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ABSTRACT: In this paper we discuss the use of optimal control methods for
computing non-linear continuous optimal growth models. We have discussed
various recently developed algorithms for computing optimal control, involving
step-function approximations, Runge-Kutta solutions of differential equations, and
we suggest that the discretisation approach is preferable to methods which solve
first-order optimality conditions. We have surveyed some powerful computer
programs MATLAB-RIOTS, MISER, and OCIM for computing such models
numerically. These programs have no substantial optimal growth modelling
applications yet, although they have numerous engineering and scientific
applications. A computer program named SCOM by MATLAB-CONSTR is
developed in this study. Results are reported for computing the Kendrick-Taylor
optimal growth model using RIOTS and SCOM programs based on the discretisation
approach. References are made to the computational experiments with OCIM and
MISER. The results are used to compare and evaluate mathematical and economic
properties, and computing criteria. While several computer packages are available for
optimal control problems, they are not always suitable for particular classes of
control problems, including some economic growth models. The MATLAB based
RIOTS and SCOM, however, offer good opportunities for computing continuous
optimal growth models. It is argued in this paper, that optimal growth modellers may
find that these recently developed algorithms and computer programs are relatively
preferable for a large variety of optimal growth modelling studies.
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1. Introduction

The methods and models of computational optimal growth economics are often

formulated as optimal control problems. Such models may describe a national

economy, with state functions being vector valued, since various commodities are

involved. The consumption may be varied, within some limits, to optimise some

utility functional, which may involve both state and control functions over a

planning period. In these models, there are in general explicit bounds (such as

floor to consumption, or a ceiling to capital or pollution), as well as discontinuous

control functions.

Analytic solutions are available for some of the simpler models.  Often

some sort of steady state has been studied, but not the rate of approach to the

steady state from given initial conditions, or the transition to give terminal

conditions (such as, for example, a stated minimum for terminal capital, so that a

process may continue).  It is noted that the available data are necessarily in

discrete time (i.e. annual or quarterly data).  While discrete-time optimal control

models can of course be computed, a continuous-time model may give a more

intelligible picture of what is happening.  Also, the Pontryagin theory for optimal

control applies to optimal control in continuous time, but only under serious

restrictions to optimal control in discrete time.  This paper will hence consider

continuous-time models.

A computer package allows exploration, both of the sensitivity to

parameter changes, and also of the domains of the various parameters for which

solutions of an optimal control exist. Some recently developed computer packages,

coding different algorithms for continuous optimal control such as MATLAB,

RIOTS, MISER and OCIM have current applications to other areas of control, but

have not, until now, been used for computing optimal growth models. The

objective of this paper is to demonstrate the applications of these recently

developed algorithms and computer programs to the computation of optimal

growth models. In this study a general MATLAB optimal control program called

Step Function Optimal Control (SCOM) is also developed on MATLAB based on

one of the recently developed algorithms (step function discretisation approach)

which can be used to solve optimal control models. These recently developed

algorithms and programs have several advantages (discussed below) in economic
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modelling. This paper also provides a survey of different algorithms and computer

programs for implementing continuous computational optimal growth models to

determine the conclusions on the relative suitability of the algorithms and software

discussed and developed in the present study. Detailed results of two computer

programs, RIOTS and SCOM are reported and references to computing

experiences with OCIM, and MISER for similar problems are made for

comparison.

The experiments in this study using the Kendrick and Taylor model

(Chakravarty 1969; Kendrick and Taylor 1971) have produced economic results

and computing experience which are consistent with the results generated in the

previous computational experiments (stated below) with the model. The global

optimality of the model results is also proved in this paper.

The paper is organised as follows. Section 2 presents an optimal growth

model developed by Kendrick and Taylor (1971) and its optimal control

specification.  Section 3 discusses different algorithms and computer programs for

solving optimal control models, while Section 4 discusses the Kendrick-Taylor

model numerical implementation by some computer programs. Mathematical

properties of the model results and the sensitivity studies are reported in Section 5.

Section 6 refers to the experiences for computing optimal growth models by

computer programs, such as OCIM, and MISER. Section 7 contains the

conclusion.

