aspects of the BH mechanism. When
di�erent types of investors, say, \smart-money" investors and \noise-traders", are
involved in the market, it is believed (see Black [4], Campbell and Kyle [8], DeLong,
Shleifer, Summers and Waldmann [11], Fama and French [13], Miller [20], Poterba
and Summers [21], Summers [23])) that the smart-money investors are more risk
averse than noise-traders. In other words, di�erent types of investors have di�erent
risk attitudes. We explicitly consider how asset price dynamics are inuenced by
relative risk attitudes of di�erent type of investors. Our aim in particular is to
take the framework of Brock and Hommes [7] on asset price dynamics and to relax
a number of its assumptions. In so doing we seek to determine the robustness
of their �ndings to changes in some of the key economic characteristics of their
model. We focus on a number of aspects of the modeling framework. Firstly we
allow agents to have di�ering attitudes to risk. Secondly we relax the assumption
that all agents have the same view of variance of the risky assets of the economy.
In our experience this is probably the quantity on which �nancial analysts will
have di�ering opinions. We allow some of the agents to estimate variance from a
time series of past realized returns. Thirdly, the length of the time series window
over which agents form their estimates of the mean and variance of the return
on the risky asset is also a parameter with which we experiment numerically to
determine its e�ect on the dynamic behaviour of the model. A detailed summary
of our �ndings is presented in the concluding section. Briey, we �nd that many
of the insights of Brock and Hommes are robust to the generalizations we consider,
however there are also some important di�erences in the dynamic behaviour of the
system when agents di�er signi�cantly in attitudes to risk, learning schemes and
their estimates of the variance of returns on the risky asset.
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The plan of the paper is as follows. In Section 2 a generalized version of the Brock
and Hommes [7] model is presented which takes account of the fact that di�erent
agents have di�erent risk attitudes and opinions on formations of expectations and
variances. By allowing some of the agents to estimate expectation and variance from
a time series of realized returns, we incorporate the length of the time series window
into the model. In Section 3, we focus �rst on the dynamics of equilibrium asset
prices with two belief types, one being fundamentalists and the other one either
trend chasers or contrarians. We then consider the market interaction of these
three groups. Using both bifurcation theory and numerical analysis, we investigate
the e�ects on the dynamics of the asset price models with relatively di�erent risk
aversion coe�cients and di�erent learning schemes. In these models, we also gain
some numerical insights into the e�ect of external noise on the system as measured
by the intensity of the noise in the dividend process. We �nd that the resulting
dynamical behavior is considerably enriched and has some signi�cant di�erences
compared to the original Brock-Hommes [7] analysis. Proofs of the results in this
section are given in an appendix. Summary of the main results of the paper and a
brief discussion are included in the last section.

2. Adaptive beliefs system

This section is devoted to a generalization of the simple asset pricing model
established by Brock and Hommes [7]. Following the framework of Brock and
Hommes [7], we consider an asset pricing model with one risky asset and one risk
free asset. It is assumed that the risk free asset is perfectly elastically supplied at
gross return R > 1. Let pt be the price (ex dividend) per share of the risky asset at
time t and fytg be the stochastic dividend process of the risky asset. Then investor
wealth at t+ 1 is given by

Wt+1 = RWt + (pt+1 + yt+1 �Rpt)zt; (2.1)

where Wt is the wealth at time t and zt is the number of shares of the risky asset
purchased at t.

As in Brock and Hommes [7], we use a Walrasian scenario to derive the demand
equation, i.e. each trader is viewed as a price taker (see Brock and Hommes [5]
and Grossman [15] for detailed discussion). The market is viewed as �nding the
price pt that equates the sum of these demand schedules to the supply. That is,
the price pt at time t is formed by using information available as of time t� 1 and
the expected utility for time t+ 1 (see more details in the following discussion).

Denote by Ft = fpt; pt�1; � � � ; yt; yt�1; � � � g the information set formed at time t.
Let Et; Vt be the conditional expectation and variance, respectively, based on Ft,
and Eht; Vht be the \beliefs" of investor type h about the conditional expectation
and variance. Denote Rt+1 the excess return at t+ 1, that is

Rt+1 = pt+1 + yt+1 �Rpt: (2.2)

Then it follows from (2.1) and (2.2) that

Eht(Wt+1) = RWt +Eht(pt+1 + yt+1 �Rpt)zt
= RWt +Eht(Rt+1)zt;

Vht(Wt+1) = z2t Vht(pt+1 + yt+1 �Rpt)
= z2t Vht(Rt+1):

(2.3)

Assume each investor type is a myopic mean variance maximizer, but di�erent
traders (say, type h) have di�erent attitudes towards risk, characterized by the risk
aversion coe�cient, say ah. Then, for type h, the demand for shares zht solves

max
z
fEht(Wt+1)�

ah
2
Vht(Wt+1)g; (2.4)
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i.e.,

zht =
Eht(Rt+1)

ahVht(Rt+1)
: (2.5)

Let zst denote the supply of (risky) shares and nht the fraction of investors of type
h at t (so that

P
h nht = 1). Then the equilibrium of demand and supply implies1X

h

nh;t�1zht = zst (2.6)

or (using (2.5)) X
h

nh;t�1
Eht(Rt+1)

ahVht(Rt+1)
= zst: (2.7)

We now assume zero supply of outside shares, i.e. zst = 0, then (2.7) leads toX
h

nh;t�1
Eht(Rt+1)

ahVht(Rt+1)
= 0: (2.8)

In order to get a bench mark notion of the rational expectation `fundamental
solution' p�t , consider the equation

Rp�t = Etfp
�

t+1 + yt+1g;

where Et is expectation conditional on the information set Ft. In the case where
the dividend process fytg is IID, Et(yt+1) = �y which is a constant. Then the only
solution satisfying the \no bubbles" condition (limt!1 Ept=R

t = 0) is the constant
solution �p = �y=(R + 1). Let xt denote the deviation of pt from the benchmark
fundamental p�t , that is

xt = pt � p�t :

Regarding the di�erent class of beliefs about the deviations from the fundamental
solution, we assume

(A1) : Heterogeneous beliefs on return
Eht(pt+1 + yt+1) = Et(p

�
t+1 + yt+1) + fht;

(A2) : Heterogeneous beliefs on variance
Vht(pt+1 + yt+1) = Vt(p

�
t+1 + yt+1) + ght;

Vt(p
�
t+1 + yt+1) = �2;

(2.9)

where

fh;t = fh(xt�1; � � � ; xt�L); gh;t = gh(xt�1; � � � ; xt�L) (2.10)

are some deterministic function and �2 is a constant. Following Brock and Hommes
[7] our assumption (A1) states that each group of agents base their prediction of the
mean into two parts, a fundamental part (on which all agents agree) and an agent
speci�c prediction component fht. Our assumption (A2) makes a similar statement
about each group of agents prediction of the variance. For the current analysis we
assume that the fundamental component of variance prediction is constant at �2.
Brock and Hommes [7] assume that ght = 0 for all h. Our rationale for incorporating
non-zero ght is to capture the fact that di�erences in opinion about volality is a
feature of �nancial markets. Under (A1), (A2), we have

Eht(Rt+1) = fh;t �Rxt; (2.11)

Vht(Rt+1) = Vht(pt+1 + yt+1) = �2 + gh;t (2.12)

1Note that the typical investor makes these plans at time (t�1), hence the fraction nh;t�1. In
this decision process pt is treated as parametric and is revealed to the investor when the Walrasian
auctioneer announces the market clearing price.
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and hence the equilibrium equation is given by

R

�X
h

nh;t�1
ah(�2 + gh;t)

�
xt =

X
h

nh;t�1fh;t
ah(�2 + gh;t)

: (2.13)

To de�ne the `�tness function', we rewrite the excess return in the following form

Rt+1 = xt+1 �Rxt + �t+1; (2.14)

where

�t+1 = p�t+1 + yt+1 �Etfp
�

t+1 + yt+1g (2.15)

is a Martingale Di�erence Sequence w.r.t. Ft, i.e. Ef�t+1jFtg = 0 for all t. Let
�h;t be the `�tness function' which, according to Brock and Hommes [7], is de�ned
by the realized pro�ts of trader type h:

�h;t = Rt+1zht; with zht =
Eht(Rt+1)

ahVht(Rt+1)
: (2.16)

More generally, one can introduce additional memory into the performance measure,
by considering a weighted average of realized pro�ts, as follows:

Uh;t = �h;t + �Uh;t�1; (2.17)

where the parameter � represents the memory strength.
Let the updated fractions be formed on the bases of discrete choice probability

(see Manski and McFadden [19], Anderson, de Palma and Thisse [1], Brock and
Hommes [6, 7]),

nh;t = exp[�Uh;t�1]=Zt; Zt =
X
h

exp[�Uh;t�1]; (2.18)

where �(> 0) is the intensity of choice measuring how fast agents switch between
di�erent prediction strategies. In particular, � = +1 means the entire mass of
traders uses the strategy that has highest �tness; while � = 0 means that the mass
of traders distributes itself evenly across the set of available strategies.

