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Abstract

In this paper we study the �nite sample properties of the non-
parametric method developed in Stanton (1997), and later extended
by Boudoukh, Richardson, Stanton and Whitelaw (1998), for the es-
timation of the drifts and di�usions of multifactor continuous{time
term structure models. Monte Carlo simulations from a known para-
metric model are employed in order to calculate the performance of
the estimator. The paper focuses on the issue of bandwidth selection.
The results suggest that, for persistent data generating processes ex-
hibiting stochastic volatility, such as interest rate data, a bandwidth
function that varies over the surface of the data is optimal. The paper
also presents some results on the performance of the estimator when
the model is misspeci�ed. A computationally intensive bandwidth se-
lection procedure is developed in which dynamic graphics and a par-
allel kernel estimation routine are combined, allowing the researcher
to interactively adapt the bandwidth surface to the data.
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1



1 Introduction

In a series of recent papers, researchers in �nance have developed nonpara-
metric methods for estimating the drift and di�usion functions of continuous
time stochastic processes. Stanton (1997) pioneers a method based on the
theory of weak approximations of the expectations of functionals of stochas-
tic processes. His methodological innovation is to estimate the expectations
using kernel regression methods, and then invert them in order to recover the
drift and di�usion functions of the underlying processes. The method has
been applied to the problem of estimating univariate continuous time models
of the term structure. More recently, Boudoukh et al. (1998) extended the
estimator to the problem of estimating multivariate term structure models.
Although di�erent in some important respects, the method developed by
Ait{Sahalia (1996) is related to the Stanton and BRSW estimators in that it
also relies on nonparametric regression techniques and is also applied to the
problem of pricing interest rate derivative securities.1

One of the more provocative conclusions reached by Ait{Sahalia (1996),
Stanton (1997), and Boudoukh et al. (1998) is that the short rate drift ap-
pears to be nonlinear. This conclusion is at odds with the rest of the term
structure literature, because in virtually all of the previously received works,
the short rate is modeled with a linear drift. In part to investigate the robust-
ness of this result, Pritsker (1998) and Chapman and Pearson (1999) look at
the properties of the Stanton and Ait{Sahalia estimators in �nite samples.
In both of these papers, the authors concluded that the nonlinearity result
is not robust, and could be an artifact of the �nite sample properties of the
estimator.

In this paper, I try to develop an understanding of the �nite sample
properties of the BRSW estimator for multifactor models.2 As noted above,
the previous work in this area has convincingly established that the Stanton
estimator is not reliable for drawing inferences about the linearity of drift
functions of stochastic processes. The BRSW estimator is no di�erent in
this regard, and for this reason, I only consider the linearity issue in passing.

1In what follows, hopefully to avoid confusion, I refer to the the Ait{Sahalia (1996)
estimator as the \Ait{Sahalia estimator," the Stanton (1997) estimator for single factor
models as the \Stanton estimator," the Boudoukh et al. (1998) estimator for multifactor
models as the \BRSW estimator."

2The Ait{Sahalia (1996) estimator is di�cult to adapt to multivariate models, so I
don't consider it here.
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In this research, I focus on the the problem of kernel bandwidth selection, and
on the performance of the BRSW estimator when the model is misspeci�ed.

The investigation into the properties of the BRSW estimator follows along
lines similar to those followed in Pritsker (1998) and Chapman and Pearson
(1999). I use Monte Carlo simulations of data from the stochastic volatility
model of Andersen and Lund (1997a) to examine how closely the estima-
tor �ts the known drift and di�usion functions. The quality of the �ts are
assessed graphically, as well as with more formal measures of global and
pointwise error.

An important feature of the Stanton and BRSW estimators is their re-
liance on kernel regression techniques. In kernel regression, one trades o�
variance against bias in the �t by adjusting a set of smoothing parameters,
or \bandwidths," so as to minimize some sort of symmetric, bowl{shaped
loss function, or so as to produce di�erent views of the shape of the esti-
mand (depending on one's philosophical stance on the bandwidth selection
issue). Pritsker (1998) and Chapman and Pearson (1999) spend a good deal
of time on the issue of bandwidth selection in the context of the Stanton
estimator. What Pritsker (1998) shows, and Chapman and Pearson (1999)
con�rms, is that standard techniques of bandwidth selection, be they the
\plug{in" methods that use bandwidths which are asymptotically optimal
for independently and identically distributed data, or the data{driven meth-
ods such as cross{validation, do not work well when confronted with highly
persistent data such as interest rates. In the univariate case, they �nd that
oversmoothing the estimates tends to produce the best �ts. It is also worth
noting that Stanton (1997) uses a heuristic method to choose a bandwidth
parameter that oversmooths the data.

In this paper, I build on the works just mentioned by considering the
quality of �ts produced using a bandwidth surface. Motivation for this ap-
proach comes in part from the simple observation that bandwidths which
are optimal according to global error measures are not necessarily optimal
for estimation at any particular point.3 It stands to reason that one might
achieve better �ts by adapting a bandwidth surface to the data. Further

3As noted in H�ardle (1990):

infh
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i2
; (1)

for bandwidth h, true function f , and estimate f̂h.
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motivation for this approach comes from the interest in applying the estima-
tor to processes that are stochastically volatile. By oversmoothing the data
where the volatility is high, and undersmoothing where the volatility is low,
a better overall �t should be produced.

I consider two bandwidth surfaces. The �rst is a continuous surface, in
which a unique bandwidth is assigned to each point on the solution surface.
This surface produces very good �ts for the interest rate drift function, but
results in a deterioration in the quality of the �t of the interest rate di�usion
and the volatility drift relative to the benchmarks I describe below. The
second surface is a simpli�ed version of the �rst: Only �ve unique bandwidths
are used to characterize the surface. This scheme produces �ts of the interest
rate drift that are not as accurate as the �ts produced with a continuous
surface. On the other hand, the �ts of the other functions improve.

These preliminary results suggest that further investigation into the use
of bandwidth surfaces is warranted. To further explore the use of bandwidth
surfaces, I have developed a graphics interface that allows one to dynamically
adjust the complexity of the bandwidth surface in order to adapt the surface
to the data. This tool is described in further detail below and in the appendix.

