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ABSTRACT

We address the issue of hedging in in�nite horizon markets under cone constraints

on the number of shares of assets. We show that the minimum cost of hedging

a liability stream is equal to its largest present value with respect to admissible

stochastic discount factors, thus can be determined without �nding an optimal

hedging strategy. We develop an algorithm by which an optimal portfolio in one

date-event can be obtained without �nding that in others. We apply the results to

a variety of trading restrictions and show how the admissible stochastic discount

factors can be characterized.

JEL CLASSIFICATION: C61, G10, G20.

KEYWORDS: Hedging, cone constraint, admissible stochastic discount factors.
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1. INTRODUCTION

Often �nancial institutions are faced with liability streams which the cost of not

meeting is large. There are many examples. Lack of means to pay mature debts

may involve corporations in costly �nancial restructuring. Failure to provide for

requested withdrawals may put banks in runs. Insurance companies that default

on compensatory payments may incur legal expenses. Employers that do not ful�ll

pension obligations may loss reputations. More striking examples can be found in

derivatives and futures markets, which have grown tremendously in recent years.

On one side, new instruments have been developed and the volume of transactions

within individual markets has skyrocketed. On the other, inability of market

makers and securities traders to cover their positions are likely to trigger �nancial

crises.

What can market participants do to reduce the default risks? The answer

is, hedging. Hedging is a set of transactions in �nancial markets that generates a

dominating stream, one whose payo�s are at least as large as in meeting the under-

lying liability, therefore o�sets the default risks. The standard models of hedging

and valuation of contingent claims, which can be traced back to the pioneering

option pricing work of Black and Scholes (1973), Merton (1973), and Cox, Ross

and Rubinstein (1979), assume the absence of market frictions. However, investors

are usually faced with trading restrictions such as no short-sales constraints, non-

negative restrictions of portfolio values, margin requirements on stocks and bonds

(leverage restrictions in futures markets are typically imposed through margin re-

quirements as well), and target debt to equity ratios. These restrictions, as well

as the unrestricted case, are special examples of cone constraints on the number
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of shares of assets. Formally, a cone is a collection of vectors that is stable un-

der addition and multiplication by nonnegative real numbers. In addition to the

aforementioned generality in representing various trading restrictions, modeling

market frictions by cones has an advantage that arbitrage cannot exist in equilib-

rium under such constraints, provided that investors' preferences are monotone.

In consequence, one can derive the implications of hedging from the absence of ar-

bitrage under cone constraints without making explicit use of utility maximization

or market equilibrium.1

In this paper we determine analytically the minimum hedging cost and the

optimal hedging strategies in in�nite horizon markets in the absence of arbitrage

under cone constraints on the number of shares of assets. We show that the

minimum cost of hedging a liability stream is equal to its largest present value with

respect to admissible stochastic discount factors. This in particular implies that

the cost can be determined without �nding an optimal hedging strategy. We show

that an optimal hedging strategy can be obtained through solving a sequence of

independent programs. Independence means that an optimal portfolio in one date-

event can be obtained without �nding that in others. The results hold for arbitrary

liability streams, not limited to payo� streams contingent on asset prices or interest

rates in the usual sense. We apply the results to a variety of trading restrictions

and show how the admissible stochastic discount factors can be characterized. The

model presented here nests the standard �nite horizon setting as a special case in

which the results hold for arbitrary payo� streams.

The work presented in this paper contributes to the literature on hedging with

market frictions. Ever since Black and Scholes (1973) and Merton (1973), much

has been written on hedging and valuation of contingent claims with transactions
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costs. Some studies, including Garman and Ohlson (1981) and Jouini and Kallal

(1995a), have dealt with the minimum hedging cost, while others, including Ben-

said, Lesne, Pages and Scheinkman (1991) and Edirisinghe, Naik and Uppal (1993),

have also addressed the optimal hedging strategies, in the presence of proportional

transactions costs.2 The �nite-horizon version of our analysis extends these studies

since proportional transactions costs, or bid-ask spreads, can be reinterpreted as

no short-sales constraints (see, for example, Foley (1970)), which, as pointed out

earlier, are a special example of cone constraints. In particular, Jouini and Kallal

(1995a) show that the minimum hedging cost equals the largest present value of

the underlying payo� stream with respect to some stochastic processes (whose

existence is implied by the celebrated Hahn-Banach Theorem or the Riesz Repre-

sentation Theorem). Our analysis o�ers a computational advantage in this regard

as well; here, the admissible stochastic discount factors are characterized by ex-

plicit linear (in)equalities, therefore the minimum hedging cost can be determined

by solving a standard linear program.

