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Abstract

This paper is about learning in dynamic environments. We introduce the concept

of an augmented value function for in�nite horizon discounted dynamic programs. In

numerical simulations we show that presence of experimentation and `slow cooling' enables

learning, of the augmented value function and hence optimal behavior, over reasonable

time horizons.
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1 Introduction

In dynamic economic models it is usually assumed that an agent's behavior is in line

with solutions of a dynamic optimization problem. Since such problems are quite di�cult

to handle, it is frequently argued that the agents do not actually solve these problems,

but, through a process of learning over time, they start to behave in accordance with the

optimal solution.

Reinforcement learning is possibly the most primitive learning method. It does not re-

quire the agents to form expectations or go through a sophisticated reasoning. Alternative

policy choices are directly rewarded or penalized according to their consequences. Classi-

�er systems, that are introduced by Holland (1975), are suitable tools for reinforcement

learning by arti�cially intelligent agents. A classi�er system consists of a list of condition-

1Corresponding author. Tel.: +90 312 2665716; fax: +90 312 2665140; e-mail: mehmet@bilkent.edu.tr

1



action statements, which are called classi�ers, and a corresponding list of real numbers,

called the strengths of the classi�ers. Classi�ers bid their strengths in competition for

the right to guide the agent in each decision situation. The strengths are, then, updated

according to the outcomes.

Classi�er systems learning is used in a number of economic models that have appeared

in the literature. In repeated static decision environments, examples include Arthur (1991),

Beltrametti et al. (1997) Kirman and Vriend (1996) and Sargent (1993). In the context of

the Kiyotaki-Wright model of money, which is a dynamic game with a recursive structure,

Marimon et al. (1990) and Ba�s�c� (1998) use classi�er systems in their simulations. Lettau

and Uhlig (1995), on the other hand, analyze the connection between the relevant dynamic

programming problem and the asymptotic behavior of the corresponding classi�er systems

learning process. Lettau and Uhlig (1995) study only the limiting behavior of classi�er

strengths and do not allow experimentation by the agents. They show that if the classi�er

system is rich enough, then the strengths of the asymptotically winning classi�ers converge

to the values given by the solution to the Bellman's equation. They also show, however,

that the strengths of the remaining classi�ers may freeze in an arbitrary point in a large

region of real numbers.

In the present paper, by numerical simulations, we show that allowing for experiment-

ation, in the form of trembling hands, results in the convergence of the vector of all

strengths to a unique vector of real numbers. We characterize this limit vector and call

it the augmented value function. We also study the speed of convergence, which is not

addressed by Lettau and Uhlig (1995).

In the following section, we de�ne the augmented value function in the context of a

simple cake eating problem. In Section 3, we describe the details of the learning algorithm.

In Section 4, we present the results of our numerical simulations. Section 5 concludes.
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2 The Consumption-Savings Problem

Consider the optimization problem faced by an in�nitely lived consumer who has k0 2

X = f0; 1; :::; �kg units of cake available in Period 0. Here, X denotes the state space. The

cake is perfectly storable and the consumer, in each period t, has the option of consuming

a discrete amount of cake, again, from the set X, subject to the availability condition,

ct � kt.

We assume an instantaneous utility function, U : X ! <, which exhibits diminishing

marginal utility from consumption. The lifetime utility is given by the expected in�nite

sum of current and future utilities from consumption, properly discounted by the factor

0 < � < 1.

We assume that there is a positive probability ps of receiving a subsidy of �k units of

cake from the government, to be collected at the beginning of the following period, t+ 1,

if and only if the consumer has 0 units of cake in hand at the end of the current period, t.

For this problem, we can write the following Bellman's equation:

v(k) = maxfU(c) + �Ev(k � c+ s) j c 2 X; c � kg (1)

for all k 2 X, where s is a random variable that takes on a value of �k whenever the

subsidy is received by the consumer and 0 otherwise. Here, v : X ! <, which is called the

optimal value function, gives the maximal amount of expected lifetime utility attainable

by a consumer who starts o� with a speci�ed amount of cake in hand. Equation (1) can

be numerically solved by using the value function iteration method discussed, for example,

in Stokey and Lucas with Prescott (1989).

For this consumption-savings problem, we now de�ne the augmented value function,

�v : A ! <, where A = f(k; c) 2 X � X j c � kg. The interpretation of �v(k; c) will be

the expected lifetime utility from consuming c units in this period, and following optimal

policies thereafter. One can, therefore, de�ne the augmented value function through the
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formula:

�v(k; c) = U(c) + �Ev(k � c+ s); (2)

for all (k; c) 2 A. From (1) and (2) it follows that:

v(k) = Maxf�v(k; c) j c 2 X; c � kg (3)

for all k 2 X.

