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Abstract

This study explores three alternative econometric interpretations of dynamic, stochastic
general equilibrium (DSGE) models.  Under a strong econometric interpretation, these
models provide likelihood functions for observed sequences of prices and quantities.
Given this interpretation, most DSGE models are rejected using classical econometrics
and assigned zero probability in a Bayesian approach.  Under a weak econometric
interpretation, commonly made in the calibration literature (Kydland and Prescott, 1996),
a DSGE model mimics the world only along a carefully specified set of dimensions.
Computational experiments provide predictive distributions in these dimensions, which
are then compared with the corresponding observed values.  The weak econometric
interpretation shares the same assumptions as the strong econometric interpretation,
however, and it therefore leads again to the conclusion that most DSGE models are not
credible.  Under a minimal econometric interpretation, introduced by DeJong, Ingram and
Whiteman (1996) and further developed in this study, DSGE models provide only
population moments for certain functions of prices and quantities.  They have empirical
content only in the presence of auxiliary models which link population moments with
observables.  Such models may be entirely atheoretical.  This study shows how DSGE
models and an atheoretical model may be integrated into a common probability model,
and used together to draw conclusions about different DSGE models.  The methods and
conclusions of the study are all illustrated using models of the equity premium.
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1.  Introduction

The dynamic, stochastic, general equilibrium (DSGE) model has become a central

analytical tool in studying aspects of economic behavior in which aggregate uncertainty

is important.  These models abstract sufficiently from measured economic behavior that

clarification of the dimensions of reality they are intended to mimic is essential if they are

to deepen our understanding of real economies.  If the relation between DSGE models

and measured economic behavior can be made formal, explicit, and simple, then the

analytic power of this approach and our understanding of economic behavior will be

enhanced.  If this relation is arbitrary, vague, and convoluted, then the usefulness of

DSGE models will be neither tested nor widely appreciated.  The objective of this study

is to provide such a formal, explicit and simple characterization of the relation between

DSGE models and measured economic behavior.

The approach taken here is to examine three alternative interpretations of the

relationship.  The first, called the strong econometric interpretation, leads to

conventional, likelihood based, econometric methods.  It is widely understood that DSGE

models fare badly under this interpretation, and the DSGE literature consistently denies

its appropriateness given the level of abstraction in the models.  The second, called the

weak econometric interpretation, greatly reduces the dimensions of observed behavior a

DSGE model is designed to explain.  It is the interpretation advanced by Kydland and

Prescott (1996).  Its assumptions are in fact no weaker than those that lead to likelihood

based econometrics, and so DSGE models fare badly under this interpretation as well,

although the failure is not so immediately evident.  This study develops a third, minimal

econometric interpretation of DSGE models introduced by DeJong, Ingram and

Whiteman (1996).  The assumptions underlying this interpretation are much weaker, and

it is immune to the difficulties encountered in likelihood based econometrics.  To be

capable of explaining measured aggregate economic behavior, however, DSGE models

under this interpretation must be married to econometric models that provide empirically

plausible descriptions of measured behavior.  This study shows how to do this in a way

that is formal, explicit, simple, and easy to implement.
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The three econometric interpretations are all presented with reference to a particular

substantive application – DSGE models designed to explain the equity premium.  The

paper begins, in Section 2, by setting forth four such models.  The alternative

econometric interpretations are taken up in Sections 3, 4, and 5.  In each case numerical

and graphical methods are used to illustrate the application to equity premium models.

The weak econometric interpretation (Section 4) corroborates the findings of the DSGE

literature regarding the equity premium puzzle – as it must, for this is the interpretation

used there.  The minimal econometric interpretation (Section 5) reverses some of the

findings widely regarded as established by DSGE models.  These findings illustrate some

of the returns to a formal, explicit and simple approach to inference in DSGE models.

2. The essential elements of DSGE models

Dynamic, stochastic general equilibrium (DSGE) models have several common

elements.  They specify preferences of economic agents over alternative paths of

consumption, a technology of production, and perhaps a government sector.  They

assume that all economic agents choose their most preferred path of consumption.  They

allow stochastic perturbations to the production technology.  They use the principle of

competition to determine equilibrium paths of quantities and prices, as functions of tastes,

technology, and stochastic shocks.  Tastes, technology, and the assumption of

competition transform the technology shock distribution to a distribution of quantities

and prices.