In contrast to the extensive transactions costs literature, it is not until recently

that hedging and valuation with trading restrictions have received a great deal of

attention. Naik and Uppal (1994) have �rst developed an algorithm of backward

recursion for �nding the minimum hedging cost as well as the optimal hedging

strategies, in the presence of margin requirements on stocks and bonds.3 With

this algorithm to determine the minimum hedging cost requires �nding an optimal

hedging strategy while to �nd an optimal portfolio in one date-event requires �nd-

ing that in subsequent ones. Broadie, Cvitanic and Soner (1998) have extended

this result to a continuous time setting.4 The �nite-horizon version of our analysis

extends this result by incorporating general cone constraints, and by showing that
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the minimum hedging cost can be determined without �nding an optimal hedg-

ing strategy while an optimal portfolio in one date-event can be obtained without

�nding that in others.

Another contribution of our model is attributed to its in�nite-horizon feature.

The existing studies of hedging of contingent claims have been carried out in the

�nite horizon setting, i.e., there is a �nal date by which all assets are liquidated.

Yet, markets are of in�nite horizon in nature if assets of no maturity date (such as

stocks), or if an in�nite sequence of assets of �nite maturity, are traded. Moreover,

there are conceivable situations in which institutional investors may need to hedge

payo� streams over an in�nite horizon as well. Our model is the �rst one to analyze

the problem of hedging in in�nite horizon markets and nevertheless encompasses

the standard �nite-horizon setting as a special case.5

The rest of the paper is organized in the following order. Section 2 describes

the model and presents the main results. Section 3 applies the main results to

various trading restrictions and characterizes the admissible stochastic discount

factors. Section 4 concludes. All proofs are contained in the Appendix.

2. THE MODEL AND MAIN RESULTS

We model dynamic uncertainty by a set 
 of states of the world and an increas-

ing sequence fNtg
1
t=0 of �nite information partitions with N0 = f
g. We map this

information structure onto an event-tree D, where an information set st 2 Nt is

referred to as a date-event or a node of the event-tree. For each st, we denote by

st� its unique immediate predecessor if t 6= 0, fst+g a �nite set of its immediate suc-

cessors, and D(st) a subtree with root st. With this notation we have D(s0) = D.

In each date-event there are a �nite number of assets traded on spot markets in
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exchange for a single consumption goods that is taken as the unit of account. We

denote by (q; d) a price-dividend process adapted to fNtg
1
t=0. A holder of one

share of an asset j traded for a price qj(s
t) at st is entitled to a payo� Rj(s

t+1) at

each st+1 2 fst+g, where Rj(s
t+1) = qj(s

t+1) + dj(s
t+1) if the asset continues to be

traded for a price qj(s
t+1) at st+1 and Rj(s

t+1) = dj(s
t+1) if the asset is liquidated

at st+1. We denote by q(st) a vector of prices for assets traded at st 2 D and R(st)

a vector of one-period payo�s for assets traded at st� for st 2 Dnfs0g. That is, a

holder of one share of each of the assets traded for price q(st) at st is entitled to

payo� R(st+1) at each st+1 2 fst+g. At each st 2 Dnfs0g new assets can be issued

while existing assets can be liquidated, so the dimensions of R(st) and q(st) can

be di�erent. The di�erence is equal to the number of existing assets liquidated

subtracting the number of new assets issued at st.