By using (2) and (3), one can easily show that the augmented value function satis�es

the functional equation,

�v(k; c) = U(c) + �Emaxfv(k � c+ s; c
0

) j c
0

2 X; c
0

� k � c+ sg; (4)

for all (k; c) 2 A.

In the simple numerical example that we will study here, we take X = f0; 1; 2g, U(0) =

0, U(1) = 8, U(2) = 10, � = 0:9 and ps = 0:4. Under these parameter values, we

numerically calculate the augmented value function as, �v(2; 0) = 46:27, �v(2; 1) = 51:41,

�v(2; 2) = 50:23, �v(1; 0) = 43:41, �v(1; 1) = 48:23, �v(0; 0) = 40:23.

These numbers indicate that the optimal policy for a consumer with 2 units of cake is

to consume 1 unit today and the remaining unit tomorrow. This statement follows from

observing that �v(2; 1) is the highest among �v(2; :), and �v(1; 1) exceeds �v(1; 0).

3 The Learning Algorithm

We will consider the learning problem of an agent who knows neither the augmented value

function, nor the optimal policies. The agent will be assumed to have subjective values

for each possible state-action pair and to update these values through experience. We

call such a procedure of learning by doing, reinforcement learning. Classi�er systems,

developed as exible and powerful tools for machine learning have a structure suitable for

modeling reinforcement learning.
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A classi�er system consists of a potentially exible list of condition-action statements

together with their strengths. There are three main steps in the operation of a classi�er

system. 1. Recognize your current condition, or state, and determine the list of classi�ers

applicable in the current condition (activation), 2. Pick one classi�er among the activated

ones based on the information conveyed by their strengths, follow its advice and bear the

consequences (selection), 3. According to the consequences, update the strength of the

classi�er responsible from these (update). Then, go to Step 1.

In problems with a discrete and small state space, it is natural to assume that the agent

can recognize precisely the current state. We, therefore, work with classi�er systems that

are complete. A classi�er system is called complete if it contains exactly one classi�er

for every conceivable action in every speci�c state. In the consumption-savings problem

of Section 2, there are a total of 3 states, 0,1,2, and a total of 1, 2, and 3 actions in

these states respectively. Therefore, our consumer has a total of 6 speci�c classi�ers. The

strengths of these classi�ers will be denoted by Sim, where i stands for the amount of

cake in hand in the beginning of a period and m stands for the amount of consumption

recommended.

Since initially our consumer does not know the augmented values corresponding to

these classi�ers, we generate the initial strengths randomly from i.i.d. N(46,20). At any

point in time, suppose that the consumer is at state i, i.e. has entered the current period

with i units of cake, and hence i di�erent classi�ers are activated. In the selection step,

with a positive probability, 1 � pm, the consumer will be assumed to follow the advice

of the classi�er which has the highest strength among the activated ones. Here, pm > 0

denotes the probability of mistake taking place in a given period. The mistakes are in the

form of trembling hands. Upon their realization, the consumer is assumed to randomly

select one of the i activated classi�ers, with uniform probability.

After the selection step, utility from consumption is realized and if all the cake has been

consumed, a subsidy of 2 units is received with probability ps. These events determine the
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next period's state, j. The strength of the most recently activated classi�er, im, is then

updated in transition from state, i, to next state, j, based on the realized utility, Um, and

the maximum classi�er strength at the next period's state, S�jt = maxnfSjntg, according

to the formula,

Sim;t+1 = Simt + �imt(Um + �S�jt � Simt) (5)

where, t is the time subscript and �imt is the t
th element of the cooling sequence for classi�er

im. A cooling sequence is a non-increasing sequence of positive weights that converge to

zero at a slow rate in such a way that,

1X

t=0

�imt =1:

The intuition behind the strength update formula (6) lies in its connection with equation

(4). If the sum of the current utility from consumption and the discounted future maximal

strength is above the strength of the most recently selected classi�er, then it is rewarded by

an increase in its strength. Otherwise, it is penalized by a reduction. Once the strengths

of the classi�ers have converged to their corresponding values in the augmented value

function satisfying (4), the term in parenthesis in (6) has an expectation of zero, which

makes the expected change in Simt zero. However, uctuations due to the random subsidy

term will remain. These uctuations will be eliminated over time as the cooling sequence,

�imt, approaches zero.

In economic applications,2 it is customary to take the cooling function in the form,

�imt =
1

�imt + 2
; (6)

where �imt is an experience counter, recording the number of times that the particular

classi�er, im, has been selected up to time t. Initially, we set �im0 = 0 for all classi�ers,

im, so that the initial value of �im becomes 1=2.

