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Abstract

The class of parametric dynamic latent variable models is becoming more and more

popular in economics and �nance. Dynamic disequilibrium models, latent factor models,

switching regimes models, stochastic volatility models are only few examples of this class

of models. Inference in this class may be di�cult since the computation of the likeli-

hood function requires to integrate out the unobservable components and to calculate

very high dimensional integrals. We propose an estimation procedure which could be

applied to any dynamic latent model. The approach is based on the Indirect Inference

principle and considers as binding functions conditional expectations of functions of the

endogenous variable, given past values of this variable. These conditional expectations

are estimated by a ine
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Nonparametric Kernel Estimation.



1 Introduction

The class of parametric dynamic latent variable (DLV) models (also called factor models

or hidden variable models or hierarchical models) is becoming more and more popular.

Unfortunately, inference in this class of models may be di�cult, because the likelihood

function appears as a multivariate integral the size of which is equal to the number of

observations multiplied by the size of the latent variables.

It is well known that, in some particular cases, such as linear state space models

(see Kalman (1960)) or markovian switching models (see Hamilton (1989, 1990)), this

di�culty can be overcome and the likelihood function can be computed recursively, or

evaluated by numerical methods (see Kitagawa (1987)) or from approximated models

(see Harvey, Ruiz and Shephard (1994), Diebold and Nerlove (1989)).

More recently, the simulation based inference methods allowed for the statistical

treatment of new DLV models. Simulated likelihood techniques based on importance

sampling methods have been applied to stochastic volatility models (see Danielsson and

Richard (1993), Danielsson (1994)), to non markovian switching regime models (see Bil-

lio and Monfort (1998)) or to dynamic disequilibrium models (see Lee (1997)). The

simulated EM method has been used for stochastic volatility models and for partial

gaussian state space models (see Shephard (1993,1994)). Simulated Pseudo Maximum

Likelihood Methods have been applied to dynamic disequilibrium models (see Laroque

and Salani�e (1993)). Bayesian methods based on the data augmentation principle have

been proposed for the same kind of models (see Albert and Chib (1993), Jacquier, Pol-

son and Rossi (1994)). Several of these classical or bayesian simulation based methods

rest on Gibbs and Metropolis algorithms. The Indirect Inference Methods have also

been used in some special cases: estimation of continuous time processes from discrete

data (see Gouri�eroux, Monfort and Renault (1993) , Clement (1994), Broze, Scaillet and

Zako��an (1995a) (1995b), Bianchi and Cleur (1996), Calzolari, Di Iorio and Fiorentini

(1998)), stochastic volatility models (see Monfardini (1998)), non linear macroeconomic

models (see Smith (1993)) and semi non parametric models (see Gallant and Tauchen

(1996)). Finally the Method of Simulated Moments, which can be seen as a special case

of the Indirect Inference Method, has also been used in the context of continuous time
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models (see Du�e and Singleton (1993)).

The aim of this paper is to propose estimation and testing procedures which could

be applied to any DLV model. The Simulated Method of Moments and the Simulated

Pseudo Maximum Likelihood Method already have this property of wide applicability;

however since, in the kind of models considered here, it is in general impossible to sim-

ulated in the conditional distribution of the observable endogenous variables given the

observed past values of these variables (and the present and past values of the exogenous

variables) it is not possible to base these methods on conditional moments and, there-

fore, marginal moments are used. This limitation may imply some di�culty to capture

the dynamic features of the model.

The method proposed here is based on the general Indirect Inference principle in

which the binding functions are conditional expectations of functions of the endoge-

nous variables, given their past values. These conditional expectations are estimated

by non parametric kernel techniques (see H�ardle (1991), Robinson (1983)). It turns out

that, in spite of this non parametric feature, the convergence rate of the estimator thus

obtained is arbitrarily close to the classical parametric rate and since the asymptotic

variance-covariance matrix can be chosen small by increasing the number of conditional

expectations considered, the method has potentially good �nite sample properties, as

con�rmed by some examples. Moreover, we propose a scoring method which, given a

preliminary estimation, provides a way to select the best binding functions.

The paper is organised as follows. Section 2.2 describes the general dynamic latent

variable model and the di�culties arising from the computation of its likelihood func-

tion. Section 2.3 brie
y recalls the main features of the Indirect Inference principle and

presents the Functional Indirect Inference approach. In Section 2.4 the asymptotic prop-

erties of the proposed approach are derived and Section 2.5 presents the scoring method

to choose the best binding functions. Some Monte Carlo experiments are performed in

Section 2.6 and Section 2.7 conlcudes.
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2 The Model

We de�ne the general dynamic latent variable (DLV) model as:

8><
>:

yt = rt(y
t�1; y�t; "t; �)

y�t = r�t (y
t�1; y�t�1; "�t ; �)

(1)

t = 1; :::; T , where yt is a vector of observable variables, y�t is a vector of (partially)

unobservable or latent variables, yt�1 is a notation for (y01; :::; y
0

t�1)
0, f"tg, f"�tg are two

independent white noises with known distributions and � is a vector of unknown pa-

rameters. Note that the assumption of a known distribution for "t and "�t can be made

without reql loss of generality in the parametric case, since in most cases the parameters

appearing in the distributions of "t and "�t can be easily incorporated in �. It is also

possible to consider that rt and r�t depend on exogenous variables.

