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Abstract

This paper is concerned with modelling and estimating panel data autore-

gressive spatial processes in the framework of minimum distance methods.

A contiguity matrix based on distance between points relates observations

spatially. The model is estimated in two stages. First, the cross-section pa-

rameters are consistently estimated by maximum likelihood, and a consistent

asymptotic covariance matrix is computed for the second stage. Minimum

distance estimators are derived under �xed slopes and all identical parameters

restrictions. We used this speci�cation to examine empirically spatial patterns

of residential water demand for the French department of "Moselle", including

electricity price e�ects.

Keywords: Minimum distance estimator, panel data, spatial dependence,

water demand.

JEL Classification system: C13, C23, D12
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1 Introduction

It is often relevant to consider the spatial distribution of phenomena such as di�u-

sion patterns in counties or states of a country, or as a map of points of occurrences.

This yields the spatial analysis of the so-called lattice data, i.e., observations for

a �xed and given set of locations in space. Related applied econometric areas are

various. LeSage and Dowd (1997) used this methodology to examine the spatial

contiguity in�uences on state price level formation. A similar framework has been

used by Case (1991) to analyse the spatial patterns in household demand for rice in

some Indonesian districts. She also noticed that spatial modelling can be used in

public economics for example to suggest the extent to which regions look to others

in determining the appropriate composition of taxes or pricing, levels of expenditure

and public good provision.

In a regression framework, spatial autocorrelation (more generally spatial de-

pendence) is the situation where the dependent variable or/and the error term of a

regression function, at each location, is correlated with observations on the depen-

dent variable or/and values of the error term at other locations. As pointed out by

Anselin (1988), ignoring this structure when it is actually existing results in mis-

speci�cation and bias in estimation. Indeed, when studying the consistency of the

ordinary least squares estimator (OLS), the presence of a spatial weight matrix in

the dependent variable results in a quadratic form in the error terms. Therefore, the

OLS estimator will be biased as well as inconsistent for the parameters irrespective

of the properties of the disturbance.1 In the case of spatial residual autocorrelation,

OLS estimates will still be unbiased, but ine�cient due to the non-diagonal struc-

ture of the disturbance covariance matrix (Kelejian and Prucha (1997)). The major

estimation methods used to deal consistently with the multi-directional nature of

spatial dependence are: maximum likelihood, method of moments and Bayesian

analysis (Anselin (1988), Driscoll and Kraay (1998), Kelejian and Prucha (1998)).

Recently, LeSage (1997) have shown that Gibbs sampling provides a consistent al-

ternative framework.2

1The problem is analogue to the one induced by the simultaneity issues in least-squares. It

arises from the introduction of dependence between neighbouring observations in y as additional

regressor. Then, the multi-directional nature of the spatial dependence matters.
2Sometimes referred to as Markov ChainMonte Carlo sampling, Gibbs sampling allows to handle

an analytically cumbersome Bayesian model. It provides estimates of spatial heteroskedasticity and

estimates of parameters robust with respect to the presence of outliers.
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While most studies focus on cross-sectional speci�cations, spatial panel data

models have not received much attention. As outlined by Case (1991), �xed e�ect

models can be used to control for spatial components using panel data. But in some

cases, when there is no intra-regional variation in variables of interest, a spatial

modelling approach may be more appropriate. This is the case for example when

the variation in the variable depends upon distance between points. Then, there is a

perfect correlation between the variables of interest and the �xed e�ects. The same

paper discusses the gains in information and e�ciency which are achieved by spa-

tial random e�ects modelling, and shows that when speci�c e�ects are uncorrelated

with right hand side variables, there are clear bene�ts to spatial speci�cation. More

generally, it can be argued that the equicorrelated structure of spatial dependence

implied by the error components model does not allow for distance decay e�ects.

Here, I consider modelling and estimating panel data autoregressive spatial pro-

cesses in the general framework of minimum distance estimators. The study starts

specifying a mixed regressive spatial autoregressive model. This speci�cation de�nes

a class of random �elds, i.e., models derived from processes indexed by space, time

and cross-sectional dimensions. I work with a row-standardized contiguity matrix,

i.e., the spatial weight matrix is normalized so that the rows sum to unity. This

standardization produces a spatial lagged variable that represents a vector of aver-

age values from neighbouring observations. The speci�cation is assumed to be the

true data generating process which relates observations with reference to points in

space and time. Then, we take advantage of various econometric studies to estimate

the model in two stages.

First, assuming the errors to be normally distributed, the cross-section parame-

ters can be consistently estimated by maximum likelihood. Under suitable regularity

conditions, this stage provides both unrestricted consistent parameters estimates, in-

cluding the spatial coe�cient, and scores which are used to compute the consistent

asymptotic covariance needed for the second stage. Then, two cases are considered:

the �xed slopes case and the all identical parameters one. The minimum distance

estimator is computed for each case by stacking the estimates from the �rst stage

in a block vector on which moment conditions are imposed. In the second stage,

we minimize a quadratic distance from zero in the norm given by the inverse of the

block asymptotic covariance matrix. The resulting minimum distance estimator is

consistent and asymptotically e�cient as well. We used this speci�cation for empir-

ical purposes.
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The empirical analysis consist in examining the spatial variations of residential

water demand for the French department of "Moselle", including electricity price

e�ects. As indicated by Hansen (1996), when estimating the determinant factors of

residential water demand, we may expect to observe the indirect e�ects of energy

variables, according to water consumption between di�erent water-using tasks. In-

deed, water is consumed by households jointly with di�erent tasks which involves

use of water and in most cases sizable amounts of energy and other goods (appli-

ances, etc.). Table 9 in Appendix 5.1 reports the daily distribution (on average) of

French residential water consumption between household tasks. About 40% of this

distribution is concerned with water heating (mainly by electricity). We combine

this consideration with spatial aspects. In this context, the speci�cation described

may be viewed as a model of endogenously changing tastes, which allows to check

for social interdependence by testing the extent to which households look to a refer-

ence group when making water consumption decisions. It may also be thought of as

indicating the magnitude and the direction of interactions between consumers with

respect to the availability of water resources.