A portfolio �(st) speci�es the number of shares of assets to be held at the end of

trade at st. We denote by �(st) a set of feasible portfolios at st, which is assumed

to be a polyhedral cone,6 and � the Cartesian product
Q

st2D �(st). That is, a

portfolio strategy � is in � if and only if its portfolio component �(st) is in �(st)

for each st. By z� we denote the payo� stream generated by a feasible portfolio

strategy � given by

z�(st) � R(st)0�(st�)� q(st)0�(st); 8 st 2 Dnfs0g:

An arbitrage in � is a feasible portfolio strategy � that generates a positive payo�

stream at a nonnegative cost or a nonnegative payo� stream at a negative cost,

i.e., such that

q(s
0)0�(s0) � 0; z�(st) � 0; 8 st 2 Dnfs0g;

with at least one strict inequality. A feasible �nite arbitrage is an arbitrage � 2 �
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that involves nonzero asset holdings only at �nitely many dates, of which a feasible

one-period arbitrage is an example. A feasible one-period arbitrage at a node s� is

a �nite arbitrage � such that �(st) = 0 for st 6= s� and �(s� ) 2 �(s� ). Applying a

generalized Farkas lemma to polyhedral cones establishes the equivalence between

the absence of one-period arbitrage in �(st) and the existence of strictly positive

numbers fa(st); a(st+1); st+1 2 fst+gg such that

8><
>:q(st)�

X
st+12fst+g

a(st+1)

a(st)
R(st+1)

9>=
>; 2 �(st)

�
; (1)

where �(st)
� � f# : #0� � 0; 8 � 2 �(st)g is the polar cone of �(st), thus a

polyhedral cone as well (see, for example, Ben-Israel (1969), Sposito (1989), Sposito

and David (1971, 1972)).7 These positive numbers are referred to as admissible

stochastic discount factors. Since only the ratios fa(st+1)na(st)g are restricted by

(1), the absence of one-period arbitrage in � allows one to de�ne a system of

admissible stochastic discount factors consistent with (1) at each node. We denote

by A(st) the set of the systems of admissible stochastic discount factors on subtree

D(st). To simplify, we denote A(s0) by A.

We now formulate the optimal hedging problem. Let z be an adapted nonneg-

ative payo� stream such that there is a portfolio strategy � 2 � with z� � z. The

objective is to determine

V (z) � inffq(s0)0�(s0) : z� � z; � 2 �g; (2)

and to �nd a feasible portfolio strategy that achieves V (z) whenever there exists

one. Our main results are that the absence of arbitrage in � implies that, V (z)

is equal to the largest present value of z with respect to the systems of admissible

stochastic discount factors and is achieved by a feasible strategy obtained through
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solving a sequence of independent programs. The following theorem is concerned

with the determination of the minimum hedging cost.

THEOREM 1: Suppose that there is no arbitrage in �. Then A 6= ;, and

V (z) = sup
a2A

X
st2Dnfs0g

a(st)

a(s0)
z(st): (3)

Proof: See the Appendix.

According to (3), the minimum cost of hedging a nonnegative payo� stream is

equal to its largest present value with respect to the admissible stochastic discount

factors. This in particular implies that the cost can be determined without �nding

an optimal hedging strategy. The following theorem provides an algorithm for

�nding an optimal strategy by which an optimal portfolio in one date-event can

be obtained without �nding that in others.

THEOREM 2: Suppose that there is no arbitrage in �. Then A 6= ;, and

there is a solution to the following program

min
�(st)

q(st)0�(st) (4)

s:t: R(st+1)0�(st) � sup
a2A(st+1)

X
s�2D(st+1)

a(s� )

a(st+1)
z(s� ) (5)

st+1 2 fst+g; �(st) 2 �(st);

which is the portfolio component at st of a feasible strategy that achieves V (z).

Proof: See the Appendix.

According to theorem 2, the task of �nding an optimal hedging strategy reduces

to solving a sequence of independent programs (4)-(5). Independence refers to the

fact that a solution to the program in one date-event can be obtained without

�nding that in others. A critical step in solving these programs, as well as in

determining the minimum hedging cost as of (3), is calculating the largest present
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value of the underlying payo� stream, which in turn relies on characterizing the

admissible stochastic discount factors. In the following section, we apply theorems

1 and 2 to various trading restrictions and show how the admissible stochastic

discount factors can be characterized.