I also examine the performance of the BRSW estimator for misspeci�ed
models. When thinking about speci�cation error in the context of continuous
time models and nonparametric estimation, it's useful to think about how
one can put structure on the model by making weak assumptions on the forms
of the drift and di�usion functions. What I mean by this is the following.
Pretend we know a priori that the term structure is determined by two state
variables: the short rate, r, and volatility, �. To capture the dynamics of the
short rate, we might write down the following model:

drt = �r(rt; �t)dt+ �r(rt; �t)dWr;t (2)

d�t = ��(rt; �t)dt+ ��(rt; �t)dW�;t; (3)

where the W�;t are independent Wiener processes. This model says that
the drifts, ��, and the di�usions, ��, are functions of both state variables.
Alternatively, we might write:

drt = �r(rt)dt+ �r(rt; �t)dWr;t (4)

d�t = ��(�t)dt+ ��(rt; �t)dW�;t; (5)

where now the drift functions take as arguments particular state variables.
These two systems are very di�erent in terms of what they imply about
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how the state variables evolve. And yet, both are general, in the sense
that we haven't said anything about the drift and di�usion functions beyond
the dimensionality of their respective domains. 4 Nonetheless, the BRSW
estimator will behave very di�erently when used to estimate the drift and
di�usion functions of the two models. The behavior of the estimator will
in each case be governed by how the speci�cation of the model stands in
relation to the true data generating process. In this study, I try to establish
some useful facts about the consistency and e�ciency of the BRSW estimator
when faced with model misspeci�cation of the type above.

Not surprisingly, the results show that if one uses the BRSW estimator to
�t a misspeci�ed model in which irrelevant arguments of the drift and di�u-
sion functions are included, the e�ciency of the estimator decreases rapidly.
Somewhat more surprising is the result that, in �nite samples, including ir-
relevant conditioning variables introduces additional bias in the estimates.
Work remains to be done in the area of understanding how the estimator
behaves when arguments to the functions are omitted.

The biases and ine�ciencies caused by misspecifying the drift and di�u-
sion functions highlight the fact that, while nonparametric estimators might
free one from the need to specify the particular functional forms for the vari-
ous estimands, one still must correctly specify the arguments to the functions
(and thus the correct set of conditioning variables in the kernel regressions).
In other words, nonparametric estimators don't obviate issues of speci�ca-
tion, they are just removed to a higher level of generality.

This paper is organized as follows. In the next section, I discuss weak
numeric solutions of stochastic di�erential equations, which lie at the foun-
dation of all of this work. I examine the dynamic behavior of the Andersen
and Lund (1997a) stochastic volatility model, which is used in the Monte
Carlo simulations in section three. The third section discusses the BRSW
estimator and kernel regression, and contains the main results on �tting the
Andersen and Lund (1997a) model using a variety of bandwidth selection
strategies and under di�erent forms of misspeci�cation. The �nal section
concludes.

4To guarantee that unique solutions of the systems exist, we also require that the
functions belong to fairly restrictive smoothness classes, and that they obey spatial and
temporal growth conditions. Later in this essay we'll see that these assumptions, which
are usually taken for granted, are not always totally innocuous.
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2 Weak Numeric Solutions of Stochastic Dif-

ferential Equations

A weak numeric solution of a system of stochastic di�erential equations
(SDEs) is an algorithm for computing the expected value of functionals of
the system's state variables. In this section, I discuss the calculation of weak
solutions of the Andersen and Lund (1997a) model. 5 An interesting feature
of the AL model is that it fails to satisfy the conditions su�cient to guarantee
the existence of a unique solution, raising questions about the stability of the
system, as well as about the existence of a stationary density. Maintaining
the assumption that the system has a solution, I use a weak numeric solution
algorithm and an extension of the Kolmogorov-Smirnov test to determine
whether or not the transition densities of the system converge at long trajec-
tories. From the results, we can conclude that the system has a stationary
density at the parameters considered.

The speci�cation of the AL model is given as:

drt = �1(�� rt)dt+ �t
p
rtdW1;t (6)

d log�2
t = �2(� � log �2

t )dt+ �dW2;t; (7)

where W1 and W2 are independent standard Wiener processes.
The set of su�cient conditions for the existence of a solution to this

system includes the conditions that the drift and di�usion functions satisfy
Lipschitz and growth conditions.6 The di�usion function of the interest rate
process (6) fails to satisfy the growth condition. The relevant condition is
given by:

�2r + �2 � k(1 + r2 + (log �2)2): (8)

This condition must apply uniformly in t, meaning that the constant k must
apply for all t simultaneously. It is easy to show that there is no k that sat-
is�es condition (8). For any k, let log �2 = r, so that �2 = er. Substituting,
we have:

err + �2 � k(1 + 2r2); or (9)

rer + �2

(1 + 2r2)
� k: (10)

5In what follows, I refer to this as the \AL model."
6For more detail on these conditions, see Karatzas and Shreve (1991). Ait{Sahalia

(1996) also discusses di�erent formulations of the conditions.
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The left-hand side of (10) clearly diverges as r !1, showing that the growth
condition is violated by the model. In essence, the model fails to satisfy the
growth condition because the di�usion function in the interest rate process
involves an exponential transformation of the volatility state variable.

To make the exponential transform in the interest rate di�usion explicit,
rewrite the AL model in the following equivalent form 7:

drt = �1(�� rt)dt+
p
e�trtdW1;t (11)

d�t = �2(� � �t)dt+ �dW2;t; (12)

Because it fails to satisfy the growth condition, there might not be a
unique Ito process in <2 that satis�es (11) { (12). In practice, it's di�cult to
use numeric methods to verify the existence of a unique solution. I assume
that a solution exists, and instead focus on the dynamic stability of the
system. For certain parameterizations of the drift and di�usion functions,
the model will exhibit explosive behavior, and thus fail to have a stationary
density. Determining whether or not the model is explosive is a problem to
which we can apply a numeric solution algorithm.