Model (1) contains as special cases all the models mentioned in the introduction

(stochastic volatility models, dynamic disequilibrium models, non-linear state space

models and in particular switching state space models) and many other models like:

dynamic factor models, ARCH factor models, switching regression or ARMA models,

deformed time models and so on.

Since "t has a known probability density function it is, in principle, possible to derive

the conditional p.d.f. of yt given yt�1 and y�t, denoted by f(yt=y
t�1; y�t; �), as the p.d.f.

of the image of the probability of "t by rt(y
t�1; y�t; �; �) and, similarly, we get the p.d.f.

of y�t given yt�1 and y�t�1, denoted by f(y�t =y
t�1; y�t�1; �), from the second equation of

(1). Therefore we can, in principle, compute the p.d.f. of (yT ; y�T ) by:

f(yT ; y�T ; �) =
TY
t=1

f(yt=y
t�1; y�t; �)f(y�t =y

t�1; y�t�1; �)

The likelihood function is then obtained by integrating out y�T in this formula, which

requires a T �p� dimensional integral (p� being the size of y�t ). This integral is in general

untractable.

For a given value of � (and given values of the exogenous variables) it is easy to

simulate paths ~yT (�) and ~y�T (�). In such paths each components ~yt(�) (or each set of

components (~yt1(�); :::; ~ytk(�))) is drawn in its marginal distribution; however for a given
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� it is in general much more di�cult to draw yt in its conditional distribution given

the observed values of yt�1 and, therefore, Simulated Method of Moments or Simulated

Pseudo Maximum Likelihood Methods based on conditional moments are not available.

The method proposed below tries to overcome this di�culty and to capture the dynamic

of the models through the evaluation of conditional expectations.

3 The Method

3.1 The general indirect inference method

The indirect inference method is based on auxiliary parameters � appearing in an aux-

iliary criterion function 	T (y
T ; �) (for sake of simplicity we ignore exogenous variables).

The maximization of 	T (y
T ; �) with respect to � gives the estimator �̂T and the

maximization of 	T (~y
T (�); �) (where ~yT (�) is a simulated path for a given value � of the

parameter) with respect to � gives ~�T (�). When T goes to in�nity ~�T (�) converges a.s.

to the binding function:

b(�) = Argmax
�

	1(�; �)

where 	1(�; �) = limT!1	T (y
T ; �). Note that �̂T converges a.s. to the pseudo true

value of � denoted by �0 = b(�0), where �0 is the true value of �.

An indirect inference estimator �̂ST (
) of � is obtained by minimizing:"
�̂T � 1

S

SX
s=1

~�sT (�)

#0

T

"
�̂T � 1

S

SX
s=1

~�sT (�)

#

where 
T is a symmetric positive de�nite matrix converging to a deterministic matrix


, and the ~�sT (�) are obtained from di�erent simulated paths ~yTs (�), s = 1; :::; S. Note

that in the previous minimization
1

S

SX
s=1

~�sT (�) can be replaced by ~~�ST (�) obtained as

~~�ST (�) = Argmax
�

SX
s=1

	(~yTs (�); �)

In this general framework, and under regularity conditions, it can be shown that

�̂ST (
) is consistent, when T goes to in�nity and S is �xed, that
p
T
h
�̂ST (
)� �0

i
is

asymptotically normal and that an optimal matrix 
 can be chosen and a two step

optimal procedure proposed (see Gouri�eroux, Monfort and Renault (1993)).
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3.2 The Functional Indirect Inference method

The main problem in the general approach described above is to choose a relevant

auxiliary criterion 	(yT ; �) and, therefore, relevant binding functions b(�). Here in

order to capture the dynamics of the model, we propose to consider binding functions

of the form:

b(�) = [bm(�)]m=1;:::;M = [E� (gm(yt)=ymt = Ym)]m=1;:::;M (2)

where gm, m = 1; :::;M , are known functions, ymt are lagged components of yt and Ym

are given values. These binding functions can be associated with the auxiliary criterion:

	T (y
T ; �) = � 1

2ThT

MX
m=1

TX
t=1

K
�
ymt � Ym

hT

�
[gm(yt)� �m]

2 (3)

where K is a kernel and hT is a sequence of bandwidths, i.e. real positive numbers con-

verging to zero as T goes to in�nity. Indeed, when T goes to in�nity 	T (~y
T (�); �) con-

verges to �1

2

MX
m=1

E�

h
(gm(yt)� �m)

2=ymt = Ym

i
fymt(Ym) (where fymt(�) is the marginal

density of ymt), the maximum of which is obviously obtained for �m = bm(�), m =

1; :::;M .

The maximization of the criterion function (3) with respect to � can be done explic-

itly and we obtain the kernel based estimators:

�̂T;m =

TX
t=1

K
�
ymt � Ym

hT

�
gm(yt)

TX
t=1

K
�
ymt � Ym

hT

� m = 1; :::;M

Similarly, from simulated data ~ysT (�), s = 1; :::; S , we obtain:

~�sT;m =

TX
t=1

K
�
~ysmt � Ym

hT

�
gm(~y

s
t )

TX
t=1

K
�
~ysmt � Ym

hT

� m = 1; :::;M

Then the Functional Indirect Inference estimator of � is obtained by:

�̂ST (
) = Argmin
�

"
�̂T � 1

S

SX
s=1

~�sT (�)

#0

T

"
�̂T � 1

S

SX
s=1

~�sT (�)

#
(4)

with ~�sT = (~�sT;1; :::; ~�sT;M)
0.