To sum up, the evolutionary dynamics is described by the following adaptive
beliefs system (

Rxt =
P

h
nh;t�1fh;t
ah(�2+gh;t)

=
P

h
nh;t�1

ah(�2+gh;t)
;

nh;t = exp[�Uh;t�1]=Zt;
(2.19)

where 8<
:

Zt =
P

h exp[�Uh;t�1];
Uh;t = �h;t + �Uh;t�1;

�h;t = Rt+1zht = [xt+1 �Rxt + �t+1]
fh;t�Rxt

ah(�2+gh;t)
:

(2.20)

The system can be written as a high-order di�erence equation. Say, for � = 0,
Uh;t = �h;t is a function of xt+1; xt; � � � and

nh;t = nh(xt; xt�1; � � � ):

Therefore the system (2.19)-(2.20) can be written as a high-order di�erence equation
of the form

xt = G(xt�1; xt�2; � � � ):

By setting ah = a and ght = 0 we would obtain the dynamic system studied by
Brock and Hommes [7]. In the following section, we will investigate the dynamics of
this more generalized asset price model with heterogeneous beliefs, risk and learning
schemes.
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3. Dynamics of simple belief types

When all the belief types have the same risk aversion and the heterogeneous
return function fht has a single lag (that is fht = fh(xt�1)), the dynamics caused
by the intensity of choice to switch predictors has been investigated by Brock and
Hommes [7]. They have shown that the irregular uctuations in asset prices are
triggered by a rational choice, based upon realized pro�ts, in prediction strategies,
known as Rational Animal Spirits.

In this section, we investigate how the dynamics are a�ected by the di�erent risk
attitudes of the various investors, as characterized by the di�erent risk aversion
coe�cients. We also consider the impact of learning schemes with di�erent lag
lengths in the formation of expectations when there are two di�erent types of beliefs.

To investigate the role of heterogeneous belief types, we assume that all beliefs
will follow a linear return and a nonlinear variance learning process. More precisely,
let

�xt =
1

L

LX
i=1

xt�i; ��2t =
1

L

LX
i=1

[xt�i � �xt]
2 (3.1)

and let

vh(x) = �[1�
1

(1 + x)�
]; (3.2)

where L is a positive integer and �; � � 0 are constants. We assume that

fht = dh�xt; (3.3)

where dh is the trend of trader type h. As in Brock and Hommes [7], we call
agent h a pure trend chaser if dh > 0 (strong trend chaser if dh > R) and a
contrarian if dh < 0 (strong contrarian if dh < �R). The simple predictors (3.3)
could be considered as a generalization of the simplest idealization of overreacting
securities analysts or overreacting investors. When dh = 0, equation (3.3) reduces
to fundamentalists, believing that prices return to their fundamental value. When
dh 6= 0, equation (3.3) reduces to chartists, believing that prices follow the past
prices governing by a learning process. On the variance, we assume that

ght = �2vh(��
2
t ): (3.4)

Motivated by Franke and Sethi [14], (3.4) means that although traders increase their
variance estimate as the estimate variance from past realized returns increases, but
they do not do so without bound. This is to be expected for the fundamentalists
since they know the fundamental values in long run.

3.1. Fundamentalists versus Trend Chasers.

In this part, we assume that type 1 agents are fundamentalists, believing that
prices return to their fundamental solution xt = 0, whereas type 2 agents believe
in a pure trend. Also, the fundamentalists realize the participation of the chartists
and they adjust their formulation on the variance correspondingly. We assume
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following belief schemes for the two groups of agents:

Type 1: Fundamentalists:
Mean: f1t = 0;
Variance: g1t = �2vh(��

2
t );

Risk Aversion Coe�cient : a1
Type 2: Pure trend chaser:

Mean: f2t = d�xt;
Variance: g2t = 0;
Risk Aversion Coe�cient : a2;

(3.5)

where a1; a2; d > 0 are positive real constants. Thus, the fundamentalists believe
that the prices will return to their fundamental values and, based on the observed
prices, they adjust their formulation on variance according to the function vh(x).
On the other hand, the second type of traders form their expectations by trying
to learn the mean of the price process as measured by the last L realized prices
and chase the trend of the prices. Here, we allow ai (i = 1; 2) to be di�erent to
characterize the di�erent risk attitudes of the two types of investors. Typically, as
pointed by Campbell and Kyle [8], we would expect the fundamentalists to be more
risk averse than the trend chasers.

Adaptive Belief System: Let � = 0; �t = 0. We have from (2.19), (2.20) and
(3.1)-(3.5) that8>>>>>><

>>>>>>:

xt =
d
R

a1(1+vh(��
2
t ))

a2n1;t�1+a1(1+vh(��2t ))n2;t�1
n2;t�1�xt;

n1;t = exp[�( 1
a1�2(1+vh(��2t�1))

Rxt�1[Rxt�1 � xt]� C)]=Zt;

n2;t = exp[�( 1
a2�2

[xt �Rxt�1][d�xt�1 �Rxt�1]=Zt;

Zt = exp[�( 1
a1�2(1+vh(��2t�1))

Rxt�1[Rxt�1 � xt]� C)]

+ exp[�( 1
a2�2

[xt �Rxt�1][d�xt�1 �Rxt�1];

(3.6)

where C � 0 is the cost incurred by the fundamentalists.
Let a = a2=a1 and

mt = n1;t � n2;t:

Then

n1;t =
1 +mt

2
; n2;t =

1�mt

2
(3.7)

and hence the system (3.6) can be expressed as8><
>:

xt =
d
R

(1+vh(��
2
t ))(1�mt�1)

a(1+mt�1)+(1+vh(��2t�1))(1�mt�1)
�xt

mt = tanh

�
�

2a1�2
(Rxt�1 � xt)

�
Rxt�1

1+vh(��2t )
+ d�xt�1�Rxt�1

a

�
� �C

2

�
:

(3.8)

We divide the following discussion on the dynamics of (3.8) into two cases.

Case 1: L = 1
We �rst consider a special case: L = 1. It follows from (3.1) and (3.2) that

�xt = xt�1; ��2t = 0; vh(��
2
t ) = 0:

Then we have the following system8<
:

xt =
d
R

1�mt�1

a+1+(a�1)mt�1
xt�1

mt = tanh

�
�

2a1�2
(Rxt�1 � xt)

�
Rxt�1 +

dxt�2�Rxt�1
a

�
� �C

2

�
:

(3.9)
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Lemma 3.1. (Existence and stability of equilibrium) Letmeq = tanh(��C
2 ),

m� = 1� 2aR
d+R(a�1) and x� be the positive solution (if it exists) of

tanh

�
�

2�2a1
(R� 1)(R+

d�R

a
)(x�)2 �

�C

2

�
= m�: (3.10)

� For 0 < d < R, E1 = (0;meq) is the unique, globally stable steady state of
(3.9);

� For R < d < (a+ 1)R, there are two possibilities:
{ if m� < meq then E1 is the unique, globally stable steady state of (3.9);
{ if m� > meq then (3.9) has three steady states E1; E2 and E3; E1 is

unstable;
� For d > (a + 1)R, (3.9) has three steady states E1; E2 = (x�;m�) and
E3(�x

�;m�); E1 is unstable.

Lemma 3.1 indicates that, when the trend chasers extrapolate only weakly (0 <
d < R), the fundamental steady state E1 is globally stable, no matter what risk
attitude investors have. However, when d > R, the stability of the fundamental
equilibrium E1 depends on the ratio a, which measures the relative risk attitude.
When the trend chasers extrapolate very strongly (d > (a+ 1)R) the fundamental
equilibrium E1 becomes unstable and bifurcate two additional nonzero steady states
E2 and E3. In the case of R < d < (a+1)R, the fundamental equilibrium is stable
when a is large, that is when the trend chasers become more risk averse than the
fundamentalists. This point will become more clear in the following discussion.