Kloeden and Platen (1995) derive a number of algorithms for comput-
ing weak solutions of systems of SDEs like the AL model. The solution
algorithms operate on a �nite time interval [0; T ]. A key feature of the algo-
rithms is the discretization of the time interval into M smaller time steps of
length �, where � = T

M
. The simplest method is the Euler scheme, which

has a degree of accuracy that is inversely proportional to the length of the
time step �. The following set of recursive formulae show how to generate
values of r and �:

rt = rt�1 + �1(�� rt�1)� +
q
e�t�1rt�1��1;t (13)

�t = �t�1 + �2(� � �t�1)� + �
p
��2;t; (14)

where �1;t and �2;t are independent standard normal deviates, and r0 and �2
0

are given. Where necessary, I'll use ~r and ~� to indicate values of r and �

computed from the discretized system in (13) and (14).
Understanding the dynamic behavior of the AL model, as well as eval-

uating the nonparametric estimator in the next section, both boil down to

7One can verify that (11)-(12) are equivalent to (6)-(7) using Ito's Lemma and the
transformation �̂t = log�2

t
. In equations (11)-(12), I have omitted the `^' symbol on �t

for notational brevity.
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computing the expectations of di�erent functions of the state variables r and
�:

E [f(rT ; �T )] ; (15)

where f(�) is a smooth function. Kloeden and Platen (1995) prove that the
expectation of f(�), calculated at (~rT ;~�T ), converges to the true expectation
as �! 0:

lim
�!0

jE [f(rT ; �T )]� E [f(~rT ; ~�T )] j = 0: (16)

By letting f(r; �)=(r; �), we can use the Euler scheme to compute the mo-
ments of transition densities of the AL model.

Assuming that a solution to the system exists, we would like to show
that the system is stationary, de�ned to mean that the transition densities
converge to a common density as the length of the time interval increases:

lim
T!1

�(rT ; �T jr0; �0) d! �(r; �); (17)

for r0"<++ and v0"<, and where �(rT ; �T jr0; �0) is the transition density
between times 0 and T , and �(r; �) is the stationary density. If we use the
simulator to make draws from the transition densities de�ned by di�erent
starting points (r0; �0) and by di�erent time intervals [0; T ], and these densi-
ties exhibit convergence as T increases, then we can interpret this as evidence
supporting our hypothesis that the system has a stationary density.8

Convergence in distribution is a broad concept. It is perhaps easier to
�rst consider whether or not the transition densities appear to be converging
in location and scale. To do so, I use Monte Carlo simulations to generate
moments of the transition densities of the model. From each of 25 di�erent
starting points, equally dispersed on the square of values [0:02�r�0:2]�
[�7�log �2��5], I simulate 1,000 batches of 100 trajectories. The last point
of each trajectory is saved, forming a batch of 100 draws from the transition
density de�ned by the starting point and the length of the trajectories. I
compute the mean and variance of each batch of saved points. Thus, at the

8It is important to keep in mind our maintained hypothesis that the system has a
unique solution. We might conclude that the system is stationary, but if our maintained
hypothesis is in error, the transition densities could be converging to the stationary density
of a di�erent system! This is similar to the problems that can arise when solving a partial
di�erential equation with a �nite di�erence algorithm that is inconsistent. However, as
we'll see below, the transition densities appear to converge, and there is no evidence of
convergence to the \wrong" density.

8



Table 1: Parameter Values�

Parameter Value
�1 0.1633
� 0.0595
�2 1.0397
� -6.3599
� 1.2719
� Annualized values.

end of a run, we have 1,000 independent draws of the �rst two moments of
each of the 25 transition densities. Eight such runs are completed, the �rst
with trajectories one year in length, the second with �ve year trajectories,
and so on for ten, twenty, thirty, forty, �fty, and �nally sixty year trajectories.
The parameters employed are shown in table 1, and � = 1

52
. 9

Table 2 displays univariate statistics for the pooled data (N = 25; 000),
with which we can perform some unscienti�c \eyeball tests" for convergence.
If the null hypothesis of convergence is correct, the moments of the transition
densities should converge to the moments of the stationary density. In table 2,
we can look for evidence of this condition in the �rst two moments of the
transition densities. The means should converge as follows:

lim
T!1

E[rT ] = 0:0596; (18)

lim
T!1

E[�T ] = �6:3599; (19)

which are the long{run means that the processes should revert to if they
are stationary. Examining the values in the second column (labeled `Mean')
of table 2, it's clear that the �rst moments (E[�] values) of the transition
densities are converging to these values. The interest rate mean hits the value
in (18) at around thirty years, and then bounces around within a narrow
con�dence interval. The volatility mean converges quite rapidly and very
precisely to the value in (19), reecting the higher degree of mean reversion

9In private communications, the authors indicated that the parameters reported in
Andersen and Lund (1997a) reect rescalings of the di�usion function. The parameter
values in table 1 are from Andersen and Lund (1997b), in which the authors correct the
values for the rescaling. In tests similar to those reported here, I found that the system
was borderline stationary, perhaps even nonstationary, at the values actually published in
Andersen and Lund (1997a).
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in the volatility drift function. 10

The second moments should converge approximately as follows:

lim
T!1

Var[rT ] � 0:00032 (20)

lim
T!1

Var[�T ] � 0:7780; (21)

The approximate value for the second moment of r is calculated as the sta-
tionary variance for a square{root process, holding � �xed at �, and is given
by e��

2�1
. The approximate value for the second moment of � is calculated

as the stationary variance of a Vasicek process, given by �2

2�2
. Returning to

table 2, it appears that the variances (Var[�] values) are converging to neigh-
borhoods of the values in (20) and (21). In the case of the interest rate
process, we would probably reject the null hypothesis that the variance is
equal to the value in (20), even for the sixty year trajectories. Of course, this
is because the process is not really the square{root process that we used to
compute the variance. For the volatility process, we would probably accept
the null hypothesis that the variance is equal to the value in (21). This is
because the dependence between the interest rate and volatility processes is
expressed in the di�usion function of the interest rate process; the volatil-
ity process in fact does evolve like the process that we used to compute the
variance.

Of course, the transition densities could appear to be converging in the
�rst two moments, and still have very di�erent distributions. Moreover, it's
hard to assess joint signi�cance using table 2. To more rigorously test for
convergence in distribution when the true distribution is unknown, we can
make use of an adaptation of the Kolmogorov- Smirnov (KS) test to bivariate
densities, due to Fasano and Franceschini (1987).