Section 2 presents the data. It describes the sampling and basic descriptive

statistics. Spatial correlograms are computed to check for spatial patterns in con-

sumption observations. I also use nonparametric density estimation to identify rele-

vant features which occur with the water average price distribution during the data

collecting period. Section 3 presents the model and estimation results. It extends the

basic elements of spatial modelling to panel data speci�cation using the minimum

distance approach. Section 4 concludes the study.

2 Data

The department of "Moselle" is made of about 730 communities (municipalities) out

of which 115 neighbouring communities have been selected for the empirical study

of the households demand for drinking water.3 Households living in these commu-

nities are supplied with drinking water by a private operator. The data considered

here represent the �rst lattice collected from the French network of drinking wa-

ter distribution. The data are collected with a biannual frequency (from 1988.1 to

1993.2). We have then a balanced panel of 1380 spatial observations. Some avail-

3The department of "Moselle" is located in the north-east of France. The communities selected

for the study are those for which we succed in obtaining reliable informations.
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able variables do not require previous important changes before being used. Others

(municipal characteristics) have been constituted from informations available in the

last municipal inventory.4 This section describes the sampling and relevant features

in variables. I also describe the possible measurement errors in data. Appendix 5.2

is devoted to the data sources and the de�nition of variables.

2.1 Sampling and descriptive statistics

The �rst step of this study has been the practical work which led to the data col-

lected. Since this collection has never been undertaken before, two important issues

arose from a closer look of consumption values. The �rst one was the identi�cation

of households' consumption. The network manager (private operator) provides wa-

ter service to the so-called "subscribers" which terms as well the citizens, that is to

say the users living in individual house or in collective blocks of �ats (for instance

council �ats), as industrials and businesses. The households' demand gathers to-

gether individual user consumption and collective user consumption. Most of the

households living in collective lodgings do not yet have meters that can give them

an accurate indication about the amount of their consumption. It is also noticed for

these consumers, that the water price is included in the rent charges. As a result, we

can suppose that the households concerned are not aware of the necessity to control

their budget with respect to water expenses.

Moreover, the example of collective blocks of �ats which shelter small businesses

is mentioned. In the case when a household living in a collective lodging gets a busi-

ness linked to his subscriber regime, we cannot separate the household consumption

of water from the business one. A similar issue occurs for some households living

in individual houses. Indeed, for those among them who possess farms or small size

exploitations linked to their "subscriber regime", the identi�cation of purely domes-

tic volumes is di�cult. For all these reasons, and in order to reduce the evaluation

errors and to be sure that the target sector corresponds to the residential one, I

have selected the subscribers connected to the drinking water supply network with

a main water capacity of 15mm in diameter, when this information was available.

Despite of this choice, we cannot exclude that some marginal consumption values

(coming from small businesses or other consumptions di�erent from the domestic

4All informations related to the communities characteristics come from the last municipal in-

ventory. The municipal inventory is a document which provides the characteristics of French com-

munities. The study is conducted by the "National Institute of Statistics and Economic Studies".

The last recording dates from 1988.
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Table 1: Descriptive statistics of consumption and average price

Consumption per house Average price in FF

Period mean std min max mean std min max

1988.1 69.68 27.75 1.11 153.15 6.28 2.11 3.24 11.29

1988.2 70.13 23.56 1.04 148.74 6.37 2.14 3.27 11.38

1989.1 72.28 28.37 1.00 186.78 6.69 2.31 3.09 11.52

1989.2 74.55 27.11 0.88 175.28 6.79 2.35 3.09 11.64

1990.1 73.47 27.43 0.96 162.52 7.05 2.44 3.40 12.40

1990.2 72.67 26.33 0.86 163.37 7.22 2.53 3.41 12.54

1991.1 75.56 29.17 0.90 179.48 7.70 2.65 3.47 13.08

1991.2 75.04 28.90 0.86 187.81 7.95 2.91 3.56 16.19

1992.1 71.94 27.07 0.73 155.81 8.66 3.40 3.63 17.59

1992.2 72.75 27.68 0.87 170.37 9.01 3.51 3.67 18.10

1993.1 72.14 26.51 0.81 157.33 9.97 3.97 4.09 19.46

1993.2 71.24 29.26 0.83 176.19 10.58 3.50 4.77 19.50

one) were found in collected data.

The second problem concerns the reconstruction of some consumption values:

either because they disappeared during �oods (it is the case of 1990's data), or

they existed under high level of aggregation. This concerns only some (very few)

unionized municipalities. The non-unionized municipalities display a semester vol-

ume. Unions result from the gathering together of municipalities. The union data

are used for the estimation of the volume consumed when municipalities data were

missing. Thus, the household semester volumes were not available to be used di-

rectly. The data used to reconstruct consumption values, as far as municipalities are

concerned, come from a document termed "water products". The volumes looked for

are semester values. When semester data are missing, I face two cases: either only

some municipalities composing the union are considered and in this case I suppose

that the consumption in the other municipalities varied in the same proportion, or

the details of the volume consumed are not available and in this case, the average

weight of each municipality in the union is computed. As a result, the data present

two characteristics which make their biannual use delicate.

