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1 Introduction

A large number of test statistics can be expressed as ratios of quadratic forms in normal variables, say

G =
Z0AZ
Z0BZ

; Z � Nn (�;�) : (1)

Despite such prevalence, tractable expressions that are useful for e�cient computation of their proba-

bility densities (pdfs) and cumulative distributions (cdfs) functions are not available (see, for example,

Provost and Rudiuk, 1996).

Arguably the most important example of (1) is the noncentral F distribution. It plays an ubiquitous

role in the analysis of linear models where it is used in the calculation of power for tests of linear

hypotheses. In the usual case, it is the singly noncentral F , say F (1), which is relevant. However,

numerous examples exist where the doubly noncentral case, F (2), is required, for example, in power

calculations for ANOVA designs with interaction or bias e�ects (Tang, 1938; Sche��e, 1959, pp. 134-5,

415; Bulgren, 1971; and the references therein) and two-way cross classi�cation ANOVA (Tiko, 1972).

In econometrics, it arises naturally in testing linear models with proxy variables (Kurumai and Ohtani,

1998) and with Ramsey's (1969) popular regression speci�cation error (RESET) test (DeBenedictis and

Giles, 1998). Distribution F (2) also occurs in signal processing and pattern recognition applications

(Price, 1964; Helstrom and Ritcey, 1985).

A method for evaluating the cdf of (1) that involves numerical integration was provided by Imhof

(1961). This method, however, has some drawbacks: it can be quite slow when n, the dimension of Z,

is large, and can occasionally fail either when n is small, and/or far in the tails, as discussed below.

In this paper, we develop saddlepoint approximations to the pdf and cdf of both noncentral F

distributions F (1) and F (2). We show that the pdf and cdf approximations preserve relative error

over the entire support of the distribution and are extremely accurate throughout their range of

support. Furthermore, these methods yield closed{form expressions for saddlepoints which result in

computations that are trivial to implement in practice. Such explicitness also results in computational

speeds that are several thousand times faster than those of the Imhof method.

The paper is organized as follows. Section 2 develops saddlepoint expressions for the cdf and

pdf of (1) and specializes these results for the singly and doubly noncentral F distributions. Section

3 brie
y reviews computationally exact evaluation methods and provides some explanations as to

why the numeric implementations in three popular software packages occasionally fail. Correct exact

methods are used in Section 4 to demonstrate the accuracy of the SPA. Section 5 illustrates a practical

application of the proposed methods in sample size determination and 6 provides concluding remarks.
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2 Saddlepoint Approximation

We present general results on saddlepoint approximations followed by their application to ratio G

and then more speci�cally to the noncentral F distribution. For clarity, technical details and general

discussions of the relative orders of accuracy are avoided.

2.1 Saddlepoint Distribution Approximations

A saddlepoint approximation (SPA) to the cdf of random variableX with cumulant generating function

K (s) that converges on s 2 (a; b) has been derived in Lugannani and Rice (1980), as

~F (x) =

8<: � (ŵ) + � (ŵ)
�
ŵ�1 � û�1

	
if x 6= E [X ]

1
2 +

K000(0)

6
p
2�K00(0)3=2

if x = E [X ]
(2)

where � (�) and � (�) denote the distribution and density function of a standard normal random

variable, respectively and

ŵ = sgn (ŝ)
p
2 fŝx�K (ŝ)g; and û = ŝ

p
K 00 (ŝ): (3)

Value ŝ is the saddlepoint that is de�ned as the unique solution to the saddlepoint equation

K 0 (ŝ) = x (4)

for ŝ in (a; b) : (see also Barndor�-Nielsen and Cox, 1990; Field and Ronchetti, 1990; Jensen, 1994;

and Reid, 1988, 1996). Expression (2) is the leading term in an asymptotic expansion and the next

most important term has been provided by Daniels (1987) to give a second order approximation as

F̂ (x) = ~F (x)� � (ŵ)

�
û�1

�
�̂4
8
� 5

24
�̂23

�
� û�3 � �̂3

2û2
+ ŵ�3

�
(5)

for x 6= E [X ] where �̂i = K(i) (ŝ) =K 00 (ŝ)i=2 :

2.1.1 Application to G

To evaluate the cdf of G, rewrite it as

Pr (G < g) = Pr
�
Z0 (A�gB)Z < 0

�
= Pr

�
X0�X < 0

�
= Pr (X < 0)

where X = P0��1=2Z � Nn (�; In) ; �
1=2 is the unique positive de�nite square root of �; and P�P0 is

the spectral decomposition of �1=2 (A�gB)�1=2 such that P is orthogonal and � = diag (�1; : : : ; �n).

Random variable X = X0�X has the distribution of a linear combination of independent noncentral
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�21 random variables of the form
Pn

i=1 �i�
2
i

�
1; �2i

�
: Here, �2i

�
1; �2i

�
denotes a noncentral �21 variable

with one degree of freedom and noncentrality parameter �2i , and f�i : i = 1; : : : ; ng are the eigenvalues
of � (A�gB).

The moment generating function (mgf) of X is given by

MX(s) =

(
nY
i=1

(1� 2s�i)

)�1=2
exp

 
nX
i=1

s �i�
2
i

1� 2s�i

!
(6)

when 1� 2s�i > 0 for all i: The mgf converges over the open neighborhood of zero

1

2�(1)
< s <

1

2�(n)
(7)

when �(1) := mini �i < 0 < �(n) := maxi �i; which is the setting for the noncentral F: In the other cases

involving �(1) and �(n), the convergence strip is unbounded on one side. The cgf and its derivatives

are easily obtained from (6). The bounded solution to the saddlepoint equation K0 (ŝ) = 0 within (7)

is found using standard numerical univariate root search algorithms.

2.1.2 Application to the Noncentral F Distribution

There is considerable simpli�cation to the above in the context of the noncentral F distribution. Let

Ui = Y0
iYi, whereYi � Nni (�i; Ini) for i = 1; 2 so that Ui � �2 (ni; �i), where ni and �i = �

0
i�i denote

the degrees of freedom and noncentrality parameter, respectively. If U1 and U2 are independent, then

F follows the doubly noncentral Fn1 ;n2 (�1; �2) distribution, where

F =
U1=n1
U2=n2

=
n2
n1

Z0
�
In1 0

0 0

�
Z

Z0
�
0 0

0 In2

�
Z
:=

n2
n1

Z0AZ
Z0BZ

(8)

and Z =
h
Y1
Y2

i
� Nn1+n2

��
�1
�2

�
; In1+n2

�
:= Nn (�; In), i.e., A and B are de�ned in (8), n = n1 + n2

and � =
�
�1
�2

�
. Taking �2 = 0 yields the singly noncentral F , while �1 = �2 = 0 is the central F

distribution.