2. An Optimal Growth Model

The Kendrick-Taylor model for economic growth (Kendrick and Taylor 1971) has

been used as a test problem for computational approaches.  With capital stock k(t)

at time t as the state function, and rate of consumption c(t) at time t as the control

function, this model has the form:

MAX e c t dttT −∫ ρ τ( )
0

subject to

k k d dt k t e k t k t c t k T) kt
T( ) , ( / ) ( ) ( ) ( ) ( ), (0 0= = − − =ζ σδ β
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This model does not state any explicit bounds for k(t) and c(t).  However,

both the formulas and their interpretation requires that both k(t) and c(t) remain

positive.  However, with some values of u(t), the differential equation for k(t) can

bring k(t) down to zero.

Consistent with the mainstream practice in optimal growth modelling, the

numerical optimal growth programs in this paper are specified within the

framework of the elements of an optimal growth program of the following form:

1) an optimality criterion contained in an objective function which consists of the

discounted integral  of the utilities provided by consumption at every period;

2) the finite planning horizon;

3) a positive discount rate; and

4) the boundary conditions given by the initial values of the variables and

parameters and by the terminal conditions.

This model can be expressed by a standard kind of optimal control model,

which may be written as follows:

MIN F x u f x t u t t dt x T))x t u t

T

( ), ( ) ( , ) ( ( ), ( ), ) ( (0

0
= +∫ Φ subject to:

x x d dt x t m x t u t t( ) , ( / ) ( ) ( ( ), ( ), )0 0= = ,

u t u t u t t T).L u( ) ( ) ( ) (≤ ≤ ≤ ≤0

Here the state function is x(t) = k(t), the control function u(t) = c(t),

( ( ), ( ), ) ( ) ; ( ( ( ( *)f t u t t e u t x T)) x T) xt= − = −ρ τ µΦ 2

(with a minus sign to convert to a minimisation problem), and

m x t u t t e x t x t u tt( ( ), ( ), ) ( ) ( ) ( )= − −ζ σδ β .
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The terminal constraint for x(T) has been replaced by a penalty cost term

Φ(x(T)), with a parameter x* (approximately xT, but may need adjustment). In

general, x(t) and u(t) are vector valued.

The relevant mathematical issues that are investigated in the context of an

optimal growth model are the following: existence, uniqueness and globality of the

optimal policy solution, and stability of the dynamic system in the equilibrium or

steady state position (Intriligator 1971).

The control issues of analytical and policy importance in control models

are estimability, controllability, reachability, and observability (Sengupta and

Fanchon 1997). As these characteristics of control models can be studied only for

linear control models, we will not investigate these issues in this paper.

The Kendrick-Taylor model was numerically implemented by Kendrick

and Taylor (1971) by several algorithms such as search and quasi-linearisation

methods based on the discrete Pontryagin maximum principle. In another

experiment, Keller and Sengupta (1974) solved the model by conjugate search and

Davidson algorithm based on the continuous Pontryagin maximum principle.

While these algorithms were implemented by some special purpose computer

programs, a GAMS version (a general purpose commercially available program,

Brooke et al. 1997) of the Kendrick-Taylor model is also available.

3. Algorithms and Computer Programs for Optimal Control

3.1 A Classification of Algorithms

Algorithms for optimal control (Li 1993; Mufti 1970; Teo et al. 1991) have been

variously based on: (i) dynamic programming; (ii) solving first-order necessary

conditions of the Pontryagin theory; (iii) applying some approximation methods

(steady state solution, numerical methods based on approximation and

perturbation, and method of simulation); (iv) approximating the control by step

functions; and (v) applying mathematical programming algorithms to a discretized

version of the control problem.

Most of these methods (especially methods (i) to (iv)) are based on the first

order maximisation conditions of a control problem, which Schwartz (1996) has

called ‘indirect methods’. About the suitability of these methods for computing
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optimal control, Schwartz (1996, p. 1) has made the following statement:

‘The main drawback to indirect methods is their extreme lack of
robustness: the iterations of an indirect method must start close,
sometimes very close, to a local solution in order to solve the two-point
boundary value subproblems. Additionally, since first order optimality
conditions are satisfied by maximisers and saddle points as well as
minimizers there is no reason, in general, to expect solutions obtained by
indirect methods to be minimizers.’