To isolate the econometrically relevant implications of these models, let “A” denote

the assumptions of a particular model.  For example, this could include the assumptions

that preferences are time separable with constant relative risk aversion in each period,

production is Cobb-Douglas, shocks to technology are log-normal and first order

autoregressive, and equilibrium is competitive.  Let “θA ” denote the parameters that

provide quantitative content for the model – for example, the specification that labor’s

share is .70, the coefficient of relative risk aversion is 2.0, and so on.  Finally, let “y”

denote an observable, finite sequence of quantities and prices whose equilibrium values

the model describes, for example 90 years of annual asset returns and output growth.
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If the model has a unique equilibrium then it implies a distribution of y, given the

values of the parameters.  A generic expression for this distribution is p ,yθA A( ) .  In most

DSGE models, p ,yθA A( )  cannot be derived in closed form.  However, it is typically not

difficult to learn about p ,yθA A( )  by means of forward simulations: given a value of θA ,

pseudo-random vectors ỹ  can be drawn independently and repeatedly from p ,yθA A( ) .

In many cases, this ability to simulate is sufficient to draw formal conclusions about the

model and use it to study the substantive questions it was designed to address.

2.1.  An example:  General equilibrium models of the equity premium

Average annual real returns on relatively riskless short-term securities in the U.S.

have been about one percent during the past one hundred years.  Average annual real

returns on equities over the same period have averaged above six percent.  The equity

premium—the difference between the return to equities and the return to relatively

riskless short-term securities—has exceeded five percent during the past century in the

U.S.  Many simple general equilibrium models predict average returns on riskless assets

that are much higher than the observed average value, and average equity premia that are

much lower, given parameter values generally regarded as reasonable.  This predictive

failure has become known as the equity premium puzzle.  Kocherlakota (1996) provides a

recent review of the literature.

In the simplest general equilibrium model of the equity premium there is a single

perishable good produced and consumed each period.  Let period t production of the

good be yt , and denote the period-to-period gross growth rate of output by x y yt t t= −1 .

The representative agent orders preferences over random paths of consumption yt{ } by

(2.1.1) E Ut
s

t ss
yδ +=

∞ ( )[ ]∑ 0
.

In this expression δ ∈( )0 1,  is the subjective discount factor, and Et  denotes expectation

conditional on time t information.  The instantaneous utility function is the constant

relative risk aversion (CRRA) utility function

(2.1.2)  U c ct t( ) = −( )−1 1α α ,
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it being understood that U logc ct t( ) = ( )  when α = 1.  The parameter α  is the coefficient

of relative risk aversion in the instantaneous utility function (2.1.2), and is also

proportional to the marginal rate of intertemporal substitution in the preference ordering

(2.1.1).

Define a riskless asset to be a claim to one unit of consumption in the next period.  If

such an asset is held in this economy, its period t price must be

(2.1.3) p y y xt t t t t t= ′( ) ′( )[ ] = ( )+ +
−δ δ αE U U E1 1 .

Define one share of equity to be a claim to the fraction f of output in all future periods.  If

this asset is held in this economy, its period t price must be

(2.1.4)  
q f y y y

fy y y y y fy x

t t
s

t s t ss t

t t
s

t s t ss t t t t
s

t jj

s

s

= ⋅ ′( ) ′( )[ ]
= ′( ) ′( )[ ] = [ ]

+ +=

∞

+ +=

∞
+
−

==

∞

∑
∑ ∏∑

E U U

E U U E ,

δ

δ δ α

1

1

1

11

from which

(2.1.5) q y fy q y x fy qt t t t t t t t t t= ′( ) +( ) ′( )[ ] = +( )[ ]+ + + +
−

+ +δ δ αE U U E1 1 1 1 1 1 .