2See, for example, Marimon et al. (1990).
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In order to control the speed of convergence of �imt, we use a positive integer denoted

by l. Then the formula

�imt =
1

[�imt=l] + 2
(7)

is used to generate the cooling sequence. Here, [:] denotes the greatest integer function.

For example for l = 5, it takes 5 times longer for the �imt sequence to reach any given

� 2 (0; 1=2), compared to the case where l = 1.

4 Simulation Results

We have prepared a GAUSS program to implement the learning algorithm discussed above.

In a single run of the algorithm with randomly generated initial strengths, l = 1, and

m = 5%, we were able to see the e�ects of fast cooling on the convergence pattern of

classi�er strengths.

Insert Table 1 about here.

As seen in Table 1, the ordering of the initial strengths is consistent with the optimal

behavior. However, the values of strengths are far away from their targets depicted in the

last line of Table 1. From the Table, an extremely slow tendency for strengths to converge

to the augmented values is observed. Even at the end of 20 million trials the strengths are

considerably far away from their targets. A linear extrapolation, from 15 million periods

onwards, reveals that the agent would need 173.7 million more trials to reach the correct

value for the classi�ers at State 2. It is apparent that this number would, in fact, be much

higher if the extrapolation were to take into account the decrease in the value of �imt over

time.

Insert Table 2 about here.

For the same initial values, and mistake rate but for a much slower cooling rate given by

l = 20, the speed of convergence is observed to increase dramatically. Table 2 shows that
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after around 11500 time periods, the strengths of the correct classi�ers, S21, S11 and S00,

have almost hit their target values. Moreover, the strengths of the remaining classi�ers,

S22, S20 and S10, which were subject to much smaller number of updates, came close to

their target values.

Insert Table 3 about here.

In order to see the robustness of the observations made in Table 2, we have conducted

1000 independent runs. Table 3 summarizes the convergence pattern for a mistake rate of

5% and a cooling parameter of l = 20. Since the initial strengths are selected randomly

across runs, initially only one third of the consumers, who start with 2 units of cake,

would choose the optimal consumption level of 1 unit. Similarly only about a half of

the consumers holding 1 units of cake would consume it, at the beginning. As learning

proceeds, at around period 1000, 95% of all consumers have started to follow the optimal

cake eating plan. The convergence of strengths to the augmented value function, however,

took somewhat longer. In period 18000, the convergence was attained almost fully for

the most frequently selected classi�ers. And for the remaining ones, the tendency of

convergence is apparent.

Insert Table 4 about here.

To see how the mistake and the cooling parameters a�ect the speed of learning, we

have set the initial value of S22 as high as 300, while initializing all other strengths at

around their limit values. The �rst time period, at which S21 > S22 is attained, is

called the learning duration and is recorded as a statistic. In 50 independent runs for

each parameter pair, the average learning duration is reported in Table 4. The Table

indicates that learning becomes faster as the mistake rate increases and as the cooling

speed decreases.
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5 Concluding Remarks

In this paper, we studied classi�er systems learning in recursive decision problems. In

numerical simulations, we have observed that once experimentation is allowed for, con-

vergence to a unique vector of strengths takes place. The limit vector is observed to be

consistent with the Bellman's equation, so that, the asymptotic behavior becomes op-

timal. A mathematical analysis of such a convergence claim for more general settings

seems worthwhile.

The presence of trembling hands is essential in learning, since they lead to experiment-

ation with seemingly bad classi�ers at early stages of learning. For instance, without

trembling hands and for, say, S21 < 0 and Sim > 0 for all (i;m) 6= (2; 1) the consumer

would never try consuming 1 unit of cake when 2 units are available, so that the chance

to update S21 would never be available. This shows that experimentation is essential in

classi�er systems learning. We note, however, that experimentation never ceases here.

Even after the agents learn the true values of speci�c actions, the trembling hands will

continue leading them to mistakes.

The speed of convergence is seen to be very sensitive to the `cooling rate' in the strength

update. For the cooling rate used by Marimon et al. (1990), for example, the convergence

is unreasonably slow, taking millions of periods. In contrast, it is usually observed in ex-

perimental studies that the human subject tend to learn much faster than corresponding

numerical learning algorithms. In our setup, the cooling rate is introduced as a free para-

meter to a�ect the learning speed. This could bring forth the possibilities of `estimating'

or `calibrating' the cooling rate to confront the behavioral observations more successfully.
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n S22 S21 S20 S11 S10 S00