Against these indirect methods, he has advocated the superiority of the

direct methods, the principles of which, according to him are as follows (p. 1):

‘Direct methods obtain solutions through the direct minimization of the
objective function (subject to constraints) of the optimal control problem.
In this way the optimal control problem is treated as an infinite
dimensional mathematical programming problem.’

The superiority of this direct method or the control discretisation method

has also been advocated and implemented increasingly by others in recent years

(Craven 1995; Teo et al. 1991). The direct method considers an optimal control

problem as a mathematical programming problem in infinite dimensions (see e.g.

Tabak and Kuo 1971), and then discretizes to permit computation.

The discretisation method has also several advantages: a wide variety of

relatively large-scale and complicated optimal control problems can be solved by

this approach and the method is relatively accurate and efficient compared to the

indirect methods.

For the above reasons, we have adopted the discretisation (step function or

spline) algorithmic approach in this paper. The two computer programs used in

this paper for numerical computation are based on this approach.

3.2 The Discretisation Method for Optimal Control

The above optimal control problem can be implemented by the gradient search

method based on step functions – discretisation of the control variable.  It is shown

in Teo et al. (1991) that a substantial class of optimal control problems can readily

be put in the standard form given below; and that in many cases, the control

function can be sufficiently approximated by a step-function. For simplicity, the

time interval is now scaled from [0,T] to [0,1]. A standard version of such an

optimal control model may be written as follows:
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MIN F x u f x t u t t dt xx u(.), (.) ( , ) ( ( ), ( ), ) ( ( ))0

0

1
1= +∫ Φ subject to         (1)

x a x t m x t u t t t( ) , & ( ) ( ( ), ( ), ) ( )0 0 1= = ≤ ≤ ,         (2)

x(1) = b,         (3)

u1(t) + u2(t) ≤ 1. u1(t) + u2(t) ≤ 1,

g u t t( ( )) ( )≤ ≤ ≤0 0 1 .         (4)

The constraint (4) will often take the particular form of simple bounds :

q t u t r t( ) ( ) ( )≤ ≤ ,         (5)

(A more general constraint such as u1(t) + u2(t) ≤ 1 could also be considered.)

Here the state function x(.) (assumed piecewise smooth) and the control

function u(.) (assumed piecewise continuous) are, in general, vector-valued; the

inequalities on u(t) are taken pointwise. It will be useful to handle the terminal

constraint x(1) = b by adding a penalty term to the objective function F0(x,u).

Thus, the objective becomes:

F x u F x u x b( , ): ( , ) ( ) * ,= + −0 21
2 1µ          (6)

where b* ≈ b (see later discussion), µ is a positive parameter, and the terminal

constraint (3) is now omitted.

The differential equation (2), with initial condition, determines x(.) from

u(.); denote thus x(t) = Q(u)(t).  Then the objective function becomes:

J u F Q u u Q u b( ): ( ( ), ) ( )( ) *= + −0 21
2 1µ         (7)

The interval [0, 1] is now divided into N equal subintervals, and u (.) is

approximated by a step-function taking values u1, u2, …,uN on the successive

subintervals. Thus, the discretisation is achieved by restricting u(.) to such a step-

function, and the optimisation is over the values u1, u2, …,uN. Then, from (2), x(.)
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is a polygonal function, determined by its values x0, x1, …,  xN at the gridpoints t =

0, 1/N, 2/N, …, 1.  Since, because of the jumps at gridpoints, the right hand side of

the differential equation (2) is now not a smooth function of t, the differential

equation solver chosen must be suitable for such functions.  From the standard

theory, the gradient J’(u) is given by:

J u z f t m x t u t t z(t dtu'( ) ( ( ) ) ( ( ), ( ), )) ) ,= +∫0

1
λ         (8)

where the costate function λ(.) satisfies the adjoint differential equation:

− = + = −λ λ λ µ
.