Let us now consider the asymptotic properties of this method and the optimal choice

of 
.
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4 Asymptotic properties

Under regularity conditions, including for instance stationarity and strong mixing con-

ditions on the process and the bounded support of the kernel, we can prove several

asymptotic properties.

Proposition 1

If T ! +1, hT ! 0, ThT ! +1, and if the Ym, m = 1; :::;M are

di�erent, then

q
ThT (�̂T � �0 � F�1BT (�0))

D�! N (0;W (�0)) (5)

where �0 = b(�0) and

BT (�0) = [B1T ; :::; BMT ]
0

BmT =
Z
IR
K(x)E�0f[gm(yt)� �0m]=ymt = Ym + xhTgfymt(Ym + xhT )dx

F =

2
666664
fy1t(Y1) � � � 0

...
. . .

...

0 � � � fyMt
(YM)

3
777775

W (�0) = [wij]i;j=1;:::;M

wij =

8>><
>>:

E�0f(gi(yt)� �0i)
2=yit = Yig

fyit(Yi)

Z
IR
K2(x)dx if i = j

0 if i 6= j

and fymt(Ym) is the marginal density of ymt.

Proof: see the appendix.
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Proposition 2

If T ! +1, hT ! 0, ThT ! +1, S is �xed, and if the Ym, m = 1; :::;M

are di�erent, then

q
ThT

"
�̂T � 1

S

SX
s=1

~�sT (�0)

#
D�! N

�
0;
�
1 +

1

S

�
W (�0)

�
(6)

Proof: see the appendix.

Proposition 2 shows that there is no bias term in the asymptotic behaviour of the dif-

ference �̂T � 1

S

SX
s=1

~�sT (�0) and, since the asymptotic distribution of
p
ThT (�̂ST (
T )��0)

is based on the asymptotic distribution of this di�erence, we obtain the following result.

Proposition 3

If T ! +1, hT ! 0, ThT ! +1, S is �xed, the Ym, m = 1; :::;M are

di�erent, and 
T converges to 
 then

q
ThT (�̂ST (
T )� �0)

D�! N (0;�(
)) (7)

where

�(
) =
�
1 +

1

S

� "
@b0

@�
(�0)


@b

@�0
(�0)

#
�1

@b0

@�
(�0) 
 W (�0) 


@b

@�0
(�0)

"
@b0

@�
(�0)


@b

@�0
(�0)

#
�1

Proof: see the appendix.

According to Proposition 3 the convergence rate of the Functional Indirect Inference

estimator �̂ST (
T ) is arbitrarily close to the usual T
1=2 convergence rate, and there is no

asymptotic bias.

Using a standard argument (based on the optimality of a GLS estimator), the optimal

choice of 
 is


� =W�1(�0)

and, if 
�T is a consistent estimator of 
�, we obtain a two stage optimal estimator
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�̂�ST = �̂ST (

�

T ), whose asymptotic behaviour is:

q
ThT (�̂

�

ST � �0)
D�! N

0
@0;�1 + 1

S

�"
@b0

@�
(�0) W

�1(�0)
@b

@�0
(�0)

#
�1
1
A (8)

Noting that:

1

ThT

TX
t=1

K2

�
ymt � Ym

hT

�
[gm(yt)� �̂T ]

2

T!1�! E�0f(gm(yt)� �0m)
2=ymt = Ymgfymt(Ym)

Z
IR
K2(x)dx

1

ThT

TX
t=1

K
�
ymt � Ym

hT

�
T!1�! fymt(Ym)

it is clear that the asymptotic variance-covariance matrix of the estimated auxiliary pa-

rameters �̂T ,W (�0), may be consistently estimated by the diagonal matrix with diagonal

entries:

ŴmT = ThT

TX
t=1

K2

�
ymt � Ym

hT

�
[gm(yt)� �̂T ]

2

 
TX
t=1

K
�
ymt � Ym

hT

�!2
m = 1; :::;M

Let us consider the simple scalar case, i.e. � is a scalar. In this case the asymptotic

variance of the estimator is simply:

�
1 +

1

S

�24 MX
j=1

1

wjj

 
@bj
@�

(�0)

!2
3
5
�1

given the diagonal structure of W . We can make this variance arbitrarily small by sim-

ply increasing the number of binding functions taken into account.

It is also possible to obtain an estimator �̂��ST , which is asymptotically equivalent to

�̂�ST , from the Generalized Least Square formula (see Gouri�eroux and Monfort (1995)

chap. 9)

�̂��ST = �̂ST + S

"
SX
s=1

@ ~� 0sT
@�

(�̂ST )Ŵ
�1

T

SX
s=1

@ ~�sT
@�0

(�̂ST )

#�1

SX
s=1

@ ~� 0sT
@�

(�̂ST )Ŵ
�1

T

"
�̂T � 1

S

SX
s=1

~�sT (�̂ST )

# (9)
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This approach is particularly interesting because it allows to improve the estimator

�̂ST without performing another optimization step, but simply by computing the �rst

order derivatives of ~�sT .

