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We provide the empirical implementation of the term-structure model de-

veloped in Fornari and Mele (1998). This model is based on a continuous

time economy exhibiting equilibrium dynamics to which most asymmetric

ARCH models converge in distribution as the sample frequency gets in�nite.

We obtain estimates of the model’s parameters that are based on an indi-

rect inference scheme in which such convergence results are used to exploit

ARCH as auxiliary models. With such estimates at hand, we implement

a Crank-Nicholson - type scheme and numerically solve for the equilibrium

term structure predicted by our theoretical model. We �nd that shocks to the

short term interest rate co-move positively with shocks to volatility and that

the whole term-structure of interest rates sharpens as volatility increases.

: Term structure, stochastic volatility, ARCH, estimation of

stochastic di�erential equations, indirect inference, Crank-Nicholson
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1 Introduction

2 The theoretical model

ARCH models have been widely used to estimate models with time-varying volatility;

see Fornari and Mele (FM) (1999) for an account. Despite the popularity of ARCH,

there are yet a few rigorous theoretical sounded schemes of economic equilibrium that

embed some of the statistical aspects of these models. This is particularly true in the

continuous-time case. Motivated by the important links that now exist between the

discrete-time nature of ARCH with the continuous-time models that are typically used in

�nance, FM (1998) propose to construct a class of continuous-time economies displaying

equilibrium dynamics to which most asymmetric ARCH models converge in distribution

as the sample frequency gets in�nite.

In this paper, we implement empirically one of the resulting equilibrium models by

relying, accordingly, on ARCH as direct or indirect approximation of stochastic volatility.

In the �rst case, the moment conditions that guarantee the weak convergence of ARCH

are exploited and deliver a direct, preliminary estimate of the model’s parameters. In the

second case, ARCH models are used as auxiliary devices in an indirect inference procedure

(Gouri�eroux and Monfort (1993)); in this case, we explicitely follow the strategy on the

correction of the asymptotic bias due to the “discretization” of the likelihood, whose

principle is to use auxiliary models that can be embedded in high frequency simulating

schemes converging in distribution towards the solution of our equilibrium model.

As emphasized by Campbell, Lo and MacKinlay (1997) (p.381), the empirical prop-

erties of ARCH as approximators of continuous-time stochastic volatility processes “have

yet to be explored but will no doubt be the subject of future research.” This is precisely

what is attempted here. Our main concern is the estimation of the term-structure model

presented in FM (1998). As explained before, we rely on weak convergence conditions

and make use of ARCH models as approximators of the (theoretical) di�usions

of the model. In a second step, we try to correct the bias due to the discrete nature

of ARCH by indirect inference. It is exactly the amount of such a bias that de�nes the

appropriateness of ARCH as direct approximators of our theoretical model. We examine

the importance of the biais on the term-structure.

Here we succinctly recall some of the features of the term structure model in FM (1998).

It is a continuous time equilibrium model with state variables–much in the spirit of

Cox, Ingersoll and Ross (CIR) (1985 )–and a representative agent having logarithmic
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Because markets are complete in our model, the use of the representative agent is by no means

restrictive; see Huang (1987).

Notice that Wiggins (1987) already adopted such an approach in his seminal paper on the pricing of

European-type options with stochastic volatility.

instantaneous felicity. One prediction of the model is that the short term-interest rate

is the solution of the following SDE:

d = ( )d + d

d = ( )d + d( + 1 )
(2.1)

In the remainder, we shall refer to system (2.1) as the

(EDGP). The natural justi�cation for such a denomination is that system (2.1)

has been imposed a priori, but from a fully articulated equilibrium model

with a well speci�ed primitive measure space. Accordingly, equilibrium also predicts

that the risk premia demanded by agents to compensate for the 
uctuations of and

are:

( ) ( = 1 2) (2.2)

where are two real constants, and the equilibrium price of the bond satis�es the

following PDE:

0 = + ( ) + ( ) + + 2 +

[ + + 1 ]

(2.3)

In FM (1998), we implemented a solution of the above PDE that is based on a method

of iterated approximations. Such a method relies on a functional iteration of a certain

benchmark a�ne pricing rule under the action of the associated Arrow-Debreu state

price. It requires the computation of multi-dimensional integrals, and here we �nd that

a more traditional approach based on a numerical integration of the PDE (2.3) can give

results in a faster manner: speci�cally, we make use of the Crank-Nicholson method,

and provide details in appendix A.