The cdf of F at f can be expressed as

Pr (F < f) = Pr

�
n2
n1
Z0AZ < fZ0BZ

�
= Pr

�
Z0
�
n2
n1
A� fB

�
Z < 0

�
= Pr

(
nX
i=1

�i�
2
i

�
1; �2i

�
< 0

)
= Pr (Xf < 0) (9)

where

�i =

(
`1 = n2=n1; if 1 � i � n1;

`2 = �f; if n1 < i � n:
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The mgf of random variable Xf in (9) simpli�es to

MXf
(s) =

�
1� 2s

n2
n1

��n1
2

(1 + 2sf)�
n2
2 exp

(
s�1

n2
n1

1� 2sn2n1
� s�2f

1 + 2sf

)
(10)

and is convergent on the neighborhood of zero given by

� 1

2f
< s <

n1
2n2

: (11)

This convergence region does not depend upon the noncentrality parameters. By de�ning #i =

1= (1� 2s`i) for i = 1; 2, the dth order derivative of KXf
(s) is given by

K
(d)
Xf

(s) = kd

2X
i=1

`di #
d
i (ni + d�i#i) ; d � 1; (12)

where k1 = 1 and kd = 2 (d� 1)kd�1 for d > 1.

In most saddlepoint applications, ŝ in (4) needs to be found numerically. However, in this case, an

explicit root can be found for K 0
Xf

(ŝ) = 0 where

K0
Xf

(s) =
n2
n1

1

1� 2sn2n1

 
n1 +

�1
1� 2sn2n1

!
� f

1 + 2sf

�
n2 +

�2
1 + 2sf

�
: (13)

Using the notation of Abramowitz and Stegun (1972, p. 17) equation (13) can be expressed as the

root of the cubic s3 + a2s
2 + a1s+ a0 where

a � a2 = 8f (1� f)n1n
2
2 + 4f

�
n32 + �2n

2
2 � n21n2f � n1n2�1f

�
;

a � a1 = 2
�
n22n1 + n21n2f

2
�� 4fn1n2 (n1 + n2 + �1 + �2) ;

a � a0 = f�2n
2
1 � (1� f)n21n2 � n1n2�1

a = 8f2n22 (n1 + n2) :

Upon further de�ning

q =
1

3
a1 � 1

9
a22; r =

1

6
(a1a2 � 3a0)� 1

27
a32; m = q3 + r2 (14)

and the two values s1;2 =
3
p
r �m1=2, the three roots to the cubic equation are given as in (40) of the

Appendix. The following result is also shown in the Appendix:

Theorem 1 For any n1; n2 > 0 and any values of ; �1; �2 � 0; the three roots to the saddlepoint

equation given in (40) are real and ordered according to z2 < z3 � z1: Among them, the saddlepoint

solution is always

ŝ = z3 = �1

2
(s1 + s2)� a2

3
� i

p
3

2
(s1 � s2) :

Root z3 is the only root in the range �1= (2f) < s < n1= (2n2) and the only root for which K
00 (zi) > 0:
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An alternative expression for the saddlepoint that is useful in an environment that does not support

complex arithmetic is

ŝ = z3 =
p�q

np
3 sin (�)� cos (�)

o
� a2

3
(15)

where

� =
1

3
arg
�
r + i

p�m� = ( tan�1 (�m=r) if r � 0

� + tan�1 (�m=r) if r < 0
;

and m and q are always < 0: These results are derived in the Appendix.

When �2 = 0, we obtain the single root

ŝ =
fn1 (n1 + 2n2 + �1)� n1n2 �pn1y

4n2f (n1 + n2)
; (16)

where

y = f2n31 + 2f2n21�1 + 2n21fn2 + 4f2n1n2�1 + n1�
2
1f

2 + 2n1�1fn2 + n22n1 + 4fn22�1:

For the central F case with �1 = 0 = �2, this simpli�es further to

ŝ =
n1 (f � 1)

2f (n1 + n2)
: (17)

The bene�t of explicit saddlepoints is that the saddlepoint cdf and pdf have closed form expressions

(except for evaluation of the normal cdf �) and are trivial to implement in all cases.

With fractional degrees of freedom the mgf development is still correct and the saddlepoint ap-

proximations remain valid in approximating these generalized distributions. By comparson, the Imhof

algorithm, that has often been used in computing the noncentral F; only supports integer degrees of

freedom in its computations. Apart from simulation, there appears to be no obvious alternative means

of computation in this case.

The saddlepoint ŝ = 0 when f = (1 + �1=n1) = (1 + �2=n2) for all parameter values. This occurs at

the mean of Xf but not the mean of F: For this value of f; the limiting approximation in (2) should

be used. In the singly noncentral case, ŝ = 0 for f = 1 + �1=n1, which can be compared to the mean

E �F (1)
�
= (1 + �1=n1) (n2= (n2 � 2)) :

2.2 Saddlepoint Density Approximations

A density saddlepoint approximation (SPA) of random variable X at x was given in Daniels (1954,

Sec. 2) as

~g (x) =
1p

2�K00 (ŝ)
exp fK (ŝ)� ŝxg : (18)
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where ŝ is the same saddlepoint that solves (4) for the cdf approximation. A second-order approxi-

mation has been provided in Daniels (1954, 1987) as

ĝ (x) = ~g (x)

�
1 +

�̂4
8
� 5

24
�̂23

�
: (19)

The density of ratio F = U=V can be expressed as the density of a "constructed" random variable

to which the approximation in (19) may be applied. This is the approach used in Daniels (1954, Sec.

9) and later in Lieberman (1994). The connection makes use of the Geary (1944) representation for

the density of a ratio of random variables. Geary showed that the density of F at f , or gF (f) for

�xed value f , can be expressed in terms of the density of \constructed" random variable Wf at 0, or

gWf
(0), where Wf is the random variable associated with mgf

MWf
(s) =

1

E (V )
@

@t
MU;V (s; t)jt=�sf : (20)

The relationship is

gF (f) = E (V ) gWf
(0) (21)

and is developed in Stuart and Ord (1994, Sec. 11.10).

Using the SPA (19) via (20) for gWf
(0), relationship (21) yields the density SPA to gF (f) as

ĝF (f) = E (V ) ĝWf
(0) (22)

which is Daniels' (1954) approximation.

2.2.1 Application to the Noncentral F Distribution

Take U = n2
n1
Z0AZ and V = Z0BZ so that F = U=V: Then E (V ) = n2+�2 and the joint mgf of (U; V )

is

MU;V (s; t) =

�
1� 2s

n2
n1

��n1
2

(1� 2t)�
n2
2 exp

 
s�1

n2
n1

1� 2sn2n1
+

t�2
1� 2t

!
:

The computation in (20) leads to

MWf
(s) =

�
1� 2s

n2
n1

��n1
2

(1 + 2sf)�
n2
2 exp

 
s�1

n2
n1

1� 2sn2n1
� sf�2
1 + 2sf

!
(23)

� (n2 + �2)
�1
�

�2

(1 + 2sf)2
+

n2
1 + 2sf

�
: (24)

If the portion of MWf
in (24) is discarded in saddlepoint determination, so only (23) is used, the

saddlepoint equation becomes (13) which makes the density saddlepoint the same as the cdf saddlepoint
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in (15). In this case the saddlepoint density is

~gF (f) =
(n2 + �2)MWf

(ŝ)r
2�
�
lnM o

Wf

�00
(ŝ)

(25)

where M o
Wf

is MWf
(s) using only the terms in the �rst line (23).