( ) ( ( ) ) ( ( ), ( ), ), ( ) ( ( ) *)t f t m x t u t t x bx 1 1         (9)

(Here suffixes x and u denote gradients with respect to x(.) and u(.).)

As mentioned, the differential equation solver must handle discontinuities

at gridpoints. Many standard solvers do not.  For example, MATLAB 5.2 includes

six ODE solvers, of which only one – designated for stiff differential equations –

is useful for solving x t u t
.

( ) ( )=  when u(.) is a step-function.  A better approach is

to modify slightly the well-known fourth order Runge–Kutta method.  If t is in the

subinterval [j/N, (j+1)/N], then u(t) must take the appropriate value uj, and not (for

example) uj+1 when t = (j+1)/N.  This is easily achieved by recording j as well as t.

With this approach, there is no need to further divide the subintervals, in order to

integrate.  If more precision is required, the number N of subintervals is increased.

Note that (2) is solved forwards (starting at t = 0) and (9) is solved backwards

(starting at t = 1).  Once the differential equation (2) is solved, the objective J(u)

becomes a function J u u uN

∧

( , ,..., )1 2 of N variables.  Two approaches are available:

a. Compute objective values from (2), (1) and (6), but not to compute gradients

from (9) and (8).  This assumes an optimising package that can estimate

gradients by finite differences from (2), (1) and (6).

b. Compute objective values from (2), (1) and (6), and also compute gradients

from (9) and (8).
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In either case, the optimising package is required to optimise the objective,

subject to simple bounds (4).  (It is also possible to deal with bounds by using

penalty terms, see Craven 1995.)

When as in some economic models (see e.g. Kendrick and Taylor 1971),

fractional powers of the functions occur, e.g. with x(t)β included in m(x(t), u(t), t)

with 0 < β < 1, then the differential equation (2) will bring x(t) < 0 for some

choices of u(.), causing the solver to crash.  Of course, only positive values of x(t)

have meaning in such models.  Even without explicit constraints on u(.), the

requirement x(.) > 0 forms an implicit constraint, which does not have a simple

form.  In such a case, it may be better to use, as in (a), finite-difference

approximations to gradients, since they may be valid, as useful approximations,

over a wider domain.

In the augmented Lagrangian algorithm (see e.g. Craven 1995), constraints

are replaced by penalty terms, as in (2), added to the objective, with the target

value b* in (4) depending on a Lagrange multiplier, and the penalty parameter µ is

finite, and typically need not be very large.  If there are few such constraints, the

problem may be considered as one of parametric optimisation, varying the

parameter b*, even without computing the Lagrange multipliers.

In solving the differential equation (9), interpolation is required, to

estimate values of x(t) at times t between gridpoints. (In SCOM, linear

interpolation was used.)  Similarly, using (8) to obtain:

∂ ∂ λJ u u f t m x t u t t dtj uj N

j N
( ) ( ( ) ) ( ( ), ( ), ))

/

( )/
= +

+

∫
1

           (10)

requires either interpolation of x(.) and λ(.), or an Euler approximation of the

integral.  (The latter has been used, but seems too approximate for some

problems).  Of course, the number N of subintervals x can be increased, to get

better precision.

The problem must be put into the above standard form, if necessary by

scaling the time to an interval [0, 1].  As described in Craven, de Haas and
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Wettenhall (1998), a nonlinear scaling of time is sometimes appropriate, to get

good accuracy with a moderate number of subintervals.

With this background for discretisation and solution to the differential

equation, we can summarise the algorithmic blocks and steps in SCOM and

RIOTS as follows:

SCOM: approximation based on a step function, a differential equation 

solution based on Runge-Kutta method and optimisation based on a 

conjugate gradient search method.

RIOTS: various spline approximations, and the differential equation

solution by Runge Kutta methods and the optimisation problem by

projected descent or sequential quadratic programming methods.