When a = 1, Lemma 3.1 leads to Lemma 2 in Brock and Hommes [7]. Hence,
Lemma 3.1 provides a more general result by allowing di�erent risk aversion coe�-
cients. For more detailed discussion of Lemma 3.1, we refer to Brock and Hommes
[7]. The relative risk aversion coe�cient a has the e�ect of reducing or expanding
the second and third regimes in Lemma 3.1. If a < 1 (i.e. fundamentalists are
more risk averse) the middle region shrinks whilst the third region expands. The
converse holds for a > 1. Typically we would expect fundamentalists to be more
risk averse than trend chasers, i.e. a < 1.

To fully understand the impact of the relative risk aversion coe�cient a on
the dynamical behaviour of the model we need to study how changes in a a�ect
bifurcations. The following two Lemmas clarify this issue, where we are more
interested in the case when R < d < (a+ 1)R. Let a� satisfy

tanh(�
�C

2
) = 1�

2a�R

d+ (a� � 1)R
: (3.11)

Then one can verify that m� < meq if and only if a > a�. Hence, a pitchfork
bifurcation occurs for a = a�. As a decreases further, the system will have a Hopf
bifurcation. More precisely, we have the following Lemmas 3.2 and 3.3 (The proof
of Lemma 3.2 comes from Lemma 3.1 directly and one can �nd the proof of Lemma
3.3 in the appendix).

Lemma 3.2. (Pitchfork bifurcation) Assume that R < d < (a + 1)R. Let
a� be solution of (3.11). Then, for a > a�, E1 is the unique equilibrium; for
0 < a < a�, (3.9) has three equilibria E1; E2 and E3. Therefore the system has a
pitchfork bifurcation at a = a�.

Lemma 3.3. (Second Bifurcation) Let E2 = (x�;m�) and E3(�x
�;m�) be

the non-fundamental steady states as in Lemma 3.1. Assume R < d < (a + 1)R
and C > 0 and let a� be the pitchfork bifurcation value as in Lemma 3.2. There
exists a�� < a� such that E2 and E3 are stable for a 2 (a��; a�) and unstable for
a < a��. For a = a��, E2 and E3 exhibit a Hopf bifurcation.
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For a = 1, Brock and Hommes [7] obtained a similar dynamics when changing
the parameter �. Here instead, we use parameter a to measure the relative attitudes
toward the risk for two di�erent types investors.

Numerical simulations

Equations (3.9) is equivalent to a three dimensional �rst-order system in terms
of (xt; xt�1;mt). In the following numerical simulations, we choose

R = 1:1; d = 1:2; C = 1:0; � = 3:5; �2 = 1:0; a1 = 1:0

with initial value (1.2, 0.7, -0.2) and di�erent a2 = a = 0:9; 0:95; 1:0; 1:1; 1:2 (initial
values can be selected so that the solutions stay non-positive, instead of nonnegative
as reported here2). Obviously, R < d < (a + 1)R is satis�ed. Then the pitchfork
bifurcation parameter, indicated by Lemma 3.2, a� = 3:01. Then Lemma 3.2
implies that the fundamental steady state E1 is globally stable for a > 3:01. Fig.
3.1 (a) shows plots of the attractors in the (xt;mt) plane and Fig. 3.1 (b) and (c)
plot the solutions of xt and mt, respectively. In Fig. 3.1 (a), the orbit converges
to the positive equilibrium E2 for a = 1:2 and then to an attracting invariant
`circle' surrounding E2 for a = 1:1, which indicates that the Hopf bifurcation value
a�� 2 (1:1; 1:2). Then as a decreases, the `circle' break into invariant sets. Fig.
3.1 (b) and (c) show the corresponding time series. For a = 1, the prices oscillate
about the positive equilibrium E2 and the market is dominated by the chartists.
As a increases, the prices are stabilized to E2 and as a decreases, the prices are
switching between an unstable phase of an upward trend and a stable phase with
prices close to the fundamental value. Fig. 3.1(d)-(e) show the corresponding time
series of xt;mt with noise. The noise comes from a stochastic dividend process
yt = �y + �t with IID noise �t, uniformly distributed on the interval [�0:05; 0:05],
added to the constant dividend process �y. We note that, without noise, the time
series have regular patterns and, after adding noise, the patterns become more
irregular. We highlight the case of a = 1:2. Without noise, the solution converges
to E2; with noise, the solution uctuates in a quite irregular fashion and exhibits
bursts of volatility. This simulation makes the point that nonlinear models of
�nancial markets dynamics (even when stable) \process" external noise in a far
more complicated way than is possible with linear models. However this is a theme
that we do not develop further here but rather for future research.

Fig. 3.2(a) shows a bifurcation diagram w.r.t. the relative risk ratio a without
noise, suggesting periodic and quasi-periodic dynamics after the primary Hopf bi-
furcation as a decreases. Fig. 3.2(b) shows the corresponding Largest Lyapunov
Exponent (LLE) plot without noise. When the fundamentalists are more risk averse
than trend chaser (i.e. a < 1), decreasing of a leads to weakly chaotic asset prices
uctuations with an irregular switching between close to the EMH fundamental
prices and upward and downward trends. On the other hand, when we allow an
external dividend process to be stochastic, i.e. yt = �y + �t with IID noise �t, uni-
formly distributed on the interval [�0:05; 0:05]. The bifurcation diagram and the
largest Lyapunov exponent plot are shown in Fig. 3.2 (c) and (d), respectively. The
bifurcation diagram itself does not indicate much di�erence from the one without
noise, however, the largest Lyapunov exponent ( �) plot does indicate a signi�cant
a�ect of the noise on the dynamics. When adding the noise, it is expected that
the dynamics become more chaotic (indicated by an increase in �) if the dynamics

2From the �rst equation of the system (3.9), one can see that a positive (negative) initial value
produce a positive (negative) solution, even adding noise from dividend process. Hence in the case
of fundamentalists versus trend chasers, the uctuation among the three phases (stable, upward
trend and downward trend), reported in Brock and Hommes [7], cannot occur once the initial
value is selected.
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Figure 3.1. Trend versus fundamentalists: Phase plot of (x;m)
(a) (without noise) and the time series of xt and mt without noise
(b) and (c) and with noise (d) and (e) for a = a2 =
0:9; 0:95; 1:0; 1:1; 1:2:
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without noise is chaotic. However, for large a, say a 2 [1:2; 1:5], the system without
noise is stable (� < 0). After adding noise, positive � indicates it becomes chaotic,
even though the magnitudes of the oscillations is very small. This phenomena can
also be seen from Fig. 3.1(d) for a = 1:2. Hence, adding noise can make a system
from chaotic to more chaotic, also from stable to chaotic. In other words, noise
here has a destabilizing e�ect.

Fig. 3.3 (a) and (b) report the e�ect of changing variance on the dynamics of the
model where we select �2 2 (0:1; 1) and a = 0:9 in Fig. 3.3(a) and a = 1:2 in Fig.
3.3(b) without noise. From Fig. 3.1 we know that a = 0:9 and �2 = 1 correspond to
chaotic behaviour. As expected, the bifurcation diagram in Fig. 3.3(a) indicates the
increasing magnitudes of the uctuations as variance increases, however the positive
Lyapunov exponent reported in 3.3(a) indicates that the system stays in the chaotic
regime for �2 2 (0:1; 1). For a = 1:2, Fig 3.3(b) indicates that the system stays
in the stable regime for various �2 2 (0:1; 1). Surprisingly, the Lyapunov exponent
plot indicates that the system become more stable as the variance increases. In
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the fundamentalists are more risk averse, the market become unstable, even
chaotic.

� The dynamics of the model is more a�ected by the relative risk ratio a, rather
than the variance �2.

� The external noise has signi�cant a�ect on the dynamical behaviour of the
model. It can destabilize an otherwise stable dynamics.

Further numerical simulations (not reported here) con�rm that, when d < R,
the fundamental equilibrium is globally stable, no matter the degree of their risk
aversion for both groups. When d > (a + 1)R, the fundamental equilibrium is
locally unstable.