Alternatively, according to the proposal of Gallant and Tauchen (1996), it is possible

to implement the indirect inference procedure by calibrating the parameter of interest �

through the score function, i.e. byminimizing a quadratic form on the score vector

~�ST = Argmin
�

�	TVT�	
0

T (10)

where

�	T =
SX
s=1

@	T

@�

h
~ysT (�); �̂T

i

=

"
1

ThT

SX
s=1

TX
t=1

K
�
~ysmt � Ym

hT

�
(gm(~y

s
t )� �̂mT )

#
m=1;:::;M

and VT converges to a positive de�nite matrix V . For V � = (FW (�0)F )
�1, we obtain

an estimator asymptotically equivalent to �̂�ST . Such a matrix V � can be consistently

estimated by the diagonal matrix with diagonal entries:

"
1

ThT

TX
t=1

K2

�
ymt � Ym

hT

�
[gm(yt)� �̂T ]

2

#�1

Finally the procedure can be generalized to the case where the ymt are multivariate.

In this case, the binding functions b(�) can be associated with the auxiliary criterion:

		T (y
T ; �) = � 1

2ThdT

MX
m=1

TX
t=1

IK
�
ymt � Ym

hT

�
[gm(yt)� �m]

2

where d is the dimension of ymt and IK is a d-dimensional kernel on IRd.

The asymptotic results still hold and Propositions 1 to 3 need only minor evident

modi�cations.

5 Scoring the binding functions

Given a �rst consistent parameter estimator �̂T , obtained with some binding functions,

we are interested in looking for some other binding functions which can improve the
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asymptotic e�ciency of the Functional Indirect Inference estimator.

An estimator of the asymptotic variance-covariance matrix of the optimal Functional

Indirect Inference estimator associated with M given binding functions bm(�), m =

1; :::;M , is (up to the factor 1 + 1

S
):

�M =

"
@b0

@�
(�̂T ) Ŵ

�1

T

@b

@�0
(�̂T )

#
�1

=

2
4 mX
j=1

ŵ�1jj
@bj
@�

(�̂T )
@bj
@�0

(�̂T )

3
5
�1

=

2
4 mX
j=1

cjc
0

j

3
5
�1

(11)

where cj = ŵ
�1=2
jj

@bj
@�

(�̂T ).

If we take into account a further binding function bM+1(�), we obtain the following

estimated asymptotic variance-covariance matrix

�M+1 =

2
4M+1X
j=1

cjc
0

j

3
5
�1

=
h
��1M + cM+1c

0

M+1

i
�1

= �
1=2
M

h
I + �

1=2
M cM+1c

0

M+1 �
1=2
M

i
�1

�
1=2
M

= �
1=2
M

2
4I � �

1=2
M cM+1c

0

M+1 �
1=2
M

1 + c0M+1 �M cM+1

3
5�1=2

M

= �M � �M cM+1c
0

M+1 �M

1 + c0M+1 �M cM+1

(12)

Then given the initial estimator �̂T and an estimation of its variance-covariance ma-

trix we can choose bM+1(�) in such a way to maximize a score based on some character-

istics of �M+1, for instance the trace or the determinant.
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Proposition 4

If we want to minimize the trace of �M+1, we have to select bM+1 in order

to maximize
c0M+1 �

2
M cM+1

1 + c0M+1 �M cM+1

(13)

while if we want to minimize the determinant of �M+1, we have to max-

imize

c0M+1 �M cM+1 (14)

Proof: see the appendix.

We thus obtain an iterative selection procedure of the binding functions, if at each

step:

- we consider a set of candidates,

- we choose the next binding function by selecting the one with the best score,

- we recompute the estimation of �, in order to improve the estimation of �.

We can also reconsider the choice of the �rstM binding functions in order to improve

the initial estimator. We can, for instance, use a sequential procedure, in which at

each stage we maximize the product of the non zero eigenvalues of

2
4 mX
j=1

cjc
0

j

3
5. Let us

de�ne Cm as the matrix with cj as the jth column, then the non zero eigenvalues of

CmC
0

m=

2
4 mX
j=1

cjc
0

j

3
5 are the same as the ones of C 0

mCm and then we can easily choose the

next binding function, since the determinant of C 0

m+1Cm+1, where Cm+1 = (Cm; cm+1),

is simply

jC 0

m+1Cm+1j = jC 0

mCmj (c0m+1cm+1 � c0m+1Cm(C
0

mCm)
�1C 0

mcm+1) (15)

6 Applications

In order to assess the performance of the proposed approach, we carry out some Monte

Carlo experiments.
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First, we apply the Functional Indirect Inference estimator to a simple moving aver-

age model of order one and compare the results with the maximum likelihood estimates.

This experiment is thus a benchmark to evaluate the e�ciency of the proposed method.

Next we consider a gaussian factor ARCH, for which it is di�cult to derive its exact

likelihood function. We present some experiments and compare the performance of the

Functional Indirect Inference with that of the others methods, such as the Method of

Simulated Moments and the Indirect Inference method.