Further justi�cation for excluding the terms in row (24) when determining ŝ is obtained by exam-

ining the exactness of the approximation in the central setting. Using the saddlepoint in (17) with

�1 = 0 = �2 then (25) reduces to

~gF (f) =

�
n2
n1

�n2
2 1

B̂
�
n1
2 ;

n2
2

� f
n1
2
�1�

1 + n1
n2
f
�(n1+n2)=2 ; (26)

where B̂
�
n1
2 ;

n2
2

�
is Stirling's approximation to the beta function B

�
n1
2 ;

n2
2

�
: This is the exact Fn1 ;n2

density apart from the use of Stirling's approximation; therefore ~gF (f) becomes exact upon normal-

ization.

2.2.2 Moments

Given the inherent speed of the saddlepoint approximation, the calculation of moments of G becomes

feasible. In particular, one may compute E �Gk
� � R1�1 gkf̂ (g)dg, as pointed out by Lieberman (1994,

p. 925). An alternative approach is to base the computation on the cdf approximation and use the

fact that E
h
(G� �)k

i
may be expressed as

k

Z 1

�
(g � �)k�1

�
1� F̂ (g)

�
dg � k

Z �

�1
(g � �)k�1 F̂ (g)dg;

for � = E (G). The latter expression has two advantages. First, it can be expected to provide greater

accuracy than ~f (g) and perhaps f̂ (g) when these saddlepoint densities are used without normalization.

Upon numerical normalization, the density approximations then require twice the numerical e�ort and

so it is more e�cient. Secondly, F̂ can be replaced with the Imhof approximation so the accuracy can

be checked without resorting to simulation.

As an example, Morin-Wahhab (1985) gave expressions for the positive integer moments ofPp1
i=1 aiXi +

Pp3
j=1 cjZjPp2

i=1 biYi +
Pp3

j=1 djZj

where Xi; i = 1; : : : ; p1; Yj ; j = 1; : : : ; p2 and Zk, k = 1; : : : ; p3 are independent �2 random variables

with `i, mj and nk degrees of freedom, respectively. This is clearly a special case of G in (1) with

A = blockdiag
�
a1I`1 ; : : : ; ap1I`p1 ; 0m� ; c1In1 ; : : : ; cp3Inp3

�
B = blockdiag

�
0`� ; b1Im1 ; : : : ; bp2Imp2

; d1In1 ; : : : ; dp3Inp3
�
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where Ih denotes the h�h identity matrix, 0h is an h�h matrix of zeros, `� =
Pp1

i=1 `i; m� =
Pp2

j=1mj ;

n� =
Pp3

k=1 nk , Z � Nn (0; I) and n = `� + m� + n�: Because her expressions also involve numeric

approximation (of hypergeometric functions of many variables), the saddlepoint method not only serves

as a highly accurate (and most likely much faster) approximation from which \exact" calculations

might be veri�ed, but could turn out to be more accurate in certain cases as well. The SPA is also

valid for any real moment (provided it exists), and not just the positive integers.

2.3 Relative Errors in Approximation

Relative errors for �rst and second order SPAs of the cdf and density are uniform for f in the right

tail. This is a consequence of determining the asymptotic relative error of the SPAs as f ! 1 as

derived in the Appendix. The method of proof is somewhat nonstandard but broadly follows the

general approach used in Jensen (1988).

We have not addressed the left tail of F as f ! 0: The left tail of F; however, is the right tail of

1=F that has a di�erent noncentral F distribution for which the relative error is uniform.

Expansion of the saddlepoint equation K0
Xf

(ŝ) = 0 determined from (13), shows that

ŝ = !0 +O
�
f�1

�
as f !1 where

0 < !0 =
n1

n1 + �1 + 2n2 +
q
(n1 + �1)

2 + 4�1n2

<
n1
2n1

:

The saddlepoint ŝ is monotonic increasing in f and has upper bound !0 so the saddlepoint root never

reaches n1= (2n1) ; the endpoint of the convergence strip for Xf : The term

ŵ =
q
�2KXf

(ŝ)!1

as f !1; not because ŝ reaches the endpoint of convergence, but because the mgf term (1 + 2ŝf)�n2=2 !
0: The following result is derived in the Appendix.

Theorem 2 The limiting relative error of the �rst order SPA in (2) is

lim
f!1

Pr (Xf > 0)cPr (Xf > 0)
=
p
2�gY1�Y2 (0) ; (27)

where gY1�Y2 (0) denotes the density of Y1 � Y2 at 0 where Y1 � �0�
2 (n1; 2�1) independently of Y2 �

(2!0�0)
�1 �2n2+2 . Parameters �0; �1; and �0 are given in (46), (48), and (47) of the Appendix and

gY1�Y2 (0) is given in (49). The �rst order SPA density has the same limiting relative error

lim
f!1

gF (f)

~gF (f)
=
p
2�gY1�Y2 (0) : (28)
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In the central case with �1 = 0 = �2; this works out to be B̂ (n1=2; n2=2) =B (n1=2; n2=2) which

agrees with the error indicated in (26).

Relative errors for the second order approximations, given in (5) for the cdf and (19) for the density,

are also uniform in the right tail. The additional correction terms for second order remain bounded

as ŝ ! !0. This occurs because they are either standard cumulants at ŝ0, û or ŵ�3 and all these

converge as ŝ! !0.

3 Exact Evaluation

We brie
y discuss numerical methods of evaluation whose accuracy level can be explicitly controlled.

When calculated to machine precision, we deem such methods \exact".

3.1 Singly Noncentral F

The density and cdf of F (1) � Fn1;n2 (�1; 0) at f can be expressed as (Johnson et al., 1995, eq. 30.7

and 30.10)

pF (1) (f) =
n1
n2

1X
j=0

!j;�1
B
�
n1
2 + j; n22

�
�
n1
n2
f
�

n1=2+j�1�
1 + n1

n2
f
�(n1+n2)=2+j := n1

n2

1X
j=0

dj (29)

and

Pr
�
F (1) < f

�
=

1X
j=0

!j;�1Ix

�n1
2
+ j;

n2
2

�
:=

1X
j=0

cj ; (30)

respectively, where

!i;� = e�(�=2)
(�=2)i

i!
; (31)

x = n1f = (n2 + n1f) and Ix (a; b) is the incomplete beta function ratio
R x
0 ta�1 (1� t)b�1 dt =B (a; b).

Consider �rst the evaluation of (30). Schader and Schmid (1986), Lenth (1987) and Randall (1994)

made use of the recursions

Ix (a + 1; b) =Ix (a; b) +
� (a+ b)

� (a+ 1)� (b)
xa (1� x)b

:=Ix (a; b) + Tx (a; b)

and

Tx (a + 1; b) = Tx (a; b)
a+ b

a + 1
x
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to realize considerable speed improvements. Also, the summands dj and cj are not always monoton-

ically decreasing, so that the �nite upper limit on j; say jmax; cannot simply be determined as when

the summand is small relative to the cumulative sum.1 This is illustrated in Figure 1, which plots cj

with both log10 and regular scales, for values

n1 = 1; n2 = 12; �1 = 2316 and f = 990; (32)

which arose in an application by Chow and Shao (1990). (The exact cdf value was computed as

0.0057818, the SPA returns 0.0057812.) Note that cj reaches its maximum at 1149 � �1=2; which

suggests starting the sum in (30) at j = �1=2 and sum in both directions (increasing and decreasing j)

until convergence. This was originally proposed by Posten (1993), who showed that the error incurred

from truncating (30) is less than � when

[�1=2]+kX
j=max(0;[�1=2]�k)

!j � 1� �:

Empirical evidence suggests that

argmax
j

(dj) � argmax
j

(cj) � �1=2 (33)

when f � E �F (1)
�
, with both argmaxj (dj) and argmaxj (cj) decreasing as f moves to the left of

E �F (1)
�
. For large �1, this \summing outwards" is both time saving and numerically more stable.

