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To implement continuous time option pricing models in which ARCH mod-

els can be used as direct or indirect approximators of stochastic volatility,

we construct continuous time economies exhibiting equilibrium dynamics to

which most asymmetric ARCH models converge in distribution as the sample

frequency gets in�nite. In the candidate economies, volatility is a di�usion

that allows for the “leverage e�ect”, and has a variance that is proportional

to the square of the volatility itself. Such characteristics introduce non-

linearities in the resulting pricing models; models of the term structure of

interest rates, for instance, are not a�ne, but are analytically treated here,

using a method of iterated approximations. The convergence foundations of

the pricing models considered here are based on a class of ARCH models that

is large enough to make these pricing models incorporate realistic patterns of

volatility of the Markovian type.

: Stochastic volatility, ARCH, incomplete markets, term struc-

ture.
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1 Introduction

direct

auxiliary

See, also, Nelson (1992) and Nelson and Foster (1994).

This kind of property was shown to hold by Nelson (1990) for the exponential ARCH of Nelson

(1991).

The increased importance played by conditional volatility in �nancial economics has led

researchers (e.g., Hull and White (1987), Wiggins (1987), Longsta� and Schwartz (1992),

Heston (1993)) to extend early asset pricing theories (e.g., Black and Scholes (1973),

Merton (1973), Vasicek (1977)) to the case in which volatility evolves in a stochastic

manner. On an empirical standpoint, time-varying volatility is well captured by the

ARCH-type models introduced by Engle (1982) and Bollerslev (1986). Furthermore, the

contribution of Nelson (1990) made clear that some basic ARCH models can reasonably

be considered as approximations of a speci�c class of di�usion processes, which in turn

are so frequently used to set up theoretical models. Fornari and Mele (1997 ) extended

the early approximation results of Nelson to an encompassing class of ARCH models,

namely the Asymmetric Power ARCH (A-PARCH) model of Ding, Granger, and Engle

(1993). Analogous results are presented in Fornari and Mele (1997 ) for their sign- and

volatility- switching ARCH.

The purpose of this article is two-fold.

First, it deepens the previous results by deriving a closed-form solution for the instan-

taneous correlation between (continuous time versions of) a �nancial asset price process

and its instantaneous volatility, as implied by the A-PARCH model. The negative,

instantaneous correlation naturally emerges in correspondence with the “Black-Nelson

e�ect” (Black (1976) and Nelson (1991)) negative shocks introduce more volatility

than positive ones of the same size . In an independent paper, Duan (1997) elegantly

accomplishes similar tasks for models encompassing subclasses of the A-PARCH, but

here we account for all the encompassed models as well as for more general distribu-

tional assumptions of the discrete model, much in the spirit of Fornari and Mele (1997 ).

(Speci�cally, we suppose errors to be general error distributed.) We �nd that the cor-

relation is constant, and that its modulus never reaches unity for a reasonably wide set

of parameters’ values; this implies that under our approximation scheme markets are

likely to be incomplete in models including high frequency asymmetric-type ARCH as

generating processes.

As originally suggested by Nelson (1990), the kind of results presented here can

give rise to the possibility of using ARCH as approximators of continuous time

stochastic volatility models. A second possibility is to use ARCH as models

in simulation-based schemes; see Gouri�eroux and Monfort (1996) for a full account of

simulation-based inference, and Pastorello, Renault, and Touzi (1995) for a methodology
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In the analytical approach that was undertaken in earlier work (Fornari and Mele (1994) and (1995)),

analytical obstacles were overcome by specifying risk premia in such a way that our �nal models were,

in fact, observationally equivalent to models with deterministic volatility.

in which volatilities are �ltered using option data. It is beyond the scope of this paper to

provide a detailed, empirical analysis of such issues. We shall only provide an illustration

of the �rst possibility in the Monte Carlo application to be discussed below, and a succinct

outline of the second possibility in the term structure model that will also be described

below.

The second purpose of the paper is to make a step forward in the option pricing do-

main. Speci�cally, the paper develops evaluation theory of contingent claims in economies

in which observables (namely, stock prices and interest rates) are di�usion

processes with the same structural form (and correlation structure) as the one that is

approximated by most asymmetric ARCH models. We consider two natural applications:

European-type stock option pricing, and the determination of the term structure of in-

terest rates. The main analytical di�culty that is encountered here is that, in continuous

time, ARCH models predict that the variance of volatility is proportional to the of

volatility. In the case of the term structure models, for instance, the property in question

is a disturbing property if one wishes to get tractable models notably, a�ne models

permitting closed-form solutions. See Du�e and Kan (1996); and Fornari and Mele

(1998 ) for a thorough discussion.

The paper’s main contributions to option pricing can be summarized as follows.

In the stock-option pricing application, we are only able to approach the problem

by implementation of Monte Carlo experiments built-up upon the previous convergence

results; Lamoureux and Lastrapes (1993) were the �rst proponents of such a line of

investigation (see also, Engle and Mustafa (1992), for a related approach). The main

aim here is to get a �rst assessment of the empirical relevance of our convergence results.

We consider data generating processes with possibly “non standard volatility concepts”,

such as , where is the instantaneous standard deviation of the primitive asset price

process, and . By using ARCH as direct approximators of continuous time

stochastic volatility models applied to US data, we �nd that the price of a European

option estimated via Nelson’s (1990) approximation results is higher than the price of

the same option estimated via the approximation results presented here; we show that

the di�erence is monotonously increasing from in- to out-of-the-money options, reaching

the order of more than one hundred per cent.

In the term structure application, we are able to present an analytical approach based

on a method of iterated approximations. It is inspired from relatively new work by Chen

(1996) in a di�erent context, and is based on a functional iteration of a certain benchmark

a�ne pricing rule under the action of the associated Arrow-Debreu state price; here the
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2 The models

Longsta� and Schwartz (1992) present an equilibrium model in which the volatility of the instan-

taneous interest rate is stochastic. In their model, however, volatility is driven by the same Brownian

motions driving the instantaneous interest rate. Hence, volatility does not add any further information

than that contained in the interest rate dynamics.

state price has the simple mathematical interpretation of the Green’s function used to

represent the fundamental solution in standard partial di�erential equations theory. In

this application, further, we outline a procedure in which the approximation results can

be used to obtain indirect estimators (Gouri�eroux, Monfort and Renault (1993)) of the

model’s parameters.

The present article has to be considered in complement to other existing attempts to

nest ARCH-type models in fully articulated option pricing schemes, namely Amin and Ng

(1993), Duan (1995), Kallsen and Taqqu (1998) and Hobson and Rogers (1998), among

others. Both Amin-Ng and Duan models, for instance, are in discrete-time: this implies

non-linearities which impede the obtention of closed-form solutions. Both Kallsen-Taqqu

and Hobson-Rogers, to cite a second example, work in continuous time, but they propose

that agents have access to an information set so large that it allows to get around market

incompleteness. None of the above cited articles provides theory of the term structure

of interest rates. Abstracting from ARCH issues, our model is also the �rst analytical

model in which the term structure of interest rates with stochastic volatility is treated

within a rigorous, equilibrium-sounded framework.