All the optimization problems has been implemented numerically using the applica-

tion Optmum of Gauss 3.2. The BFGS method has been used, which is a quasi-Newton

method1, and numerical computation of the derivatives of the objective function has

been exploited. As starting values for the algorithm, the true parameter values has been

chosen throughout the experiment2. These good starting points allow a considerable

time reduction in the length of the experiments, as they ensure that the algorithm will

start from a point close enough to the minimum (or maximum) of the criterion function.

Anyway, it is important to stress that the aim of these Monte Carlo experiments is

to assess the feasibility and the general applicability of the proposed approach.

6.1 The MA(1) model

We consider simulated samples of size T=1000 drawn from the following MA(1) process:

yt = "t + �"t�1

t = 1; :::; T , where "t � IIN (0; �2) and where the true values of the parameters are

�1 = 0:5 and �0 = 1.

As far as the kernel choice is concerned, we consider a truncated gaussian kernel

with standard deviation equal to the empirical standard deviation of the conditioning

variable and we �x hT equal to one.

1It uses both �rst order and second order derivatives information, but relies on approximation of the

Hessian matrix.
2We performed some sensitivity analysis and veri�ed that perturbing the starting values did not

a�ect the outcome of the optimization problem.
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We consider a �rst estimator �̂ST obtained with the following binding functions

E(yt=yt�1 = 1:2)

E(y2t =yt�2 = 0)

where we choose as conditioning values the empirical mean and standard deviation of

the contidioning variable. Then, in order to select the auxiliary parameters, we take into

account the following binding functions and choose among them by maximizing their

score as indicated in Proposition 4:

E(yut =yt�` = Y) u = 1; 2; 3; 4 ` = 1; 2; 3; 4

E(exp(uyt)=yt�` = Y) u = �1;�2;�3 ` = 1; 2; 3; 4
(16)

for Y 2 [�2:5; 2:5]. The �nal choice is
E(yt=yt�1 = Y) with Y = �1:9; 1:9
E(y2t =yt�2 = Y) with Y = 0;�0:1;�0:25

We calculate the optimal estimator of � = (�; �), �̂�ST , with S = 10, by numerical

minimization of the criterion function (4), for the optimal choice of 
T , estimated from

the �rst estimator �̂ST . We also compute the asymptotically equivalent estimator �̂��ST

by the Generalized Least Square formula. The ML estimates have been obtained by an

unconditional Maximum Likelihood approach, performed by the Kalman �lter.

Table 1 displays mean and standard deviation of the estimated parameters over 1000

replications of the Monte Carlo experiment. FII1 indicates the �rst step Functional In-

direct Inference estimator, FII the Functional Indirect Inference estimator, FIIGLS the

Functional Indirect Inference estimator obtained by the GLS formula and ML indicates

the Maximum Likelihood estimator.

The Functional Indirect Inference estimator performs well and the e�ciency is im-

proved by taking into account a larger number of binding functions (FII is better than

FII1). Clearly it is not possible to outperform the ML approach but the result seems

satisfying, given the fact that only one lagged variable has been considered. Its perfor-

mance can certainly be improved if we take into account conditional expectations given

more than one lagged endogenous variable. It is also worth noting that the GLS formula

performs quite well and is very fast to compute because it does not demand a further

optimization step.
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FII1 mean standard deviation root mean square error

�̂ 0.512 0.117 0.117614

�̂ 0.994 0.0529 0.053235

FII mean standard deviation root mean square error

�̂ 0.512 0.0916 0.092385

�̂ 0.994 0.0443 0.044699

FIIGLS mean standard deviation root mean square error

�̂ 0.492 0.0917 0.092049

�̂ 1.006 0.0461 0.046487

ML mean standard deviation root mean square error

�̂ 0.501 0.0273 0.027313

�̂ 0.999 0.0224 0.022428

Table 1: MA(1) model. True values: �1 = 0:5, �0 = 1. T = 1000, S = 10.

6.2 The factor ARCH model

Model (1) contains as special case the gaussian factor ARCH (F-ARCH) model, which

is de�ned as follows: 8><
>:

y�t = (�1 + �2y
�2
t�1)

1=2"�t ;

yt = �y�t + "t;
(17)

t = 1; :::; T , where "�t
iid� N(0; 1), "t

iid� N(0;�) independently and (�; �1) satisfy some

identifying condition (for instance, the �rst component of � is 1 or �1 = 1).

This model is a good alternative to multivariate ARCH models, which contain a large

number of parameters, and then require to introduce some constraints in order to make

this number smaller. To introduce some unobserved factors is a natural approach, com-

patible with the needs of �nancial theory and with some features of �nancial series which

often have common evolution in the volatilities (Diebold and Nerlove (1989), Engle, Ng

and Rothschild (1990), King, Sentana and Wadhwani (1994)). The advantage of in-

troducing an unobserved component has as counterpart the di�cult computation of the

likelihood function, which requires a T -dimensional integral. Diebold and Nerlove (1989)

14



propose to apply the extended Kalman �lter, which leads to some approximations, while

Gouri�eroux, Monfort and Renault (1993) suggest the indirect inference approach.