On the one hand, the water reading frequency ran from at least a quaterly period

to a yearly one. In the meantime, the pricing remains biannual. The accurate bian-

nual readings are available for 1988.1 for all the municipalities, as well as the readings
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Table 2: Descriptive statistics of meteorological variables

Rainfall in m Mean temperature in C0

Period mean std min max mean std min max

1988.1 8.76 0.65 7.38 11.10 8.91 0.33 8.00 9.58

1988.2 7.29 0.70 5.94 8.87 11.47 0.29 10.68 12.15

1989.1 6.17 0.56 5.12 7.69 8.78 0.32 8.21 9.50

1989.2 6.55 0.50 5.69 8.92 11.86 0.36 10.83 12.55

1990.1 6.94 0.66 5.84 8.24 9.33 0.26 8.66 10.00

1990.2 6.93 0.77 5.50 9.41 11.48 0.32 10.56 12.20

1991.1 4.65 0.40 3.72 6.80 7.02 0.28 6.25 7.65

1991.2 5.95 0.89 4.76 7.51 11.99 0.27 11.15 12.58

1992.1 5.46 0.67 4.14 7.51 8.70 0.28 8.10 9.28

1992.2 7.97 1.20 5.26 10.25 11.92 0.18 11.30 12.46

1993.1 4.50 0.81 2.77 5.77 8.81 0.22 8.31 9.46

1993.2 10.14 0.72 8.78 12.35 10.71 0.26 9.90 11.28

Table 3: Descriptive statistics of disposable income (in thousands of FF)

Period mean std min max

1988 57.51 8.28 33.38 75.24

1989 59.07 8.65 37.47 79.23

1990 62.06 9.31 31.82 85.16

1991 63.82 10.31 33.66 92.14

1992 65.49 11.33 34.18 104.16

1993 66.97 11.76 34.33 97.68

Table 4: Descriptive statistics of characteristics in 1990

Variable mean std min max

Proportion of person <19 years 0.28 0.04 0.13 0.31

Density of population 1.10 2.60 0.0038 14.61

Proportion of Workers 29.96 4.39 11.92 37.82

Proportion of Unemployed 9.78 4.03 2.70 23.62

Index of equipment 61.87 6.86 30.24 76.84
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of 1993.1. From 1990.1 to 1992.2 some municipalities adopted a yearly reading. In

this case and to reduce the cost induced by meters readings, the volumes for one

semester is estimated from the consumptions of a precedent year, whose duration

between two readings does not always equal 52 weeks. Moreover, the calendar year

is no longer taken into account, but a year running from June to June. On the

other hand, we face a di�erence in the frequency of data collection. Indeed, the con-

sumption reading frequency may vary from one year to another because of climatic

hazards or other unforseeable parameters. To correct these bias, the consumption

values presented in this study are corrected to lead to a 52 weeks frequency. These

two characteristics, estimated values and di�erence in the reading frequency, are

possible sources of errors.5

The explained variable is the aggregate water consumption per community expressed

in cubic meter per house. Urban communities are larger than rural ones. So as to

consider homogeneous observations and in order to reduce the community size ef-

fect, each consumption value has been divided by the total number of households

per community in 1990, the year of the last inventory available. It also constitutes

the last period when the population general census was conducted by the o�ces of

the National Institute of Statistics and Economic Studies "(INSEE)". Descriptive

statistics related to the variables are shown in tables 1, 2, 3 and 4.

National statistics indicate an average water consumption tendency around 120

m3 per house and per year. These �gures vary from one house to another. Old

houses are light on water consumption whereas high standing dwellings with gar-

dens can consume around 180 m3. When we compare these indicators with those

computed from the sample, we notice that the average consumptions recorded are

of the same magnitude. Minimum values can be considered as the consumption of

rural communities. These tendencies are also indicative of the standard of living

of the population considered. As a whole, there is no outliers in consumption val-

ues. Note however some high values for 1989.2, 1991.1 and 1991.2 where we observe

74.55, 75.56 and 75.04 m3 respectively. This may result from extra consumptions

in addition to purely domestic ones. It may be the case for households having small

businesses or farms as described above. These statistics support, on average, the

relative statility of our data.

5We compute nonparametric density estimation to look closer for the distribution of consump-

tion values. The results show a main unimodal distribution around 60 and 80 m3 for each period.

These estimates support our recording target sector, i.e. the consumption of residential subscribers.

Density estimates are not presented here but they are available upon request.
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Disposable income statistics are characterised by very low values. Consider for

example the year 1990 where the minimum values are the lowest, that is, 31,820

FF per household paying tax. One obtains a monthly disposable income �gure of

2,651.66 FF. Supposing that this household paying tax is made up of a single, the

latter earns around the "minimum insertion income" in France. This shows the di�-

culty usually encountered in recording income data. Other reasons explain these low

values. Indeed, various studies conducted by the "National Institut of Statistics"

show that, in the department of "Moselle", taxable incomes under-estimate by 30%

on average the actual household incomes.6 This under-estimation is extremely high

for the self-employed (43%), and even more for self-employed farmers (57%). More-

over, even if we know that the consequences of the economic crisis on the evolution

of global wages has been compensated by a strong increase of social bene�ts and

a slight increase in taxes, the "Moselle" departement is below the national indicators.