3.3 Computer Programs

Computer programs which can be used for a wide variety of continuous control

problems have become available only recently (Amman, Kendrick, and Rust 1996;

Cesar 1994; Tapiero 1998; Teo et al. 1991). There are some packages which are

well known to economists such as DUAL, MATHEMATICA etc.; see references

in Amman, Kendrick and Rust (1996). Craven (1995) covers the theory and

algorithm for optimal control with a list of possible computer programs including

the OCIM program. Cesar (1994) also has references to some other computer

programs. A recent survey of optimal control packages is also given in Tapiero

(1998). RIOTS is developed by Schwartz, Polak and Chen (1997).

The various optimisation algorithms that some of the optimal control

programs encode are as follows:

1. sequential quadratic programming (MISER, Jennings et al. 1991),  MATLAB’s

optimiser “constr” (MATLAB 1997), and SCOM;

2. conjugate gradient methods (OCIM, Craven et al. 1998); and

3. projected descent methods and sequential quadratic programming  (RIOTS_95,

Schwartz 1996).

They can behave differently, in particular if the function is only defined on

a restricted domain, since an optimisation method may want to search outside that

domain. For example, the RIOTS_95 package uses various spline approximations

to do this, and solves the differential equations by projected descent methods.
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SCOM adopts a simpler approach, followed by the MISER package for optimal

control, which approximates the control function by a step-function, then solves

the differential equations by sequential quadratic programming. Conjugate

gradient methods may also be used (as in OCIM). Different implementations may

behave differently, in particular if the function is only defined over a restricted

domain, since an optimisation method may want to search outside that domain.

While a step-function is apparently a crude approximation, it has been shown in

various instances (e.g. Craven 1995; Teo et al. 1991) to produce accurate results.

The reason is that integrating the dynamic equation (d/dtx(t) = …) to obtain x(t) is

a smoothing operation, which attenuates high-frequency oscillations.  It is pointed

out in Craven (1995) that if this attenuation is sufficiently rapid, the result of step-

function approximations converges to the exact optimum as N → ∞.  Some

assumption of this qualitative kind is in any case necessary, in order to ensure that

the chosen finite dimensional approximations allow a good approximation to the

exact optimum.

From the alternatives discussed above we have adopted RIOTS and SCOM

for the following reasons: (1) these two programs can solve a large class of

optimal control problems with various types of objective functionals, differential

equations, constraints on the state and control functions, and terminal conditions

(such as bang bang, minmax, and optimal time control problems, see for theory

Sengupta and Fanchon (1997) and Teo et. al., (1991)) very easily and

conveniently, (2) they are based on a widely used mathematical package

MATLAB, (3) these two programs implement the recently developed

discretisation algorithmic approach, and (4) RIOTS is commercially available for

research in this area.

4.  The Kendrick-Taylor Model Implementation

To allow comparison with numerical results in Kendrick and Taylor (1971), the

following numerical values were used:

.7.24,05.0,6.0,842.0,02.0,1.0,10 ======= TkT σβζδτ

The Kendrick-Taylor model, with the parameter values listed above, has
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been computed using the RIOTS-95 package on a Pentium, and also with some of

the parameters varied, as listed below.  For comparison, the model has also been

computed using the SCOM package on an iMac computer.  The latter package also

uses MATLAB (version 5.2) and the constrained optimisation solver constr from

MATLAB’s Optimisation Toolbox, but none of the differential equation software

used by RIOTS_95.  Thus both computations share MATLAB’s basic arithmetic

and display software, but the implementations are otherwise independent.

4.1 Results: The Numerical Structure of Optimum Growth of the 

Economy

The results of the computed optimum growth paths of aggregate variables that

show the empirical process of growth of the economy are reported in Figures 1a

and 1b. The Kendrick-Taylor model was solved for 20 periods, for a total time of

10 years, using RIOTS_95.

           Figure 1a. Alternative Model Runs with RIOTS: Consumption
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         Figure 1b. Alternative Model Runs with RIOTS: Capital

Run 1 shows the base case solution of the model. For sensitivity analysis,

the following set of alternative values of the parameters of the model was adopted

in six model runs, shown in Table 1.