For simplicity and identi�ability reasons, the original representation (17) is reduced

to: 8><
>:

y�t = (�1 + �2y
�2
t�1)

1=2"�t "�t � N(0; 1);

yt = �y�t + "t "t � Np(0; �
2Ip);

(18)

with �1 = 1 and the dimension of yt is p = 2. We consider simulated samples of size

T=500 with �0 = (�10; �20; �0; �20)
0 = (0:2; 0:7; 0:5;�0:5)0. As in the MA(1) example

we consider a truncated gaussian kernel with standard deviation equal to the empirical

standard deviation of the conditioning variable and we �x hT equal to one3.

We consider a �rst step estimator (FII1) obtained by considering six auxiliary pa-

rameters and then the choice of the auxiliary parameters has been done among the

following ones:

E(yui;t=yj;t�` = Y) i; j = 1; 2 u = 1; 2; 3; 4 ` = 1; 2; 3; 4 Y 2 [�2:5; 2:5]
E(y2i;t=y

2
j;t�` = Y) i; j = 1; 2 ` = 1; 2; 3; 4 Y 2 [�2:5; 2:5]

according to their score. It is worth noting that we take only one conditioning variable.

We choose eleven auxiliary parameters and consider the Functional Indirect Inference

estimator associated with 
 = I (FII) and with the optimal choice of 
T (OIFF ); we

also compute the asymptotically equivalent estimator by the Generalized Least Square

formula (FIIGLS).

For comparison purposes, we consider some alternative estimation methods. In par-

ticular we consider the Method of Simulated Moments (MSM) and an application of the

Indirect Inference method. As far as the Method of Simulated Moments is concerned,

we consider the marginal version of the moments used as auxiliary parameters for the

Functional Indirect Inference method and we also consider the optimal choice of the

matrix 
� (OMSM). As auxiliary model for the Indirect Inference method, we consider

a vectorial autoregressive model (VAR) for y2t :

y2t =
qX

i=1

Aiy
2

t�i + ut

3We performed some sensitivity analysis and then chose hT = 1.
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and take the Ai's as auxiliary parameters. In particular we consider two versions of this

estimator with q = 2; 3 (IIV AR2 and IIV AR3).

For all these methods, we consider S = 2 and perform 200 replications of the Monte

Carlo experiment. Table 2 reports the non convergence4 cases of the optimization algo-

rithm for the di�erent estimation methods. The Functional Indirect Inference estimator

demonstrates to be quite robust, since, contrary to the other methods, it always con-

verges. The Mehtod of Simulated Moments appears to perform poorly, because it is very

unstable and converges only 3 times over 5.

FII1 FII OFII FIIGLS MSM OMSM IIV AR2 IIV AR3

Number of cases 0 0 0 2 75 85 5 18

Percentage 0% 0% 0% 1% 37.5% 42.5% 2.5% 9%

Table 2: F-ARCH(1) model. Non convergence cases over 200 replications of the Monte

Carlo experiment.

Tables 3-4 present mean and standard deviation of the estimated parameters5 for

all the considered methods (for each method only the convergence cases are considered)

and �gures 2-3 show the empirical distribution of the di�erent estimators: �̂2 is on the

x-axis and �̂2 on the y-axis.

As already noted in the literature, the use of the optimal metric does not improve

the �nite sample properties of the estimator6: this is true for the Functional Indirect

Inference method, while for the Method of Simulated Moments there is a bigger number

of non convergence cases, even if the root mean square error decreases.

Despite the small number of simulations taken into account (S=2), the methods

based on the indirect inference principle appear to be satisfactory in terms of both bias

of the estimates and standard deviations.

4We consider that the convergence is not reached after 500 iterations or when the algorithm converges

to abnormal values of the parameters.
5In the optimization algorithm we imposed the following constraints: 0 < �1 < 2, 0 < �2 < 2 and

� > 0.
6For this reason we do not consider the optimal metric in the Indirect Inference case.

16



Figure 1: F-ARCH(1) model. Empirical distribution of the di�erent Functional Indirect

Inference estimators: �̂2 is on the x-axis and �̂2 on the y-axis (the lines indicate the true

parameter values).

In table 5, we present the root mean square error of each method standardized by

the corresponding root mean square error of the Functional Indirect Inference estimator.

Clearly, the approach proposed in this paper outperforms the other methods in both

root mean square error and computational7 terms. It is important to underline how the

7As already noted, for the Functional Indirect Inference method the convergence is always reached
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Figure 2: F-ARCH(1) model. Empirical distribution of the other estimators: �̂2 is on

the x-axis and �̂2 on the y-axis (the lines indicate the true parameter values).

root mean square error decreases by taking into account a bigger number of auxiliary

parameters.

It is also worth noting that the GLS formula performs very well. This approach

is very fast to compute, because it does not demand a further optimization step, and

it performs better than the Functional Indirect Inference method with optimal metric

and often within the �rst 20 iterations.
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Mean �1 �2 � �2 replications

retained

FII1 0.334684 0.556001 0.314295 -0.40757 200

FII 0.237223 0.659036 0.461409 -0.4454 200

OFII 0.286644 0.595822 0.409314 -0.44694 200

FIIGLS 0.252978 0.629196 0.481302 -0.43527 198

MSM 0.476785 0.541089 0.405163 -0.22395 125

OMSM 0.341201 0.374154 0.371498 0.185235 115

IIV AR2 0.260345 0.643855 0.569553 -0.40173 195

IIV AR3 0.243918 0.542239 0.583113 -0.32346 182

Table 3: F-ARCH(1) model. Estimator means (for each method, only the convergence

cases are considered). True values: �1 = 0:2, �2 = 0:7, � = 0:5, �2 = �0:5.