3. APPLICATIONS

In this section we use polyhedral cone constraints on the number of shares of

assets to describe market frictions including no short-sales constraints, nonnegative

restrictions of portfolio values, margin requirements on stocks and bonds, and

target debt to equity ratios. We characterize the admissible stochastic discount

factors by a system of linear (in)equalities, thus, reduce the task of calculating the

largest present value of the underlying payo� stream to solving a linear program.

To help exposition yet not lose generality, we assume that there are two assets in

each date-event. To simplify, we assume prices are strictly positive so that the

admissible stochastic discount factors can be characterized using rates of returns

on traded assets, de�ned by

(r1(s
t); r2(s

t)) �

 
R1(s

t)

q1(st�)
;
R2(s

t)

q2(st�)

!

for each st 2 Dnfs0g. In each of the following subsections, the set �(st) of feasible

portfolios at st is a polyhedral cone for each st 2 D. Consequently, theorems 1

and 2 are applicable.
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3.1. No Short-sales Constraints

No short-sales constraints can be modeled by taking

�(st) = �(st)
�
= IR2

+ (6)

for each st 2 D. The set A of the systems of admissible stochastic discount factors

is characterized by the following linear inequalities

X
st+12fst+g

r1(s
t+1)

"
a(st+1)

a(st)

#
� 1;

X
st+12fst+g

r2(s
t+1)

"
a(st+1)

a(st)

#
� 1; (7)

a(st) > 0; a(st+1) > 0; st 2 D; st+1 2 fst+g: (8)

Consequently, the largest present value of the underlying payo� stream can be

calculated by solving a linear program.

3.2. Nonnegative Restrictions of Portfolio Values

Consider a constraint that the end-of-trade portfolio value be nonnegative.

That is, any indebtedness held at the beginning of trade must be fully repaid upon

the completion of trade. This constraint can be modeled by taking

�(st) = f�(st) 2 IR2 : q1(s
t)�1(s

t) + q2(s
t)�2(s

t) � 0g (9)

for each st 2 D. It follows that

�(st)
�
= f#(st) 2 IR2

+ : �q2(s
t)#1(s

t) + q1(s
t)#2(s

t) = 0g (10)

for each st 2 D. Therefore, A can be characterized by the following linear

(in)equalities

X
st+12fst+g

r1(s
t+1)

"
a(st+1)

a(st)

#
=

X
st+12fst+g

r2(s
t+1)

"
a(st+1)

a(st)

#
� 1; (11)

a(st) > 0; a(st+1) > 0; st 2 D; st+1 2 fst+g: (12)

Note that A characterized by (11)-(12) is a subset of that characterized by (7)-(8).
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3.3. Margin Requirements on Stocks and Bonds

Investors who need to hedge a payo� stream in securities markets are often

faced with margin requirements on stocks and bonds, which capture their ability

to increase short-sales or borrowing as a function of their creditworthiness. For

the purpose of illustration, assume that one traded asset in each date-event is an

one-period bond while the other a stock, that is,

R1(s
t) = d1(s

t); R2(s
t) = q2(s

t) + d2(s
t); st 2 Dnfs0g:

Margin requirements can be modeled by taking

�(st) = f�(st) 2 IR2 : q1(s
t)�1(s

t) � �m1(s
t)[q1(s

t)�1(s
t) + q2(s

t)�2(s
t)];(13)

q2(s
t)�2(s

t) � �m2(s
t)[q1(s

t)�1(s
t) + q2(s

t)�2(s
t)]g

for each st 2 D, where m1(s
t) and m2(s

t) are nonnegative numbers representing

margin requirements on the bond and stock, respectively. The margin requirements

described by (13) implies nonnegative end-of-trade portfolio values. It follows that

�(st)
�
= f#(st) 2 IR2 : [1 +m1(s

t)]q1(s
t)#2(s

t) � m1(s
t)q2(s

t)#1(s
t); (14)