From (2.1.4), the share price is proportional to output.  If the growth rate xt  is stationary,

then q yt t  is also stationary even though output yt  is not.  This is a consequence of the

assumption that instantaneous utility is of the CRRA form (2.1.2) – in fact, (2.1.2) is the

unique instantaneous utility function with this property in (2.1.1) (King, Plosser and

Rebelo, 1990).

2.2.  The Mehra-Prescott and Rietz models

Mehra and Prescott (1985) assume that the growth rate xt  is a first order Markov

chain with n discrete states.  The growth rate is λ j  in state j.  Assume that the time t

information set includes the history of growth rates, and let Pt  denote probability

conditional on time t information.  Then the Mehra-Prescott assumption can be expressed

(2.2.1)          Pt t j t i ijx x+ = =( ) =1 λ λ φ .

Suppose that this economy is in state i at time t.  Then from (2.1.3) and (2.2.1), the

price of the riskless asset is

p pt
i

ij jj

n
= ≡( ) −

=∑δ φ λ α
1

,
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and the return to the riskless asset held from period t to period t + 1 is

r r pt
i i

+
( ) ( )= ≡ −1 1 1.

From (2.1.4) the share price qt  is proportional to output yt .  Hence for xt i= λ , denote the

share price q w yt i t= .  Substituting in (2.1.5),

 w f w f w i ni ij j j j jj

n

ij j jj

n
= +( ) = +( ) =( )−

=
−( )

=∑ ∑δ φ λ λ λ δ φ λα α
1

1

1
1, ,K .

Solving this system of n linear equations for w wn1, ,K( ) yields the share prices w yi t .  If

xt i− =1 λ  and xt j= λ , then the net return to equity holding from period t −1 to period t is

s s
q fy q

q

w y fy w y

w y

w f

wt
i j t t t

t

j t t j i t

i t

j j

i

= ≡ + − =
+ −

=
+( )

−( ) −

−

− −

−

, 1

1

1 1

1

1
λ λ

.

Mehra and Prescott (1985) take up the case n = 2 , and restrict φ φ φ11 22= = .  They

choose λ λ1 21 054 0 982= =. , . , and φ = 0 43.  to match the mean, standard deviation, and

first order autocorrelation in the annual growth rate of per capita U.S. real consumption

between 1889 and 1978.  They then examine whether there are values of α  less than 10

and any values of δ ∈( )0 1,  consistent with the observed average annual real returns of

0.0080 for short-term relatively riskless assets, and 0.0698 for the Standard and Poor's

Composite Stock Price Index, over the same period.  Their conclusion is negative.

Rietz (1988) uses the same model but adds a third state for output growth (n = 3).

The third state occurs with low probability, the growth rate in this state is quite negative,

and return to one of the two normal growth states occurs with certainty in the next period.

Rietz concludes that this model is consistent with the observed average returns to riskless

assets and the Stock Price Index, for some combinations of the parameter values – for

example, α  in the range of 5 to 7, δ  above .98, and a probability of about 0.1% of a

growth rate in which half of output is lost.

2.3.  The Labadie and mixture models

Labadie (1989) takes

log log , ~ N ,x xt t t t

IID

= + + ( )−β β ε ε σ0 1 1
20 .

Tsionas (1994) generalizes this to

log log , ~ N , , ~ px xt t t t t

IID

t

IID

= + + ( ) ⋅( )−β β ω ε ε ω ω0 1 1
1 2 0 1 ,
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with ω t{ }  and ε t{ } mutually independent.  The riskless asset price follows from (2.1.3):

p x x

x x

t t t t t t t

t t t t

= ( ) = − +( )[ ] −( )[ ]
= −( ) ( ) = −( ) ( )

+
−

+ +

−
+

−

δ δ α β β αω ε

δ αβ α ω δ αβ α

α

αβ αβ

E exp log E exp

exp E exp M ,

1 0 1 1
1 2

1

0
2

1 0
21 12 2

where M ⋅( )  denotes the moment generating function of ω ω, M E expt t( ) = ( )[ ].  The net

return on holding the riskless asset is thus

(2.3.1) r xt t= ( ) ( ) −exp Mαβ δ ααβ
0

21 2 1.