CIR found the transition and stationary densities of in the case of constant

volatility, and this enabled A��t-Sahalia (1996 ) to compare those densities with the ones

obtained non-parametrically.

There is no hope to �nd an analytical solution of the transition density of in our

model, and such a di�culty is inherent in virtually all models with stochastic volatility.

As shown by FM (1998), however, there are ARCH models that converge (in the weak-

sense) towards the solution of (2.1), and this suggests using these models as auxiliary
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devices in indirect inference procedures. In fact, it is also such a kind of convergence

results that motivated FM (1998) to look for economies supporting the equilibrium dy-

namics in (2.1).

The parameters of interest are in ( ). As suggested in FM (1998),

we shall assume hereafter that the “volatility concept” and the asymmetry parameter

are invariant with respect to time-scale changes. Ascertaining whether such an as-

sumption is reasonable in practice is an open question that we leave for future research;

here we propose to estimate and by �tting the P-ARCH model. We thus consider

the following model:

= +

= 1 ((1 ) + (1 + ) )

+ (1 ) (1 )

(3.1)

and de�ne the ML estimator of = ( ) :

( ) = arg max ( ; )

where ( ; ) is the likelihood function implied by the model, is the observations

set and is the sample size. The estimator of is thus , and the estimator of

is obtained by plugging into formula (3.5) in FM (1998). To simplify, we shall

only consider normally distributed errors, i.e., 2. With all preceding choices, the

parameters of interest to be estimated reduce now to those in ( ).

It is well-known that under standard regularity conditions such as those in assumption

B1 of appendix B, one has asymptotic normality for the pseudo-maximum likelihood

estimator:

( ) ( ) N 0 ( ; ( )) ( ) ( ; ( ))

where ( ) and ( ) are de�ned in appendix B, and

( ) = arg max ( ; ), the limit problem.

However, the true law of , as implied by the EDGP, say ( ), is such that

( ) ( ; ) varying

and the discrete-time model is expected to behave in a way that allows for:

( ) =

While we are assuming that ( ) allow for the reconstruction of their continuous-time

counterparts, the indirect inference procedure can correct the preceding discretization

4
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bias. The reason why we view the preceding inequality as a “discretization bias” is that

when we chop time in (3.1) by creating sequences of the form , and by

de�ning a stochastic process , solution of:

= ( ) +

= ( ) +
( )

(1 ) (1 )

(3.2)

then model (3.1) can be seen as embedded in (namely for 1),

and yet converges weakly (as 0) to the solution of the EDGP

whenever the following conditions hold true:

lim =

lim =

lim =

lim ( ((1 ) + (1 + ) ) + 1) =

and

lim ( )((1 ) + (1 + ) ) 2 (1 ) (1 + ) = ,

with 0; see thm. 3.1 and subsection 4.2 in FM (1998).

Model (3.1) is thus possible discrete-time counterpart of the EDGP, and now

we use it as an auxiliary model in an indirect inference scheme with simulations drawn

from (3.2). Let the vector containing the �rst �ve elements of . Consider simulating

system (3.2) for small . This is accomplished by setting to their ML estimates ,

assigning values to = ( ), and drawing from the normal distribution;

one eventually obtains ( ) = ( ) = 1 , where is the number of

simulations. For each simulation, just retain the ( ) numbers ( ) that correspond

to integer indexes of time, and estimate the auxiliary model on each series of simulated

data:

( ) = arg max ( ( ); ) = 1 (3.3)

where ( ) denotes the set of the interest rate with integer indexes of time at simu-

lation and interval . If is a norm, the indirect estimator of is then:

( ) = arg min
1

( ) .
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Asymptotics for ( ) can be obtained by adapting the arguments in Gouri�eroux,

Monfort and Renault (1993). One has:

[ ( ) ] N 0
+ 1

( ) � ( ) (3.4)

where � lim � and lim , with � and de�ned in appendix B.

Broze, Scaillet and Zako��an (1995) (BSZ) proved the preceding result in great generality–

i.e. in the case of a general di�usion in –, and to avoid bias due to the discretization

step used during the simulations, the authors also suggested to take = with .