[1 +m2(s
t)]q2(s

t)#1(s
t) � m2(s

t)q1(s
t)#2(s

t)g

for each st 2 D. It is worth pointing out that (14) implies �(st)� � IR2
+. Therefore,

A can be characterized by the following linear inequalities

X
st+12fst+g

n
[1 +m2(s

t)]r1(s
t+1)�m2(s

t)r2(s
t+1)

o "a(st+1)
a(st)

#
� 1; (15)

X
st+12fst+g

n
[1 +m1(s

t)]r2(s
t+1)�m1(s

t)r1(s
t+1)

o "a(st+1)
a(st)

#
� 1; (16)

a(st) > 0; a(st+1) > 0; st 2 D; st+1 2 fst+g: (17)
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In the case when m1(s
t) = m2(s

t) = 0, corresponding to no borrowing on bond

and no short-selling in stock, (15)-(17) reduce to (7)-(8).

3.4. Target Debt to Equity Ratios

Financial managers are often required to maintain certain debt to equity ratios

while hedging a payo� stream. Assuming as in 3:3 that one traded asset in each

date-event is an one-period bond and the other a stock, we can model this leverage

requirement by taking

�(st) = f�(st) 2 IR2
+ : �(st)q2(s

t)�2(s
t) � q1(s

t)�1(s
t) � �(st)q2(s

t)�2(s
t)g (18)

where 0 < �(st) � �(st) for each st 2 D. The interval [�(st); �(st)] speci�es the

range of feasible debt to equity ratios in date-event st (the restriction that �(st) be

nonnegative in (18) is redundant in the case when �(st) < �(st)). It follows that

�(st)
�
= f#(st) 2 IR2 : �(st)q2(s

t)#1(s
t) + q1(s

t)#2(s
t) � 0; (19)

�(st)q2(s
t)#1(s

t) + q1(s
t)#2(s

t) � 0g

for each st 2 D. Therefore, A can be characterized by the following linear inequal-

ities

X
st+12fst+g

"
�(st)r1(s

t+1) + r2(s
t+1)

�(st) + 1

# "
a(st+1)

a(st)

#
� 1; (20)

X
st+12fst+g

"
�(st)r1(s

t+1) + r2(s
t+1)

�(st) + 1

# "
a(st+1)

a(st)

#
� 1; (21)

a(st) > 0; a(st+1) > 0; st 2 D; st+1 2 fst+g: (22)

In the degenerate case when �(st) = �(st), the value of debt versus that of equity

in date-event st must be kept at a single ratio, and (20) and (21) are identical.
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4. CONCLUDING REMARKS

We have addressed in this paper the issue of hedging an arbitrary liability

stream in the presence of polyhedral cone constraints on the number of shares of

assets. We have derived a representation for the minimum hedging cost in terms

of the largest present value of the underlying liability stream with respect to the

admissible stochastic discount factors. This in particular implies that the cost

can be determined without �nding an optimal hedging strategy. We have shown

that an optimal portfolio in one date-event can be obtained without �nding that

in others. We have applied the results to trading restrictions often proposed and

characterized the admissible stochastic discount factors by linear (in)equalities.

Our analysis has gone beyond the standard �nite horizon paradigm and nests

it as a special case. This can be seen by taking �(st) to be a singleton set of null

asset holdings for each t � T and some �nite T . In this case, theorems 1 and 2

hold for arbitrary payo� streams.