0 37.31 75.36 21.68 60.58 51.15 18.96

0.1 47.72 48.71 43.57 45.54 40.53 37.57

1 48.14 49.29 44.14 46.13 41.27 38.12

5 48.44 49.62 44.47 46.44 41.61 38.44

10 48.56 49.74 44.59 46.56 41.73 38.56

15 48.62 49.80 44.66 46.62 41.80 38.62

20 48.67 49.85 44.71 46.67 41.85 38.67

Value 50.23 51.41 46.27 48.23 43.41 40.23

Table 1: Under fast cooling (l=1), the strengths at the end of period n (in millions), for a

single run. Bottom row displays the target, which is the augmented value function.

n S22 S21 S20 S11 S10 S00

0 37.31 75.36 21.68 60.58 51.15 18.96

100 37.31 55.76 43.30 50.16 46.37 47.57

1000 46.91 49.35 47.39 45.15 41.62 48.59

3000 46.79 52.10 46.83 48.06 43.95 41.22

5000 48.93 50.17 45.22 46.81 42.39 40.18

7000 46.65 50.99 45.83 47.96 43.09 38.98

9000 47.90 51.78 46.23 48.46 43.88 40.66

11000 51.47 51.51 46.64 48.06 43.69 40.69

11505 49.80 51.40 46.41 48.23 43.57 40.21

Value 50.23 51.41 46.27 48.23 43.41 40.23

Table 2: Under slow cooling (l = 20), the strengths at the end of period n for a single run.

Bottom row displays the augmented value function.
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n S22 S21 S20 S11 S10 S00 R2: R1:

0 46.29 (19.42) 45.46 (20.00) 46.54 (19.89) 46.61 (20.33) 45.22 (19.44) 46.14 (20.09) 0.320 0.519

100 43.77 (11.90) 47.70 (12.77) 40.27 (11.27) 49.66 (10.77) 38.16 (14.82) 42.60 (5.36) 0.608 0.869

1000 48.05 (2.94) 51.59 (2.45) 45.74 (3.07) 48.45 (2.28) 41.99 (6.02) 40.62 (2.06) 0.950 1.000

3000 49.07 (1.77) 51.68 (0.91) 46.53 (0.88) 48.47 (1.04) 43.63 (1.34) 40.52 (1.03) 0.994 1.000

5000 49.39 (1.47) 51.56 (0.68) 46.45 (0.62) 48.36 (0.79) 43.57 (0.68) 40.40 (0.78) 0.997 1.000

7000 49.57 (1.29) 51.53 (0.56) 46.39 (0.51) 48.35 (0.66) 43.53 (0.56) 40.37 (0.67) 0.999 1.000

9000 49.69 (1.22) 51.51 (0.49) 46.37 (0.43) 48.32 (0.59) 43.51 (0.48) 40.31 (0.58) 0.997 1.000

11000 49.70 (1.15) 51.49 (0.45) 46.35 (0.40) 48.32 (0.52) 43.49 (0.45) 40.31 (0.53) 1.000 1.000

13000 49.79 (1.10) 51.48 (0.42) 46.34 (0.37) 48.29 (0.49) 43.48 (0.41) 40.32 (0.49) 0.997 1.000

15000 49.84 (1.03) 51.47 (0.38) 46.33 (0.35) 48.29 (0.44) 43.47 (0.38) 40.31 (0.44) 0.999 1.000

17000 49.86 (1.01) 51.46 (0.36) 46.32 (0.32) 48.28 (0.43) 43.46 (0.35) 40.29 (0.42) 1.000 1.000

18000 49.91 (0.98) 51.45 (0.35) 46.32 (0.31) 48.27 (0.42) 43.45 (0.35) 40.28 (0.41) 0.999 1.000

Value 50.23 51.41 46.27 48.23 43.41 40.23

Table 3: Average strengths (S) of 1000 simulation runs with initial strengths coming from

N(46; 20) and the ratios (R) of the correct decisions at states 2 and 1, m = 0:05 and l = 20.

Numbers in the parenthesis are the standard deviations

l n m 0.03 0.05 0.1 0.15 0.2 0.3

2 4741 (2343) 2578 (1471) 1619 (1089) 1263 (1013) 890 (549) 713.1 (529)

5 903 (451) 652 (370) 351 (232) 255 (113) 197 (101) 144.6 (62)

10 402 (221) 334 (130) 214 (108) 158 (68) 146 (69) 98.1 (40)

20 192 (58) 174 (61) 146 (54) 126 (50) 102 (48) 86.5 (30)

40 135 (41) 136 (40) 122 (40) 105 (32) 96 (30) 79.3 (26)

Table 4: Average time for an agent to start consuming the optimal amount. Numbers in

parentheses are standard deviations. S22 is intentionally set to 300, while all other strengths

are initially around their limit values.
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