The one dimensional KS test is based on the maximum value of the ab-
solute di�erence between two cumulative distribution functions. A direct
generalization of this test to higher dimensions is not possible because cumu-
lative probability is not well de�ned in more than one dimension. However,
an analogous measure can be based on the integrated probabilities in each
of four quadrants around a given point (ri; �i). The analog to the KS statis-
tic is the maximum di�erence over the data points and over the quadrants

10The standard deviations are reported at zero due to rounding. In reality they are on
the order of 10�14. The tight standard deviations reect the use of the antithetic variance
reduction technique.
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Table 2: Simulation Results
Moment Mean Std Dev Min Max
E[r1] 0.0769055 0.0420346 0.0163075 0.1401690
E[r5] 0.0685385 0.0218760 0.0353890 0.1050336
E[r10] 0.0634786 0.0097218 0.0462903 0.0830092
E[r20] 0.0602762 0.0022962 0.0529907 0.0682432
E[r30] 0.0596413 0.0013505 0.0547802 0.0658052
E[r40] 0.0595153 0.0012983 0.0547687 0.0647093
E[r50] 0.0594871 0.0012930 0.0549952 0.0651942
E[r60] 0.0594904 0.0012985 0.0547620 0.0651492
Var[r1] 0.0002027 0.0001629 0.0000089 0.0011600
Var[r5] 0.0004750 0.0002337 0.0000743 0.0020648
Var[r10] 0.0005068 0.0001673 0.0001403 0.0018659
Var[r20] 0.0004821 0.0001101 0.0001767 0.0019874
Var[r30] 0.0004725 0.0001025 0.0002012 0.0016414
Var[r40] 0.0004707 0.0001029 0.0001164 0.0016819
Var[r50] 0.0004700 0.0001030 0.0001849 0.0015028
Var[r60] 0.0004704 0.0001028 0.0001762 0.0016165
E[�1] -6.2339870 0.2473902 -6.5838426 -5.8841313
E[�5] -6.3580136 0.0037063 -6.3632550 -6.3527723
E[�10] -6.3598901 0.0000194 -6.3599176 -6.3598626
E[�20] -6.3599000 0 -6.3599000 -6.3599000
E[�30] -6.3599000 0 -6.3599000 -6.3599000
E[�40] -6.3599000 0 -6.3599000 -6.3599000
E[�50] -6.3599000 0 -6.3599000 -6.3599000
E[�60] -6.3599000 0 -6.3599000 -6.3599000
Var[�1] 0.6971374 0.1399842 0.2701711 1.4404008
Var[�5] 0.7932272 0.1590059 0.2567814 1.6098411
Var[�10] 0.7936240 0.1596618 0.3470085 1.5934727
Var[�20] 0.7945158 0.1591197 0.2875762 1.5405627
Var[�30] 0.7950285 0.1589929 0.2838963 1.6439167
Var[�40] 0.7942603 0.1589761 0.2723940 1.6174558
Var[�50] 0.7950513 0.1597367 0.3147770 1.5621902
Var[�60] 0.7934561 0.1593903 0.3054477 1.5795967
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of the integrated probabilities. In essence, the algorithm for computing the
statistic searches through the data for the point at which the di�erence in the
proportions of data in one of the four natural quadrants formed by the point
is maximized. Fasano and Franceschini (1987) work out an approximation to
the probability of realizing the observed maximum di�erence in proportions,
under the null hypothesis that the two densities are identical. 11

To carry out the test, I use two starting values that are widely apart on the
(r; �) plane. The points that I use are (�+2�̂r;�+2�̂�) and (��2�̂r;��2�̂�),
points roughly two standard deviations away from the long-run means of
the processes, and about four standard deviations from one another.12 The
standard deviations �̂r and �̂� are approximated using the square roots of
the values for Var[r60] and Var[�60] from table 2, respectively. From each
of these points, I simulate 20,000 trajectories, saving the last point on each
trajectory. The two sets of points form large samples of the two transition
densities. The bivariate KS test is applied to the two samples to test whether
or not they are drawn from identical distributions. I repeat this exercise for
trajectories of lengths between one and forty years. The parameterization of
the system and the length of the time step the same as before.13

Table 3 displays the results. The �rst column gives the trajectory lengths
in years. The second and third columns display the bivariate KS test statis-
tic and the approximate p{value, respectively. From the results, we can
conclude that the transition densities become indistinguishable after forty
years. The approximation to the p{value becomes imprecise for values above
0:2. However, given the large sample sizes, and the results from table 2, we
can conclude with a high degree of con�dence that the system does in fact
have a stationary density.

11Unlike the standard one dimensional KS test statistic, the bivariate statistic is slightly
distribution{dependent. In future work, I plan to study the test statistic a little more
closely. For more information on the test statistic, see the papers cited above and Press,
Teukolsky, Vetterling and Flannery (1994).

12Picking points farther out in the tails of the distribution will of course bias the test
toward �nding convergence at longer trajectories. On the other hand, from the results
in table 2, we can make some assessment of the probability of observing the points that
are chosen for the test. One should pick points far enough out in the tails so that the
probability of observing points that could generate di�erent results is very low, but not so
far out that the test becomes computationally infeasible.

13It would be useful to have a k{sample bivariate Kolmogorov{Smirnov test, with which
one could simultaneously test the convergence of bivariate transition densities de�ned by
a surface of k starting points. To my knowledge, no such test has been developed.
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The length of time at which the transition densities appear to converge is
consistent with the behavior of the system reported in Andersen and Lund
(1997a). In order to simulate draws from the stationary density, Andersen
and Lund (1997a) run the Euler simulator for approximately thirty-eight
years. The authors �nd that using longer trajectories had no discernable
e�ects on their results, which is consistent with our �nding here that the
transition densities converge at around forty years.14

To sum up, it is reasonable to conclude that, at the parameter values
considered here, the AL model is stable and has a stationary density. Both
of these features are prerequisites for the consistency of the BRSW estimator,
and we will make use of some of the results in table 2 in what follows. In the
next section, we turn to considering the behavior of the BRSW estimator in
�nite samples.

14It's unclear how the e�cient method of moments estimator used in Andersen and Lund
(1997a), or other simulation estimators, are a�ected when the �rst draws of simulated
trajectories are not drawn from the stationary density of the process. To my knowledge,
a formal study of the issue has not been completed. In related work, Brandt and Santa{
Clara (1999) report that �xing the �rst observation has little e�ect on the simulated
maximum likelihood estimator that they develop, but the extent to which this �nding
generalizes to other estimators is unknown. Of course, the e�ects must be limited in a
large sample, simply because the e�ect of any single observation on the likelihood function
will be limited. In the main, it is a small sample issue.
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Years KS p{Value
1 0.9991 0.0000
5 0.8735 0.0000
10 0.4928 0.0000
20 0.1061 0.0000
30 0.0240 0.0012
40 0.0100 0.5327

Table 3: Bivariate KS Test Results
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3 Nonparametric Estimation

In this section, I analyze the �nite sample performance of the BRSW estima-
tor. Using Monte Carlo simulations of data from the AL model, I measure the
accuracy with which the estimator reproduces the drift and di�usion func-
tions of the model. I begin by briey reviewing the BRSW estimator and
kernel estimation, and then discuss some di�erent strategies for selecting
bandwidths for the kernel estimator. I present some results on the perfor-
mance of the estimator under di�erent bandwidth selection strategies, and I
present some results on how well the estimator performs when the model is
misspeci�ed.