Average price values clearly indicate relevant patterns. The average price in-

creases continuously on the twelve biannual periods. This increase shows three �g-

ures. From 1988.1 to 1989.2 the average price is below 7 FF; from 1990.1 to 1991.2 it

is below 8 FF and from 1992.1, the tendency is higher than the previous ones. This

last tendency indicates an important modi�cation in the water price structure. As a

whole, the price variable suggests a clustering pattern. It also presents an increasing

dispersion within clusters with stable minimum values (around 3,5 FF). All these

�gures are examined more carefully in the next paragraph. Before, note that the

meteorological values presented here are not dummy variables as in many studies,

but the thrue values recorded by the Regional Center of Meteorological Studies.7

2.2 Distribution of average price

For various reasons described below, it seems relevant to study the distribution of

the average price during the data collection period. Indeed, the organization and the

management of water distribution in France pertain to public service liability. The

price results from a negociation between local authorities and the water distributor

which may be the local collectivity itself or a private company. Communities and

households concerned by this study are supplied with drinking water by a private

�rm.

6Tableaux de l'Economie Lorraine 1997/1998 (Tables of Lorraine Economics), (INSEE (1998)).
7As we may expect, the �rst semester values are less than those of the second semester.
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Figure 1: Distribution of average price, kernel density estimates (Three modes from

1988.1 to 1991.2 corresponding to three within sector pricing. In 1991.1 and 1992.2,

the central mode starts disappearing as a result of the "M-49 directive". From

1992.1 on, only two modes remain.)
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According to the water supplier, the communities are organized in two sectors,

but there is some doubt about the exact number of sectors. We denote each sector

by a dummy variable (dummy 1 for sector 1 and zero for sector 2). Out of 115 com-

munities, 65.2% belong to sector 1. The sectors correspond to two distinct areas of

water management. This spatial arrangement is mainly due to the network manage-

ment issues (water transportation and various treatments to make water drinkable)

and is closely linked to the various elements of water prices.8 The marginal price of

water is the same within a given sector but varies between sectors. Thus, we know

that there is no intra-regional variation in the marginal price. But the average price

varies from one community to another when the �xed charges of water are included,

see appendix 5.2 for the computation of average price. Moreover, the laws on wa-

ter of november 1992, by the so-called "M-49 directive", have strongly modi�ed the

working orders of water agencies.9 This modi�cation has been translated into a high

increase in water prices. The aim is to let customers pay for the e�ective price of

water, and no more for the water service.

To check for the persistency of sector design e�ects in the distribution of the

average price (having incorporating the �xed charges of water), we use nonpara-

metric estimation for data analysis and identi�cation purposes (Silverman (1986)

and Wand and Jones (1995)). Figure 1 shows the kernel density estimate of the

average price for each time period.10 Two main results follow. We notice that, up

to 1991.2, the distribution displays three modes. From 1992.1 on, the central mode

starts disappearing and by 1993.2 there are only two modes left. This distribution

can be mainly explained by the modi�cations that occurred in water pricing in 1992.

These modi�cations are due to the "M-49 directive" which resulted in a change in

water pricing. Not only the price increased continuously as indicated by descriptive

statistics, but now, two sectors appear clearly from 1992. The distribution reveals

that there may be three sectors up to 1992.1. Thus, sector design e�ects remain

in the average price. We may expect a within sector behavior regarding the water

consumption and then a spatial e�ect.

8To make ideas clear, we computed the correlation coe�cient between the average price variable

and the sector dummy for each time period: (-0.33, -0.32, -0.38, -0.38, -0.36, -0.39, -0.35, -0.34,

-0.35, -0.38, -0.35, -0.41). There is evidence of correlation.
9Set up on November 10th, 1992 (its implementation date) the "M-49 directive" imposes to wa-

ter services (supply and cleaning up) the rule of budget balance. They are forced not to make their

general budget support the water spendings (building up and maintenance of network, equipments,

cleaning up...).
10Here, we use the Epanechnikov kernel and the cross-validation method for the choice of the

bandwidth.
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2.3 Test for speci�c spatial autocorrelation and spatial cor-

relograms

I introduce here various analytic methods which are of value in assessing the spatial

scale of a process. The variables of interest are: consumption, average price and

disposable income. I use the G-statistic which provides a measure of overall spa-

tial association, and observation-speci�c spatial association as well. These statistics

are computed by de�ning a set of neighbour communities. For each location, these

communities are considered as those which fall within a distance band. Two tests

are computed.

Table 5: G-test for speci�c spatial autocorrelation
Consumption Average price Disposable income

Period G-stat prob (%) G-stat prob (%) G-stat prob (%)

1988.1 0.329 0.7 0.389 00 0.358 48

1988.2 0.337 3.0 0.387 00 0.358 48

1989.1 0.332 1.6 0.395 00 0.361 15

1989.2 0.335 2.3 0.395 00 0.361 15

1990.1 0.332 1.2 0.395 00 0.359 30

1990.2 0.331 0.6 0.397 00 0.359 30

1991.1 0.329 0.5 0.399 00 0.362 9.7

1991.2 0.328 0.4 0.399 00 0.362 9.7

1992.1 0.341 11 0.405 00 0.363 7.5

1992.2 0.332 1.1 0.405 00 0.363 7.5

1993.1 0.342 13 0.405 00 0.365 2.6

1993.2 0.328 0.6 0.393 00 0.365 2.6

First, we test for a speci�c spatial association, i.e., the extent to which a location

is surrounded by a cluster of high or low values for the variables of interest for each

period.11 The statistics are reported in tables 5. We observe a signi�cant value for

the consumption (except for 1992.1 and for 1993.1) which is indicative of a spatial

clustering of low values. Average price G-statistic are all highly signi�cant. Then, a

spatial dependence for high values occurs. Except for 1993, spatial autocorrelation

for income values is rejected. This test has a "static aspect" and do not provide

informations on the spatial dynamics of the process. This issue is handled on the

sequel using spatial correlograms.