Notice further that our speci�c problem is just-identi�ed (dim( ) = dim( )), and is

the solution of the following �ve-dimensional system: = ( ). This also

implies a simpli�cation of the variance in (3.4) that will be discussed in the following

section. In appendix B, we check quite easily that the conditions of BSZ ensuring (3.4)

hold for the scheme proposed here.

Is an auxiliary ARCH-based criterion the only device to achieve consistent estimation

of ? Certainly not. The following diagram illustrates the situation. It conveys the main

arguments that have to be used to show (3.4).

( ( ); ) = ( ; )

( ; ) ( ; )

Convergence of the criterion

Suppose for instance that ( ) corresponds to the exact likelihood that is associated

with, say, an ARMA representation applied to the squared observations and the simulated

data. If the solution of the approximating scheme used for the simulations converges

weakly to the solution of the EDGP, then, under suitable conditions given in appendix

B, one has that ( ( ); ) ( ; ): this is so because the observation set

is assumed to have been generated by the EDGP. Consistency of the indirect estimator

(i.e. for small and ) based on the auxiliary ARMA now follows from an argument

similar to the one presented in appendix B.

While there is not a theory concerning the optimal choice of the criterion, however,

one would like to require that the (already misspeci�ed) auxiliary model ful�ls some

basic properties. Let be a candidate auxiliary model. One property of should

be that it can be embedded into another model , say, the solution of which converges

6
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While it is natural to consider Euler approximations in the case of ARCH models, one can use more

general discretization schemes such as the Mil’shtein’s (1976) scheme in other circumstances.

in distribution towards the EDGP as 0. Such a choice is the most natural one,

and indeed is the one that is suggested in the literature; see, for instance, BSZ, and

Gouri�eroux and Monfort (1996, p.119-133). In view of the convergence results in FM

(1998), choosing (3.1) as an auxiliary device for estimating the parameters in (2.1) is in

line with such a principle. Finally, one can consider the case in which is also used

as the high frequency simulation generator. This, also, appears as a reasonable choice,

and is suggested in the references above, too. Notice further that this case exactly

corresponds to the strategy that is being considered here.

Such a strategy has an “approximation of the likelihood function” 
avor–which is

simply the likelihood of –: as such, it constitutes an automatic correction for the

asymptotic biais implied by the approximation, as originally stressed by Gouri�eroux,

Monfort and Renault (1993, p.S108). Finally, it is more likely that properties that are

su�cient for (3.4) to hold–such as the convergence of ( ( ); ) to ( ; ),

uniformly in ; or the continuity of the partial application ( )–are

ful�lled in cases where ( ) applies to discrete-time counterparts of the EDGP that are

embedded in the high frequency simulation generator–as for (3.1) and (3.2)–, rather

than in cases in which the criterion does not even ful�ll such a requirement. However,

we are unable to show that such circumstances hold in great generality.

As noted in the previous section, we have a just-identi�ed problem, which means that

is square and invertible. (3.4) thus simpli�es to:

[ ( ) ] 0
+ 1

�

In practice, we �x 81 and use 444 905 discretization points. With an observations

set of = 5505, this means in fact that = , where 0 5102 . Finally, with

an estimate of at hand, we obtain estimates of ( ) in (2.2) by calibrating ( )

to an observed, target term-structure. Such a procedure has been followed recently by

A��t-Sahalia (1996 ).

We are currently working on applying the entire procedure to real time series. We

are making use of the A��t-Sahalia (1996 ) series (that has 5505 daily observations

of a weekly interest rate). We give some succinct results concerning some experiments

performed with ML �gures (see table 1), and = 0 8 and = 1. Figure 1 depicts

the term-structure in the case = 8%. The solution has been obtained by numerically

7
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5 Conclusion

Figure 1: From bottom to top, the curves correspond to values of equal to, 0.0011,

0.0022, 0.0035, 0.0050, 0.0067, 0.0086, 0.0108, 0.0133, 0.0164 and 0.0200. The average

level of was 0.005644.

integrating the PDE (2.3), along the lines of appendix A.Our model predicts that the

term-structure sharpens when volatility increases. The result is robust to alternative

realistic values of ( ).
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Appendix A: numerical integration of the PDE (2.3)
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The method that we followed is based on the Crank-Nicholson scheme. We �rst discuss

the case in which the state-space is compact, and then show how our framework is to be

embedded in it.