Standard �1 �2 � �2 replications

deviation retained

FII1 0.196715 0.362206 0.246679 0.412412 200

FII 0.135208 0.306117 0.135336 0.263301 200

OFII 0.182849 0.391374 0.19595 0.312538 200

FIIGLS 0.15717 0.371635 0.145953 0.383932 198

MSM 0.603442 0.514904 0.262414 1.553827 125

OMSM 0.414472 0.405703 0.197529 1.349192 115

IIV AR2 0.210344 0.333679 0.484585 0.414968 195

IIV AR3 0.124789 0.35593 0.805028 0.463508 182

Table 4: F-ARCH(1) model. Estimator standard deviations (for each method, only the

convergence cases are considered).

(OFII).

These results are very encouraging and, given the great generality of the approach

(no speci�c feature of the model has been used), the obtained results are promising for
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Relative root �1 �2 � �2 replications

mean square error retained

FII1 1.699997 1.262055 2.194021 1.571730 200

FII 1 1 1 1 200

OFII 1.442823 1.311340 1.534257 1.178901 200

FIIGLS 1.182694 1.224946 1.045582 1.447921 198

MSM 4.734036 1.744779 1.982686 5.868874 125

OMSM 3.122291 1.684840 1.674464 5.627421 115

IIV AR2 1.560411 1.095593 3.478630 1.585870 195

IIV AR3 0.943337 1.260583 5.750737 1.844494 182

Table 5: F-ARCH(1) model. Relative root mean square errors (for each method, only

the convergence cases are considered). Each column is standardized by the root mean

square error of the Functional Indirect Inference estimator (RMSEFII(�1) = 0:140238,

RMSEFII(�2) = 0:308846, RMSEFII(�) = 0:140731, RMSEFII(�2) = 0:268903). Bold

�gures indicate the best performances.

a large class of models.

7 Concluding remarks

We propose an estimation procedure which could be applied to any dynamic latent

variable model. This procedure takes into account the dynamic features of the models

since it is based on a general Indirect Inference Method using as binding functions some

conditional expectations of functions of the endogenous variables, given their past values.

Even if non parametric kernel techniques are considered, it turns out that the convergence

rate of the proposed estimators is arbitrarily close to the classical one. Moreover scoring

methods is proposed in order to select the best binding functions. Some Monte Carlo

experiments show the feasibility and the good performance of the approach.
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Appendix

Proof of Proposition 1. For y1t = y2t = ::: = yMt = yt�` with a �xed `, i.e. with the

same conditioning variable, we refer to the Proposition 1.3.10 of Tenreiro (1995), which

demonstrates that if Ym, m = 1; :::;M , are distinct points of IR, then

q
ThT (�̂T � �0 � F�1BT (�0))

D�! N (0;W (�0))

when T goes to in�nity.

If the conditioning variable ymt changes with m, i.e. if it is not equal to the same

lagged variable yt�` for �xed `, with the same hypothesis of Proposition 1.3.10 of Tenreiro

(1995), the more general result of Proposition 1 still holds and it can be proved by similar

arguments.

Recalling that

�̂T;m =

TX
t=1

K
�
ymt � Ym

hT

�
gm(yt)

TX
t=1

K
�
ymt � Ym

hT

�

we can write:

1p
ThT

TX
t=1

�
K
�
ymt � Ym

hT

�
(gm(yt)� �0m)� E

�
K
�
ymt � Ym

hT

�
(gm(yt)� �0m)

��

�pThT
�
�̂T;m � �0m

� 1

ThT

TX
t=1

K
�
ymt � Ym

hT

�

+
1p
ThT

TX
t=1

E
�
K
�
ymt � Ym

hT

�
(gm(yt)� �0m)

�
= 0

and then

p
ThT

��
�̂T;m � �0m

�
fymt(Ym)� 1

hT
E
�
K
�
ymt � Ym

hT

�
(gm(yt)� �0m)

��

=
1p
ThT

TX
t=1

�
K
�
ymt � Ym

hT

�
(gm(yt)� �0m)� E

�
K
�
ymt � Ym

hT

�
(gm(yt)� �0m)

��
+ op(1)
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p
ThT

"
�̂T;m � �0m � 1

hT fymt(Ym)
E
�
K
�
ymt � Ym

hT

�
(gm(yt)� �0m)

�#

=
1

fymt(Ym)
p
ThT

TX
t=1

�
K
�
ymt � Ym

hT

�
(gm(yt)� �0m)� E

�
K
�
ymt � Ym

hT

�
(gm(yt)� �0m)

��

+op(1)

As far as the bias term is concerned, we have:

1

hT
E�0

�
K
�
ymt � Ym

hT

�
(gm(yt)� �0m)