11Note that measures of global spatial association such as Moran's I and Geary's c fail to detect

such a pattern.

13



Figure 2: Estimation of spatial correlograms for consumption (Up to eight spatial

lags on the X-axis and the t-value of the G-statistic on the Y-axis. The �rst two

lags of each correlogram are highly signi�cant indicating spatial dependence which

decreases with lags, except for the seventh lag. The eighth lag for 1991.1 presents

also signi�cant spatial dependence.)
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Although the interaction between spatial units may be strong between immedi-

ate neighbours, the strength of interaction will often vary in a complex way with

distance. We test for the di�erence of spatial autocorrelation for the consumption

variable over di�erent weight matrices by using spatial correlograms.12 For further

technical details and discussions on spatial correlograms see Cli� and Ord (1981),

and Cressie (1991).

The results of the estimated spatial correlograms for each time period are re-

ported in �gure 2. Spatial lags are reported on the X-axis (up to eight lags), and

the t-statistics associated to G-values are indicated on the Y-axis.13 A signi�cant

and strong indication of spatial clustering for the �rst and second orders of conti-

guity is evident (except for 1993:1). We notice a decreasing spatial autocorrelation

with increasing orders of contiguity, which is typical of many spatial autoregressive

processes. The signi�cant and negative spatial autocorrelations at lag 1 contrast

with the signi�cant and positive spatial autocorrelations at lag 2. Then, at lag 1,

low values of water consumption are likely to be spatially correlated, and at lag 2,

it may be the case for high values. This result clearly indicates potential spatial

dependence in consumption observations. Thus, it seems relevant to include the

spatial dimension in the model speci�cation.

3 Empirical speci�cations

In this section, I consider modelling and estimating panel data autoregressive spatial

processes within the framework of minimum distance methods. I use the class of

mixed regressive spatial autoregressive models as described in Anselin and Bera

(1998).

3.1 Model

Consider a linear panel data regression model where the observations are stacked

by time period yt = (y1; � � � ; yi; � � � ; yN)
0 and Xt = (X1; � � � ;Xi; � � � ;XN )

0 for t =

12Higher order contiguity is used to compute spatial correlograms. The contiguity matrices are

obtained by taking powers of the unstandardized form of the �rst order contiguity matrix and by

correcting for circularity. The spatial lag length is eight. It corresponds to the point where higher

order contiguity result in unconnected spatial units, i.e., spatial units for which the corresponding

row in the contiguity matrix consists only in zeros.
13To ease presentation, other statistics related to spatial correlograms (expectation, standard

deviation, and signi�cance level) are not reported here.
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1; � � � ; T and i = 1; � � � ; N . Such data organization is due to the introduction in the

sequel of the matrix W which is the same over time. Moreover, it allows to take

observations by cross-section. The dimension of yt is (N �1) and Xt is N � (K�1).

We assume that each cross-section follows a spatial autoregressive process. Then,

the model has the following structure:

yt = [Wyt;Xt] �t + "t �t = (�t; �t)
0
; j�tj < 1 (1)

where yt is the vector of dependent cross-sectional observations for an area (state, dis-

trict, municipality etc.),W is a known (N �N) spatial weights matrix, usually con-

taining �rst-order contiguity relations or functions of distance between spatial units.

This is the matrix computed in Appendix 5.3. We work with a row-standardized

version of W , that is W is normalized so that its rows sum to unity. This standard-

ization produces a spatial lagged variable Wyt (also termed regionalized variable)

that represents an average of values from neighbouring yt for each time period. Xt

is the matrix of explanatory variables, �t is a (K�1) vector of unknown parameters

to be estimated. It contains the spatial coe�cient (scalar) �t and the vector �t (of

dimension K � 1) of the other explanatory variables. "t = ("1; � � � ; "i; � � � ; "N )
0 is

the (N � 1) vector of disturbances.

Let consider that the G-variates yt are generated by yt = f(yt;Xt;W; �0) + "t

where �0 2 � � RK, yt 2 RG, Xt 2 R
P, "t 2 RG. We assume that the condi-

tional distribution of "t given Xt is equal to the product of the conditional distri-

butions for t 6= s. This distribution is assumed to be gaussian with E("t) = 0 and

E("t"0s) = �2
t Id, for t 6= s.

Relation (1) is analogous to the multivariate lagged dependent variable model

for time series regressions, with a spatial parameter �t indicating the extent to which

variations in yt are explained by the average of its neighbouring observations values.

The hypothesis of normal errors allows to estimate the parameters of each cross-

section separately by maximum likelihood. Estimation by asymptotic least squares

(minimum distance) is conducted in two stages.

First, let �̂t denote the unrestricted maximum likelihood estimates for parameters

�t, �t and �2
t for each cross-section. That is:

�̂t = arg max
�t2�

X
i=1;��� ;N

t6=s

 it (yt;Xt;W; �t) (2)
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where  nt (yt;Xt;W; �) denotes the log likelihood function computed as:

 nt(yt;Xt;W;�t; �t; �
2
t ) = �

N

2
ln(2�)�

N

2
ln�2

t + ln jAj �
1

2�2
t

e0tet (3)

with et = Ayt � Xt�t, A = I � �tW and j � j denotes the determinant. Such a

likelihood is non-linear in parameters and is usually handled numerically. For the

details see Anselin (1988).