This holds for the density (29) as well, but the di need to be evaluated in terms of their logs for

numeric precision.

Figure 1 somewhere here.

As an example, for the F (1) density with parameters (32), the renormalized density SPA approxi-

mation (with constant of integration 1.01389) is graphically indistinguishable from the exact density,

and yielded an almost constant relative percentage error, i.e., 100�(exact� SPA) =exact, of �0:00884
over the support for which pF (1) (f) > 10�10. Besides its accuracy, it is also worth emphasizing that

the density SPA is completely closed form and far faster than even the SPA cdf evaluation, with its

biggest computational bottleneck being the accurate evaluation of the normal cdf. Thus, except for the

numerical integration of the SPA density (which is also extremely fast and can often be ignored given

its closeness to one), a grid of several hundred density values are virtually instantaneously calculated

on a typical desktop computer|for both the singly and doubly noncentral F density.

1Such a method is implemented in function ncfcdf in Matlab (version 5.1), whereby they stop summing when

tj=
�
Tj + �1=4

�
< �1=2, where � = 2:2 � 10�16 represents machine tolerance and Tj =

Pj
i=0 ti. For the example in (32),

jmax would be set to zero and the algorithm fails.
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Note �nally that evaluation of e��1=2 will result in under
ow2 for large �1 (� 1,416 on double

precision machines), so that instead of factoring the term out of the !j , it is numerically safer (albeit

slower) to evaluate the Poisson weights as (with � = �1=2)

e���j

j!
= exp f��+ j ln �� ln � (j + 1)g :

Randall (1994) provides an alternative method which entails splitting up the exponent e�� when

necessary.

We take as exact values those delivered by the program available from Randall. An alternative

method is to use the more general algorithm of Imhof (1961), as given in (36) with �2 = 0:3 Besides

requiring far more computing time, the method breaks down for small n1 and n2: For example, with

n1 = n2 = 1 and f = 10, Imhof fails (returns cdf values outside of [0; 1]) for 0 < �1 < 31, while for

31 � �1 < 40, its computed cdf di�ers from the exact value, worsening as �1 decreases. As f decreases

(increases), matters get worse (better). As n1 and n2 increase, accuracy improves quickly, but it is

not clear what values are completely safe (for f = 0:01, n1 = 3, n2 = 6 and � = 0:1, Imhof still di�ers

in the third signi�cant digit).

3.2 Doubly Noncentral F

The density and cdf of F (2) � Fn1;n2 (�1; �2) at f can be expressed as (Johnson et al., 1995, eq. 30.49

and 30.51)

pF (2) (f) =
n1
n2

1X
k=0

1X
j=0

!j;�1!k;�2
B
�
n1
2 + j; n22 + k

�
�
n1
n2
f
�

n1=2+j�1�
1 + n1

n2
f
�(n1+n2)=2+j+k (34)

and

Pr
�
F (2) < f

�
=

1X
k=0

!k;�2

1X
j=0

!j;�1Ix

�n1
2
+ j;

n2
2
+ k
�

(35)

respectively, with !i;� given in (31) and x = n1f = (n2 + n1f).

First consider the pdf (34). Clearly, it will be computationally burdensome to evaluate the double

sum until convergence and, as in the F (1) case, possibly numerically unstable as well. For the cdf (35),

it appears that a similar result to (33) applies, so that each sum in (34) and (35) may be evaluated

2As noted by Randall, this might explain the under
ow in the probf function in SAS (version 6.07) for the parameters

given in (32). In addition, Kn�usel (1995) documented several computing errors in Gauss-386 (version 3.2.6), in particular

for the singly noncentral cdf function cdffnc with parameters f = 100; n1 = 10; n2 = 1 and �1 = 38 and 39.
3We use the Pascal implementation from Farebrother (1990) in extended (19 signi�cant digit) accuracy, with an error

tolerance of 10�14.
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by summing outwards, i.e., k would start at �2=2 and work outwards and, for each k, j would work

outwards from �1=2. This works well in practice, and is the method we deem exact when referring to

the evaluation of (35).

A practical alternative to computing (35) might be the Imhof algorithm, which can evaluate the

cdf of a general weighted sum of noncentral �2 random variables. For the cdf of F (2) � Fn1;n2 (�1; �2)

at f , Imhof computes

Pr
�
F (2) < f

�
= Pr (X � 0) =

1

2
� 1

�

Z 1

0

sin � (x)

x� (x)
dx (36)

where

� (x) =
1

2

�
n1 tan

�1 �2 +
�1�2
1 + �22

� n2 tan
�1 �1 � �2�1

1 + �21

�
;

� (x) =
�
1 + �22

�n1=4 �1 + �21
�n2=4 exp�1

2

�
�21�

2
2

1 + �22
+

�22�
2
1

1 + �21

��
and �1 = n1xf , �2 = n2x (Ennis and Johnson, 1993). Imhof derived expressions to explicitly control

the error arising in (36) so that, at least in principle, a speci�ed degree of accuracy can be attained.

Improvements on and minor corrections to the implementation by Koerts and Abrahamse (1969)

were provided by Farebrother (1980a, 1990). Some performance aspects of the Imhof procedure were

investigated by Farebrother (1984), while Helstrom (1996) drew attention to the potential inaccuracy

of the Imhof method in the tails of the distribution.

As in the F (1) case, Imhof fails or exhibits lack of accuracy for the cdf of F (2) when �1 and/or �2

is small, particularly so when f is not in the far right tail of the distribution.

4 Saddlepoint Accuracy

4.1 Singly Noncentral F CDF

We evaluate the accuracy delivered from the second order Lugannani-Rice saddlepoint method (5)

via a design over the four parameters n1; n2; �1 and f: In particular, for n1 = 1; we take f =

1:1; 11:1; : : : ; 91:1; and for n2 = 10; f = 1:1; 3:1; : : : ; 19:1; so as to capture a reasonable portion of

the support for both cases. For both values of n1, we take n2 = 1; 11; : : : ; 101 and �1 = 0; 10; : : : ; 50;

yielding a total of 1,320 \sample points". From the discussion in Section 2, the saddlepoint approxi-

mation should exhibit more accuracy both as n1 and n2 increase (more summing) and as f increases

(farther into the tail). One might postulate that, all things being equal, the smaller �1, the higher the

accuracy, given the elongated right tail for large �1:

13



This is precisely what we observe. Figures 2 and 3 correspond to n1 = 1 and n1 = 10, respectively,

and plot the absolute relative percentage error (APE, 100 jt� aj =t where t is the true and a is the

approximate value) on a log10 scale for �xed �1 and f , as a function of n2. The largest APE was

2.9 (not surprisingly corresponding to the most extreme case, for which n1 = n2 = 1, �1 = 50 and

f = 1:1, with exact Pr(F (1) < f) = 1:06� 10�6, saddlepoint cdf 1:03� 10�6). Particularly for smaller

�1, it is clear that accuracy increases smoothly as both n2 and f increase and decreases for larger

�1. Although it would appear from a juxtaposition of Figures 2 and 3 that much higher accuracy is

obtained for n1 = 10 as opposed to n1 = 1; one should keep in mind that these graphs are not directly

comparable, given the nonlinear nature of the cdf as a function of the parameters. Nevertheless, it is

clear that a severalfold increase in accuracy occurs as n1 goes from one to ten.