The paper is organized as follows. The next section presents the economy; section

3 contains the approximation result; section 4 presents the option pricing applications;

section 5 concludes, and the appendices contain technical details omitted in the main

text.

The program in this section is to construct continuous time economies displaying stochas-

tic equilibrium dynamics to which a well chosen (discrete-time) sequence of ARCH models

converges weakly as the sampling frequency becomes higher and higher. In subsection

2.1, we present the �rst primitives of such candidate economies. In subsections 2.1 and

2.2, we impose restrictions that allow for the construction of two models.

The �rst model is designed for the evaluation of stock options with stochastic volatil-

ity, a subject on which there is a vast theoretical literature and to which we shall have

very little to add. Our main concern lies in introducing a generalized version of the Hull

and White (1987) model that is to be useful in applications such as the one presented in

subsection 4.1.

The second model is designed for the evaluation of default-free bonds with stochastic
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volatility, a subject on which relatively little attention has been devoted in the theoretical

literature and to which we positively contribute.

In all models, we shall keep close to the approximation results to be presented in

section 3. It is emphasized that the restrictions we impose in subsections 2.2 and 2.3

possibly yield two distinct, mutually incompatible models; see remark 2.1 below.

The scheme has been simultaneously exploited by Mele (1998 , ) with minor changes.

It is close to the framework of Cox, Ingersoll and Ross (1985 ), with the exception that

linear activities are absent here, and replaced by stocks. Such a modi�cation is useful

for obtaining stock-option restrictions as well as possible rami�cations such as the ones

presented in subsection 4.1.

Let (
 ) be a probability space, , and = the -augmentation

of the natural �ltration

= ( )

generated by a Brownian motion in

= = ( )

(with = ). We consider a di�usion state process

= + ( )d + ( )d ( = 1 ) (2.1)

where ( ) ( = 1 ) and ( ) ( = 1 and = 1 ) are progressively

-measurable functions s.t. [0 ] and satisfy the usual regularity conditions

ensuring a strong solution (Karatzas and Shreve (1991, def. 2.1, p.285)) to the preceding

system.

Let (
 ) be the space of all the -adapted processes in which satisfy:

d -a.s. with d 0 0

and, for each [0 ],

= (
 ) = 0 a.s.

Let

= = ( )

be the -adapted stochastic process representing the price of an accumulation fac-

tor ( ) plus primitive assets entitling to rights on the fruits, or dividends (the

num�eraire), of trees as in the discrete-time model of Lucas (1978).
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All assets are exchanged without frictions, and prices are formed, which

means that : ([0 ] ) ; we further suppose that belongs to . Let:

= + ( = 1 )

be the discounted gain process. Here, for each = 1 , d = d , and:

= d

with = , an -adapted process, standing for the dividend process. An

identically zero process is associated with the 0 asset the accumulation factor and,

for each component, = ( ). The accumulator factor is taken to formally satisfy:

= exp( d ) [0 ]

with denoting the (default-) free interest rate process, an -adapted process

satisfying:

( d )

We denote:

=
...

. . .
... = =

By Itô’s lemma,

= exp ( )d ( )d

+ ( )d

+ d exp ( )d ( )d

+ ( )d (2.2)

Here, ( ) = + ( ) + cov( )

( ) = ( ) ( = 1 and = 1 ) and ( ) = ( ) +

( ) ( = 1 ); is thus the average appreciation rate referring to the th primitive

asset, and = ( ) . Let denote the matrix whose ( ) entry is ( ); this

is:

=

6



∈

′
∈

′
�

′

�

�

′ ′ �

⊥

′

′

strategy

complete

all

∫

∑

˜

{ ˜ }

˜ ˜ � ∫ ˜ ∫ 


˜


 �
˜

˜ � ∫ ∫ �

� 


{ }

∞

{ } ∈ F

� �




�

P ∈ 〈 〉

� �

F
� F

� � � ‖ ‖ ∈

∈ Q
∀ ∈ F

Q
F

Q

[0 ]

0

(1) ( )
[0 ]

2
0

( )

1

1 =1
( )

1 +

1

0
1
2 0

2

0
1
2 0

2

( )

t t ,T

T
s

t t
m
t t ,T ,T,m

i

m

m
m
i

i

m

t t t

T
T

t t
T

t

T

t t
t

u u
t

u

A T T

i

m d P t a.s.

T

c c

c s < , P a.s..

� � � , ..., � , � L , , P ,

� i

V

V � � r V r c t � � W.

m d

b

� S c � P t a.s.,

S m S

� � �� � r .

�

� / � � � , � �

�
Q

P
� W � t ,

Q P

Q P ,

� � � W � u t , T ,

P Q

Q A E � , A

P , G i , ..., m

and is supposed to have a rank equal to , d -

Fruits can be continuously consumed between 0 and ; the consumption process is

thus = , a positive adapted process satisfying:

d -

Let

= = ( ) (
 )

be a : here is the proportion of wealth invested in the th primitive asset.

The value of a self-�nancing strategy satis�es:

d = ( ( 1 ) + )d + d (2.3)

We shall have occasion to say that markets are if and only if = (see,

e.g., Mele (1998 ) for standard details justifying such a de�nition). Equilibrium is:

= and = d - (2.4)

where contains the last entries of .

Let

= ( ) ( )

Because has full rank, the preceding exists, and has the usual interpretation of a risk

premium process. In fact, processes belonging to the set:

= = +

are bounded and have the interpretation of risk premia processes. More precisely, by

de�ning:

:=
d

d
= exp d d

(the Radon-Nikodym derivative of with respect to on ) and the density process

of any on (
 ):

= exp d d ( [0 ]) (2.5)

(a strictly positive martingale on ), one has that if and only i� it is of the form

( ) = (1 ) (for the proof, adapt, for instance, lemma 3.4 p.429 in Shreve

(1991) to the primitive security market model (2.2)). Here is the set of measures

that are equivalent to on (
 ) for ( = 1 ). Further, it is well known

that, under all conditions formulated until now, non-emptyness of implies absence of

arbitrage opportunities (de�ned as, e.g., in def. 0.2.3 p.4 in Karatzas (1997)) and that
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This is shown in Fornari and Mele (1998 , appendix A) for the general case in which information is

di�usion information resumed by state variables.

the converse is also true (e.g., thm. 0.2.4 pp.4-7 in Karatzas (1997)). Finally, it is also

well known that is a singleton if and only if markets are complete. In the stock option

speci�cation below, for instance, markets are incomplete due to stochastic volatility, and

in the application of subsection 4.1, we shall consider the so-called F�ollmer-Schweizer

measure, or minimal martingale measure (F�ollmer and Schweizer (1991)).

: The is de�ned to be: ( ) = (1 )

.