�
=

=
Z
IR2

1

hT
K
�
x� Ym

hT

�
(gm(y)� �0m)fymtyt(x; y)dx dy

=
Z
IR

1

hT
K
�
x� Ym

hT

� Z
IR
(gm(y)� �0m)

fymtyt(x; y)

fymt(x)
dyfymt(x)dx

=
Z
IR

1

hT
K
�
x� Ym

hT

�
E�0f(gm(y)� �0m)=ymt = xgfymt(x)dx

=
Z
IR
K(x)E�0f(gm(y)� �0m)=ymt = Ym + xhTgfymt(Ym + xhT )dx

= BmT

Compared with results in Tenreiro (1995), the only new feature is the computation of

the asymptotic covariance between
p
ThT

"
�̂T;m � �0m � 1

fymt(Ym)
BmT

#
and

p
ThT

"
�̂T;j � �0j � 1

fyjt(Yj)
BjT

#
. In this computation the relevant terms typically are

(up to a proportionality constant):

1

ThT

T�kX
t=1

�
K
�
ymt � Ym

hT

�
(gm(yt)� �0m)� E

�
K
�
ymt � Ym

hT

�
(gm(yt)� �0m)

��

�
�
K
�
yj;t+k � Yj

hT

�
(gj(yt+k)� �0j)� E

�
K
�
yjt � Yj

hT

�
(gj(yt)� �0j)

��
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and we have that:

E
�
K
�
yjt � Yj

hT

�
(gj(yt)� �0j)

�
1

ThT

T�kX
t=1

�
K
�
ymt � Ym

hT

�
(gm(yt)� �0m)

�

� 1

T
BjT

T�kX
t=1

�
K
�
ymt � Ym

hT

�
(gm(yt)� �0m)

�
T!1�! 0

1

hT
E
�
K
�
ymt � Ym

hT

�
(gm(yt)� �0m)

�
E
�
K
�
yjt � Yj

hT

�
(gj(yt)� �0j)

�

� hTBmTBjT
T!1�! 0

1

ThT

T�kX
t=1

�
K
�
ymt � Ym

hT

�
K
�
yjt � Yj

hT

�
(gm(yt)� �0m) (gj(yt)� �0j)

�

� hT Ef(gm(yt)� �0m)(gj(yt+k)� �0j)=ymt = Ym; yjt+k = Yjg T!1�! 0

Proof of Proposition 2. The random variables �̂T , ~�sT (�0), s = 1; :::; S, are indepen-

dent and identically distributed. Consequently, when T goes to in�nity, they have the

same bias term which disappears in the di�erence (6). The variance-covariance matrix

follows from the independence among the di�erent drawings and data.

Proof of Proposition 3. As already noted when T goes to in�nity

(A.1)

limT!1	T (~y
T (�); �) = �1

2

MX
m=1

E�

h
(gm(yt)� �m)

2=ymt = Ym

i
fymt(Ym)

= 	1(�; �)

(see Proposition 1.3.9 in Tenreiro (1995), in which a mean squared convergence and

therefore a convergence in probability is demonstrated) and 	1(�; �) has its maximum

at � = b(�). Given that �̂T converges to b(�0) and ~�sT (�) converges to the binding func-
tion b(�), if the equation

(A.2) � = b(�)
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admits a unique solution in �, we have that

�̂ST (
) = Argmin�

"
�̂T � 1

S

SX
s=1

~�sT (�)

#0

T

"
�̂T � 1

S

SX
s=1

~�sT (�)

#

! Argmin� [b(�0)� b(�)]0
 [b(�0)� b(�)]

= f� : b(�) = b(�0)g (as soon as 
 is positive de�nite)

= �0 (from A.2)

Let us consider the �rst order conditions of the minimization problem (4)"
1

S

SX
s=1

@ ~� 0sT
@�

(�̂ST )

#

T

"
�̂T � 1

S

SX
s=1

~�sT (�̂ST )

#
= 0

If we consider an expansion around the value �0 we have"
1

S

SX
s=1

@ ~� 0sT
@�

(�0)

#

T

q
ThT

"
�̂T � 1

S

SX
s=1

~�sT (�0)� 1

S

SX
s=1

@ ~� 0sT
@�

(�0)
�
�̂ST � �0

�#
= op(1)

thenq
ThT

�
�̂ST � �0

�
=

"
@b0

@�
(�0)


@b

@�0
(�0)

#
�1

@b0

@�
(�0)


q
ThT

"
�̂T � 1

S

SX
s=1

~�sT (�0)

#
+ op(1)

and the result follows from Proposition 2.

Proof of Proposition 4. From equations (12)

tr(�M+1) = tr(�M)� tr

 
�M cM+1c

0

M+1 �M

1 + c0M+1 �M cM+1

!

= tr(�M)� c0M+1 �
2
M cM+1

1 + c0M+1 �M cM+1

and

j�M+1j =
j�M j

jI + �
1=2
M cM+1c0M+1 �

1=2
M j

=
j�M j

1 + c0M+1 �M cM+1

since I + �
1=2
M cM+1c

0

M+1 �
1=2
M is a symmetric positive de�nite matrix, which has M � 1

eigenvalues equal to 1 and the last one equal to (1+ c0M+1 �M cM+1). The result follows.
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