Case 2: L � 2
We now turn to case when L > 1. For L � 2, one can check that the equilibrium

of the system is same as the case when L = 1. It then follows from Lemma 3.1
that the system has either one unique equilibrium E1 or three equilibria E1; E2

and E3. In this more general case, we are more interested in the stability of the
fundamental equilibrium. To study the stability of the fundamental equilibrium
E1, we can write the high order di�erence equation as an equivalent �rst order
di�erence system. Denote x = (x1; � � � ; xL+2) to be an L + 2 dimensional vector
and

F (x) = d
LR

1
a(1+m(x))+(1+vh(x))(1�m(x))(1 + vh(x)(1�m(x))[x1 + � � �+ xL];

m(x) = tanh

�
�

2a1�2
(Rx2 � x1)

�
Rx2

1+~h(x)
+ d(x3+���+xL+2)=L�Rx2

a

�
� �C

2

�
;

vh(x) = �

�
1�

�
1 + 1

L

PL
i=1(xi �

x1+���+xL
L )2

����
= vh(x1; x2; � � � ; xL);

~vh(x) = vh(x3; x4; � � � ; xL+2):
(3.12)

To analyse the local stability and bifurcations of equations (3.8), we write it as
the equivalent L+ 2 dimensional system8>>><

>>>:
x1;t+1 = F (xt)
x2;t+1 = x1;t

...
xL+2;t+1 = xL+1;t;

(3.13)

where F and m are de�ned by (3.12). Then the stability of E1 is equivalent to the
stability of x = 0 of system (3.13). We readily �nd that the Jacobian matrix of the
system (3.13) at x = 0 is given by the L+ 2 square matrix

J =

0
BBBBBBBBB@

� � � � � � � 0 0
1 0 � � � 0 0 0 0
0 1 � � � 0 0 0 0
...

...
. . .

...
...

...
...

0 0 � � � 1 0 0 0
0 0 � � � 0 1 0 0
0 0 � � � 0 0 1 0

1
CCCCCCCCCA
; (3.14)

where

 � �
1

L

d

R

1�meq

a+ 1 + (a� 1)meq
: (3.15)

Then the characteristic equation is given by

D(�) � �2[�L + �L�1 + �L�2 + � � �+ �+ ] = 0: (3.16)
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Obviously, 0 is a double eigenvalue. Using Jury's Test (see appendix), we have
following result.

Lemma 3.4. The zeros of the characteristic polynomial

P (�) � �L + �L�1 + �L�2 + � � �+ �+  (3.17)

lie inside the unit circle if and only if

�
1

L
�  < 1: (3.18)

Based on Lemma 3.4 and (3.15), we have the following local stability result.

Theorem 3.5. Let d > 0. The fundamental steady state E1 of the system (3.13)
is locally asymptotically stable if and only if

d

R

1�meq

a+ 1 + (a� 1)meq
< 1: (3.19)

We note that the condition (3.19) is independent of the lag length L. In partic-
ular, when a1 = a2, the condition can be written as

m� � 1� 2R=d < meq ; (3.20)

which is the same condition derived by Brock and Hommes [7]. Thus, Theorem 3.5 is
a generalization of their result to the situation of di�erent risk aversion coe�cients.
The region of stability of the fundamental steady state in the (a; d=R) plane is shown

in Fig. 3.4, where the four regions A;B;C and D are divided by d
R = 1; 1+ 1+meq

1�meq a
and 1 + a, respectively. Following Theorem 3.5, the fundamental steady state is
locally stable in A and B and unstable in C and D. Furthermore, we know from
Lemma 3.1 that there exist two other steady states E2 and E3 in C and D.

-

6

��
��

��
��

��



















2

1�meq

d

R

1

a1

A

B

C

D

Figure 3.4. Stability region of the fundamental steady state E1:
stable in A and B and unstable in C and D

Let a� be the solution indicated by Lemma 3.2. Then one can verify that it is
also the solution of the following equation

d

R

1�meq

a+ 1+ (a� 1)meq
= 1; (3.21)

that is,

a� = [
d

R
� 1]

1�meq

1 +meq
: (3.22)

Therefore, E1 is locally asymptotically stable for a > a�.
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Numerical simulations

In the following simulations, we choose

R = 1:1; d = 1:2; C = 1:0; �2 = 1:0; a1 = 1:0; � = 3:8;  = 0 (3.23)

Then, with the selection in (3.23), a� = 4:06375 (de�ned by (3.22)). For L = 2,
we choose a2 = a = 0:5; 0:8; 0:9; 1:0; 1:1, respectively. Fig. 3.5(a1) shows the phase
plots of (xt;mt) plane and Fig. 3.5(a2)-(a3) plot the corresponding time series
of fxtg without noise (a2) and with noise (a3). Fig. 3.5(b1) and (c1) show the
phase plot (xt;mt) for L = 5 and L = 10, respectively, where we select a2 = a =
0:2; 0:5; 0:8; 1:0; 1:2. The corresponding time series are plotted in Fig. 3.5 (b2) and
(c2) without noise and Fig. 3.5 (c3) and (c3) with noise.

The above numerical simulations suggest that:

� Just as the case when L = 1, there exists a second bifurcation value a�� 2
(1:0; 1:2) for L = 2; 5 and 10.

� When lag length L increases, the attractors on the (xt;mt) plane become
more complicated. Say, for a = 0:5, when L = 2, the prices switch between
an unstable phase of an upward trend and a stable phase with prices close
to the fundamental value; when L = 5 and L = 10, the prices uctuate away
from the fundamental value; the periods of upward trend for L = 10 is longer
than the case of L = 5.

� The external noise has a more signi�cant a�ect on the dynamical behaviour
of the model with short lag length (say L = 2) than long lag length (say
L = 5 and 10). Also, it has more a�ect for high ratio a than for low ratio
a. In other words, when the system exhibits chaotic behaviour without noise,
adding noise could have no signi�cant a�ect on the dynamics, however, if the
system without noise is stable, adding noise can lead to signi�cant changes
on the dynamics of the system.

Bifurcation diagrams and the Lyapunov exponent plots are shown in Fig. 3.6
where (a) is for L = 2, (b) is for L = 5 and (c) is for L = 10. There are some
di�erences, however it is in general not clear whether increasing of lag length L
stabilize or destabilizes the dynamics. When � > 0, further numerical simulations
(not reported here) indicate not much di�erence in dynamical behaviour.

3.2. Fundamentalists versus Contrarians.

In this part, we assume that d < 0 in (3.8), that is the type 2 investors are
contrarians. The adaptive belief system is thus identical to system (3.8) but now
with d < 0. As in the previous part, we �rst consider the case L = 1 and then move
to the case when L > 1.

Case 1: L = 1
When L = 1, our adaptive belief system is also given by (3.9). Since d < 0,

one can see that the only steady state is the fundamental equilibrium E1. However
now, the system may have a two cycle. More precisely, we have the following result.

Lemma 3.6. (Existence of steady state and 2-cycles and their stability)

Let meq = tanh(��C
2 ), �m = 1+ 2aR

d�R(a�1) and �x be the positive solution (if it exists)

of

tanh

�
�

2�2a1
(R+ 1)(R�

d+R

a
)(�x)2 �

�C

2

�
= �m: (3.24)

� The fundamental steady state E1 = (0;meq) is the unique steady state; it is
globally stable for �R < d < 0;

� For �(a+ 1)R < d < �R there are two possibilities:
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Figure 3.5. Trend versus fundamentalists: Phase plots (x;m)
for L = 2 (a1), L = 5 (b1) and L = 10 (c1); Time series of xt
without noise (for L = 2 (a2), L = 5 (b2) and L = 10 (c2)) and
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{ if �m < meq then E1 is the unique, globally stable steady state.
{ if �m > meq then E1 is unstable and there exists a periodic two cycle
f(�x; �m); (��x; �m)g;

� For d < �(a + 1)R, E1 is unstable and there exists a periodic two cycle
f(�x; �m); (��x; �m)g.

The above result has been obtained by Brock and Hommes [7] in the case when
a = 1 and it can be proved similarly. Furthermore, it leads to the following periodic
doubling bifurcation result (its proof follows from Lemma 3.6 and �m = meq).

Lemma 3.7. Let f(�x; �m); (��x; �m)g be the two cycle as in Lemma 3.6. Assume
�(a+ 1)R < d < �R, C > 0 and denote

�a �
d+R

R

meq � 1

meq + 1
: (3.25)

Then �a is a period doubling bifurcation value; that is, the system (3.9) has unique
fundamental equilibrium E1 for a > �a and has a (locally) stable 2-cycle for a < �a
(with a near �a).