Figure 2 somewhere here.

Figure 3 somewhere here.

In assessing the increase in accuracy due to the second order term in (5), we found that, when

measured in terms of APE, (5) was, on average, over 32 times as accurate as (2) but still, in 67 of

the 1,320 cases, (2) was preferable to (5). Of these, 29 had n1 = n2 = 1; and for the remaining, at

least one ni was 1: In the majority of the 67 cases, f was such that Pr
�
F (1) < f

�
< 0:6: In the worst

case discussed above, however, (2) yielded an APE of 7.4 (compared to 2.9 for with the second order

term), showing that clear-cut rules when one method is to be preferred are not available. In general,

the second order correction made the highest contributions for n1 and/or n2 large, and f farther into

the right tail, irrespective of �1.

It is worth mentioning that the cdf evaluation for all 1,320 points took 0.13 seconds using the

Randall program, as opposed to just over 10 minutes using the Imhof procedure,4 implying about a

4,600 factor speed increase. The SPA required 0.040 seconds, or a 14,000 factor speed increase over

Imhof.

4.2 Doubly Noncentral F CDF

With the additional parameter �2, a study as in the previous section is not feasible. Instead, we use

degrees of freedom values n1 = n2 = 1, for which we expect the saddlepoint performance to be the

worst. For each pair of �1 = 1; 21; : : : ; 501 and �2 = 1; 21; : : : ; 501, we compute the accuracy of the

cdf at that value f such that Pr
�
F (2) < f

�
= �, � = 0:80 and 0.99. The value of f is iteratively

found using the saddlepoint approximation (due to its large speed advantage). Figure 4 shows the

4Both were computed using Borland Pascal programs using a 300Mz Pentium-II PC.
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APE values for all �1 and several �2, including the worst case, �2 = 1: Roughly speaking, performance

increases as one or both �i increase. It appears that, for constant �2, error �rst decreases as �1

increases, reaching an \optimal point", and then increases slightly and levels o� to a constant value.

Accuracy is overall higher for � = 0:99 compared to � = 0:80, most noticeably for �2 = 1.

Figure 4 somewhere here.

>From these plots, it might appear that accuracy starts to breaks down as both �i approach

zero. To investigate this in more detail, Figure 5 shows the percentage error for n1 = n2 = 1; and

�1 = �2 = 0; 0:3; 0:6; 0:9; 1:2.5 The top panel uses f values 2, 12, 22, : : : ; 992, while the bottom panel

uses f = 0:02, 0.04, : : : , 2.0. From the right (i.e., large f), the percent error worsens as f approaches

a certain point, then improves, reaching zero at the median f = 1:0, then steadily increases again,

reaching its largest values (about 7.5% for �1 = �2 = 1:2) and �nally moving towards zero as f

approaches zero in the left tail.

Figure 5 somewhere here.

As noted, we chose the values n1 = n2 = 1 hoping to capture the SPA at its worst, but observed

reasonable performance, particularly as the �i increase. In comparison, Figure 6 shows the same plot

as in Figure 4, but using n1 = 10 and n2 = 20. Qualitatively, the graphs are very similar, but,

particularly for the smaller values of �i, accuracy increases approximately 100 fold. Clearly, for values

of ni which typically occur in practice, the SPA exhibits remarkable accuracy.

Figure 6 somewhere here.

To appreciate the speed gains from using the SPA, Table 1 indicates by how much longer the

exact methods took, i.e., the entries are normalized such that the saddlepoint time is unity. One sees

immediately that both exact routines require several orders of magnitude longer to compute. Whereas

the computing time for the closed-form SPA is una�ected by the parameters, we see that the time

required for the exact methods, most notably Imhof, vary greatly. As �2 (and �1) increase, more

summing is required in (35), so that, for large values of �1; �2, the Imhof algorithm becomes more

attractive, provided of course, that n1 and n2 are large enough so that the Imhof method does not

break down.

Table 1 somewhere here.

5For �1 = �2 = 0, the distribution simpli�es to the square of a Cauchy random variable, say G = Z2
1=Z

2
2 with cdf

Pr (G � g) = ��1
�
tan�1

p
g � tan�1

�
�pg

��
.
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4.3 Comparison with the Tiku Approximation

Tiku (1972) proposed approximating the distribution of F (2) with that of a location-scale shifted

central F , i.e.,

Pr (Fn1;n2 (�1; �2) < x) � Pr

�
Fv̂1;n2 (0; 0) <

x+ â

ĥ

�
(37)

by matching the �rst three moments and using the fact that

1F1

�
r;
n2
2
;��2

2

�
� (1 + �2=n2)

�r (38)

for �2=n2 near zero. In particular, denoting by i�
0
r and i�r the r

th raw and central moments of F (i),

respectively, i = 1; 2, Tiku (1964) has shown that

2�
0
r = 1�

0
r � 1F1

�
r;
n2
2
;��2

2

�
; (39)

and expressions for the �rst four moments of F (1) are well-known (Johnson et al., 1995). With (38),

moments 2�
0
r are easily computed.

With �1 = 2�
2
3 = 2�

3
2, this results in

â =
hn2
n2 � 2

� 2�
0
1; ĥ =

n1 (n2 � 2) (n2 � 6) 2�3
4n2 (2v + n2 � 2) 2�2

;

and

v̂1 =
n2 � 2

2

 
�1 +

s
(n2 � 6)2 �1

�1 (n2 � 6)2 � 32 (n2 � 4)

!
:

Although his calculations are correct, the formula for v̂1 in Tiku (1972, eq. 8) contains a misprint. We

denote this method T3.

Tiku and Yip (1978) gave the extension to the �rst four moments by providing values â, ĥ, v̂1 and

v̂2 for (37) but with Fv̂1;v̂2 , which can be used with any target distribution, provided that its �rst four

moments can be readily computed. We denote as T4 this method applied to F (2) in conjunction with

(38). Note that T3 is only valid for n2 > 6; likewise, T4 is only valid for n2 > 8.