. Suppose we are given the following partial dif-

ferential equation: for ( ) [0 )

0 = + ( ) + ( ) + ( ) + ( ) + ( ) ( ) (A1)

where ( ), satisfy the regularity conditions in FM (1998), and

( = 1 2) are compacta of . The boundary condition we consider is ( ) = 1

( ) . We approximate the derivatives involved in the preceding equation

via explicit and implicit approximations. We chop the state-space into a grid,

and time into units:

( ) ( ) [0 ];

here = � , = � , = � , with = 0, = and =

= , where , and similarly for . We de�ne the approximation:

( )

(and similarly for ), consider the “primitive” approximations:

( ) (explicit at )

( ) (implicit at + 1)

( ) (explicit at )

( ) (implicit at + 1)

( ) (explicit at )

( ) (implicit at + 1)

( ) (explicit at )

( ) (implicit at + 1)

( ) (explicit at )

( ) (implicit at + 1)

and construct the following estimates:
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1 1

(2)
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(3)
+1 1

(4)
1

(5)

(6)
+1

(7)
1 +1

(8)
+1

(9)
+1 +1

(1)
1 1 +1

(2)
1 +1

(3)
+1 1 +1

(4)
1 +1

(5)
+1

(6)
+1 +1

(7)
1 +1 +1

(8)
+1 +1

(9)
+1 +1 +1

(1)
8� �

(2)
4� 2(� )

(3)
8� �

(4)
4� 2(� )

(5) 1
� (� ) (� )

(5) 1
� (� ) (� )

(6)
4� 2(� )

(7)
8� �

(8)
4� 2(� )

(9)
8� �

1 2 1

1 2 1

5

1

1
2

+1

( )

( )

( )

( )

( )

We plug the preceding estimates into eq.(A1) and obtain:

+ + + +

+ + + +

=

[ + + + +

+ + + + ]

(A2)

where

+

+

+

+

Next, we let

= ( )

= ( ) ( = 1 )

Starting from the boundary condition

=

(with being a vector of ones), eq. (A2) can be solved by backward iterating

the following equation

= ( = 1 1)
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N ,N N ,N N ,N
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`,` `` `,`

N ,N N ,N N ,N

N,N NN

11 12
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32 33 34

1 +1

1 2 1 1 1

1

11 12

21 22 23

32 33 34

1 +1

1 2 1 1 1

1

1

1

(2)
1

(3)
1

(1)
2

(2)
2

(3)
2

(1)
3

(2)
3

(3)
3

(1)
1

(2)
1

(3)
1

(1) (2)

0 0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0 0

0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0 0

0 0 0 0

0 0 0 0 0

where

=

and are block tridiagonal matrices:

where are matrices of zeros and (with blanks denoting zeros)

= . . .
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The general case
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R x




R x

�
�V y

�
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R x

�
�V y

A

� �

� � �

� � �

� � �

� �

,

A

� �

� � �

� � �

� � �

� �

.

A A A �

A �

A A

r, �

, v �

x r , 
 >

y v , � >

f x, y, t f x r , y v , t B r, v, t .

f, x, y

a x, y � �R x R x V y � R x V y

b x, y w ϕV y  V y R x �� � �  V y

c x, y R x V y

d x, y  V y

(5)
1

(6)
1

(4)
2

(5)
2

(6)
2

(4)
3

(5)
3

(6)
3

(4)
1

(5)
1

(6)
1

(4) (5)

+1

(8)
1

(9)
1

(7)
2

(8)
2

(9)
2

(7)
3

(8)
3

(9)
3

(7)
1

(8)
1

(9)
1

(7) (9)

(5)

(5)

1 2

1 2
2

1+

1+

1 (1+ ( )) (1+ ( ))

1
2

2 (1+ ( ))
2 2

(1+ ( ))

1
2 (1+ ( ))

1
2

2 2
(1+ ( ))

= ...

and

= . ..

Finally, di�ers from in that the diagonal of is composed by whereas

the diagonal of is composed by .

The �nal step consists in deriving limiting as well as transversality conditions that

eventually place restrictions on the matrices and . This depends on the speci�c

problem at hand: see subsect.? below for the application to our problem.