In the following numerical simulations, we choose

R = 1:1; d = �1:5; C = 1:0; � = 4:0; �2 = 1:0; a1 = 1:0

with di�erent a2 = a = 0:05; 0:1; 1:0; 1:5; 2:0. Fig. 3.7(a) and (b) show the time
series of xt and mt, respectively for di�erent a and Fig. 3.7(e) plots the attractors
in the (xt;mt) plane. The corresponding time series in Fig. 3.7(a) and (b) with
noise added to the dividend process are shown in Fig. 3.7(c) and (d). It suggests
that noise does not seem to do much in this case. Fig. 3.7(e) indicates that; when
a2 = 2:0 all the solutions converge to the period 2 equilibrium (period doubling
bifurcation); when a = 1:5, the orbit converges to an attractor consisting of the
two invariant `circles' created after the secondary Hopf bifurcation of the two cycle.
As a decreases, the two circles move closer to each other; when a = 0:1, the system
seems to be already close to a homoclinic orbit. As a decreases further to a = 0:05,
the attractor becomes a point, which implies that all the orbits converge to the
fundamental equilibrium. In fact, the dynamical behaviour is very similar to the
chaotic uctuations in Brock and Hommes [7]. The bifurcation diagram in Fig.
3.9(f) shows periodic doubling bifurcation of the steady state and the breaking
of the invariant circle into strange attractors as a decreases. The chaotic region
(characterised by positive �) is interspersed with many stable cycles where � < 0.

Numerical simulations (not reported here) show also that, for d < �R, the
fundamental equilibrium is globally stable for any a > 0; while for d < �(a+ 1)R,
the fundamental equilibrium is unstable.

In a market with fundamentalists versus contrarians a small ratio of the relative
risk aversion coe�cient produces asset price dynamics, with irregular uctuations
around the EMH fundamental. This implies that when the fundamentalists become
relatively more risk averse than the contrarians, market instability and chaos ensue.

Case 3: L > 1
We now turn to the case where d < 0 and L > 1. The adaptive belief system is

identical to the system (3.12) and (3.13). Following the discussion on the system
(3.12) and using Lemma 3.4 and (3.15), we have the following local stability result.

Theorem 3.8. Let d < 0. The unique steady state E1 of the system (3.13) is
locally stable if and only if

0 � �
d

R

1�meq

a+ 1 + (a� 1)meq
< L: (3.26)
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Figure 3.7. Contrarian versus fundamentalists: the time se-
ries of xt and mt without noise(a) and (b) and with noise (c)
and (d) and the phase plot of (x;m) (without noise) (e) for
a2 = 0:05; 0:1; 1:0; 1:5; 2:0; bifurcation diagram and Lyapunov ex-
ponent plot (f);
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Di�erent from the case when d > 0, the stability condition (3.26) depends on the
lag length L is illustrated in Fig. 3.8 where the fundamental steady state is locally
stable in the region below the line (labelled by A) and unstable in the region above
the line (labelled by B). Also, di�erent from the case d < 0 and L = 1, the system
may have no 2-cycle even if d < �(a + 1)R. In fact, the condition (3.26) can be
written as

a > a� � �(1 +
d

LR
)
1�meq

1 +meq
: (3.27)

So, a necessary condition for the occurrence of bifurcation (from the steady state)
is

d < �LR: (3.28)

Therefore, the fundamental steady state is always locally stable when 0 > d > �LR
for any a > 0. The stability region of the fundamental steady state w.r.t the
parameter d is proportional to the lag length L. It is in this sense that increasing
of the lag length L can stabilize an otherwise unstable dynamics.

-

6

��
��

��
��

��
2

1�meq

�
d

LR

1

a1

A

B

Figure 3.8. Stability region of the fundamental steady state E1:
stable in A and unstable in B

Numerical simulations

For L = 2, we choose

R = 1:1; g = �2:5; � = 4:0; a1 = 1:0; C = 1:0; �2 = 1:0; � = 0:

Then a� = 7:445 (de�ned by (3.27)) implies that the fundamental equilibrium is
locally stable for a > a� = 7:445. For a2 = a = 0:01; 1; 2; 5; 7; 8, the time series of
xt and mt are plotted in Fig. 3.9(a) and (b) without noise and (c) and (d) with
noise. The phase plot (without noise) on (xt; xt�1) is shown in Fig. 3.9(e). Fig.
3.9(a) shows that, when a is around 7, the fundamental solution breaks into periodic
circles, in particular, into a 3-cycle. The bifurcation diagram and the Lyapunov
exponent plot in Fig. 3.9(f) indicate that, as a decreases, the dynamical behaviour
is mainly characterised by periodic cycles. To see closely the Lyapunov exponent
plot when a 2 [2; 8], we enlarge that part of the plot and, from which, one can
see some positive Lyapunov exponent for a is near 2. Noting that when a < 1,
the solutions exhibit very simple dynamics, characterised by either 3 or 6 cycles.
In particular, when a = 1, the solution converges to a 3-cycle and when a = 0:1
to a 6-cycle. Furthermore, prices oscillate among di�erent phases, including the
fundamental equilibrium. Also, we notice that the addition of noise has not much
a�ect when a is large, but it does a�ect the solution behavior when a is small.

For L = 5, we select

R = 1:0; g = �5:5; � = 4:0; a1 = 1:0; C = 1:0; �2 = 1:0; � = 0:
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Then a� = 5:46 (de�ned by (3.27)) implies that the fundamental equilibrium is
locally stable for a > a� = 5:46. For a2 = a = 0:05; 1; 3; 5; 7, the time series of
xt and mt are plotted in Fig. 3.10(a) and (b) without noise and (c) and (d) with
noise. The phase plot on (xt; xt�1) is shown in Fig. 3.10(e) for a = 5:0. Fig.
3.10(a) shows that, as a decreases, the system has more complicated dynamics, in
particular, this is indicated by the phase plot in Fig. 3.10(e) with a = 0:5. The
bifurcation diagram and the Lyapunov exponent plot in Fig. 3.10 illustrate more
complicated dynamics as a decreases.

One can see there is much di�erence in dynamics for di�erent lag length L = 1; 2
and 5. When � > 0, numerical simulations (not reported here) indicate not much
di�erence for both L = 2 and L = 5.

3.3. Three beliefs types: Fundamentalists versus Trends. In this part we
consider a combination of three di�erent belief types. As before, type 1 are fun-
damentalists. Type 2 are trend chasers and type 3 are contrarians. This model
can be treated as a combination of the previous two cases. Consequently, we might
expect to have some kind of mixture of the dynamics of two beliefs models when
the evolution of the state vector is such that the relative importance of the trend
chasers or contrarians is diminished. On the other hand at times when all three
groups are of roughly equal relative importance we might expect some new dynamic
features.

Following the notation in the previous subsections, we assume that

f1t = 0; f2t = d2�xt;L2 ; f3t = �d3�xt;L3 (3.29)

and

g1t = �2vh(��
2
t ); g2t = g3t = 0; (3.30)

where d2; d3 > 0 are constants and �xt; ��
2
t and vh are de�ned as before. Let ai (i =

1; 2; 3) be the risk aversion coe�cient of type i (i = 1; 23) and � = 0; �t = 0. Then
the adaptive belief system (2.19) and (2.20) can be written as follows:8>>>>>>>>>><

>>>>>>>>>>:

xt =
a1
R

(1+h(��2t ))[d2a3n2;t�1�xt;L2�d3a2n3;t�1 �xt;L3 ]

a2a3n1;t�1+a1(1+h(��2t ))[a3n2;t�1+a2n3;t�1]

n1;t = exp[�( 1
a1�2(1+h(��2t�1))

Rxt�1[Rxt�1 � xt]� C)]=Zt;

n2;t = exp[�( 1
a2�2

[xt �Rxt�1][d2�xt�1;L2 �Rxt�1]=Zt;

n3;t = exp[�( 1
a3�2

[xt �Rxt�1][�d3�xt�1;L3 �Rxt�1]=Zt;

Zt = exp[�( 1
a1�2(1+h(��2t�1))

Rxt�1[Rxt�1 � xt]� C)]

+ exp[�( 1
a2�2

[xt �Rxt�1][d2�xt�1;L2 �Rxt�1]

+ exp[�( 1
a3�2

[xt �Rxt�1][�d3�xt�1;L3 �Rxt�1]

(3.31)

As the simplest case, we �rst assume that L2 = L3 = 1. Then �xt;L2 = �xt;L3 =
xt�1; ��

2
t = 0 and h(��2t ) = 0 so that the system (3.31) is reduced to8>>><
>>>:

xt =
a1
R

d2a3n2;t�1�d3a2n3;t�1
a2a3n1;t�1+a1a3n2;t�1+a1a2n3;t�1

xt�1
n1;t = exp[�( 1

a1�2
Rxt�1[Rxt�1 � xt]� C)]=Zt;

n2;t = exp[�( 1
a2�2

[xt �Rxt�1][d2xt�2 �Rxt�1]=Zt;

n3;t = exp[�( 1
a3�2

[xt �Rxt�1][�d3xt�2 �Rxt�1]=Zt:

(3.32)

System (3.32) is equivalent to a third-order di�erence equation in xt. Denote

A2 =
a2
a1
; A3 =

a3
a1
; D2 =

d2
R
;D3 =

d3
R
:



A
S
IM

P
L
E
A
S
S
E
T
P
R
IC
IN
G

M
O
D
E
L

2
3

0
4

0
0

8
0

0
1

2
0

0
1

6
0

0
2

0
0

0
-
6

-
4

-
2 0 2 4 6

a=0 .5

-
8

-
6

-
4

-
2 0 2 4 6

a=1 .0

0
4

0
0

8
0

0
1

2
0

0
1

6
0

0
2

0
0

0

0
4

0
0

8
0

0
1

2
0

0
1

6
0

0
2

0
0

0
-
3

-
2

-
1 0 1 2 3

a=3 .0

0
4

0
0

8
0

0
1

2
0

0
1

6
0

0
2

0
0

0
-
3

-
2

-
1 0 1 2 3

a=5 .0

0
4

0
0

8
0

0
1

2
0

0
1

6
0

0
2

0
0

0
-
1

.0

-
0

.5

0
.0

0
.5

1
.0

1
.5

2
.0

a=7 .0

(a
)

0
4

0
0

8
0

0
1

2
0

0
1

6
0

0
2

0
0

0

0

a=0 .5

0

a=1.0

0
4

0
0

8
0

0
1

2
0

0
1

6
0

0
2

0
0

0

0
4

0
0

8
0

0
1

2
0

0
1

6
0

0
2

0
0

0
-
1 0 1

a=3 .0

0
4

0
0

8
0

0
1

2
0

0
1

6
0

0
2

0
0

0
-
1 0 1

a=5 .0

0
4

0
0

8
0

0
1

2
0

0
1

6
0

0
2

0
0

0
-
1

.0

-
0

.5

0
.0

a=7 .0

(b
)

0
4

0
0

8
0

0
1

2
0

0
1

6
0

0
2

0
0

0
-
6

-
4

-
2 0 2 4 6

a=0 .5

-
8

-
6

-
4

-
2 0 2 4 6 8

a=1 .0

0
4

0
0

8
0

0
1

2
0

0
1

6
0

0
2

0
0

0

0
4

0
0

8
0

0
1

2
0

0
1

6
0

0
2

0
0

0
-
3

-
2

-
1 0 1 2 3

a=3 .0

0
4

0
0

8
0

0
1

2
0

0
1

6
0

0
2

0
0

0
-
3

-
2

-
1 0 1 2 3

a=5 .0

0
4

0
0

8
0

0
1

2
0

0
1

6
0

0
2

0
0

0
-
1

.0

-
0

.5

0
.0

0
.5

1
.0

1
.5

2
.0

a=7 .0

(c)

0
4

0
0

8
0

0
1

2
0

0
1

6
0

0
2

0
0

0

0

a=0 .5

0

a=1.0

0
4

0
0

8
0

0
1

2
0

0
1

6
0

0
2

0
0

0

0
4

0
0

8
0

0
1

2
0

0
1

6
0

0
2

0
0

0
-
1 0 1

a=3 .0

0
4

0
0

8
0

0
1

2
0

0
1

6
0

0
2

0
0

0
-
1 0 1

a=5 .0

0
4

0
0

8
0

0
1

2
0

0
1

6
0

0
2

0
0

0
-
1

.0

-
0

.5

0
.0

a=7 .0

(d
)

-1
.0

-0
.5

0
.0

0
.5

1
.0

x_
t

-1
.0

-0
.5

0
.0

0
.5

1
.0

x_ (t-1)

a=
5

(e)

0
2

4
6

8

a

-0
.0

4

-0
.0

2

0
.0

0

0
.0

2

0
.0

4

0
.0

6

0
.0

8

λ

0
2

4
6

8

a

-1
0 0

1
0

x

(f)

F
ig
u
r
e
3
.1
0
.

C
o
n
tra

ria
n
v
ersu

s
fu
n
d
a
m
en
ta
lists{

L
=
5
:
T
im

e
series

o
f
x
t
a
n
d
m

t ,
w
ith

o
u
t
n
o
ise

(a
)-(b

)
a
n
d
w
ith

n
o
ise

(c)-(d
);

p
h
a
se

p
lo
t
o
f
(x

t ;x
t
�
1 )

fo
r
a
=

5
(e);

b
ifu

rca
tio

n
d
ia
g
ra
m

a
n
d

L
y
a
p
u
n
ov

ex
p
o
n
en
t
p
lo
t
(f)



24 CARL CHIARELLA AND XUE-ZHONG HE

Then we have 8<
:

xt+1 = f(xt; yt; zt)
yt+1 = xt
zt+1 = yt;

(3.33)

where

f(x; y; z) = D2A3g2(x;y;z)�D3A2g3(x;y;z)
A2A3g1(x;y;z)+A3g2(x;y;z)+A2g3(x;y;z)

x

g1(x; y; z) = exp[ �R
a1�2

y(Ry � x)� C]

g2(x; y; z) = exp[ �
a2�2

(x �Ry)(d2z �Ry)]

g3(x; y; z) = exp[ �
a3�2

(x �Ry)(�d3z �Ry)]

(3.34)

The Jacobian matrix of the linearized system at the fundamental equilibrium (0; 0; 0)
is given by

J =

0
@� 0 0
1 0 0
0 1 0

1
A (3.35)

where

� =
D2A3 �D3A2

A2A3e�C +A2 +A3
:

Obviously, 0 is a double eigenvalue and � is the third eigenvalue. Therefore, the
fundamental equilibrium is locally asymptotically stable if and only if

jD2A3 �D3A2j < A2 +A3 +A2A3e
�C : (3.36)

Let us take A2 as a bifurcation parameter. Then condition (3.36) can be written
as

A2 >
D2�1

D3+1+A3e�C
A3 if D3 < 1 +A3e

�C

D2�1
D3+1+A3e�C

A3 < A2 <
D2+1

D3�1�A3e�C
A3 if D3 > 1 +A3e

�C :
(3.37)

The condition (3.37) indicates that:

� if D2 < 1 and D3 < 1 + A3e
�C , the fundamental equilibrium is locally

asymptotically stable for any A2 > 0;
� if D2 < 1 and D3 > 1 + A3e

�C , the fundamental equilibrium is locally
asymptotically stable for A2 <

D2+1
D3�1�A3e�C

A3;

� if D2 > 1 and D3 < 1 + A3e
�C , the fundamental equilibrium is locally

asymptotically stable for A2 �
D2�1

D3+1+A3e�C
A3;

� if D2 > 1 and D3 > 1 + A3e
�C , the fundamental equilibrium is locally

asymptotically stable for A2 2 (b1; b2), where b1 =
D2�1

D3+1+A3e�C
A3 and b2 =

D2+1
D3�1�A3e�C

A3.

Numerical simulations on the nonlinear system also show that the fundamental
equilibrium is asymptotically stable for D2 < 1 and D3 < 1+A3e

�C . We are more
interested in the case where trend chasers extrapolate strongly while contrarians
extrapolate weakly, that is when D2 > 1 and D3 < 1 + A3e

�C . To compare with
the case of fundamentalists versus trend chasers, we select

R = 1:1; C = 1:0; a1 = 1; �2 = 1; � = 3:5

and d2 = 1:2; d3 = 0:1; a3 = 3:0. Then D2 > 1, D3 < 1 +A3e
�C and the condition

(3.37) implies the fundamental equilibrium is locally stable for A2 > 0:124. The
bifurcation diagram and Lyapunov exponent plot in Figure 3.11(a) on our nonlinear
model indicate that the fundamental equilibrium bifurcates when A2 is near 0.124.
Depending on di�erent initial values, the bifurcation is either a positive equilibrium
or a negative one. In some cases, the bifurcating equilibria may switch from a
positive one to an negative one as A2 decreases. Comparing with Figure 3.2(a)
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contrarians, we choose

R = 1:1; C = 1:0; a1 = 1:0; �2 = 1; � = 4:

When d2 = 1; d3 = 1:5 and a2 = 2:0, the bifurcation diagram and Lyapunov
exponent plot are shown in Figure 3.11(b). In this case, local stability condition is
given by A3 > 0:275. Numerical simulations show that

� When both trend chasers and contrarians extrapolate weakly (D2 < 1+A2e
�C

and D3 < 1), the fundamental equilibrium is asymptotically stable;
� When contrarians extrapolate strongly (D3 > 1), the fundamental equilib-
rium is stabilized when adding trend chasers as a third group, even if they
extrapolate weakly (D2 < 1 + A2e

�C) and are more risk averse (A2 = 2:0).
Also, the maximum magnitudes of the oscillations are reduced;

� When both trend chasers and contrarians extrapolate strongly (D2 > 1 +
A2e

�C and D3 > 1), by adding trend chasers as a third group, the funda-
mental equilibrium may be stabilized when they are more risk averse or be
destabilized when they become less risk averse (leading to exploding dynam-
ics).