In a second stage, we use the unrestricted maximum likelihood estimator of the �rst

stage to obtain the restricted asymptotic least squares estimates by imposing several

restrictions of the form g(b̂(�); a) = 0. The ALS estimator is obtained by choosing

ân to minimize a quadratic form for the norm given by the inverse of the asymptotic

covariance matrix of g(b̂(�); a0). Then, the ALS estimator â(Sn) is given by the

minimization program:

â = arg min
a2A

�
g(b̂(�); a0)

�0
Sn

�
g(b̂(�); a0

�
(4)

where Sn
a.s.

! S a positive de�nite symmetric matrix, A = a(P) � RK and a0 =

a(P0);8P 2 P. The optimal choice for S is known to be the inverse of the covariance

matrix of g(b̂(�); a0) (Gouriéroux, Monfort, and Trognon (1985)) and (Kodde, Palm,

and Pfann (1991)). Under suitable regularity conditions, the estimator â(Sn) exists

and is consistent. Let 
 denote the approximation of S:


 =
1

N

�
J�1IJ�1

�
(5)

where J = diagfJ1; � � � ; JTg is a block diagonal matrix with elements:

Jt = E

�
�
@2 (yt;Xt;W; �0)

@�@�0

�
(6)

and elements of I are given by:

It = E

�
@ 

@�
(yt;Xt;W; �0)

@ 

@�
(yt;Xt;W; �0)

0

�
(7)

We obtain a consistent estimator 
̂ of 
 by replacing theoretical expectations by

sample means as follows.

Let  i(y;Xt;W;�; �; �2) denote the log-likelihood for one observation:

 i(y;X;W;�; �; �2) =�
1

2
ln(2�)�

1

2
ln�2 +

1

N
ln jAj

�
1

2�2

"X
j2J

�
1[i=j] � �!ij

�
yj �

X
k

Xik�k

#2 (8)
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where j = 1; � � � ; J is the set of communities contiguous to a community i and 1[i=j]
denotes an indicator function. Taking partial derivatives of (8) with respect to the

parameters yields:

@ i(�)

@�k
=

1

�2

"X
j2J

�
1[i=j] � �!ij

�
yj �

X
h

Xih�h

#
Xik (9)

@ i(�)

@�
=

1

�2

"X
j2J

�
1[i=j] � �!ij

�
yj �

X
h

Xih�h

#X
j2J

!ijyj +N�1� (10)

@ i(�)

@�2
= �

1

2�2
+

1

2�4

"X
j2J

�
1[i=j] � �!ij

�
yj �

X
k

Xik�k

#2
(11)

with � = @ ln jAj
@�

= � [tr (A�1W )].

Let v̂t =
h
@ i(�)
@�k

j @ i(�)
@�

j @ i(�)
@�2

i
�=�̂

be a block element of Î of dimension N � (K + 2)

obtained by stacking the vector of derivatives evaluated at parameters estimates.

The empirical variances matrix Î of individual scores is given by the cross product

of v̂t;s for t 6= s. The estimate 
̂ of 
 is computed as Ĵ�1ÎĴ�1.

From this general speci�cation, we obtain various estimates by imposing two restric-

tions. The �rst restriction is that of �xed slopes expressed as:

g(b̂(�); a) =

0
BBBB@
�̂1x � �x

�̂2x � �x
...

�̂Tx � �x

1
CCCCA = O (12)

with �̂t = (�̂0t �̂
x
t )

0, t = 1; � � � T , where �0t and �̂
x
t denote respectively the parameters

vector of varying intercept and the parameters vector of �xed slopes for the period

t, and a = �x. The second restriction is that of all identical parameters:

g(b̂(�); a) =

0
BBBB@
�̂1 � �

�̂2 � �
...

�̂T � �

1
CCCCA = O (13)

with b̂ = (�̂1; � � � ; �̂T )0 and a = �. For each case, we obtain the ALS estimates by

generalized least squares.
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3.2 Estimation results

We use the model speci�ed above to carry out empirical estimation on data de-

scribed in the previous section.14 Tables 6 and 7 present the unrestricted maximum

likelihood estimates for the mixed regressive spatial autoregressive model for the

twelve time periods. A Lagrange multiplier test shows rejection of the alternative

spatial error speci�cation for most cases except for 1988.2, 1991.1, 1992.1 and 1993.1.

For these cases, spatial dependence remains in the residuals and our speci�cation

is clearly rejected. Thus, a mixed autoregressive spatial moving average model, i.e.,

a model with a spatial lag dependent variable as well as a spatial moving average

process in the error will be more appropriate. In the other cross-sections, the spa-

tial dependence has been adequately dealt with. A spatial Breusch-Pagan test for

spatial heteroskedasticity clearly indicates that heteroskedasticity patterns remain

in the speci�cation.

Characteristics variables: proportion of persons below 19 years, proportion of

workers, proportion of unemployed, community equipments, density of population

appear to be stable over time. Some of them (proportion of persons below 19 years,

proportion of workers and proportion of unemployed) are highly signi�cant in the

unrestricted cross-sectional estimates. Note that the average price of water becomes

signi�cant only from 1990.1 on. The intercept varies widely but is not signi�cant.