In the stochastic volatility setting, the economic interpretation of using is that

the resulting model is one in which the risk associated to the 
uctuations of stochastic

volatility is not compensated, which is the hypothesis of Hull and White (1987). (See

formula (2.11) below.) For the mathematical interpretation, the minimale martingale

measure is the one which minimizes the Kullback-Leibler distance, or relative entropy,

of the objective measure with respect to any . This kind of results was shown

to hold by F�ollmer and Schweizer (1991), in the unidimensional case, but in a context

more general than that of Brownian information.

The �rst specialization of the model is immediate and produces a possible version of the

well known stochastic volatility option pricing scheme.

We take = 1 = = 2, and as the (sole) stock price process, solution

of the following stochastic di�erential equations (s.d.e.):

d = ( )d + d

d = ( )d + ( )d
(2.6)

= ( ) + 1 ( )

for each [0 ]. Here is a non-decreasing, continuously di�erentiable function of ;

( ), ( ), ( ) are progressively -measurable functions respecting the conditions given

for system (2.1); ( ) is also -measurable with modulus strictly less than one a.s.; is

interpreted as the second state variable of the economy; �nally, is also interpreted as

the �rst state variable of the economy.

Next, we de�ne a as a non-degenerate square-integrable

-measurable random variable : 
 [0 ), and let be the rational price function
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Comments after assumption A.7 in appendix A of Fornari and Mele (1998 ) justify such a position.
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of the claim:

= ( )

We restrict to be in . By Itô’s lemma, it thus satis�es:

d = [ ]d + d + d ( [0 ))

with boundary condition:

( ) = (2.7)

where [ ] is the Dynkin operator taken with respect to system (2.6).

We suppose that is also the set of the measures equivalent to under which

( ) is an -( )-martingale as well. By the Girsanov’s theorem (Karatzas

and Shreve (1991, thm 5.1, p.191)), for each [0 ),

d = ( )d + d( )

d = ( )d + d( )

d = [ ] d + d( ) + d( )

(2.8)

and the presumed -( )-martingale property of the discounted primitive asset

price process,

= d -a.s.,

or,

= 0 = (say) d -a.s. (2.9)

Here,

= = ( )

is an -adapted process and satis�es

d -a.s. ( [0 ])

and

= = (( ) ( ) )

(with

( ) = + d ( = 1 ) ( [0 ]))

is a standard two-dimensional -Brownian motion under the new probability measure

.
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See Mele (1998 ) for a justi�cation of the use of the representative agent in this context.

By the presumed -( )-martingale property of the discounted European claim

price process,

= ( ) (2.10)

But since the solution of system (2.9) is indeterminate,

card( ) =

which shows that there exists an in�nity of rational pricing functions, all induced by the

risk premia belonging to the set = = + . In other terms,

relation (2.10) is the Feynman-Kac representation of the solution of the following partial

di�erential equation:

[ ] =

with (2.7) as boundary condition (Karatzas and Shreve (1991, thm. 7.6, p.366)), which

is not unique; here,

[ ] = [ ] ( )

the Dynkin operator applied to the �rst two eqs. of system (2.8), and non-uniqueness is

due to the impossibility of recovering .

It is useful to compute the risk premium inducing the minimal martingale measure.

This is:

= ( ) ( ) = 0 (2.11)

While indeterminacy of the pricing function can be resolved by making reference to

the existence of a representative agent (as in Wiggins (1987)), we shall simply impose

that risk-premia are as in (2.11) in subsection 4.1; see assumption 4.1 below. Such a

position is standard in empirical studies.

We �nally impose parametric restrictions. We take:

( ) =

( ) =

( ) =

( ) =

(2.12)

and:

= (2.13)

where and are real constants.
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As it turns out, the approximation results in section 3 suggest that such restrictions

caracterize di�usions to which ARCH models converge in distribution. Notice, also, that

the Hull and White (1987) model corresponds to the special case in which = 0. This

was �rst pointed out by Nelson and Foster (1994 p.20 eq. 4.21), though imprecisely. The

reason for such a result is that the restriction = 0 implies that the variance process

satis�es:

d ln = d + d

(where are some real constants), of the “volatility concept” . If = 0,

however, the volatility concept matters.

We now impose restrictions that identify a two-factor model for the term structure of

interest rates. We let a representative agent behave as to maximize the expected 
ows

of her instantaneous, logarithmic utility under the constraint of a generalized version of

eq.(2.3); such a version also includes trading in zero-net supply assets, such as bonds.

Please notice that we shall impose state-space restrictions that ensure that markets are

complete, thus justifying the use of the representative agent object.

Under mild technical conditions (such as assumption A9 p.369 in Cox, Ingersoll, and

Ross (1985 ) (CIR )), as well as the equilibrium conditions in (2.4), one has the following

�rst order conditions (f.o.c.): 0 = , and:

0 = ( 1 ) + ( + ) +

0 = ( 1 ) + ( + ) +
(2.14)

where ( ) referring to zero-net supply assets are de�ned similarly to their

counterparts ( ) and ( ) denotes indirect utility. We note that our

conditions are qualitatively similar to the ones of CIR . To obtain a theory of the term

structure of interest rates, we can proceed along lines very similar to the ones presented

in the Cox, Ingersoll, and Ross (1985 ) (CIR ) paper. We use the �rst f.o.c. and derive

the equilibrium interest rate:

=
+ +

(2.15)

where we have used the equilibrium conditions = 0 and 1 = . We are considering

logarithmic preferences. It is well known that this implies = 1 and = 0 (no

“hedging demand”). By plugging the resulting expression for the interest rate into the

resulting �rst f.o.c., and using again the equilibrium condition 1 = , we obtain the

solution for , which is:

= ( ) +
1 1 ( )

1 ( ) 1
( ) 1 (2.16)
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1st step construction of the primitive di�usion state model

2nd step determining the factor restrictions

which is qualitatively similar to the standard one presented by CIR .

We now present our two-factor model. In a �rst step, we specialize the state space; in

the second step, we impose the factor restrictions that are su�cient to get the primitives

of the remainder.

: . We posit that = =

2 and that the two state variables are solutions of the following system:

d =
+

d +
0

1
d

where are constants. Such a setup di�ers from the Longsta� and

Schwartz (1992) two factor model, and deserves some discussion. We wish to �nd

out, as CIR , an equilibrium expression in which the interest rate is a linear function

of the �rst state variable. The justi�cation is that such a representation yields a

simple model in which the interest rate matches the kind of stochastic volatility

presented in the following section; but a su�cient condition to obtain that model

is modeling the second state variable as we did (see the following step).