It would be interesting to consider the price dynamics for di�erent combinations
of the window lengths L1 and L2 in the three beliefs model. We omit this discussion
to short the paper.

4. Conclusion

Adopting the framwork developed by Brock and Hommes [6, 7] as a starting
point, the present paper has incorporated risk and learning schemes into an asset
pricing model with heterogeneous beliefs. Fundamentalists, trend chasers and con-
trarians as the main trading groups cause various dynamics of price changes. It is
well known that di�erent types of investors have di�erent risk attitudes. However,
how their risk attitudes a�ect the dynamics of asset prices has not received a great
deal of attention in the literature. The current paper has bought to address this
de�ciency.

This paper provides an explicit study on how the dynamics of asset pricing
is a�ected by di�erent risk attitudes of di�erent types of investors and di�erent
learning schemes. We might summarize our results as follows:

� The dynamics of asset pricing is a�ected by the relative risk attitudes of di�er-
ent types of investors (measured by a). In general, when the chartists (trend
chasers or/and contrarians) are more risk averse, the prices converge either
to the fundamental equilibrium (this is the case when the fundamentalists
are less risk averse), or to a positive (or negative) equilibrium (in the model
of fundamentalists and trend chasers), or to a period doubling cycle (in the
model of fundamentalists and contrarians). However, when the fundamental-
ists are relatively more risk averse, the price dynamics become unstable and
lead to complicated dynamics, such as periodic cycles and chaotic behavior.

� Learning schemes a�ect the models di�erently. In the model of fundamen-
talists and trend chasers, increasing the window length L does not a�ect the
(local) bifurcation values (when other parameters are �xed) and leads to the
prices uctuating away from the fundamental value. But in the model of
fundamentalists and contrarians, an increase in L leads to an increase in the
bifurcation values and the price dynamics become more complicated.

� The price dynamics is more a�ected by the relatively risk aversion ratio a,
rather than the size of variance �2.

� The external noise has a signi�cant e�ect on the dynamical behavior of the
model. It can destabilize an otherwise stable dynamics.
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� When adding a third belief into two beliefs models, as expected, we have some
kind of mixture of the dynamics of two beliefs models when the evolution of
the state vector is such that the relative importance of the trend chasers
or contrarians is diminished. On the other hand at times when all three
groups are of roughly equal relative importance we obtain some new dynamic
features. In particular, mixing the fundamentalists with the two other groups
can signi�cantly stabilize the price dynamics, even if either of the other two
groups extrapolates weakly and is more risk averse.

In summary, we �nd that the resulting dynamical behavior is considerably en-
riched and has some signi�cant di�erences compared to the original Brock-Hommes [7]
analysis. However the interaction of external noise with the nonlinear dynamics of
the model is a topic that requires more extensive research. The techniques discussed
in Arnold [2] may be useful in this regard.

The asset pricing model of this paper is established by using the scenario of the
Walrasian auctioneer to obtain the market clearing price. As pointed by Grossman
[15], the demand function in the Walrasian scenario speci�es a desired level of hold-
ings of the security at each particular price pt, irrespective of whether or not pt is a
market clearing price. Instead, Grossman assumes that the consumer faces a price
that is a real o�er of another person, or the outcome of a market process. Hence
the fact that a particular price is o�ered is itself information about what someone
else thinks about the future payo�. Therefore to extend the model discussed here
to the non-Walrasian scenario to incorporate costs of information is an interesting
problem which we leave to future research work.

Appendix A.

Proof of Lemma 3.1: Let �x; �m be constants satisfying

�x = d
R

1� �m
a+1+(a�1) �m �x

�m = tanh

�
�

2a1�2
(R � 1)

�
R + d�R

a

�
(�x)2 � �C

2

�
(A.1)

The �rst equation implies �x = 0, or �m = m�. �x = 0 implies �m = meq , which
leads to the existence of E1(0;m

eq). Regarding to the existence of E2 and E3, we
consider three di�erent cases.

(i) Assume d < R, then aR
aR+(d�R) > 1, which implies �m < �1. Hence there is

no solution from the equation (3.10) and E1 is the only equilibrium.
(ii). Assume d > (a+1)R. Then one can verify that 0 < �m < 1 and the equation

(3.10) always has two solutions �x�. Therefore, apart from E1, we have two other
equilibria E2; E3.

(iii). Assume R < d < (a+ 1)R. Then �1 < �m < 0 and the equation (3.10) has
solutions if and only if m� > meq .

We next consider the stability of equilibrium E1. Let yt = xt�1 and zt = yt�1 =
xt�2 and one can rewrite as the following 3 dimensional di�erence system

xt+1 = F (xt; yt; zt)
yt�1 = xt
zt�1 = yt

(A.2)

where

F (x; y; z) = d
R

1�m
a+1+(a�1)mx;

m = tanh

�
�

2a1�2
(Ry � x)

�
Rz + dz�Ry

a

�
� �C

2

�
(A.3)
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Calculating the Jacobian matrix of the system at (x; y; z) = (0; 0; 0), we obtain the
three eigenvalues �1 = �2 = 0 and �3 = Fx(0; 0; 0), where

Fx(0; 0; 0) =
d

R

1�meq

a+ 1 + (a� 1)meq
: (A.4)

It is easy to verify that, for �1 < meq � 0, 1
1+a � 1�meq

a+1+(a�1)meq < 1. Hence

�3 < 1 for d < R and �3 > 1 for d > (a + 1)R. When R < d < (a + 1)R, � < 1
if and only if meq < m�. Therefore, the local stability of E1 follows. Furthermore,
when E1 is local stable, it is also global stable. This completes the proof.

Proof of Lemma 3.3: The characteristic equation of the system at (x�; x�; x�)
is given by

G(�) � �3 � F �x�
2 � F �y �� F �z = 0; (A.5)

where

F �x = 1+A [d+(a�1)R]2

a[a+1+(a�1)m�]

F �y = �A [d+(a�1)R][d+(a�1)(2R�1)]
a[a+1+(a�1)m�]

F �z = �Ad(R�1)[d+R(a�1)]
a[a+1+(a�1)m�]

(A.6)

with A = �(x�)2

2�2a1

�
1� tanh2

�
�

2a1�2
(R�1)

�
R+ d�R

a

�
(x�)2� �C

2

��
. It is know that

j�ij < 1(i = 1; 2; 3) if and only if

jF �x + F �z j < 1� F �y ; jF �y � F �z F
�

x j < 1� (F �z )
2: (A.7)

From Lemma 3.2, we know that, for a = a�, x� = 0 so that the equation has
�1 = �2 = 0 and �3 = 1. Following the argument used in the proof of Lemma 3 in
Brock and Hommes, one can prove that there exists a�� < a� such that the system
has a Hopf bifurcation at a��.

Jury's Test

We �rst introduce concepts of the inners of a matrix and the positive innerwise
matrix, which can be found from the book by Elaydi [12] (pages 180{181).

Let B = (bij)n�n be a matrix. The inners of the matrix B are the matrix
itself and all the matrices obtained by omitting successively the �rst and last rows
and the �rst and last columns. A matrix B is said to be positive innerwise if the
determinants of all its inners are positive.

We now consider the kth order scalar equation

xn+k + p1xn+k�1 + p2xn+k�2 + � � �+ pkxn = 0; (A.8)

where the pi's are real numbers. Obviously, the characteristic equation of the
equation (A.8) is given by

p(�) = �k + p1�
k�1 + � � �+ pk: (A.9)

The Schue-Cohn criterion de�nes the conditions for the characteristic roots of
equation (A.9) to fall inside the unit circle. More precisely, the following Jury's
test will be used in our proof to Lemma 3.4.