Assume that the term structure is driven by two state variables, the short
rate r and the volatility of the short rate �:

drt = �r(rt; �t)dt+ �r(rt; �t)dWr;t; (22)

d�t = ��(rt; �t)dt+ ��(rt; �t)dW�;t; (23)

and suppose that we observe data generated from the true processes in (22)
and (23) at discrete intervals of time �. The Euler method of the previous
section is one way to relate our discrete observations to the drift and di�usion
functions of the true processes. The Euler discretization for this system is
given by:

rt+1 � rt = �r�+ �r
p
��r;t+1; (24)

�t+1 � �t = ���+ ��
p
���;t+1; (25)

where as before �r and �� are independent standard normal deviates. It's easy
to see that the observations in equations (24) and (25) satisfy the following
relationships:

1

�
E [rt+1 � rtjFt] = �r +O(�); (26)

1

�
E [�t+1 � �tjFt] = �� +O(�); (27)

1

�
E
h
(rt+1 � rt)

2jFt

i
= �2

r +O(�); (28)

1

�
E
h
(�t+1 � �t)

2jFt

i
= �2

� +O(�); (29)

where O(�) means terms for which it is true that lim�!0
O(�)
�

<1, and Ft

is the information set at time t. The methodological innovation of Boudoukh
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et al. (1998) is to note that, if we compute estimates of the �rst and second
conditional moments on the left hand sides of equations (26) - (29), we will
have estimates of the drift and di�usion functions accurate to O(�).

In order to estimate the conditional moments in equations (26)-(29) with
minimal a priori structure on the drift and di�usion functions, a kernel re-
gression method is used. First, we de�ne a grid of interest rate and volatility
values at which to estimate the conditional moments. Then, at each grid
value (ri; �j), the estimates of the conditional moments are computed as
follows:

E [ri;t+1 � ri;tj(ri; �j)] =
TX
t=1

W (t)(ri � rt) (30)

E [�i;t+1 � �i;tj(ri; �j)] =
TX
t=1

W (t)(�i � �t) (31)

E
h
(ri;t+1 � ri;t)

2j(ri; �j)
i

=
TX
t=1

W (t)(rt � rt�1)
2; and (32)

E
h
(ri;t+1 � ri;t)

2j(ri; �j)
i

=
TX
t=1

W (t)(�t � �t�1)
2; (33)

where W (t) is the Nadaraya{Watson product weight function:

W (t) =
Khi;j(ri � rt)Khi;j(�j � �t)
TP
t=1

Khi;j(ri � rt)Khi;j(�j � �t)
; (34)

and

Khi;j (x) =
1p
2�

e
�

1

2

�
x

hi;j

�2
(35)

is the Gaussian kernel, and i; j = 1; 2; : : : ; N . The smoothing parameters
hi;j, or \bandwidths," are the way one trades o� bias against variance in
the �t. Wide bandwidths reduce local variation, but increase bias. Narrow
bandwidths �t local phenomena, at the cost of increased variance.

In all of the �ts reported below, I report pointwise averages for �ts of the
drift and di�usion functions on a 12 � 12 grid of values, where the averages
are taken over 1000 simulations from the AL model. The \true" functions are
parameterized using the values shown in table 1 in the previous section. The
simulated data are drawn at a weekly frequency, with twenty{�ve inter{week
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draws.15 Each trajectory is forty years in length. I run o� �fty years of data
before drawing simulated values, in view of the results from the previous
section.

First I consider �ts using bandwidths that are asymptotically optimal
for data that are independently and identically distributed, even though the
data are highly persistent, because the �ts serve as useful benchmarks for
later comparison.16 Two bandwidths are used to compute the benchmark
�ts - one for each dimension. The bandwidth for the interest rate dimension
is set to the value that is asymptotically optimal for iid data drawn from
a distribution with variance 0:0004704, the value of Var[r60] from table 2 of
the previous section. The bandwidth for the volatility dimension is similar,
except that the variance of the distribution is taken to be 0:7934561, also
taken from table 2.

Figures 1 and 2 display the benchmark �ts. The upper panel of each �gure
displays the estimated drift function and the true drift function, and the
lower panel displays the estimated and true di�usion functions. In general,
the di�usions are more precisely estimated than the drifts. This follows from
the fact that the precision of the drift estimates depends on the span of the
data [0; T ], while the precision of the di�usion estimates depends on the span
of the data and the length of the time step �.

Two e�ects cause the estimated surfaces to deviate substantially from
the true surfaces at the boundaries of the data. Near the boundaries of the
data, since the kernel function is symmetric, the weights are skewed toward
the center of the data. This can have predictable e�ects on the estimates.
Taking the interest rate drift as an example, near the lower boundary of
r, the weights will be biased toward higher values of r where the observed
drifts tend to be less positive, or even negative. This biases the estimates
near the lower boundary downward. The opposite is true for high values
of r. Similar reasoning follows along the volatility dimension, because the
volatility process is also mean-reverting.

The second form of bias is truncation bias, or bias resulting from the
correlation of the residuals with the regressors near the edges of the data.

15The inter-week draws ensure that, during the simulations, the discretized process for
the interest rate never takes on negative values. In addition, with the inter{week draws,
the data are simulated at a degree of accuracy that is greater than the accuracy of the
nonparametric estimator.

16Scott (1992) contains a discussion of bandwidth selection strategies for iid data.
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Figure 1: Interest Rate Process Benchmark
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19



The nonparametric regression model for the drifts is given by:

rt+� � rt = �r + �r;t+� (36)

�t+� � �t = �� + ��;t+� (37)

where the ��;t+� are disturbances. Unbiased estimation requires that:

E [�r;t+�jrt; �t] = 0; and (38)

E [��;t+�jrt; �t] = 0: (39)

Truncation bias arises because, in fact, the nonparametric estimator works
with a �nite data set for which (38) and (39) don't necessarily hold at the
boundaries of the data. For example, at the data point where:

(rt; �t) = (rmax; �); (40)

it must be the case that:

rt+� � rt � rmax � rt: (41)

In other words, at the upper boundary of the observations on r, the residual
in equation (36) must be negative, and ceterus paribus this causes downward
bias in the point estimate of the drift function of the interest rate process.
Moreover, to the extent that the residuals �r and �� are correlated, bias will
also be induced in the drift of the volatility process. This form of bias does
not a�ect the di�usion estimates, because the sign of (rt+� � rt)

2 is always
positive.