: . Consistently with the motivation

of the �rst step, we encompass the CIR one-factor model, and suppose that the

following factor restrictions hold in (2.2):

=

=
(2.17)

where and are, respectively, a conformable vector and a conformable matrix

of constants; see Appendix A. Substituting (2.17) into (2.15)-(2.16), we get the

following expression for the equilibrium interest rate:

= =
1 ( ) 1

1 ( ) 1

We suppose that 0. By di�erentiating,

d = ( + )d + d ;

here,

=

and solves:

d = ( )d + d( + 1 )

with = .
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weak convergence9 2
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3 Convergence foundations

t t h hk k , ,...
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� � r,

� i , � �

S /S � y t

� y W i , ..., m � � m S/S

�y t � y W y s S/S �S t � S W

a, b

S

If (3.1) has to have a unique strong solution denoted as , of

to means that the �nite dimensional distributions of converge to those of

as 0. See Stroock and Varadhan (1979). It turns out that the conditions demanded by Stroock and

Varadhan (1979) are di�cult to verify when studying the convergence of ARCH-type models (see Nelson

(1990) and Fornari and Mele (1997 )). One then has to make reference to the conditions suggested by

Nelson (1990).

In appendix A, we show that in this model there is an unique measure belonging to

: it has a density process of the form (2.5), with:

= (2.18)

where ( = 1 2) are two constants depending on and . In turn, this implies that

the price of the bond has to satisfy a partial di�erential equation which is also reported

in appendix A.

: In the setup of this section, the stock price and the short term interest

rate can not display volatility dynamics that are both restricted to the last three relations

in (2.12). If we accept the restrictions of this section, for instance, d = d +

d ( = 1 ), where is scalar and is in ; hence, for = 1, d =

d + d (say), and if = (as in subsection 2.2), then d = d + d ,

which contradicts the restrictions (2.12) designed for the stock price.

A natural alternative consists in introducing one linear activity (as in CIR ) while

allowing to follow the same model of subsection 2.2. It is possible to show, however,

that such a choice destroys the term structure model presented in this section.

Such di�culties are not inherent in the speci�c parametric restrictions in (2.12). In

general, formulating tractable models for the short term interest rate implies very speci�c

stock price restrictions.

We present here the convergence result. While initially motivated by, and then stated

with reference to, the European stock option model given in subsection 2.2, the result is

also useful in the term structure model to be implemented in subsection 4.2. See remark

4.1 below and appendix E.

Lamoureux and Lastrapes (1993) was the �rst paper in which the pricing of stock

options with stochastic volatility was done with the help of the �rst approximation results

of Nelson (1990) (see subsection 4.1 for further details). The approximation scheme was

designed on the basis of the weak convergence of the following discrete time GARCH(1,1)
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As argued in Fornari and Mele (1997 ), the of and should increase the 
exibility

of both the conditional and unconditional distributions of the error terms. In fact, while the condition-

ally normal GARCH gives rise to a stationary Student , which is shaped by a single parameter, the

conditionally g.e.d. A-PARCH implies a stationary Student for = , and a fairly general

distribution for = , thus providing a potential better �t for the empirical distribution of asset price

changes.

process:

= + ( + 1) (0 1)

towards the unique strong solution of the stochastic di�erential equation:

d = ( )d + d ( 0) (3.1)

where denotes sample frequency, and are discrete time real parameters se-

quences (respecting conditions such as (3.7)-(3.9) below), and and are real, non

stochastic parameters; further, the process:

= ( )

is interpreted as the error process of an observation model of the asset price.

Nelson (1990) also proved that the distribution of is approximately a

Student- as 0 and . Hence, non-normality can be accommodated even by a

conditionally normal GARCH(1,1), a fact which was roughly known since Engle’s (1982)

seminal paper. However, empirical research has shown that �tted, standardized residuals

are very often leptokurtic; this suggests to model as a process conditionally

distributed according to a more 
exible distribution (e.g., Bollerslev, Engle and Nelson

(1994)). A second point is the apparent lack of tools by which one can choose among

di�erent volatility concepts, e.g. an ARCH based “variance” or “standard deviation”

concept. These issues can easily be treated within an unifying framework, which is the

A-PARCH model:

= + ( ) + (3.2)

in which one may further require that is g.e.d. distributed in order to take account

of possible conditional leptokurtosis:

g.e.d. =
exp( )

2 �( )

�( )

2 �(3 )
0;

here, �( ) is the Gamma function, 0, 0 1 1 , and allows

for the leverage e�ect originally observed by Black (1976), and incorporated by Nelson

(1991) in ARCH-type models.
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In the procedure followed by these authors, the estimator of the correlation was the regression coef-

�cient of continuously compounded daily returns on the series of volatility obtained after the estimation

of the GARCH(1,1) model.

Consider the following approximating scheme:

ln = ln + ( 2) +

= g.e.d.

= + ( (1 ) + 1)

(3.3)

where = sign( ),

( ) and [ 1 +1] ( ) (3.4)

is the asset price process, and is a bounded constant.

Fornari and Mele (1997 ) give conditions under which this system converges weakly

to model (2.6), with ( ), ( ), ( ) and as given by (2.12)-(2.13). Their convergence

result does not clarify issues concerning the instantaneous correlation between an asset

price process and its volatility. This is not disturbing whenever one is only interested

in such issues as the stationary distribution of high frequency innovations. In fact, if

standardized innovations are symmetrically distributed around zero (as is the case of

the g.e.d.), distributional properties presented in Nelson (1990) or in Fornari and Mele

(1997 , ) are robust in the presence of correlation.

However, if one wishes to use ARCH models to price assets when the presence of

such a correlation is suspected, one has to extend the previous result to accommodate,

endogenously, a correlation process. Such a level of analysis will eventually allow one

to make the parametric link with the kind of models presented in the previous section.

Further, it will lead to a simple and yet internally consistent way of estimating the

correlation, thus avoiding procedures such as those in Lamoureux and Lastrapes (1993).

We avoid here technicalities referring to the construction of the measure space in

(3.3)-(3.4): these can be easily found in Nelson (1990), and are those exploited in

Fornari and Mele (1997 ). We only introduce notation for the �ltration generated by

, which is , and which will be used in appendix B. Let the symbol

denote weak convergence. Remaining notation is as in section 2.
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and

and, for each

Next, suppose that the following conditions hold

Consider, �nally, the condition

Then,

as

where are solutions of

:

=
2 �( )

�( )
=

2 �( )

�( )

=
(1 ) (1 + )

( ) ((1 ) + (1 + ) ) 2 (1 ) (1 + )
(3.5)

,

= ( ) (1 ) + (1 + ) 2 (1 ) (1 + ) (3.6)

:

0 = lim (3.7)

= lim ( ((1 ) + (1 + ) ) + 1) (3.8)

= lim (3.9)

:

= (3.10)

0

:

d ln = ( 2) + d

d = ( ) + ( d + 1 d ) (3.11)

: In Appendix B.