Applications of our results have been illustrated with two assets, but are readily

extended to account for arbitrary (yet �nite) number of securities. Such extension

is trivial for no short-sales constraints and nonnegative restrictions of portfolio

values, and straightforward for margin requirements and target debt to equity

ratios. For instance, a margin requirement can be imposed on each of a �nite

number of assets traded by investors, while target debt to equity ratios can be

imposed through a restriction on the ratio of portfolio value of bonds to that of

stocks held by mutual fund managers.
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APPENDIX

Proof of theorems 1 and 2: Under the assumption that there is no arbitrage

in �, one can apply a generalized Farkas lemma to �(st) for each st to establish

A 6= ;. The following inequality, which holds for any feasible strategy � that hedges

z, is useful in establishing (3):

q(st)0�(st) � 0; 8 st 2 D: (23)

To prove (23) suppose, by contradiction, that there is some st at which q(st)0�(st) <

0. Then the strategy �� such that, ��(s� ) coincides with �(s� ) if s� 2 D(st) and with

null asset holdings otherwise, is an arbitrage in �. A contradiction. So (23) must

hold. We now establish

V (z) � sup
a2A

X
st2Dnfs0g

a(st)

a(s0)
z(st): (24)

Let � be a portfolio strategy in � that hedges z, and choose an arbitrary a 2 A.

By de�nition of polar cones, the inner product of the left hand side of (1) and

portfolio �(st) is nonnegative. Using this and z� � z repeatedly, we obtain for any

� � 1,

a(s0)q(s0)�(s0) �
�X
t=1

X
st2Nt

a(st)z(st) +
X

s�2N�

a(s� )q(s�)0�(s� ) �
�X
t=1

X
st2Nt

a(st)z(st);

where the second inequality follows from (23). Taking � ! 1 on the right-most

side of the above inequalities leads to

a(s0)q(s0)0�(s0) �
1X
t=1

X
st2Nt

a(st)z(st) �
X

st2Dnfs0g

a(st)z(st):

That a is arbitrarily chosen implies

q(s0)0�(s0) � sup
a2A

X
st2Dnfs0g

a(st)

a(s0)
z(st):
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That � is an arbitrary strategy in � that hedges z implies

V (z) � sup
a2A

X
st2Dnfs0g

a(st)

a(s0)
z(st);

which establishes (24).

We now use a duality technique of convex programming and inequality (23) to

establish

V (z) � sup
a2A

X
st2Dnfs0g

a(st)

a(s0)
z(st): (25)

Note that (25) is non-trivial only if the right-hand side is �nite, so we assume this

is the case. Consider the following dual of the program (4)-(5),

max
�(st+1)

st+12fst
+
g

X
st+12fst+g

�(st+1)[ sup
a2A(st+1)

X
s�2D(st+1)

a(s� )

a(st+1)
z(s� )] (26)

s:t:

8><
>:q(st)�

X
st+12fst+g

�(st+1)R(st+1)

9>=
>; 2 �(st)� (27)

�(st+1) � 0; st+1 2 fst+g;

where �(st)
�
is the polar cone of �(st). We claim that both (5) and (27) have

feasible solutions. That (27) has a feasible solution simply follows from the exis-

tence of a system of admissible stochastic discount factors. We now prove that any

feasible strategy � that hedges z, induces a portfolio �(st) at st that is a feasible

solution to (5). To proceed we use relations (1), (23), z� � z and de�nition of

polar cones to obtain, for each st+1 2 fst+g, an arbitrary system of discount factors

a 2 A(st+1), and any r � t+ 1,

a(st+1)R(st+1)0�(st) �
rX

�=t+1

X
s�2D(st+1)\N�

a(s� )z(s� ) +
X

sr2D(st+1)\Nr

a(sr)q(sr)0�(sr)

�
rX

�=t+1

X
s�2D(st+1)\N�

a(s� )z(s� );
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where the second inequality follows from (23). Taking r ! 1 on the right-most

side of above inequalities leads to

a(st+1)R(st+1)0�(st) �
X

s�2D(st+1)

a(s� )z(s� ):

That a is arbitrarily chosen from A(st+1) implies

R(st+1)0�(st) � sup
a2A(st+1)

X
s�2D(st+1)

a(s� )

a(st+1)
z(s� ):

Thus, �(st) is a feasible solution to (5).