In the top panels of �gures 1 and 2, the biases follow patterns similar to
those found by Pritsker (1998) and Chapman and Pearson (1999). At high
interest rates, the interest rate drift function estimate is biased downward,
and vice{versa, indicating that the e�ect of truncation bias is dominant.
A similar pattern holds for the estimates of the volatility drift function,
although in general the volatility drift is estimated much more precisely.
This is to be expected, because along the volatility dimension, the data are
much less persistent (the degree of mean reversion is roughly an order of
magnitude higher).

The estimates of the di�usion function of the interest rate exhibit com-
plicated patterns of bias, as illustrated in the lower panel of �gure 1. This is
because the interest rate di�usion is a function of both state variables, and
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in addition, the interest rate data are highly persistent. The function is well
estimated at the center of the data, but toward the corners of the surface,
signi�cant biases are in evidence.

Looking at the lower panel of �gure 2, we �nd that the surface is esti-
mated precisely, except at the lowest levels of �, where the data are thin. In
this region, the limitations of the \one size �ts all" bandwidth strategy is ap-
parent. The estimates are biased strongly downward because the bandwidth
is too narrow given the dispersion of the data. If the surface were extended
in the direction of higher values of volatility, we would see a similar e�ect in
the other direction.

It is useful to compute some measures of global and pointwise error. I
compute three error measures, each capturing a slightly di�erent aspect of
the distance between the estimated function and the true function. The �rst
is the mean of the pointwise squared errors, de�ned by:

MSE =
1

N2

NX
i=1

NX
j=1

(f̂i;j � fi;j)
2: (42)

As a complement to MSE that doesn't emphasize extreme errors so much,
I also compute an estimate of the integrated absolute deviation, given by:

IAD =
1

N2

NX
i=1

NX
j=1

jf̂i;j � fi;jj: (43)

And �nally, as a measure of the most egregious error on the surface, I compute
the maximal absolute deviation:

MAD = max jf̂i;j � fi;jj; (44)

where the maximum is taken over all i and j. The top set of �gures in table 4
displays these error measures for the surfaces shown in �gures 1 and 2.

Figures 3 and 4 display surfaces formed by the 95% con�dence intervals
around the point estimates shown in �gures 1 and 2. The variance of the
estimator increases near the boundaries of the data. Toward the boundaries
of the data, the upper and lower con�dence surfaces are very far apart,
indicating that one could �t any of a variety of nonlinear surfaces in the
space between them, none of which are statistically distinguishable. The
results show that, with a single draw from the data generating process (as
would be the case in reality), it is in fact quite likely the case that one would
estimate a surface that exhibits spurious nonlinearities.

21



Drift

upper

0.05

0.1
0.02

0.03
0.04

0.05
0.06

0.07
0.08

-0.3

-0.25

-0.2

-0.15
-0.1

-0.05

0

0.05

0.1

r

v

mean
lower

Diffusion

upper

0.05

0.1
0.02

0.03
0.04

0.05
0.06

0.07
0.08

-0.005
0

0.005
0.01

0.015
0.02

0.025
0.03

0.035
0.04

0.045
0.05

r

v

mean
lower

Figure 3: Pointwise Con�dence Intervals, Interest Rate Process Benchmark
Fit

22



Drift

upper

0.05

0.1
0.02

0.03
0.04

0.05
0.06

0.07
0.08

-3

-2

-1

0

1

2

3

4

r

v

mean
lower

Diffusion

upper

0.05

0.1
0.02

0.03
0.04

0.05
0.06

0.07
0.08

0.5

1

1.5

2

r

v

mean
lower

Figure 4: Pointwise Con�dence Intervals, Volatility Process Benchmark Fit

23



3.1 Bandwidth Surfaces

Pritsker (1998) shows that by oversmoothing, one can induce greater can-
cellation of the truncation and edge biases in the estimators of the drift
functions. However, the patterns of bias in the multidimensional case can be
complicated, because certain points on the solution grid are in the middle of
the data along some dimensions, but at the boundary of the data along other
dimensions. Depending on the nature of the estimand, oversmoothing would
indeed reduce bias in some regions, but in other regions, oversmoothing could
make the �ts much more biased. To take advantage of the bias reduction in
oversmoothing, we need to locally adapt the bandwidths to the data.

Bias reduction is not the only motivation for working with a bandwidth
surface. Because the AL model is stochastically volatile, in certain regions
of the state space the noise in the observations will be greater than in other
regions. In the noisier regions, we would like to smooth the data more than
in other regions. A bandwidth surface allows one to do so.

To begin the investigation into the use of bandwidth surfaces, I �rst
re{estimate the drift and di�usion functions with a bandwidth surface that
allows one to assign a separate bandwidth vector to each point on the es-
timation surface. I use the following formula to compute the bandwidth at
each point on the solution grid:

hi;j = �̂i;jT
�

1

6 ; (45)

where �̂i;j measures the dispersion of the data around point (ri;j; �i;j). The
�rst coordinate of �̂i;j is computed as:

�̂
(1)
i;j =

1

T

TX
t=1

(rt � ri)
2; (46)

with the second coordinate computed analogously.17 Equation 45 is very
simple. It just says that the bandwidth is wider when the data are more
dispersed around the solution point, and vice{versa.

Figures 5 and 6 display the �tted surfaces for the simple variable band-
width selector above. The �ts improve dramatically over those shown in
�gures 1 and 2. Of particular interest is the interest rate drift function.

17It might be interesting to try working in covariance information, but I haven't �gured
out how to do so. Even more interesting would be to use bandwidths that adapt the
amount of smoothing to the degree of autocorrelation in the data.
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The estimated surface is now almost linear. Looking at the lower panel of
�gure 5, we see that the bandwidth surface worsens the estimates of the dif-
fusion function. This is to be expected, because the bias cancellations that
occur in the estimates of the drift function do not occur here.