Table 8 reports the results from the asymptotic least squares for the two sets of

restrictions. The minimum distance tests indicate no rejection for our restrictions

(�xed slopes and all �xed parameters). Nevertheless, imposing additional restric-

tions may lead to rejection. For the �rst restriction, the estimated coe�cients ap-

peared to be signi�cant except for the disposable income and the density of popu-

lation variables. The other coe�cients have the expected sign, except perhaps for

the coe�cient of the electricity price variable which is positive. This means that an

increase in the electricity average price results in an increase in water consumption,

which a priori appears to be surprising. Indeed, this result is in contradiction with

the study of Hansen (1996) where the energy cross-price electricity is found to be

negative. This result may indicate that consumers take into account the electricity

block pricing structure where water consumption occurs e�ectively. For the second

restriction, meteorological variables (rainfall and mean temperature) are no longer

signi�cant but are of the expected sign.

14GAUSS procedures to implement these calculations are available from the author on request.
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Table 6: Unrestricted ML regressive spatial autoregressive estimates (continued)

Cross-section estimates (and standard errors)

Variable 1988.1 1988.2 1989.1 1989.2 1990.1 1990.2

Intercept 128.33 -157.20 -190.32 58.00 -653.15 -160.67

(157.10) (171.10) (267.64) (244.24) (310.40) (256.57)

Disposable Income 0.524 0.036 -0.564 -0.887 0.238 0.063

(0.665) (0.590) (0.717) (0.736) (0.605) (0.605)

Water price -1.346 -0.860 -1.508 -1.702 -2.093 -1.391

(1.275) (1.195) (1.082) (1.209) (1.116) (1.137)

Electricity price 0.194 0.189 0.483 0.125 0.599 0.349

(0.130) (0.108) (0.264) (0.235) (0.284) (0.240)

Rainfall -0.946 0.269 -1.220 -1.384 0.862 -0.552

(0.380) (0.406) (0.373) (0.426) (0.376) (0.318)

Mean temperature -1.138 16.087 3.419 8.371 25.220 2.924

(6.469) (8.481) (6.521) (6.257) (9.068) (6.989)

Persons < 19 years -1.396 -1.694 -1.028 -1.239 -0.576 -0.882

(0.575) (0.530) (0.596) (0.607) (0.600) (0.582)

Workers -2.662 -1.478 -2.194 -0.726 -2.724 -1.716

(0.651) (0.585) (0.700) (0.695) (0.647) (0.659)

Unemployed -2.977 -2.624 -3.321 -2.740 -3.477 -3.124

(0.603) (0.561) (0.603) (0.614) (0.621) (0.616)

Equipments -0.409 -0.678 -0.281 -0.211 -0.084 -0.078

(0.352) (0.330) (0.359) (0.366) (0.359) (0.359)

Density of population 0.166 0.123 0.225 0.004 0.316 0.081

(0.400) (0.374) (0.405) (0.415) (0.412) (0.410)

Spatial lagged variable 0.273 0.119 0.281 0.323 -0.004 0.310

(0.282) (0.325) (0.288) (0.292) (0.335) (0.292)

Diagnostics tests, (p-value)

LM spatial error 0.704 3.911 0.219 0.826 0.269 0.374

(0.401) (0.047) (0.639) (0.363) (0.603) (0.540)

Spatial B-P heteroskedas. 13.753 7.778 19.826 13.538 16.634 25.224

(0.131) (0.556) (0.019) (0.139) (0.054) (0.002)

Number of obs 115
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Table 7: Unrestricted ML regressive spatial autoregressive estimates (end)

Cross-section estimates (and standard errors)

Variable 1991.1 1991.2 1992.1 1992.2 1993.1 1993.2

Intercept -248.72 -423.66 -72.88 -21.60 -50.34 -320.07

(348.13) (330.08) (346.51) (317.15) (322.76) (350.23)

Disposable Income 0.067 0.100 0.127 -0.225 0.147 -0.269

(0.612) (0.518) (0.457) (0.443) (0.439) (0.483)

Water price -1.212 -3.595 -2.177 -0.729 -1.949 -3.092

(1.167) (1.025) (0.898) (0.915) (0.689) (0.757)

Electricity price 0.443 0.500 0.166 0.215 0.147 0.482

(0.346) (0.297) (0.334) (0.276) (0.306) (0.281)

Rainfall -1.384 -0.127 0.011 -0.911 0.002 -0.356

(0.606) (0.306) (0.384) (0.264) (0.280) (0.319)

Mean temperature -9.589 10.831 10.025 3.240 13.723 7.660

(8.177) (8.561) (7.646) (12.058) (9.354) (8.216)

Persons < 19 years -0.829 -0.458 -0.697 -0.463 -1.138 -0.445

(0.651) (0.605) (0.566) (0.537) (0.550) (0.567)

Workers -2.533 -2.088 -2.209 -1.613 -1.796 -2.517

(0.719) (0.685) (0.689) (0.638) (0.646) (0.652)

Unemployed -3.088 -2.928 -3.067 -2.878 -2.479 -3.132

(0.690) (0.646) (0.623) (0.586) (0.606) (0.644)

Equipments -0.022 0.135 -0.166 0.015 -0.555 0.204

(0.402) (0.379) (0.364) (0.335) (0.345) (0.365)

Density of population -0.096 0.453 0.114 0.187 -0.004 0.523

(0.457) (0.435) (0.416) (0.392) (0.406) (0.421)

Spatial lagged variable 0.386 0.134 0.484 0.260 0.233 0.287

(0.273) (0.299) (0.243) (0.285) (0.299) (0.284)

Diagnostics tests, (p-value)