Direct substitution in (2.1.5) leads to

(2.3.2) q fy c m xt t s s t
a

s
s=

=

∞∑ 1
,

with

a

c
s

m

s
s

s

s

s
s j

j

s

= −( ) −( )

=
−

−
−( )

−( )












= −( ) −( )[ ]=∏

ρβ β β

ρ β
β

ρβ β β
β

δ ρ β ρ β

1 1 1

0

1

0 1 1

1

2

2
1

2 2
1

2

1

1 1

1

1

1

1 1

,

exp ,

M ,

where ρ α= −1 .  The expression (2.3.2) converges, and equilibrium with finite equity

prices exists, if and only if M ρ β δ2
1
2 12 1 −( )[ ] < − .  Defining the left side of (2.3.2) to be

ht , the return to equity is then s x h ht t t t= +( ) −−1 11 .

Tsionas (1994) thus extends Labadie (1989) by permitting the growth shock to be a

scale mixture of normals.  The best known scale mixture of normals is the Student-t

distribution, corresponding to an inverted gamma mixing distribution pω ⋅( ) .  However,

the inverted gamma distribution has no moment generating function: the implicit integral

on the left side of (2.3.1) diverges, and there is no equilibrium with finite asset prices.

An attractive flexible family of symmetric distributions is the finite scale mixture of

normals, for which the moment generating function is trivial and always exists.  A

distribution in this family has n components, with component i assigned probability pi .

Conditional on component i, ω ωt i i n= =( )( ) 1, ,K .  Thus, the p.d.f. of ut t t= ω ε1 2  is

 p expu p ut i i t ii

n( ) = ( ) −( )−
( )
−

( )=∑2 21 2 1 2 2

1
π ω ω .
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To extend Labadie’s model in much the same way that Rietz extended Mehra and

Prescott, let n = 2 , let i = 1 denote the “normal” state, and let i = 2  denote the “high

variance” state.  We refer to this subsequently as the mixture model.

The Labadie and mixture models can be calibrated in the same way as the Mehra-

Prescott and Rietz models.  In the Labadie model choose β β σ0 1, , and 2 to match the

same three moments used by Mehra and Prescott: the mean, standard deviation, and first-

order autocorrelation coefficient of U.S. consumption growth for 1889 through 1978.  For

the mixture model do the same thing, except to substitute ω σ1( ) for 2.  To parallel the

treatment of Rietz, let p1 99= .  and p2 01= .  in the mixture model.

3.  Strong econometric interpretation of DSGE models

The strong econometric interpretation of a dynamic, stochastic general equilibrium

(DSGE) model is that the model provides a predictive distribution for an observable

sequence of quantities and/or prices y.  Given the parameter values, p ,yθA A( )  is the ex

ante, predictive distribution for the observables y.  Then, letting yo  denote the observed

value of y, L ; , p ,θ θA
o o

AA Ay y( ) ≡ ( ) is the likelihood function ex post.  To provide such a

predictive distribution the model must specify values of the parameters θA , or indicate a

reasonable range for parameter values and a distribution over that range, not just a

distribution conditional on an unknown parameter vector θA .  Many studies that construct

and calibrate DSGE models provide this sort of information about parameter values, at

least informally, by means of reference to values in the literature and through their choice

of calibrated values used in simulations.

Given a strong econometric interpretation, there is potentially a rich agenda of

positive and normative economics.  On the positive side, predictive distributions of

observables can be used to compare alternative models, discard some, and improve

others.  On the normative side, DSGE models provide predictive distributions of the

welfare implications of the policy interventions they are designed to accommodate.

Unfortunately, under a strong econometric interpretation the normative promise of DSGE
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models cannot be realized, because they fail completely in positive comparisons with

alternative models.  This result emerges in both Bayesian and classical approaches.