In �gure 6, it is apparent that the variable bandwidth surface doesn't
improve the �t of the volatility drift function. This is because the volatility
process is less persistent relative to the interest rate process. Moreover, in the
volatility dimension, the dispersion of the data is homoscedastic, while in the
interest rate dimension, it is heteroscedastic. The volatility drift is estimated
with a fair degree of precision in both the static and variable bandwidth cases,
showing that for well behaved data, the estimates are less sensitive to the
way one handles bandwidth selection.

The bandwidth surface improves the estimates of the volatility di�usion
function. Comparing the lower panel of �gure 6 to the lower panel of �g-
ure 2, the bias at low levels of � that is exhibited in �gure 2 has completely
disappeared. This is because the bandwidth naturally adapts to the disper-
sion of the data, oversmoothing the regions where the data are sparse, and
smoothing relatively less the regions where observations are more abundant.

The bandwidth surface that we were just working with is de�ned by
a large number of points with unique values. It is interesting to consider
whether or not we can achieve similar results with a bandwidth surface de-
�ned by fewer unique values. Next I consider a bandwidth surface in which
there are only �ve unique values. The bandwidths in the center of the surface
take one value. The bandwidths in the four natural quadrants around the
center region also take distinct values. The bandwidth values in each of the
�ve regions are computed using the dispersion of the data around the point
in the center of the region. Figure 7 shows the bandwidth values. The top
panel shows the values for the r{coordinate, and the lower panel shows the
values for the �{coordinate. In the center of the data, the bandwidths are
relatively small. Around the edges, the bandwidths are increasing in value
in the dispersion of the data in the respective dimensions.18

Figures 8 and 9 show the estimated functions for the simpli�ed bandwidth
surface. The results show that the simpli�ed surface does a better job of
�tting the interest rate drift function than the benchmark, but not as good

18Bear in mind that certain functions use certain dimensions of the bandwidth surface.
For example, the interest rate drift only depends on r, and so will only use the bandwidth
values in the top panel of �gure 7.
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a job as the continuous surface. Comparing the top panels of �gures 8 and
5, we see that there are some kinks in the surface in �gure 8, introduced by
the discontinuities in the bandwidth surface, and these biases are reected in
the error measures shown in table 4. For the other functions, the simpli�ed
surface does at least as well, if not better, than the continuous surface. In
particular, the �t of the volatility drift function is much improved over the
�t using a continuous surface.

Benchmark
Function MSE IAD MAD
�r 0.0020932 0.030712 0.09961
�r 0.0000035 0.001322 0.00823
�� 0.0018271 0.029273 0.11936
�� 0.0015293 0.021298 0.12280

Continuous Surface
�r 0.0000012 0.000867 0.00248
�r 0.0000061 0.001725 0.01012
�� 0.0311559 0.130926 0.37952
�� 0.0000374 0.006117 0.00612

Simpli�ed Surface
�r 0.0000807 0.005354 0.02282
�r 0.0000037 0.001292 0.00812
�� 0.0072974 0.075745 0.13021
�� 0.0000374 0.006117 0.00612

Table 4: Error Measures for Bandwidth Surfaces

These preliminary results suggest that there is much to be gained from
further exploration of bandwidth surfaces. In particular, one would like to
be able to dynamically adjust the complexity of the bandwidth surface so as
to adapt to the data the amount of smoothing done in di�erent regions of the
solution space. A dynamic graphics interface is well suited to this purpose.

Figure 10 shows screen shots of the main parts of the dynamic graphics
interface that I've developed for purposes of doing kernel regressions using
bandwidth surfaces.19 The idea is simple: The interface allows one to use
a mouse to select points on the solution grid, and then input a bandwidth

19All of the source code for the algorithms discussed in this paper is available upon
request.
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to apply at the selected points. The �t updates in real time, allowing one
to interactively explore how the �t responds to di�erent bandwidth surfaces.
The top panel of �gure 10 shows an example function (which can be rotated),
and the lower panel shows the interface to the solution grid, from which points
can be selected.

In order for this tool to be useful, the kernel regression algorithm must
be fast. In the appendix, I discuss a parallel kernel regression algorithm that
is used in conjunction with the dynamic graphics interface.

3.2 Misspeci�cation

The estimates shown in �gures 1{4 were computed for the \best case" where
it was assumed that we knew a priori the arguments to the drift and di�usion
functions, and could thus use the correct conditioning variables in the kernel
regressions. In other words, we estimated the following system:

drt = �r(rt)dt+ �r(rt; �t)dWr;t (47)

d�t = ��(�t)dt+ ��dW�;t; (48)

in which all the arguments coincide with the arguments of the corresponding
functions in the true data generating process. What would happen if, as is
the case in reality, we didn't know what the arguments should be, and we
misspeci�ed them? Suppose we estimated the more general system in (22)-
(23), for which the drift functions are misspeci�ed, and the di�usion function
of the volatility process is misspeci�ed. It is interesting to look at how this
form of misspeci�cation a�ects the bias and e�ciency of the estimator.

Figures 11 and 12 display the �tted surfaces and the true function sur-
faces. The results are surprising because it appears to be the case that
introducing irrelevant conditioning variables biases the estimates. Starting
with the top panel of �gure 11, the surface has a distinct curvature along
the volatility dimension for high values of r. For low values of r, the surface
also has a non{zero gradient along �, although it is less pronounced. The
irrelevant conditioning variable introduces additional sources of edge and
truncation bias in a �nite sample.

Comparing the top panel of �gure 12 to the top panel of �gure 2, we
see a similar e�ect for the estimates of the volatility drift. Note the bowl{
shaped pattern of bias along the interest rate dimension in �gure 12, which
is especially pronounced at low levels of volatility. None of this is seen in
�gure 2.
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Figure 10: Dynamic Graphics Interface
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The results for the volatility di�usion function are even more striking.
Comparing the lower panels of �gures 12 and 2, we see that the �t displayed
in �gure 12 is radically di�erent from that in �gure 2. From the �t in �g-
ure 12, one would be led to believe that the di�usion function exhibits very
complicated nonlinearities, when in reality it is constant.

Table 5 shows the error measures for the benchmark and misspeci�ed �ts.
For the interest rate drift �r, we see that, despite the fact that the shape of
the surface is poorly estimated, the MSE and IAD error measures actually
decrease for the misspeci�ed �t. The MAD measure increases. On the other
hand, for �� and ��, the �t worsens according to all three error measures.