Table 1. Alternative Values of the Parameters of the Model

Runs ρρ δδ kT ξξ

Run 1 0.03 0.02 24.7 0.842

Run 2 0.01 0.02 24.7 0.842

Run 3 0.03 0.01 24.7 0.842

Run 4 0.03 0.02 23.7 0.842

Run 5 0.08 0.02 24.7 0.822

Run 6 0.01 0.01 24.7 0.842

Figure 2 shows state (above) and control (below) for N = 10, compared

with N = 20, as computed by SCOM.  For comparison, the control points shown x
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were obtained with RIOTS_95. The state is the same, to graphical accuracy, as the

three computations.

Figure 2. Effect of Number of Subdivisions
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5   Mathematical and Economic Properties of the Results

The significant properties of the optimally growing economy characterised by the

trajectories of the Kendrick-Taylor model computed here numerically are that the

economy grows along a unique stable equilibrium path and along this path the

society’s saving (which is equal to investment) and consumption are optimal and

the work force is employed at the full employment level. The values of the costate

variable in the Kendrick-Taylor model at different time periods are the shadow

prices along the dynamic equilibrium path of the economy and provide the

dynamic valuation or pricing system of the economy.

Mathematical properties such as existence, uniqueness, stability and other

properties of a steady state solution of the Kendrick-Taylor model are important in

deriving and understanding the above stated economic implications of the growth

model.
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The first issue is the existence of an optimal growth trajectory of the

model. Consider first a discrete-time version of the Kendrick-Taylor model, in

which the control u is an n-dimensional vector. Suppose that lower and upper

bounds are imposed on u(.).  Then the set U(n) of feasible controls is bounded, as

well as closed; hence the objective function, being continuous, reaches its

extremum at a point of U(n); thus, the optimum is attained. Now computing an

optimum for the continuous-time version of the model involves the tacit

assumption that its optimum is a limit of the optima for suitable finite-dimensional

approximations. Assuming this, the attainment of the continuous-time optimum

would follow as a limiting case. However, the attainment, and uniqueness, of the

optimum can be deduced in another way. The Pontryagin theory gives first-order

necessary conditions for an optimum, and these conditions have a solution.  If the

model were a convex problem, then the first order necessary conditions would also

be sufficient for an optimum, thus proving its existence. But convexity is lacking,

in particular because the equality constraint (the differential equation) is not linear.

However, it is shown below that there is a transformation of the model into a

convex problem; hence the solution is a global optimum.

If there is a transformation of the variables k(t), c(t) in the Kendrick-Taylor

model to new variables x(t), u(t), so that the transformed problem is a convex

problem then the original problem has a property called invex (Craven 1995); and

it follows then that a local optimum is also a global optimum. The following

calculation shows that the Kendrick-Taylor model, with the parameters stated

above (from Kendrick and Taylor 1971), is transformable to a convex problem.

This will also hold with various other values of the parameters. For this purpose,

the Kendrick-Taylor problem may be considered as a minimisation problem, to

minimise the negative of the given objective function.

First define .e)t(k:)t(K tσ=  Then:

),t(ce)t(Ke)t(K trt σβ −ζ=&

where r = q + (1 - β)σ. This removes the σk(t) term in the differential equation.

Next, define a new state function ,)t(K)t(x γ=  where γ = 1 - β will be

assumed later. Denote also θ = (1 - γ)/γ. Then:

)t(c)t(xe)t(xe)t(x t/)1(rt θ−σγ−γ+β γ−γζ=&
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The further substitution )t(u)t(x)t(c θ=  reduces the differential equation to the

linear form:

)t(uee)t(x trt σγ−γζ=&

What becomes of the integrand λρ− )t(ce t  in the objective function? It

becomes λκρ− )t(u)t(xe t , where κ = θλ. Note that with the numerical values cited

for λ and θ, κ = 0.15, and κ + λ < 1. Since c(t) and k(t) must be positive, the

domain of (x(t), u(t)) is a subset of 2R + , depending however on t. The Hessian

matrix of -xκuλ is then:










−λλ−κλ−
κλ−−κκ−

−λκ−λ−κ

−λ−κλ−κ

211

112

ux)1(ux

uxux)1(

Since 0 < κ < 1 and 0 < λ < 1, the diagonal elements of the Hessian are

positive. The determinant is calculated as:

)1(ux 2222 λ−κ−κλ−λ−κ

which is positive if κ + λ < 1.