3.1.  Classical econometrics

Formal, classical approaches to model evaluation and comparison are squarely in the

tradition of Neyman and Pearson, and have become known as specification testing.  Let

z = ( )t y  be a scalar function of the observables, and let p ,z AAθ( )  be the density of z

implied by p ,yθA A( ) .  If z is pivotal—i.e., the distribution of z is the same for all

θA A∈Θ —then one may unambiguously write the probability density function of z as

p z A( ) and the cumulative distribution function as P z A( ) .  In this case, the model A

implies that 1 − ( )P z A  is uniformly distributed on the unit interval.  Then zo o= ( )t y  is,

formally, a test statistic, and 1 − ( )P z Ao  is the marginal significance level of zo .  It is

then a short step to state that the model A is rejected at marginal significance level

1 − ( )P z Ao . The specification A is rejected if zo  is sufficiently large, or equivalently

1 − ( )P z Ao  is too small.  More realistically zo  or 1 − ( )P z Ao  may simply be presented as

a useful summary of evidence against model specification A.

Underlying this familiar use of a test statistic zo o= ( )t y  is the belief, perhaps

unarticulated, that there is some plausible alternative specification p ,yθB B( ), θB B∈Θ ,

and that for at least someθB B∈Θ , P , Pz B z ABθ( ) < ( ).  It is this belief that makes it

reasonable to reject A in a test of, say, size 5% if 1 05− ( ) <P .z Ao , as opposed to

rejecting A if . P .376 1 426< − ( ) <z Ao .  In formal terms, the power as well as the size of

a test must be considered.  But the concept of power requires an alternative to the model

under consideration.  Model evaluation cannot be divorced from model comparison:

underlying any specification test is a hypothesis test against a class of alternative models.

The choice of the test statistic z = ( )t y  typically involves both science and art.

Finding a pivotal test statistic is possible only in special simple circumstances: Student’s t

for a single linear restriction in a linear model is the leading example.  In most cases the

best a classical econometrician can do is to establish that z = ( )t y  is pivotal
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asymptotically.  This technical requirement substantially limits the range of test statistics

that can be considered.  Determination of P z A( )  in finite sample for pivotal z or in large

sample for asymptotically pivotal z is then straightforward, for simulation can be used to

create the necessary tables if an analytic derivation is not at hand.  Especially in complex

models, showing that z = ( )t y  is asymptotically pivotal is the dominant technical

concern.  The choice of z within this class is more art: whether there are other tests more

powerful than a given z = ( )t y  is generally unknown.

3.2.  Bayesian econometrics

The formal Bayesian approach to model comparison is grounded in complete

specification of the joint distribution of models, parameters, and observables.  If two

models, A and B, are being considered, this complete specification can be achieved by

stipulating a density p θA A( )  with support ΘA , a density p θB B( ) with support ΘB , and

model probabilities p A( ) and p B( ) with p pA B( ) + ( ) = 1.  Then

(3.2.1)   p , , , , p p p , p p p ,A B A A A B B BA B A A B Bθ θ θ θ θ θy y y( ) = ( ) ( ) ( ) + ( ) ( ) ( ).
Given (3.2.1), the evidence in the data about models and parameters follows from the

laws of conditional probability.  For example, the marginal likelihood of model A is

p p p ,y yo
A

o
A AA A A d

A

( ) = ( ) ( ) ( )∫ θ θ ν θ
Θ

the posterior distribution of θA  is

          p , p p , pθ θ θA
o

A
o

A
oA A A Ay y y( ) = ( ) ( ) ( ),

and the posterior odds ratio in favor of model A is

(3.2.2) 
p

p

p p

p p

A

B

A A

B B

o

o

o

o

y

y

y

y

( )
( ) =

( ) ( )
( ) ( ) .

This approach generalizes immediately to any finite number of models.

The posterior odds ratio directly addresses the question so frequently asked in

applied economics, “having looked at the data, what do we now think about alternative

theories A and B?”  The clarity of (3.2.2) in answering this question reflect the demands

of Bayesian econometrics for an explicit representation of beliefs about models (p A( )
and p B( ), and p θA A( )  and p θB B( )).  Technical work in Bayesian econometrics focuses
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on two tasks.  One is the tractable representation of prior beliefs in densities like p θA A( ) ,

and the related problem of communicating information about posterior odds ratios to

audiences in which prior beliefs may be heterogeneous.  The second task is the

computation of (3.2.2) and the evaluation of posterior moments of generic form

(3.2.3) E g , , ,y yo
A

oA Aθ( )[ ] = ( ) ( ) ( )∫ g , p ,y yo
A A

o
AA d

A

θ θ ν θ
Θ

,

which generally entails constructing a posterior simulator – an algorithm that produces

pseudo-random vectors θA
m( ) with common density p ,θA

o Ay( ) .