The preceding theorem shows that the variance of volatility is proportional to the

square of volatility in eq.(3.11). Fornari and Mele (1997 ) also provide examples of other

models (the sign- and volatility- switching models introduced by Fornari and Mele (1996,

1997 )) converging weakly to di�usions in which the variance of volatility is a linear func-

tion of the square of volatility. Further, it can be shown that the modulus of is strictly

less than one in correspondence with reasonable values of ( ) (see the numerical ex-

ercises in Fornari and Mele (1998 )). This last property implies that stochastic volatility

models approximated by ARCH-type models generically induce incomplete markets in

continuous time. (See Fornari and Mele (1998 ) for a rigorous discussion.)
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As noted, similar convergence results can be obtained in correspondence with di�u-

sion processes designed to represent the instantaneous interest rate dynamics; see remark

4.1 below. Empirical evidence in Fornari and Mele (1995) combined with thm 3.1 then

suggest that in this case instantaneous interest rate changes should be positively corre-

lated with instantaneous volatility changes.

Since closed-form solutions for option prices with stochastic volatility are available in a

limited number of cases, Monte Carlo schemes are often implemented in practice. Here

we intend to illustrate how the previous convergence result can be used to implement

such schemes.

We shall be concerned with a simple scheme in which European call options are to

be evaluated through the model and restrictions in subsection 2.2. The �rst concern is

the estimation of the parameters and . One easy procedure is to use condi-

tions (3.5)-(3.10) (with the crude 1) and directly get estimates. This amounts to

using ARCH as direct approximators of stochastic volatility. Because the approximat-

ing scheme in thm.3.1 is essentially of Euler’s type, such estimators are a�ected by a

discretization bias. Nonetheless, such a bias can be corrected in a second step, by using

model (3.3) as an auxiliary model in a simulation-based procedure. The argument is

made more precise (in appendix E) with concern for the term structure application. In

this subsection, we shall only have access to the �rst step of the procedure, which in turn

is exactly the procedure that was followed by Lamoureux and Lastrapes (1993) with

reference to the special case of the GARCH(1,1) model. Finally, to compare the results

that can be obtained via the original Lamoureux-Lastrapes procedure with the ones that

can be obtained here, we obtain estimates by using both the normal GARCH(1,1) model

and the richer A-PARCH with g.e.d. errors.

The exercise consists in simulating the trajectory of the primitive asset price under

one of the equivalent martingale measures i.e. the �rst two eqs. in (2.8) and, �nally,

in computing the price of the European call option as:

=
1

( )

where is the primitive price as of time simulated at the -th Monte Carlo round.

One may now invoke a LLN and establish the convergence of to the Feynman-Kac

representation of the solution (2.10). We further simplify the exercise by setting 0.

As noted in subsections 2.1 and 2.2, we shall make the following:
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In pricing European options, agents limit their attention to the

minimal martingale measure

While such a restriction is dictated by our empirical results, the following equation:

d = (
2 2 + (1 2 )

)d +
2

d

should be discretized in the general case and used as an auxiliary model in an indirect-estimation pro-

cedure. Notice that in continuous-time, the “variance dynamics” are sensitive to the speci�c value of .

See the discussion at the end of subsection 2.2.

:

.

Our empirical results (to follow) suggest that the estimate of the intercept in the

volatility equation is nil for all the models. With = 0, eq. (3.11) is exactly discretized

by:

= exp( + ) ( = 1 )

= exp( + ) ( = 1 )
(4.1)

where we have used an exact approximation with unit steps; here and

are jointly normal, with correlation as that implied by relation (3.5), and = 20 days,

the maturity considered. In the case in which the GARCH(1,1) is used as approximator,

we set = 2 and = 0 in system (4.1).

We make use of the Standard and Poor’s 500 index of the New York Stock Exchange,

observed daily between 1 January 1990 and 30 April 1996, a sample of 1600 observations.

Before the models are estimated, autocorrelation in the series was removed through an

autoregressive �lter of the 5-th order. Let be the sample size and = ln , where

is the �ltered index as of time ( = 2 ). We consider the model:

= + = ( ) i.i. g.e.d. ( = 2 ) (4.2)

with as in (3.2), a real, non stochastic parameter, and ( ) �xed at (2 2) in the

case of the conditionally normal GARCH.

The log-likelihood of a single observation is:

= ln( ) (1 + ) ln 2 ln �( ) ln

which can be treated using the usual BHHH algorithm.

The estimation results are reported in Table 1. All parameters are signi�cant at the

standard level of con�dence, except for the intercepts of (4.2) and the intercept of the

two volatility equations. The estimates of the continuous time parameters, computed by

means of form. (3.5)-(3.10), are reported in Table 2.

System (4.1) is started o� at = 781 79 the April 30-th value, and = 3 551

10 ; 3 912 10 in the GARCH and A-PARCH case, respectively. With = 20
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days, the simulation was replicated 1000 times, which became 4000 by employing the

antithetic variates technique. At the 20th step of the -th simulation the price of the call

is obtained as ( ) . We then repeat the procedure a thousand times and calculate

the average. We invert the sign of the random numbers and compute the average. We

repeat the procedure 100 times and a single price of the option is obtained by regressing

the 100 prices on a constant:

= + ( = 1 100)

Simulations are carried out using the two alternative parameters reported in Table 2.

Table 3 reports the bias of the Hull and White model, under the null that the true gen-

erating process of the data is the A-PARCH. Such a bias of the alternatives is computed

as follows. Let the estimate of obtained using the normal GARCH parameters

and the estimate of obtained using the g.e.d.-A-PARCH parameters; the table

then shows the following ratio:

Bias = 100

computed in correspondence of di�erent strike prices, with moneyness ranging from 0.70

to 1.05. GARCH-based prices are higher than those based on the A-PARCH. The bias

monotonously increases from in- to out-of-the-money options. From more than 110

percent for a moneyness equal to 1.05 it decreases to nearly 55 and 2.50 percent when

= 1 0 and 0.95 respectively. After this point, the bias drops to less than half a

percentage point.

The preceding exercise was bounded to the computation of the option price under

assumption 4.1. One might also be interested in computing hedging strategies. Un-

fortunately, the model we consider is incomplete and there is not a truly self-�nancing

strategy. Following F�ollmer and Schweizer (1991) and Hofmann, Platen, and Schweizer

(1992), however, we can de�ne “mean”-self-�nancing strategies, that is, strategies gen-

erating a hedging error which is a martingale under measures belonging to ; see Mele

(1998 ) for a recent theoretical treatment of such issues. It is possible to show that the

strategy

= +

has the property in question (see Fornari and Mele (1998 ) for details). The mathematical

interpretation of is that it makes the volatility of the resulting strategy value the best

approximation (in projection terms) of the volatility of the European claim value. In fact,
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such a result generalizes a previous one obtained by Hofmann et al (1992) to the case

of a non-zero . Using the ARCH parametrization (2.12)-(2.13), the preceding equality

becomes

= +

and can be numerically evaluated by usual methods, such as those exploited in the last

section of Hofmann et al (1992).

The primitive in this subsection is the following stochastic di�erential equations system:

d = ( )d + d

d = ( )d + d( + 1 )
(4.3)

for each [0 ], where , are real-valued, non stochastic parameters. Remaining

notation is as in subsection 2.3. In the notation of subsection 2.3, further, and

. We impose 0.