LM spatial error 6.386 0.074 7.863 1.194 9.798 1.093

(0.011) (0.785) (0.005) (0.274) (0.001) (0.295)

Spatial B-P heteroskedas. 13.458 20.644 21.721 15.658 19.717 42.132

(0.142) (0.014) (0.009) (0.074) (0.019) (0.000)

Number of obs 115
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Table 8: Asymptotic least squares estimates

Restriction 1 Restriction 2

(�xed slopes) (all �xed parameters)

Variable coe�cients stderr t-stat coe�cients stderr t-stat

Intercept � � � 4.496 40.886 0.109

Disposable Income 0.092 0.145 0.637 0.205 0.170 1.201

Water price -1.998 0.253 -7.878 -2.385 0.264 -9.017

Electricity price 0.240 0.055 4.324 0.201 0.038 5.226

Rainfall -0.367 0.082 -4.474 -0.079 0.041 -1.901

Temperature 5.780 1.992 2.901 0.594 0.425 1.399

Persons < 19 years -0.991 0.155 -6.390 -0.959 0.183 -5.241

Workers -2.104 0.175 -11.965 -2.131 0.201 -10.584

Unemployed -2.931 0.167 -17.544 -2.800 0.196 -14.217

Equipments -0.223 0.097 -2.292 -0.271 0.115 -2.347

Density of population 0.149 0.111 1.341 0.175 0.130 1.338

Spatial lagged variable 0.271 0.078 3.437 0.289 0.091 3.163

R2 0.692 0.603
�R2 0.656 0.565

�2(5%) 94.165 133.972

d.o.f 143 121

Number of obs (N�T ) 1380

The spatial coe�cient is also highly signi�cant, which con�rms the modelling

framework. Here, the spatial behavior may be viewed in two ways. First, we can

argue that households are actually in�uencing their neighbours. The water con-

sumption behavior of other households a�ects the consumption of a given household

through social proximity. In this sense, the estimated spatial coe�cients represent a

direct measure of externality. The signi�cant spatial pattern may also be interpreted

as the reaction of households with respect to the availability of water resources.

4 Conclusion

The aim of this paper was to specify panel data autoregressive spatial processes in

the framework of a minimum distance method. For these models, the minimum-

distance estimator is an attractive alternative to a direct maximum likelihood on
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the overall (T�N) observations. Indeed, in the context of random e�ects speci�ca-

tion, our approach is easier to compute and may be consistent when the maximum

likelihood would not be. Furthermore, speci�cation tests can be run as well. We

have presented the area of residential water demand including electricity aspects

as a direct application. Investigating data, we show that spatial patterns actually

exist. Estimation results indicate that our approach is feasible. Nevertheless, the

speci�cation remains to be improved. Future works may incorporate spatial het-

eroskedasticity in the error term. We can also take advantage of the Chamberlain

approach in a random e�ects model (Chamberlain (1984)). These implementations

may be done keeping in mind the asymptotic considerations induced by this mod-

elling.

5 Appendix

5.1 Distribution of French daily residential water consump-

tion between household tasks

Table 9: Water-using tasks (Source: "General Company of Waters")

Water consuming tasks Proportion

Drink 1%

Cooking (heated) 6%

Dish washing (heated) 10%

Clothes washing (heated) 12%

Toilets 39%

Personal hygiene (heated) 20%

Outdoor use (including sprinkling) 6%

Other uses 6%

5.2 De�nition of variables and related data sources

The data were provided by "Vivendi, La Compagnie Générale des Eaux (Direction

Régionale Est" (General Company of Water(s)), "la Direction Générale des Impôts

de la Moselle" (Regional Tax Center), "le Centre Départemental de la Météorologie

de la Moselle" (Regional Center of Meteorological Studies) and "l'Institut National

de la Statistique et des Études Économiques" (National Institute of Statistics and

Economic Studies). The variables used in this study are the following.
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Dependent variable: aggregate residential water consumption per community ex-

pressed in m3 per house.

Explanatory variables

� Water average price in "FF" per m3 (computed to include �xed charges),

� Electricity average price in "FF" per kwh,

� Disposable income per household paying taxes; available by year period, and then

has been divided by 2 to obtain biannual values,

� Rainfall in m,

� Mean temperature in degree Celsius,

� Proportion of persons below 19 years,

� Proportion of workers,

� Proportion of unemployed,

� Index of equipments,

� Density of population,

� Spatial lagged dependent variable.

5.3 Computation of the contiguity matrix

Table 10: Characteristics of the distance matrix
Variables statistics

Dimension (number of points) 115

Average distance between points 28.665

Distance range 85.135

Minimum distance between points 1

Maximum distance between points 86.135

Quartiles:

First 13.317

Median 29.273

Third 41.641

Minimum allowable distance cuto� 5.362

The binary contiguity matrixW we use is created from information on the distance

between communities. First, a matrix of distances D with elements dij based on

latitude-longitude coordinates of the centroids from each community is computed

using the Euclidean metric. In a second step, the information in the distance matrix

is used to create a row-standardized spatial weights matrix W whose elements are

de�ned as follows :
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!ij =

8<
:1 if dij 2 [dinf;dsup]

0 otherwise

where [dinf;dsup] is a speci�ed critical distance. Here we do not have any prior notion

of which distance ranges are meaningful. Then we arbitrarily choose a statistical

meaningful one, that is the �rst and third quartiles. The reason for using such

contruction in our study and not the usual "rook criterion" (common border based

contiguity) is that the communities considered here do not constitute a block area

and there are some isolated communities. Table 10 provides the main characteristics

of the distance matrix.
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