3.3.  The failure of DSGE models under the strong econometric

        interpretation

To appreciate the failure of DSGE models in either classical specification testing or

Bayesian model comparison, consider the equity premium models described in Section 2.

In the Mehra-Prescott and Rietz variants, the number of states is finite.  Given n states,

there can be at most n2  different observable combinations of consumption growth and

asset returns.  Obviously this property does not characterize the data in any literal way.  A

trivial classical specification test would reject the model, and the marginal likelihood in

any Bayesian formulation would be zero.  Less obviously, and more substantively, the

observed combinations of the risk free rate and equity premium have a very dispersed

support, as illustrated in Figure 3.3.1.

Similar problems with respect to the support of the distribution of observables arise

in the Labadie and Tsionas variants of the model.  Corresponding to any growth rate there

is exactly one riskless return (2.3.1), and to any two successive growth rates, one risky

return based on (2.3.2).  Thus, for example, these models imply

min
, ,b b b t t

b

t

T
r b b x

0 1 2

2
0 1

2

1
0( ) =

− −( ) =∑ .  This condition is violated in the data.  In any

classical specification test the model is rejected in a test of any positive size, and in a

Bayesian model comparison the marginal likelihood of the model is zero.  The observed

combinations of growth rates and risk free rates, displayed in Figure 3.3.2, do not even

suggest such a relationship.

The restriction of observables to a degenerate space of lower dimension is a well

documented failure of most DSGE models.  Watson (1993), for example, has illustrated
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that the reduction in dimension is not even approximately true as a characterization of the

data in the one-sector neoclassical model of King, Plosser, and Rebelo (1988).  The

problem derives from the small number of shocks—often just one, as is the case

here—and the larger number of observables.  Smith (1993) presents a simple real

business cycle model with two shocks and two observables, and employs a formal,

likelihood-based approach to make inferences about parameter values.  Since observables

are not restricted to a space of lower dimension, his model is not trivially rejected under

the strong econometric interpretation.  The difficulty lies not in the economics of

dynamic general equilibrium, but in the fact that the technology of building this kind of

model is not generally developed to the point of accommodating a sufficiently large

number of shocks in a credible way.  A strong econometric interpretation of DSGE

models requires an explicit accounting for the dimensions of variation observed in the

data, that are not accounted for in the model.

4.  Weak econometric interpretation of DSGE models

Most macroeconomists who work with DSGE models eschew the strong

econometric interpretation.  For example, Mehra and Prescott (1985) in constructing their

model of consumption growth, the riskless return, and the equity premium, plainly state

that the model is intended to explain the first moments in returns, but not the second

moments.  That is, the model purports to account for sample average values of the

riskless return and the equity premium, but not for the volatility in returns (Mehra and

Prescott, 1985, p. 146).  Kydland and Prescott (1996, p. 69) also emphasize that the

model economy is intended to “mimic the world along a carefully specified set of

dimensions.”

To begin the process of formalizing this interpretation of DSGE models, let z y= ( )f

denote the dimensions of the model that are intended to mimic the real world.  The weak

econometric interpretation of a dynamic general equilibrium model is that the model

provides a predictive distribution for the functions z y= ( )f  of the observable, finite

sequences of quantities and/or prices y.  This section argues that this is the interpretation

most frequently given to DSGE models by macroeconomists, including Kydland and
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Prescott (1996).  While many applications of DSGE models resort to ad hoc comparison

of predictive distributions with observed behavior, careful investigators, including

Kydland and Prescott (1996), use the weak econometric interpretation of DSGE models

presented here.  This section illustrates this interpretation in the context of the equity

premium model introduced in Section 2.  Finally, this section shows that this

implementation of the weak econometric interpretation in fact makes the same

assumptions as the strong econometric interpretation.  A corollary is that to deny the

strong econometric interpretation of a DSGE model, while examining the implications of

the weak econometric interpretation in the manner of most of the applied DSGE

literature, is internally inconsistent.