For illustration, we reproduce part6 of Table 1 of Tiku (1972) in Table 2, except we show the

relative percentage error (instead of absolute di�erences) of both T3 and the SPA. In the central F

case for which �1 = �2 = 0, T3 is exact. As �2 increases, approximation (38) loses its accuracy and

T3 begins to break down. The SPA is not only far more accurate in virtually all the cases (except, of

6The results for the entire table in Tiku (1972) were computed and are available upon request. The results were

qualitatively identical to those shown here, except that T3 performs even worse relative to the SPA as n1 increases.
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course, for the central F , but also for the two cases n1 = 4, n2 = 60, �1 = 0, �2 = 0:5 and n1 = 4,

n2 = 8, �1 = 1, �2 = 0 for which they are close), but its error is also far more consistent.

Table 2 somewhere here.

What is not clear in the T3 approximation is the contribution to error from (38). Naturally, the

moments-based approximations will lose their simplicity once 1F1 needs to be computed numerically,

but it is worth knowing if they lead to better approximations to the cdf of F (2). For comparison, Table

3 is similar to Table 2, but shows the accuracy of both the T3 and T4 approximations using the exact

value of 1F1 (computed via numeric integration) instead of approximation (38). Because T4 does not

exist for n2 = 8, we replace those cases by n2 = 10.

Table 3 somewhere here.

For T3, as would be expected, there is a signi�cant increase in accuracy for larger values of �2

from using the exact 1F1 instead of (38), although not all cases improve. Worse yet, the method fails

occasionally by returning a negative scale parameter; and this occurs more frequently with increasing

�2, precisely when approximation (38) breaks down, rendering T3 using either (38) or the exact value

of 1F1 useless for values of �2=n2 much larger than zero.

The T4 approximation turned out to be somewhat of a disappointment. It is much more reliable

than T3, but still breaks down occasionally, and provides an increase in accuracy in only about half

the cases in Table 3. It also also exhibits non-uniformity in error, which increase with �2.

Summarizing, with the exception of the central F case, the SPA is almost always several orders

of magnitude more accurate than both Tiku approximations, never fails, and is accurate over the

entire parameter space. Also, the two Tiku approximations require that n2 be greater than 6 and 8,

respectively. Finally, the SPA only requires evaluation of the normal cdf and not the incomplete beta

function, and is otherwise closed{form.

5 Application

To be �nished.

6 Conclusions

We present a saddlepoint approximation (SPA) to the density and cdf of the singly and doubly

noncentral F distribution and, in both cases, give a closed form solution to the saddlepoint equation,

thus obviating the need for numeric root searching.
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Given the availability of cheap computing power and the stability and accuracy of the Randall

algorithm, we recommend its use for the singly noncentral F cdf, particularly when extreme accuracy

is needed. Plots of the singly noncentral F pdf, however, bene�t tremendously from the SPA in

terms of speed, as well as simplicity. Furthermore, at least three statistical software packages return

incorrect values for the F (1) cdf, while very few even o�er calculation of the cdf (or pdf) of the doubly

noncentral F .

The time savings associated with the SPA in the doubly noncentral case compared with either the

Imhof algorithm or \outward summing" of (35) is so dramatic that, not only for possible simulation

purposes, but also for routine calculation and inference, the saddlepoint method is recommended.

Moreover, the saddlepoint density o�ers (possibly the only) computational method which is not only

numerically reliable and virtually exact, but also evaluated practically instantaneously.

As Johnson et al. (1995, p. 491) note regarding research contributions for evaluation of the non-

central F , \...clear examples of multiplication and overlap of results are prevalent in the statistical

literature, especially in the area of statistical algorithms. Much of it is due to lack of coordination,

almost identical publication in di�erent journals, and unjusti�ed publication of results providing 'ep-

silon' improvement". We hope that this contribution does not fall victim to that criticism, but instead

provides a highly workable solution to a complex issue.

Appendix

Saddlepoint Roots

The three roots to the cubic equation are

z1 = (s1 + s2)� a2
3
; z2;3 = �1

2
(s1 + s2)� a2

3
� i

p
3

2
(s1 � s2) (40)

and they are all real if m < 0. It is known in general that the a unique root of the saddlepoint equation

exists, so that one may take any real zi that is in the range (11). We now show that all three roots

are real and that z3 is always the unique saddlepoint solution Showing that all three roots in (40) are

real is equivalent to showing that m in (14) is negative (Abramowitz and Stegun, 1972, p. 17). Using

Maple, m can be factored as

m = � 1

6912
(n1f + n2)

2 � n1

f6n52 (n1 + n2)
4 �Q;

where Q consists of the sum of 47 terms in n1, n2, �1, �2 and f , all of which are positive, except for

one, given by �8�22n2f2�21n1. By combining this term with two other (positive) terms 4n22�
3
2�1f and
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4�2n
2
1�

3
1f

3 in Q (found after some trial and error), we have

�8�22n2f2�21n1 + 4n22�
3
2�1f + 4�2n

2
1�

3
1f

3 = 4�2f�1 (n2�2 � n1�1f)
2 > 0;

showing that m < 0 and all three roots are real.

To show that z3 is always the correct root, we �rst demonstrate that, if the roots are ordered along

the real line, then K00
X > 0 for the middle root and is negative at the other two. Then we show that

z2 < z3 � z1 demonstrating that z1 and z2 cannot be the saddlepoint. To see the former, de�ne

L (s) :=

�
1� 2s

n2
n1

�2

(1 + 2sf)2K0
X (s)

and note that a root of K0
X is also a root for L: Di�erentiating gives

L0 (s) =
@

@s

"�
1� 2s

n2
n1

�2

(1 + 2sf)2
#
�K0

X (s) +

�
1� 2s

n2
n1

�2

(1 + 2sf)2K00
X (s)

and, when evaluated at roots zi, i = 1; 2; 3,

L0 (zi) =
�
1� 2zi

n2
n1

�2

(1 + 2zix)
2K00

X (zi)

so that

sgnfL0 (zi)g = sgnfK 00
X (zi)g: (41)

Now L (s) is a cubic polynomial whose leading term is �8n22f2 (n1 + n2)n
�2
1 s3 with a negative coef-

�cient; thus L0 (s) > 0 when s is the middle root and negative at the �rst and third ordered roots.

From (41), the same holds for K 00
X so the middle root must be the saddlepoint.

To prove that z2 < z3 � z1, �rst note that r in (14) is real and recall that m < 0 implying that

also q < 0. Then

r +
p
m = r + i

p
� (q3 + r2) =

p
�q3ei�

where � = arg (r +
p
m) 2 (0; �) and, more speci�cally, if r < 0, then � 2 (�=2; �). Then

s1;2 =
�
r �pm�1=3 = �p�q3e�i��1=3 = p�qe�i�=3

and thus,

s1 + s2 =
p�q

�
ei�=3 + e�i�=3

�
= 2

p�q cos (�=3) > 0 (42)

is real and positive, since 0 � �=3 < �=3 = 60�: Similarly,

s1 � s2 =
p�q

�
ei�=3 � e�i�=3

�
= 2i

p�q sin (�=3)
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so that

i

p
3

2
(s1 � s2) = �

p
�3q sin (�=3) < 0: (43)

From (43) it follows directly that z2 < z3. Now, comparing z1 and z3,

z3 = �p�q cos (�=3)� a2
3
+
p
3
p�q sin (�=3) ?� 2

p�q cos (�=3)� a2
3
= z1

or p
3
p�q sin (�=3) ?� 3

p�q cos (�=3)
or

tan (�=3)
?�
p
3:

But

tan (�=3) � tan (�=3) =
p
3

so that z3 � z1 and z2 < z3 � z1.