: The approximation result in thm. 3.1 concerned the dynamics of the

primitive asset price process. With nearly identically arguments, we might show the weak

convergence of a suitably chosen discrete-time process towards the solution

of system (4.3), with discrete-time volatility as in (3.3). See eqs.(4.5)-(4.6) below.

Let ( ) be the current rational price of a pure discount bond promising to

pay one unit of num�eraire at time when the current instantaneous interest rate and its

instantaneous volatility are and . System (4.3) is de�ned under the objective measure

space. Arbitrage opportunities are ruled out by the existence of a measure equivalent

to the objective measure which makes of a martingale. As argued in

subsection 2.3 and constructively shown in appendix A, existence of the equivalent mar-

tingale measure in our model is ensured by existence of two processes exactly identi�ed

in (2.18); this implies the existence of a partial di�erential equation to be satis�ed by the

price of the bond. We are able to provide a solution based on iterated approximations.

The result is the following:
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=
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: In appendix D.

21

B r, � r, � B r, �

B r, �

B r, � r, � r, � ,

. . B r, �

r, � B r, � , t

r, � , t D � r F � � U �

t D . , F . , U .

� T t.

B r, � , t r, � , t G r, � , t r , � , s r , � , s s r � ,

G r, � , t r , � , s e � � ,

.

r, � , t �� � � r w � F � r, � , t

� r D � � � F � r, � , t

� � r � ��� rF � D � r, � , t

� s t,

w ,

� ,

� � � � � ,

i D � . ,F � , � . ,U � , � .

Under the conditions given in appendix C, the sequence of functions

obtained by iterated approximations

converges to , i.e.

where and are integral operators de�ned as in appendix C, and

are Laplace transforms of and

with respect to , with de�ned in appendix D and

Up to a �rst order approximation,

where

and the operator is given explicitely by

with

and are de�ned in appendix D. The �rst order

correction is given in appendix D.
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As shown in appendix D, is the Arrow-Debreu state price associated with . It

can be interpreted as the Green’s function associated with a fundamental solution of the

partial di�erential equation (D9) in appendix D. The model to which corresponds is

an a�ne model, and refers to an economy in which the instantaneous interest rate and its

instantaneous volatility are jointly normal and independent. The idea of the preceding

theorem is thus to start with a poor model, , which can nevertheless be exploited to

get progressively more accurate approximations by its iteration under the action of

and . For brevity, this iteration has been stopped at one in eq.(4.4).

The structural form of the risk premia process is crucial in determining the analytical

solution. However, our choice has been motivated by analytical convenience. It is

just the result of the equilibrium model built up in subsection 2.3. In fact, following the

guidelines of appendices C and D, one can price bonds in this framework under virtually

any judicious speci�cation of the risk premia.

The estimation of the model would take us beyond the aim of the paper, but we

wish to give some details about a possible estimation procedure. Let ( ; )

denote the bond price formula when the parameters are = ( ) and

= ( ). Recall that thm. 3.1 says that the model:

= 1 ((1 ) + (1 + ) )

+ (1 ) (1 )

(4.5)

approximates the volatility process (3.11) when (1 ( ((1 ) +

(1 + ) ) ) and
( )

. Here

(1 ) = ((1 ) + (1 + ) ) and is g.e.d. for each 0.

Similarly, by an extension of a convergence result in Fornari and Mele (1994 pp.308-309)

(along the lines of thm. 3.1), the system composed by:

= + (4.6)

and (4.5) also converges weakly to (4.3) if and .

This suggests the possibility to use an indirect estimator (Gouri�eroux, Monfort, and

Renault (1993)) of based on simulations of (4.5) and (4.6). Such a procedure encom-

passes that proposed by Broze, Scaillet, and Zako��an (1995) by allowing the volatility

of the interest rate to evolve in a stochastic and manner: in appendix E,

we sketch the procedure that should be followed here. Finally, an estimator of can be

the one that minimizes the squared di�erences between a given term structure and that

predicted by the model. Alternatively, one can exactly �t an observed term structure

with that predicted by the model by searching over , but this requires a monotonicity

argument concerning both ( ; ( )) and ( ; ( )).
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not

5 Conclusion

Last, although the corrections in the bond pricing formula are in closed form, they

must be computed by numerical integration algorithms; an alternative approach is to

solve numerically the partial di�erential equation (D9) given in appendix D (A��t-Sahalia

(1996), for instance, recently followed such an approach in a similar context). Our

formula gives the choice between the two alternatives.

While conditionally heteroskedastic, the most usual approximations to continuous time

stochastic volatility models are not exactly ARCH models (see, e.g., Melino and Turnbull

(1990)); Ghysels, Harvey, and Renault (1996) provide an overview of the literature.

As originally pointed by Nelson and Foster (1994), it also turns out that, typically,

continuous time stochastic volatility models do not have the structural form required

to be approximated by ARCH models. The occurrence of such events destroys the

potential for ARCH to be useful as approximation or as auxiliary devices in continuous

time models.

Concern of this article was to look for economies supporting equilibrium dynamics

that are approximated by ARCH models. Within more or less constrained versions of

such economies, we developed basic evaluation theory for stock options and the term

structure of interest rates. Our theory has the attractive feature to be based on so

general versions of ARCH models that it is expected to be consistent with past data

analysis. While the versions of ARCH that have been used here are general, they are

certainly exhaustive. A generalization would be to expand the theory to include

multivariate stochastic volatility models, jump-di�usion phenomena, and long-memory.

This awaits future research.
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: By the second f.o.c. in (2.14),

and (2.16),

1 =

= ( ) +
1 1 ( )

1 ( ) 1
( ) 1 (A1)

This shows that the price system is a ( )-martingale, where has

density process:
d

d
= exp d

1

2
d

and

= ( ) +
1 1 ( )

1 ( ) 1
( ) 1

which has the interpretation of unit risk premium demanded to compensate the 
uctua-

tions of the -dimensional Brownian motion; using the restrictions in (2.17), we get the

solution:

= ( ) +
1 1 ( )

1 ( ) 1
( ) 1

where and are two constants. Note that under all of our assumptions, satis�es

the Novikov condition.

Finally, completeness is ensured by assuming that the number of stocks plus bonds

equals two.

: Denote the price of a (de-

fault) free-risk bond as . By condition (A1),

+ ( + ) + ( )

+
1

2
var( ) + 2 cov( ) + var( )

=

with and
0

1
. In terms of ( ), this is:

+ ( ) + ( )
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where ( = 1 2).

In appendix C, we shall need to work with a pricing function of the form ( )

for analytical purposes. We thus express (A2) equivalently as:

0 = + ( ) + ( ) + +

+ + 1 (A3)

where = and are de�ned in thm.4.1 and appendix D.