Benchmark
Function MSE IAD MAD
�r 0.0020932 0.030712 0.09961
�r 0.0000035 0.001322 0.00823
�� 0.0018271 0.029273 0.11936
�� 0.0015293 0.021298 0.12280

Misspeci�ed
�r 0.0013258 0.023513 0.10912
�r 0.0000035 0.001322 0.00823
�� 1.1212730 0.734976 3.14616
�� 0.0022579 0.032305 0.13440

Table 5: Error Measures under Misspeci�cation

As we would expect, the inclusion of irrelevant conditioning variables also
results in ine�ciency. Figures 13 and 14 show the pointwise con�dence inter-
vals for the estimates of the misspeci�ed model. In general, the con�dence
intervals around the estimates are much wider (note the changes of scale on
the vertical axes of the plots). In particular, the estimate of the di�usion
function of the volatility process is much less precise, which follows from the
fact that there are two irrelevant variables.

The forgoing highlights the fact that it's a mistake to think that nonpara-
metric estimation frees one from having to make decisions about the nature
of the drift and di�usion functions of the model. One must still correctly
specify the arguments to the drift and di�usion functions. The cost of in-
correctly specifying the arguments to the functions is greater variance in the
estimator and complicated patterns of bias. Unfortunately, theory provides
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no more guidance on which arguments to include in the drift and di�usion
functions than it does on the forms of the functions.
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4 Conclusion

In this essay, I used Monte Carlo simulations from the Andersen and Lund
(1997a) stochastic volatility model of interest rates to study the �nite sample
properties of the BRSW estimator. Some of the preliminary results are that
a locally adapted bandwidth surface appears to be an e�ective way to handle
the problems of kernel estimation in a �nite sample. I also reported some
results showing how biases and ine�ciencies due to model misspeci�cation
are expressed in the �t of the BRSW estimator. I found that irrelevant
variables introduce bias in the estimates, in addition to reducing e�ciency.
Work remains to be done to understand how omitted variables a�ect the
estimator.

As part of this research, I worked out a method for testing whether or
not a system of stochastic di�erential equations is stationary. The algorithm
that I used for performing the test involved the �rst{order Euler discretiza-
tion scheme for simulating trajectories from the model, and an extension of
the Kolmogorov{Smirnov test. As mentioned earlier, it would be useful to
extend the bivariate Kolmogorov{Smirnov test to the case of k{samples. It is
possible that the k{sample generalization can be derived much the same way
that the univariate k{sample KS test is derived from it's two sample ana-
logue. While the full k{sample bivariate statistic would be computationally
burdensome to calculate, the wide range of applications for which it would
be useful would seem to justify it's development.

Locally adapting a bandwidth surface to the data is a problem that is
di�cult to solve with standard techniques such as cross{validation, because it
requires multi{dimensional function minimization, with an objective function
that is �ercely expensive to compute, to boot. I briey discussed a dynamic
graphics interface and a parallel kernel regression algorithm that allow one
to adjust the complexity of the bandwidth surface by hand. Further work is
needed to explore the usefulness of this tool for applied work. In particular,
work is needed to re�ne the error measures that can serve as a guide in the
�tting process.

The analysis in this paper was conducted totally within the context of
the BRSW estimator. However, in the econometrics literature, and in the re-
search pipeline, there are many di�erent estimators for the drift and di�usion
functions of continuous time stochastic processes. For example, one can turn
to the e�cient method of moments estimator of Gallant and Tauchen (1996)
or the simulated likelihood method of Brandt and Santa{Clara (1999). It
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would be useful to compare the �nite sample properties of these estimators
against a common benchmark, such as the maximum likelihood estimator
for a model in which the transition densities are known in closed form. To
date, little work has been done to understand the relative performance of the
di�erent estimators.
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A Parallel Kernel Regression

Kernel regression, particularly in multiple dimensions, is necessarily a compu-
tationally intensive procedure. However, a parallel computer can make short
work of even fairly large problems, because kernel regression lends itself eas-
ily to parallelization. In this appendix, I discuss a very simple algorithm that
I've developed for doing kernel regression on a parallel computer.

In two dimensions, kernel regression using the Nadaraya-Watson estima-
tor essentially boils down to computing the following formula repeatedly over
a grid of solution points:

f̂(xi; yj) =
TX
t=1

W (t)g(xt; yt; xi; yj); (49)

where W (t) is the weighting function from equation (34) in the body of the
paper, and g(�) is a known function of the data and the solution point. We
compute this equation for fxi; yjgNi;j=1.

A naive parallel algorithm for this problem is to simply break up the
solution grid into chunks, and to assign the chunks to the available processors.
This algorithm is in general ine�cient unless one also works out an algorithm
for balancing the load across the processors, which is a di�cult problem,
particularly on a shared machine. A more e�cient approach is to rely on
the operating system for load balancing, and to assign small bits of the task
(single grid points) to lightweight processes for execution. The bit of pseudo{
code below shows how I implemented such an algorithm using the pthreads
library on a Sun workstation running the Sun Solaris 2.6 operating system.

The outer while loop checks the completion condition, where the size of
the problem is given by the parameter n = N . The if{statement inside the
while loop ensures that a limited number of threads are running at one time,
where the maximum number of threads is given by nt. This mechanism
prevents the program from loading the machine with so many lightweight
processes that they begin to compete with one another for resources, de-
grading performance. When the limit nt is reached, the algorithm waits for
threads to join (terminate), and then �res o� more threads as needed. The
routine Kernel Thread is the routine in which the actual computations are
done.

i = 0;

count = 0;
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while ( i < n ) {

if ( count < nt ) {

if ( pthread_create((pthread_t *) &thread_id,

(pthread_attr_t *) &thread_attributes,

Kernel_Thread,

(void *) (thread_data + i)) ) {

perror("ERROR: Kernel: thr_create");

return;

}

count++;

i++;

} else {

thr_join((thread_t) 0,

(thread_t *) &thread_id,

(void **) NULL);

count--;

}

}

The algorithm is e�cient, driving a Sun Ultrasparc with three processors
to around 80% of maximum e�ciency in terms of cpu utilization. Over a so-
lution grid with 144 points, using 2,080 data points, the algorithm computed
4,000 iterations of the BRSW estimator for the AL model in approximately
eleven minutes. When the number of data points was increased to 208,000,
the program drove the machine to nearly maximum e�ciency, and ran in one
hour, forty minutes.
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