Values λ = 0.1 and β = 0.6 have been used in the present model (e.g.

Kendrick). Invexity, and consequent global optimisation, is thus shown for these

values, and for other values near them.

For the dynamic systems, stability of the system can be determined by the

characteristic roots of the Jacobian matrix formed by linearizing the differential

equations of the variables and evaluated at the steady state point. Sensitivity

analysis of numerical models can shed light on the stability of the model.

The results in Figures 1a and 1b show the RIOTS results of how changes in

ρ, δ, kT, and ξ affect the optimum growth trajectories of consumption and capital.

Figure 1b shows that changes in ρ and kT (terminal capital) have relatively higher

impact on the dynamic path of capital accumulation compared to the changes in

the rate of technical progress and the elasticity of marginal utility with respect to

changes income. In regard to the value of optimal control (the optimal level of

consumption), the impacts are similar. The optimal control variable is relatively

more sensitive (see Figure 1a) to changes in the discount rate and the terminal

level of capital. These sensitivity experiments suggest that the social time
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preference and the terminal conditions are significant determinants of the structure

of optimal growth paths of an economy.

RIOTS was also used to examine the sensitivity of the Kendrick-Taylor

model to some other changes in the data. Figure 3 shows the trajectory of capital

when the initial capital is varied from 15.0 to 14.0 or 16.0, though not changing

the terminal constraint on the capital. Figure 4 shows the trajectory of the capital

with the initial value fixed at 15.0, but the terminal value varied from 24.7 to 27.0

and 22.4. The time scale here is 0 to 20; the turnpike effect noted by Kendrick and

Taylor is only apparent on a longer time scale, say 0 to 50. Figure 5 shows the

effect of varying the exponent β in the dynamic equation from its given value of

0.6.  The upper curve has β = 0.5, compared with the middle curve for β = 0.6.

The lower curve is what RIOTS gives when β = 0.7, but with the warning that no

feasible point was found. (A computation with SCOM confirms that the model is

not feasible for this case.) This graph is included, to point out that when the

constraints cannot be satisfied, a computer output need not be any sort of

approximation to a solution. In this instance, an implicit constraint is violated,

since both state and control run negative.

RIOTS computed an optimal solution to the Kendrick-Taylor

model in 20 iterations. The speed is due in part to the use by RIOTS of C code –

although the functions defining the problem were entered as M-files (requiring

however some computer jargon for switching). SCOM was slower  - fairly rapid

convergence to  the optimum objective value, but much slower convergence to the

optimal control function. Some more development is needed here with terminating

tolerances for gradient and constraints.

The computing experience with the Kendrick-Taylor model in this paper is

largely similar to its previous computing experiences.
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6.   Computation by Other Computer Programs

While the Kendrick-Taylor model was not computed with MISER, some related

economic models were attempted, without success because sufficient accuracy was

not obtained for the gradients of the functions. The experience with SCOM

suggests that the fractional-power terms in the model may lead to computational

difficulty, since some values for the control function may lead to negative values

for the state function, for which the fractional powers are undefined.

7. Conclusion

Algorithms and computer packages for solving a class of optimal control problems

in continuous time, using the MATLAB system, but in a different way from the

RIOTS_95 package, which also uses MATLAB and the RIOTS system, have

produced plausible economic results. In the SCOM approach (as in the MISER

and OCIM packages), the control is parameterised as a step-function; and SCOM
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uses MATLAB's "constr" package for constrained optimization as a subroutine.

End-point conditions are simply handled using penalty terms. Much programming is

made unnecessary by the matrix features built into MATLAB. Economic models

may present computational difficulties because of implicit constraints, and there is

some advantage using finite difference approximations for gradients. The RIOTS

system can produce a set of results close to these produced by the SCOM approach.

While several computer packages are available for optimal control problems, they are

not always suitable for a wide class of control problems. The MATLAB based

RIOTS and SCOM are user-friendly, easily transferable and efficient computer

programs that offer good opportunities for computing continuous optimal growth

models. Economic modellers will find these algorithm and computer programs

suitable to their work.
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