: Conditions (3.7)-(3.9) are su�cient to establish the weak con-

vergence of the stock price and volatility processes toward the solutions of the following

stochastic di�erential equations:

d ln = ( 2)d + d

d = ( )d + d

where ( = 1 ) are -Brownian motions. This is constructively proven in

Fornari and Mele (1997 , thm. 2.3 p. 209-211). It remains to show that can be

written as:

= + 1 ( 0)

with another -Brownian motion. We are going to show that this is true

thanks to the further restriction (3.10). It is su�cient to show that the limit:

lim (ln ln )( )

is not ill-behaved. After that, an identi�cation argument will do the work.

By (3.7)-(3.9), and the fact that is g.e.d. for each ,

lim (ln ln )( )

= lim (( 2) + )

( + ( (1 ) + 1) )

= lim (1 ) + 1
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= lim (1 )

= lim (1 ) (1 + ) (d )

where ( ) denotes the g.e.d. density, or:

lim (ln ln )( )

= lim (1 ) (1 + ) ; (B1)

here,

=
2 �( )

�( )

We claim that the r.h.s. of (B1) is bounded and bounded away from zero. To see this,

notice that by condition (3.9),

= lim

and if = for each (condition (3.10)), then = for each , and:

lim =

which is bounded. By continuity, and (3.4),

lim =

which shows that (B1) is bounded and bounded away from zero:

lim (ln ln )( ) =

where:

= (1 ) (1 + )

To identify , we note that this has to solve the following equation: = , from

which we �nd, �nally:

=

The proof is complete.
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Let ( ) denote the Banach space of complex valued, bounded, continuous functions on

a compact set , endowed with the norm

= sup

In appendix D, we shall be concerned with the solution of equations of the following

form:

( ) = ( ) + ( ) ( )d (C1)

also known as Fredholm equations (e.g., Ruston (1986)); here ( ) and the kernel

is continuous on .

We aim at giving a condition ensuring existence and uniqueness of a solution

( ) to (C1).

Let be the integral operator associated with that makes a one-to-one correspon-

dence between any function ( ) and the function

= [ ] ( )

de�ned by

( ) = ( ) ( )d

Note that the norm of is

= sup ( ) d

that we suppose bounded from one:

1 (C2)

In terms of , eq.(C1) is:

( )[ ] =

where [ ] is the identity map.

Under condition (C2) the sequence

= + [ ]

with = 0 (say), converges in ( ) to the solution of (C1):

= + [ ]

where [ ] is the integral operator associated with the th iterate of the kernel de�ned

as = and as:

( ) = ( ) ( ) ( )d d

for 1.

27



N

′

�

"

"

{

̂ ∫

{ ̂ ̂

̂

2 1

1
2

++

2 1

Appendix D

Solution method

Green’s Function

R

R
R

R R
R R R R R

R

R

R
R

R

, N

N

N

t x xx

N N M

N N N

n

N

,

N

t �
N

N

t �

∈ C �

L � ∈ �
∈

L � D �

D �

� 7→ �
� 7→ � 7→

F ∈ Q
Q

�

� � ∈

� ∈

C

L ∈ �
∈

∈ �

�

u , T

u x, t q x, t , x, t , T

u x, T g x , x

u x, t u x, t r x, t u x, t ,

u x, t u x, t u x, t b x, t a x, t a x, t u x, t ,

M a x, t , T N M

b x, t , T r, q x, t , T ,

u .

b a N

M , ,Q Q

q .

q .

a a, b

a, b, r, q g, q

G t, x �, �

t < � T, x

u x, t G x, t �, � g � �, t < �, x ,

u x, t , x, t , �

u x, t g x , x

f x, t G x, t �, �

�, � , T f

x, t

f x, t � x � ,

: Pricing with Brownian information often translates into prob-

lems involving �nding the scalar function ( [0 )) which solves the following

partial di�erential equation (p.d.e.):

[ ]( ) = ( ) ( ) [0 )

( ) = ( )
(D1)

where

[ ]( ) [ ]( ) ( ) ( )

and

[ ]( ) ( ) + ( ) ( ) + tr[ ( ) ( ) ( )]

where, for an integer , ( ) : [0 ] (the space of the

real matrices), ( ) : [0 ] , ( )( ) : [0 ] ( ), and

subscripts denote partial derivatives. Usually, in this context, ( ) represents the price of

a European claim, and are drift and di�usion coe�cients of a -dimensional di�usion

driven by Brownian motions on the probability space (
 ), with , where

is as in the main text. The usual interpretation of ( ) is that it represents the 
ow

of dividends associated with the European claim. It is the objective of the �rst part of

this appendix, however, to give (D1) and ( ) a broader mathematical interpretation that

is useful for the solution of our problem below. In what follows, we suppose standard

mild regularity conditions to hold (essentially, uniform ellipticity on ; boundness on ;

H�older continuity on ; polynomial growth on see, e.g., Karatzas and Shreve

(1991 p.366-369)), that are met in our problem below.

The starting point is the existence of a nonnegative function ( ; ), the so-called

, de�ned for 0 , such that the function:

( ) = ( ; ) ( )d 0 (D2)

is bounded, belongs to and satis�es:

[ ]( ) = 0 ( ) [0 )

lim ( ) = ( )
(D3)

Further, by de�ning:

( ) = ( ; )

for �xed ( ) (0 ], one has that satis�es (D3) in the backward variables

( ), but with

lim ( ) = ( )
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u
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Q

Q x, t �, � Q x, t �, � b x, t a x, t a x, t Q x, t �, � .

G x, t �, � r s s Q x, t �, � .

t

f

G x, t �, � �, � , T

G x, t �, � , x, t , �

G x, � �, � � x � , x

x, t

u x, t G x, t � , � q � , � � � G x, t �, � g � �

G x, t � , � q � , � � � u x, t .

u

u x, t q x, t .

q .

u u

u x, t u x, t G x, t � , � q � , � � �

u x, t G x, t � , � u � , � � � .

where ( ) is the Dirac function (see, also, Arnold (1992 thm. 2.6.6, p.43)).

If [ ] = 0 is describing the no-arbitrage restriction of a securities market model, the

economic interpretation of the Green’s Function is that of the Arrow-Debreu state price

of that model: it is the value as of time in state of a unit of num�eraire at in

state . The preceding result then means that, if does not depend on , then the state

price follows the same partial di�erential equation followed by the contingent claim. A

proof of this proceeds along the following lines. De�ne by (D2); is arbitrage free if

and only if there is a measure (say) equivalent to on (
 ) under which:

( ) = exp[ ( )d ] ( ; ) ( )d 0 (D4)

By construction, is the solution of the following backward Kolmogorov equation:

0 = ( ; ) + ( ; ) ( ) + tr[ ( ) ( ) ( ; )] (D5)

Comparing (D2) with (D4), we see that it must be the case that:

( ; ) = exp[ ( )d ] ( ; ) (D6)

Di�erentiating both sides of (D6) with respect to , and using (D5), we obtain that

[ ] = 0. This completes the proof.