4.1.  Formalizing the weak econometric interpretation

Let z y= ( )f  denote the dimensions of the model intended to mimic the real world.

In the DSGE literature such dimensions are typically sample moments – means,

variances, autocorrelations, and the like.  Given a complete, probabilistic specification of

the model along the lines outlined in Section 3.2, p ,zθA A( ) is implied by p ,yθA A( )  and

z y= ( )f .  Hence there is a predictive density

p p p ,z zA A A dA A A
A

( ) = ( ) ( ) ( )∫ θ θ ν θ
Θ

for z.

In the DSGE literature, this predictive density is typically investigated by means of

simulation, or computational experiments.  Often, θA  is fixed, or a few different values of

θA  are considered to allow for uncertainty about θA .  These are simply particular forms

of the prior density p θA A( ) .  Formally, a computational experiment is ˜ ~ pθ θA
m

A A( ) ( ) ,

˜ ~ p ˜ ,y ym
A
m A( ) ( )( )θ , ˜ f ˜z ym m( ) ( )= ( ) m M=( )1, ,K .  The pseudo-random vectors z̃ m( )

characterize the predictive distribution of the model, and can be compared with the

observed value, zo .

Kydland and Prescott (1996, p. 70) are quite clear about this process:

If the model has aggregate uncertainty…then the model will imply a
process governing the random evolution of the economy.  In the case of
uncertainty, the computer can generate any number of independent
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realizations of the equilibrium stochastic process, and these relations,
along with statistical estimation theory, are then used to measure the
sampling distribution of any desired set of statistics of the model
economy.

And, again (Kydland and Prescott, 1996, pp. 75-76):

If the model economy has aggregate uncertainty, first a set of statistics that
summarize relevant aspects of the behavior of the actual economy is
selected.  Then the computational experiment is used to generate many
independent realizations of the equilibrium process for the model
economy.  In this way, the sampling distribution of this set of statistics can
be determined to any degree of accuracy for the model economy and
compared with the values of the set of statistics for the actual economy.  In
comparing the sampling distribution of a statistic for the model economy
to the value of that statistic for the actual data, it is crucial that the same
statistic be computed for the model and the real world.  If, for example,
the statistic for the real world is for a 50-year period, then the statistic for
the model economy must also be for a 50-year period.

What aspects of the predictive density p z A( ), as represented by the z̃ m( ), should be

compared with zo?  In a classical approach, if z were pivotal then p p *z zA A( ) = ( )θ  for

any θA A
* ∈Θ ; the prior distribution for θA  would be irrelevant, and zo  would be

compared with the relevant tail of p *zθA( ).  In fact, however, the dimensions of the real

world, z, that the model is intended to describe are typically anything but pivotal.  For

example, in the equity premium model set forth in Section 2, the sample means of the

riskless rate and equity premium that the model is intended to describe are sensitive to the

risk aversion parameter α  and discount parameter δ .

A formal Bayesian approach conditions on zo , the observed dimensions of the real

world the model is intended to address.  Given two competing models, A and B, the

posterior odds ratio is then

p

p

p p

p p

A

B

A A

B B

o

o

o

o

z

z

z

z

( )
( ) =

( ) ( )
( ) ( ) .

For purposes of model evaluation and comparison, therefore, it is the predictive density

of z at the observed value zo  that matters.  The key technical problem is the

approximation of p zo A( ) on the basis of the computational experiments that generated
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˜ , ,z m m M( ) =( )1K .  Predictive means, E ˜z zA M m

m

M( ) ≈ − ( )
=∑1

1
, which are so often

presented and compared with zo  in the DSGE macroeconomics literature, are irrelevant,

under either a classical or a Bayesian approach.