Simplifying the above expressions for z3 shows that it can be expressed as

z3 =
p�q

np
3 sin (�)� cos (�)

o
� a2

3

where

� =
1

3
arg
�
r +

p
m
�
:

Relative error of the cdf approximation

The tail probability of F from the inversion formula is

Pr (Xf > 0) =
1

2�i

Z ŝ+i1

ŝ�i1
z�1MXf

(z)dz

=
1

2�

Z 1

�1
(ŝ+ it)�1MXf

(ŝ+ it) dt

=
MXf

(ŝ)

ŝ�̂

1

2�

Z 1

�1

�
1 +

it

ŝ�̂

��1 MXf

�
ŝ+ it

ŝ�̂

�
MXf

(ŝ)
dt

where the last integral results from a scale change to the variable of integration. Taking �̂ =
q
K00

Xf
(ŝ);

then the �rst order SPA cPr (Xf > 0) � MXf
(ŝ)

ŝ�̂
p
2�

as f !1 so that

lim
f!1

Pr (Xf > 0)cPr (Xf > 0)
=
p
2� lim

f!1
1

2�

Z 1

�1

�
1 +

it

ŝ�̂

��1 MXf

�
ŝ+ it

ŝ�̂

�
MXf

(ŝ)
dt: (44)

20



The limiting inversion is determined by �nding the pointwise limit of its integrand and applying the

dominated convergence theorem.

There are 4 ratio terms in the MXf
-ratio of (44) derived from the 4 terms in (10). The last ratio

depends directly upon f and simple computations show it is bounded for su�cently large f as�����exp
(
�

�
ŝ+ it

ŝ�̂

�
f�2

1 + 2
�
ŝ+ it

ŝ�̂

�
f
+

ŝf�2
1 + 2ŝf

)����� � (1 + ") e�2=2 (45)

for some " > 0: The remaining portion of the integrand is bounded by (1 + ")h (t), where h (�) is the
integrable limit derived below.

The pointwise limit of the left side of (45) is 1 so the limiting integrand is based upon the �rst 3

terms. Since ŝ! !0; computations show that the ratio

MXf

�
ŝ+ it

ŝ�̂

�
MXf

(ŝ)
� (1� 2it�0)

�n1
2

�
1 +

it

!0�0

��n2
2

exp

8<:
�
!0 +

it
�0

�
n2
n1
�1

1� 2
�
!0 +

it
�0

�
n2
n1

� #1

9=;
where

�0 =
n2
n1�0

�
1� 2

n2
n1
!0

��1
; (46)

�20 = lim
f!1

K00
Xf

(ŝ) = 2n1n
2
2
n1 + 2�1 � 2!0n2

(n1 � 2!0n2)
3 +

n2
2!2

0

> 0; (47)

and

#1 =
!0

n2
n1
�1

1� 2!0
n2
n1

:

Writing the exponential term as�
!0 +

it
�0

�
n2
n1
�1

1� 2
�
!0 +

it
�0

�
n2
n1

= ��1
2
+

�1=2

1� 2
�
!0 +

it
�0

�
n2
n1

then
MXf

�
ŝ+ it

ŝ�̂

�
MXf

(ŝ)
� (1� 2it�0)

�n1
2

�
1 +

it

!0�0

��n2
2

e�#1��1=2 exp
�

�1
1� 2it�0

�
where

�1 =
�1
2

�
1� 2

n2
n1
!0

��1
: (48)

Taylor expansion of the exp function shows that the integrand has the limiting form�
1 +

it

ŝ�̂

��1 MXf

�
ŝ + it

ŝ�̂

�
MXf

(ŝ)
�
�
1 +

it

!0�0

��n2
2
�1 1X

k=0

e��1
�k1
k!

(1� 2it�0)
�n1

2 �k :
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This is the product of two characteristic functions (cfs): for Y2 = � (2!0�0)
�1 �2n2+2 and Y1 =

�0�
2 (n1; 2�1) : Inversion of this product is the density of Y1 � Y2 at 0 which leads to the asymp-

totic relative error in (27).

Straightforward computation determines gY1�Y2 (0), the density of Y1 � Y2 at 0, as

(2�0!0�0)
n2
2 !0�0e

��1

(1 + 2�0!0�0)
1
2 (n1+n2) �

�
n2
2 + 1

� 1X
k=0

�
�
n1+n2

2 + k
�

�
�
n1
2 + k

�
k!

�
�1

1 + 2�0!0�0

�k
:

Using �1 (1 + 2�0!0�0)
�1 = �1=2 and expressing the summation in terms of the Taylor expansion of

the con
uent hypergeometric function given in (13.1.2) of Abramowitz and Stegun (1970), then the

summation is
�
�
n1+n2

2

�
�
�
n1
2

� 1F1

�
n1 + n2

2
;
n1
2
;
�1
2

�
so that

gY1�Y2 (0) =
(2�0!0�0)

n2
2 !0�0e

��1

(1 + 2�0!0�0)
1
2 (n1+n2)B

�
n1
2 ;

n2
2

�
n2
2

1F1

�
n1 + n2

2
;
n1
2
;
�1
2

�
: (49)

Relative error of the density approximation

Follwing the same approach used for the cdf,

gWf
(0) =

1

2�

Z 1

�1
MWf

(ŝ+ it)dt

=
MWf

(ŝ)

�̂

1

2�

Z 1

�1

MWf
(ŝ+ it=�̂)

MWf
(ŝ)

dt

=
p
2�~gWf

(0)
1

2�

Z 1

�1

MWf
(ŝ + it=�̂)

MWf
(ŝ)

dt

and

lim
f!1

gF (f)

~gF (f)
= lim

f!1
gWf

(0)

~gWf
(0)

=
p
2� lim

f!1
1

2�

Z 1

�1

MWf
(ŝ+ it=�̂)

MWf
(ŝ)

dt:

The inversion is much the same as with the cdf except as concerns the extra factor (24) that accom-

panies (23). Denoting this extra factor as h (s), then

h (ŝ+ it=�̂)

h (ŝ)
�
�
1 +

it

!0�0

��1
and

MWf
(ŝ+ it=�̂)

MWf
(ŝ)

�
�
1 +

it

!0�0

��1 MXf
(ŝ + it=�̂)

MXf
(ŝ)

;

the integrand in the cdf setting. Therefore

lim
f!1

gF (f)

~gF (f)
= lim

f!1
Pr (Xf > 0)cPr (Xf > 0)

: (50)
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In the central setting,

2�0!0�0 =
n2
n1

!0�0 =

s
(n1 + n2)n2

2n1

so that the limiting value in (50) is B̂(n12 ;
n2
2 )=B(

n1
2 ;

n2
2 ).
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Table 1: Relative computing times for the cdf of Fn1;n2 (�1; �2)
a

�2 Outward Sum of (35) Imhof

n1�n2 1 10 100 1 10 100

1 1 800 600 800 FAIL 4000 16800

1 10 600 600 600 68000 2000 6000

1 100 1000 600 800 540000 9600 2400

10 1 720 640 760 FAIL 2400 18000

10 10 700 700 800 4000 1200 4800

10 100 1100 800 1000 16000 6000 2400

100 1 3200 3200 4000 600 1200 20000

100 10 2400 2400 2400 600 500 6000

100 100 4000 3600 3600 3200 2800 6000
aFor each entry, �1 = 10. The cuto� value f was chosen to approximate the

expected value plus one standard deviation, using the well-known approxi-

mation F (2) � rF (0), where r = (1 + �1=n1) = (1 + �2=n2) and F (0) � Fa;b is

central F with

a =
(n1 + �1)

2

n1 + 2�1
; b =

(n2 + �2)
2

n2 + 2�2
:

We take f = r (�+ �), where � =
b

b� 2
and �2 =

2b2 (a + b� 2)

a (b� 2)2 (b� 4)
are the

mean and variance of Fa;b: When b � 4; we set f = 1:1�1=�2.