Consider, next, eq.(D1) in its full generality. It is easily seen that if a function

( ; ) satis�es, for �xed ( ) [0 ) ,

[ ]( ; ) = 0 ( ) [0 )

( ; ) = ( )

in the backward variables ( ), then the solution of (D1) can be written in the following

form:

( ) = ( ; ) ( )d d + ( ; ) ( )d

= ( ; ) ( )d d + ( )

Next, let [ ] be an operator with the special property that:

[ ]( ) = ( ) (D7)

If our p.d.e. can be re-written in the same form as (D1), with ( ) as above, the compu-

tation of becomes then tractable once we are given a :

( ) = ( ) + ( ; ) ( )d d

= ( ) + ( ; ) [ ]( )d d
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n

�

u x, t u x, t u x, t u x, t x, t
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u
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Continuing:

( ) = ( ) + ( ; ) [ ]( )d d + ( )

where:

( ) = ( ; ) ( ; ) [ ]( )d d d d

The procedure can go on by applying the preceding functional iteration: iterating times

means that one has to consider an increasing sequence of integrals to intervene

in the brackets of the above formula. In a second order correction, for instance,

( ) = ( ) + ( ) + ( ) + ( )

where

( ) = ( ; ) [ ]( )d d

( ) = ( ; ) ( ; ) [ ]( )d d d d

and

( ) = ( ; ) ( ; )

( ; ) [ ]( )d d d d d d

and in formula (4.4) stated in thm. 4.1, we only considered a �rst order approximation:

( ) ( ) + ( )

The method thus consists in re-writing the original p.d.e. in a form that allows us to

use to get progressively more accurate approximations of the true pricing function .

Convergence is ensured by condition (C2) in the problem in appendix C applied to the

Laplace transform of ( ) with respect to time :

( ; ) = ( )d (D8)

In practice, the choice of (which is in fact implied by the choice of [ ] operator

to use) should be a fair compromise between analytical convenience and informational

richness of . This is the principle followed during the course of the proof below.

: The starting point is the p.d.e. (A3). Also notice that

eq.(A3) could alternatively be derived by noticing that, by Itô’s lemma, the variance

process satis�es:

d = d + d
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where and have been de�ned in the theorem and:

=

Because we are considering a rational price function, by Itô’s lemma, the Girsanov’s

theorem and the -martingale property of , we get exactly the p.d.e. (A3).

Plugging now into (A3) yields the following p.d.e.:

( + )[ ]( ) = 0 ( ) [0 )

( ) = 1
(D9)

Here,

[ ]( ) = + ( ) + ( )

+ ( + )

= , and:

[ ]( ) = [ ( ) + ( 1)] + ( 1)

+ ( 1) + ( ) +

where has been de�ned in the main text and ( ).

Eq.(D9) can be recognized as a special case of the general scheme in (D1), with [ ] as

in (D7). As suggested there, it is convenient to start with the following simpler problem.

Solve for the following price:

[ ]( ) = 0 ( ) [0 )

( ) = 1
(D10)

and then compute the Green’s function ( ; ) associated with

( ) = ( ; )d

This will eventually enable one to apply the functional iteration discussed in the �rst part

of this appendix, obtaining, for instance, the �rst order approximation given in (4.4):

( ) ( ) + ( ; ) [ ]( )d d

where the �rst order correction is given by

( ) = ( ; ) ( ; ) [ ]( )d d d d

or, more generally, obtaining progressively more accurate approximations, as in the �rst

part of the theorem, with as de�ned in appendix C and and as in (D8).
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The solution of eq.(D10) can be interpreted as a no-arbitrage price of a bond in the

case in which the primitives satisfy the following ‘special interest rate dynamics’:

d = ( )d + d

d = ( )d + d

where ( = ) are two standard - -Brownian motions, and the risk premia are

and . The solution of (D10) has been reported in the theorem, with ( ) ( )

and ( ) de�ned as:

( ) =

( ) = � + � + � + �

( ) = � + � + � + � + � + �

+� + � + � + �

� = +

� = �

� = 1 + 2

� = 1 +

� =

� = �

� =

� =

� = + + + + �

� = + + + + + + + +

� = � + �

� =

� =

� =

� =

� =
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Next, we turn to the computation of the Green’s function associated with ; this is

done by �rst computing its Fourier transform:

( ; ) = ( ; )d d ( 1)

Because ( ; ) satis�es the same partial di�erential equation satis�ed by

( ), its Fourier transform will follow the same partial di�erential equation as

well. To �nd its boundary behavior, we exploit the boundary behavior of ( ; ),

and �nd:

( ; 0) = ( ; )d d

= ( ) ( ) d d

( ) ( )d

= ( ) (D11)

We have thus to solve eq.(D10) (with replacing ), but with (D11) serving as bound-

ary condition. The solution is:

( ; ) = exp ( ; ) + ( ; ) + ( ; )

where:

( ; ) =

( ; ) = � + � + � + �

( ; ) = � + � + � + � + � + �

+� + � + � + �

� = � + + ( ) + ( )

� = � ( )

� = � ( )

( ) =

( ) =

� = + + + + � +
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The Green’s function can now be recovered by inverting its Fourier transform:

( ; ) = ( ; )d d

which is the formula given in the theorem.

Let = ( ) be the parameter vector in the following auxiliary

model:

= +

= 1 ((1 ) + (1 + ) )

+ (1 ) (1 )

and the ML estimator of :

= arg max ( ; )

where ( ; ) is the likelihood function implied by the model, is the observations

set and is the sample size. De�ne, also, as the vector containing the �rst �ve

elements of .

Consider simulating system (4.5)-(4.6) for small . That is, rewrite (4.5)-(4.6) as:

= ( ) +

= ( ) +
( )

(1 ) (1 )
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set to their ML estimates , assign values to = ( ), draw

from the g.e.d. distribution, and eventually obtain ( ) = ( ) = 1

where is the number of simulations. For each simulation, just retain the ( ) numbers

( ) that correspond to integer indexes of time and then compute:

( ) = arg max ( ( ); ) = 1

where ( ) denotes the set of the interest rate with integer indexes of time at simu-

lation and interval , and is de�ned similarly to .

The indirect estimator of is:

= arg min
1

( )

the estimator of is , and the estimator of is obtained by plugging into form.

(3.5) of the main text. Asymptotics for can be obtained in a straight forward way; see

Broze, Scaillet, and Zako��an (1995).
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Table 1

Table 2

Table 3

k . .

ω . .

� . .

� . .


 .

� .

� .

ϕ . .

 . .

� .

:

Estimates of model (4.2)

GARCH(1,1) A-PARCH

0 003 0 003

1 724 10 1 092 10

0 025 0 058

0 966 0 933

0 0 489

2 1 056

2 1 390

:

Continuous time parameters implied by the discrete time scheme

GARCH(1,1) A-PARCH

0 009 0 022

0 035 0 051

0 0 606

:

Bias of the Hull and White model

Moneyness of the option ( ) Bias (%)

0.70 0.10

0.75 0.13

0.80 0.17

0.85 0.24

0.90 0.49

0.95 2.50

1.00 54.95

1.05 116.07
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