. When the state-space is not as in eq. (A1)–as it usually

happens in �nance–, the implementation of the algorithm can only be done after a

previous transformation of the original state-space. In the PDE (2.3), for instance, we

shall introduce two new functions of ( ) that take values on the compact . A

convenient choice is to set = [0 1] . Then we de�ne and

( ) = 0

( ) = 0
(A3)

and write

( ) ( ( ) ( ) ) = ( )

In terms of ( ) eq.(2.3) can be expressed in exactly the same format as eq. (A1),

with

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( + 1 ) ( )

( ) ( ) ( )

( ) ( )
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f , y, t a , y f , y, t b , y f , y, t d , y f , y, t x

f x, , t a x, f x, , t b x, f x, , t R x f x, , t y
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 F 
 F 
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� F � F � F F
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( ) ( ) ( )

where ( )( ) is the inversion of (A3):

( ) =

( ) =

. Finally we impose two kinds of condi-

tions. The �rst kind of conditions concerns the limiting behavior of the PDE (2.3) when

( ) = 0 ( ) = ( ) = 0 ( ) = . The second kind of conditions follows from a

transversality argument, and stipulates that lim ( ) = 0 ( ) [0 ].

We call the �rst kind of conditions “limiting conditions” and the second kind of conditions

“transversality conditions”.

To �nd the restrictions on the coe�cients of and that correspond to = 0 and

= 0, notice that, for each [0 ),

0 = (0 ) + (0 ) (0 ) + (0 ) (0 ) + (0 ) (0 ) (for = 0)

0 = ( 0 ) + ( 0) ( 0 ) + ( 0) ( 0 ) ( ) ( 0 ) (for = 0)

By plugging the following asymmetric approximations in the preceding equations,

(0 )

( 0 )

(0 )

( 0 )

(0 )

( 0 )

(0 )

we get the following di�erence equations:

+ + + =

+ + =

where

+
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Assumption B1

Convergence of the criterion

Appendix B: standard regularity conditions and the conver-

gence of the criterion
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(6)
1
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1
+

0
+ +

1
+

0
+ +

1
+

= ( )
0

( ) ( ) ( )
1

1 1
(1)

1

1
+

( ) ( )
0

( ) 1 ( )
0

( ) ( ) 1 ( )
0

( )
0

( ) ( ) ( )

=0 1 0

The matrices and must thus be constrained so that the elements , , ,

, , , , , , , , , and enter as = , = 0,

= , = , = , = 0, = 0, = , = , = 0,

= , = 0 in matrix , and as = 0, = 0, = , = 0, = 0,

= 0, = 0, = , = 0, = 0, = 0, = 0 in matrix .

We derive and impose similar restrictions in the cases = 1 and = 1. Such

restrictions were also the result of the transversality condition concerning the behavior

of the price at = 1: = 0 ( = 1 , = 1 ) which implies starting with

= , where is as with the exception the a zero replaces the one at

positions 2 .

.

- plim ( ; ) = ( ; ), say, uniformly in .

- plim ( ; ) = ( ; ), say, uniformly in . Further, ( ) is

invertible.

- ( ; ) N(0 ( )), where N( ) is a standard normal variable.

(Sketch). We assume as in BSZ the continuity

of the partial application ( ), and for the case = 1, we de�ne ( ) ( )

and ( ) ( ). It is not hard to show that under conditions on ( ( ); )

that parallel those in assumption B1 stated above for the direct criterion ( ; ), the

simulated estimator in (3.3) is asymptotic normal:

( ) ( ) N 0 ( ; ( )) ( ) ( ; ( ))

where ( ) = arg max ( ; ), the limit simulation problem, and ( ) and ( )

are de�ned similarly as ( ) and ( ). Now, it follows by FM (1997, 1998) and FM

(1994) that the solution of (3.2): (the solution of the

EDGP); see thm 3.1 and section 4.2 in FM (1998). By this, an extension of a result in FM

14
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Table 1

(1) 2 (2)

� � ω ϕ  � � `

r � �r t � r W, � ω ϕ� t  � �W � W

: Maximum likelihood and indirect estimates of eq. (?.?):

d = ( )d + d d = ( )d + d( + 1 )

17

ln

ML 2.386 10 2.859 10 5.139 10 5.799 10 0.297 1.128 0.442 31048

Indirect 1.128 0.442 –