For all parameter values, all computing times for the SPA were virtually the

same and, on a 300Mz Pentium-II PC, took 4.9e-5 seconds.
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Table 2: Relative percentage error for approximating Fn1;n2 (�1; �2)
a

�2 0.0 0.5 1.0 1.5 2.0 3.0

Tiku SPA Tiku SPA Tiku SPA Tiku SPA Tiku SPA Tiku SPA
�1

n1 = 4; n2 = 8

0 0.0000 -0.0601 2.0916 -0.0431 8.1594 -0.0284 18.2517 -0.0250 32.8246 -0.0298 79.2336 -0.0511

1 0.0427 0.0745 0.9718 0.0925 3.9490 0.1011 9.0822 0.1004 16.5503 0.0957 39.7361 0.0839

2 0.0216 0.0130 0.0571 0.0179 0.3636 0.0173 1.2002 0.0150 2.7549 0.0126 8.5760 0.0089

3 -0.0037 0.0006 -0.0747 0.0010 -0.2952 0.0007 -0.6332 0.0004 -1.0172 0.0001 -1.5606 -0.0004

n1 = 4; n2 = 24

0 0.0000 -0.1139 0.4495 -0.1156 1.8101 -0.1167 4.1091 -0.1179 7.3903 -0.1192 17.1768 -0.1222

1 0.0494 0.0260 0.0318 0.0288 0.2839 0.0312 0.8621 0.0331 1.8126 0.0345 4.9901 0.0363

2 0.0040 0.0018 0.0113 0.0022 -0.0116 0.0027 -0.0525 0.0030 -0.0943 0.0033 -0.0991 0.0038

3 -0.0041 0.0000 -0.0065 0.0000 -0.0124 0.0000 -0.0241 0.0000 -0.0448 0.0000 -0.1262 0.0001

n1 = 4; n2 = 60

0 0.0000 -0.1193 0.0894 -0.1215 0.3629 -0.1236 0.8274 -0.1254 1.4898 -0.1270 3.4348 -0.1299

1 0.0776 0.0170 -0.0252 0.0180 -0.0910 0.0190 -0.1081 0.0198 -0.0664 0.0205 0.2290 0.0217

2 -0.0263 0.0007 -0.0084 0.0008 0.0052 0.0009 0.0139 0.0010 0.0176 0.0011 0.0113 0.0013

3 -0.0034 0.0000 -0.0044 0.0000 -0.0056 0.0000 -0.0072 0.0000 -0.0093 0.0000 -0.0154 0.0000
aTiku refers to the location-scale central F approximation based on equating the �rst three moments;

SPA refers to the saddlepoint approximation (5); �21 = �1= (n1 + 1) and �2 = �2=
p
n2.
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Table 3: Relative percentage error for approximating Fn1;n2 (�1; �2)
a

�2 0.0 0.5 1.0 1.5 2.0 3.0

T3 T4 T3 T4 T3 T4 T3 T4 T3 T4 T3 T4
�1

n1 = 4; n2 = 10

0 0 0 0.1892 0.2304 0.7685 1.0598 1.8140 2.7124 3.5098 5.4441 10.0699 14.9699

1 0.0398 -0.0655 0.0477 -0.1893 0.3189 -0.2364 0.8777 -0.0035 N.A. 0.7218 N.A. 4.7536

2 0.0231 0.0179 -0.1623 -0.2711 N.A. -1.0636 N.A. -2.2635 N.A. -3.7539 N.A. -6.9103

3 -0.0044 -0.0040 N.A. -0.1007 N.A. N.A. N.A. N.A. N.A. -2.3182 N.A. -5.6116

n1 = 4; n2 = 24

0 0.0000 0.0000 0.0970 0.0960 0.4393 0.4591 1.1019 1.1523 2.1577 2.1909 5.7360 5.2270

1 0.0494 -0.8954 -0.0894 -1.1096 -0.2053 -1.4545 -0.2473 -1.7689 -0.1717 -1.9320 0.4868 -1.5053

2 0.0040 -0.0710 -0.0094 -0.1714 -0.0943 -0.4941 -0.2390 -1.0568 -0.4284 -1.8417 -0.8766 -3.8865

3 -0.0041 -0.0032 -0.0080 -0.0037 -0.0202 -0.0043 -0.0458 -0.0089 -0.0902 -0.0252 N.A. -0.1506

n1 = 4; n2 = 60

0 0.0000 0.0000 0.0232 0.0164 0.1032 0.0796 0.2543 0.2032 0.4897 0.3936 1.2614 0.9771

1 0.0776 -1.8052 -0.0455 -1.9282 -0.1732 -2.0925 -0.2949 -2.2703 -0.4008 -2.4391 -0.5304 -2.6823

2 -0.0263 -0.1927 -0.0104 -0.2299 -0.0034 -0.3027 -0.0064 -0.4165 -0.0203 -0.5744 -0.0822 -1.0246

3 -0.0034 -0.0024 -0.0044 -0.0030 -0.0058 -0.0036 -0.0077 -0.0041 -0.0103 -0.0048 -0.0185 -0.0079
aT3 and T4 refer to the three and four moment location-scale central F approximations but using the

exact 1F1 instead of (38). Entries with N.A. indicate that the method failed.
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Figure 1: The summands cj in (30) for n1 = 1, n2 = 12, �1 = 2316 and f = 990 (top panel uses log10

scale)
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Figure 2: Percentage error of the saddlepoint method for the CDF of the singly noncentral F distri-

bution with parameter n1 = 1. Dashed line indicates 1% error.
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Figure 3: Same as Figure 2 but with n1 = 10
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Figure 4: Accuracy of cdf saddlepoint approximation of Fn1;n2 (�1; �2) for �xed values n1 = n2 = 1

with f chosen such that Pr
�
F (2) < f

�
= �
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Figure 5: Saddlepoint accuracy for cdf of Fn1 ;n2 (�1; �2) with n1 = n2 = 1. Upper panel, from top to

bottom, �1 = �2 = 0; 0:3; 0:6; 0:9 and 1.2. Lower panel, left side, ordering of �2 is reversed.
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Figure 6: Similar to Figure 4 but with n1 = 10 and n2 = 20
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