By the duality theorem of convex programming (see, for example, Sposito

(1989)), both the primal and dual problems have �nite optimal solutions, and

the values of their optimal objectives (4) and (26) are equal. Since A 6= ;, �(st)�

is a cone, and the objective (26) is continuous in �(st+1) for st+1 2 fst+g, the dual

problem (26)-(27) can be re-written as

sup
�(st+1)

st+12fst
+
g

X
st+12fst+g

�(st+1)[ sup
a2A(st+1)

X
s�2D(st+1)

a(s� )

a(st+1)
z(s� )] (28)

s:t

8><
>:q(st)�

X
st+12fst+g

�(st+1)R(st+1)

9>=
>; 2 �(st)� (29)

�(st+1) > 0; st+1 2 fst+g:

The value of the optimal objective of the problem (28)-(29) is equal to

sup
X

st+12fst+g

a(st+1)

a(st)
[ sup
a2A(st+1)

X
s�2D(st+1)

a(s� )

a(st+1)
z(s� )] (30)

where the outer supremum is taken over the admissible stochastic discount factors

fa(st+1)na(st)g given by relation (1). By a dynamic programming argument, (30)

is equal to

sup
a2A(st)

X
s�2D(st)nfstg

a(s� )

a(st)
z(s� ): (31)
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Repeating the above procedure for every node of the event-tree shows that

there is a feasible portfolio strategy �̂ such that, �̂(st) is an optimal solution to the

primal problem (4)-(5) for each st. It follows that

q(st)0�̂(st) = sup
a2A(st)

X
s�2D(st)nfstg

a(s� )

a(st)
z(s� ) � 0; st 2 D; (32)

R(st)0�̂(st�) � sup
a2A(st)

X
s�2D(st)

a(s� )

a(st)
z(s� ) � 0; st 2 Dnfs0g: (33)

Relations (32) and (33) imply

z�̂(st) � R(st)0�̂(st�)� q(st)0�̂(st)

� sup
a2A(st)

[z(st) +
X

s�2D(st)nfstg

a(s� )

a(st)
z(s� )]� sup

a2A(st)

X
s�2D(st)nfstg

a(s� )

a(st)
z(s� )

= z(st)

for each st 2 Dnfs0g. Therefore, �̂ generates a payo� stream z�̂ � z at a date-0

cost equal to

q(s0)0�̂(s0) = sup
a2A

X
st2Dnfs0g

a(st)

a(s0)
z(st): (34)

This establishes (25) and, combined with (24), gives rise to (3). This proves

theorem 1. Equation (3) together with the above calculations shows that, �̂(st),

an optimal solution to program (4)-(5), is the portfolio component at st of a feasible

strategy that achieves V (z). This completes the proof of theorem 2. 2
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Endnotes

1: When addressing the issue of derivatives pricing or �nancial innovations, one

should carefully distinguish innovated assets from their synthetic counterparts.

See, for example, Detemple and Murthy (1997).

2: Portfolio choice and option hedging in the presence of proportional transactions

costs have been studied, respectively, by Constantinides (1986), Davis and Nor-

man (1990), and Dumas and Luciano (1991) with a somewhat di�erent optimality

criteria, and by Leland (1985), Merton (1989), Shen (1990), and Boyle and Vorst

(1991) without an explicit optimality criteria.

3: Leverage and nonnegative wealth constraints are analyzed by Grossman and

Vila (1992) and Cox and Huang (1989), respectively, with a somewhat di�erent

optimality criterion.

4: In continuous time mathematical �nance literature, an abstract stochastic con-

trol representation for the minimum cost hedging problem is derived and some

bounds and complicate approximation schemes for computing them are provided.

5: Some results from this perspective can be inferred from Santos and Wood-

ford (1997) with a constraint that portfolio net worth be nonnegative, Huang and

Werner (1998) with an assumption of no uncertainty, and Huang (1998) with gen-

eral constraints on portfolio values.

18



6: A subset of a �nite dimensional Euclidean space is a polyhedral if it is the in-

tersection of a �nite number of supporting half-spaces. See, for example, Sposito

and David (1971, 1972).

7: This no-arbitrage characterization for polyhedral cones remains valid for gen-

eral closed cones, provided that an adapted Slater condition is satis�ed. See, for

example, Sposito (1989) and Sposito and David (1971, 1972).
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