Lemma A.1. (Jury's test) The zeros of the characteristic polynomial (A.9) lie
inside the unit circle if and only if the following hold:

� p(1) > 0
� (�1)kp(�1) > 0,
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� the (k � 1)� (k � 1) matrices

B�k�1 =

0
BBBBB@

1 0 � � � 0 0
p1 1 � � � 0 0
...

...
. . .

... 0
pk�3 pk�4 � � � 1 0
pk�2 pk�3 � � � p1 1

1
CCCCCA�

0
BBBBB@

0 0 � � � 0 pk
0 0 � � � pk pk�1
...

...
. . .

...
...

0 pk � � � p4 p3
pk pk�1 � � � p3 p2

1
CCCCCA

are positive innerwise.

Proof of Lemma 3.4: Let DL(�) = D(�)=�2, where D(�) is de�ned by (3.16).
What we need to show is that, apart from the double zero eigenvalue of (3.16), all
the zeros of the characteristic polynomial DL(�) lie inside of the unit circle if and
only if 0 �  < 1 or � 1

L <  � 0.

From  > 0,it is easy to see that DL(1) = 1+(L� 1) > 0 and (�1)LDL(�1) =
1�  if L is odd and (�1)LDL(�1) = 1 if L is even. Hence the �rst two conditions
of Theorem A.1 hold if and only if 0 �  < 1 or � 1

L <  � 0. To show the
third condition is satis�ed, it is enough to show that, for k = 1; 2; � � � ; L � 1, the
matrix B�k with p1 = p2 = � � � = pL =  are positive if and only if 0 �  < 1 or
� 1

L <  � 0.

Let k = 2m be even. Then we have

B
+

k =

0
BBBBBBBBBBBBBBBBB@

1 0 � � � 0 0 0 0 � � � 0 

 1 � � � 0 0 0 0 � � �  
...

...
. . .

...
...

...
... :.

. ...
...

  � � � 1 0 0  � � �  

  � � �  1   � � �  

  � � �  2 1 +   � � �  

  � � � 2 2 2 1 +  � � �  
...

... :.
. ...

...
...

...
. . .

...
...

 2 � � � 2 2 2 2 � � � 1 +  

2 2 � � � 2 2 2 2 � � � 2 1 + 

1
CCCCCCCCCCCCCCCCCA

(A.10)
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To evaluate the determinate of B+
k , we use (�1) to multiply the i-th columns and

add to the 2m� (i� 1)-th columns, respectively, for i = 1; � � � ;m. We then have

jB+

k j =

�����������������������

1 0 � � � 0 0 0 0 � � � 0  � 1
 1 � � � 0 0 0 0 � � �  � 1 0
...

...
. . .

...
...

...
... :.

. ...
...

  � � � 1 0 0  � 1 � � � 0 0
  � � �  1  � 1 0 � � � 0 0
  � � �  2 1�  0 � � � 0 0
  � � � 2 2 0 1�  � � � 0 0
...

... :.
. ...

...
...

...
. . .

...
...

 2 � � � 2 2 0 0 � � � 1�  0
2 2 � � � 2 2 0 0 � � � 0 1� 

�����������������������

= (1� )m

�����������������������

1 0 � � � 0 0 0 0 � � � 0 �1
 1 � � � 0 0 0 0 � � � �1 0
...

...
. . .

...
...

...
... :.

. ...
...

  � � � 1 0 0 �1 � � � 0 0
  � � �  1 �1 0 � � � 0 0
  � � �  2 1 0 � � � 0 0
  � � � 2 2 0 1 � � � 0 0
...

... :.
. ...

...
...

...
. . .

...
...

 2 � � � 2 2 0 0 � � � 1 0
2 2 � � � 2 2 0 0 � � � 0 1

�����������������������

(A.11)

Now for i = 1; 2; � � � ;m, we �rst add the 2m � (i � 1)-the columns to the i-the
columns, respectively. Then, multiply  to the 2m� (i� 1)-th column and add to
the all the �rst m� 1 columns. as a result, the upper left block matrix become a
zero matrix and the down left block matrix has 2 as non-diagonal elements and
2 + 1 as diagonal elements. Correspondingly,

jB+
k j = (�1)m(1� )m

�������
2 � � � 2 + 1
... :.

. ...
2 + 1 � � � 2

������� (A.12)

We use �1 to time the �rst column and add to all the rest columns. Then, use �1
to multiply the columns 2 to k and add them to the �rst column. As as result, we
have a low triangle matrix with (1; 1; � � � ; 1; 2m + 1). Therefore,

det(B+
k ) = (1� )m(L + 1): (A.13)

Similarly,

B
�

k =

0
BBBBBBBBBBBBBBBBB@

1 0 � � � 0 0 0 0 � � � 0 �
 1 � � � 0 0 0 0 � � � � �
...

...
. . .

...
...

...
... :.

. ...
...

  � � � 1 0 0 � � � � � �
  � � �  1 � � � � � � �
  � � �  0 1�  � � � � � �
  � � � 0 0 0 1�  � � � � �
...

... :.
. ...

...
...

...
. . .

...
...

 0 � � � 0 0 0 0 � � � 1�  �
0 0 � � � 0 0 0 0 � � � 0 1� 

1
CCCCCCCCCCCCCCCCCA

(A.14)
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To �nd the det(B�k ), we expand it �rst by the last row and then by the �rst row

and these lead to det(B�k ) = (1� ) det(B�k�2). Since k = 2m, it follows from the

formula det(B�2m) = (1� ) det(B�2(m�1)) that

det(B�k ) = (1� )m: (A.15)

In conclusion, we have for k = 2m,

det(B+
k ) = (1� )m(2m + 1); det(B�k ) = (1� )m: (A.16)

Next we assume that k = 2m+ 1. Then

B
�

k =

0
BBBBBBBBBBB@

1 � � � 0 0 0 � � � �
...

. . .
...

...
... :.

. ...
 � � � 1 0 � � � � �
 � � �  1�  � � � � �
 � � � 0 0 1�  � � � �
... :.

. ...
...

...
. . .

...
0 � � � 0 0 0 � � � 1� 

1
CCCCCCCCCCCA

(A.17)

It is easy to see that det(B�k ) = (1� ) det(B�2m). Using (A.16), we have

det(B�k ) = (1� )m+1: (A.18)

On the other hand,

B
+

k =

0
BBBBBBBBBBB@

1 � � � 0 0 0 � � � 
...

. . .
...

...
... :.

. ...
 � � � 1 0  � � � 

 � � �  1 +   � � � 

 � � � 2 2 1 +  � � � 
... :.

. ...
...

...
. . .

...
2 � � � 2 2 2 � � � 1 + 

1
CCCCCCCCCCCA

(A.19)

To �nd the det(B�k ), we multiply the i-th column by �1 and add to the 2m�(i�1)-
the column, respectively, for i = 1; � � � ;m.

det(B+

k ) = (1� )m

�����������������

1 � � � 0 0 0 � � � �1
...

. . .
...

...
... :.

. ...
 � � � 1 0 �1 � � � 0
 � � �  1 +  0 � � � 0
 � � � 2 2 1 � � � 0
... :.

. ...
...

...
. . .

...
2 � � � 2 2 0 � � � 1

�����������������

: (A.20)

Similarly, one can use row operations to reduce the upper left m�m matrix to a
zero matrix and correspondingly,

det(B+

k ) = (�1)m+1(1� )m

���������

 � � �  1 + 

2 � � � 2 + 1 2
... :.

. ...
...

2 + 1 � � � 2 2

���������
: (A.21)

Multiply the �rst column by �1 and add all the rest of the columns of det(B�k ) and
then, multiply the last column by � and add to the �rst column, multiply �2 to
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the columns 2; 3; � � � ;m and add to the �rst column. We then add up with

det(B+

k ) = (�1)m+1(1� )m

�������

0 0 � � � 1
...

... :.
. ...

(2m+ 1) + 1 �1 � � � �1

�������
: (A.22)

Therefore

det(B+

k ) = (k + 1)(1� )m: (A.23)

Then from (A.18) and (A.23), for k = 2m+ 1,

det(B+

k ) = (k + 1)(1� )m; det(B�k ) = (1� )m+1
: (A.24)

Finally, it follows from (A.16) and (A.24) that B�k are positive if and only if 0 �  < 1

or � 1

L
<  � 0 and this completes the proof.
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