If the order of the vector z is small—say, three or less—then numerical

approximation of p zo A( ) is straightforward, and much simpler than the numerical

approximation of the full marginal likelihoods in (3.2.2) under the strong econometric

interpretation of the DSGE model.  The latter requires backward simulation, for example

by means of a Markov chain Monte Carlo algorithm.  The former only requires the z̃ m( )

produced through the forward simulation in the familiar computational experiments of

the DSGE literature. Conventional smoothing procedures like kernel density methods

will provide a numerical approximation to p zo A( ):
p K ;z z zo m o

m

M
A M( ) ≈ ( )− ( )

=∑1

1
,

where the kernel smoother K ;z zo( ) is a nonnegative function of z that is concentrated

near zo  and integrates to one.  This computational procedure also provides the numerical

approximation

E g , , K ; g , K ;θ θA
o o m o m o

m

M m o

m

M
Ay z z z y z z( )[ ] ≈ ( ) ( ) ( )( ) ( )

=
( )

=∑ ∑1 1

to any posterior moment.  This is also much less demanding that the posterior simulation

required to approximate (3.2.3).

As a byproduct, the forward simulation exercise produces the full predictive

distribution of z, including points far from the observed value.  Careful examination of

these points can lead to further insights into the model.  We turn now to some examples.

4.2.  Weak econometric interpretation of the equity premium model

The Mehra-Prescott and Labadie models completely specify the distribution of

growth.  The Rietz and mixture models each specify the distribution of growth up to a

single, unknown parameter: λ3 , growth in the event of a crash, and ω 2( ), the high

variance, respectively.  For the Rietz model, adopt the prior distribution

log ~ N . , .λ λ3 3
21 036 1 185−( )[ ] ( ),

and for the mixture model use
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1 33 1 662
2. ~ .ω χ( ) ( ) .

Deciles for both distributions are given in Table 4.2.1.  The distribution of λ3  is centered

at λ3 0 509= . , halving of expected output, which is the intermediate of the three examples

taken up in Rietz (1988).  The distribution of ω 2( ) centers the standard deviation in the

high variance state about 1.26, implying that in this state output is about as likely to be

between one-third and triple its normal value as it is to be outside this range.

All other parameters in the models pertain to the consumption growth process.  In

the exercises reported here these parameters were held fixed at their calibrated values,

which are chosen to reproduce the mean, standard deviation, and first order

autocorrelation of the consumption growth rate.  Modifying the analysis by introducing

prior distributions for these parameters increases the technical complexity of the exercise,

because the dimension of the predictive distribution is increased from two to five, but has

little effect on the final results.

None of the models fix the relative risk aversion parameter α  or the subjective rate

of discount δ .  This analysis employs priors that should provide substantial probabilities

to the ranges most economists would regard as plausible, and permit some unreasonable

values as well.  For α , take

log ~ N . , .α 4055 1 30772( ),
and for δ ,

log ~ N . , .δ δ1 3 476 1 4182−( )[ ] ( ) .

Deciles for these prior distributions are also shown in Table 4.2.1.  The prior distribution

for α  is centered at α = 1 5. , and a centered 80% prior credible interval for α  is (0.281,

8.0).  The prior distribution for δ  is centered at 0.97, and a centered 80% prior credible

interval is (0.84, 0.995).

These prior distributions, together with the data densities described in Section 2,

provide predictive densities for all four models: Mehra-Prescott, Rietz, Labadie, and

mixtures.  For each model, draws from predictive densities for output growth rate and

asset returns can be made by (1) drawing from the prior distribution for the unknown

parameter; (2) conditional on the drawn parameters, generating a sample of 90 successive

years of growth rates from the probability density for xt{ }; (3) solving for the riskless
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and risky returns in each year as indicated in Section 2.  Draws from the predictive

density for any function of output growth rate and asset returns, are then just the

corresponding functions of this generated, synthetic sample.  For example, to draw from

the predictive density for 90-year means of the risk free rate and the equity premium,

following step (3), just construct these functions and record them.  Notice that the

predictive density for the mean risk free rate and mean equity premium accounts for both

uncertainty about parameter values (by means of the draws from the prior) and sampling

variation due to 90-year averaging (be means of the 90-year simulation).

Results of these exercises can be portrayed graphically.  Figures 4.2.1–4.2.4 show

the predictive distributions for 90-year averages of the risk free return and equity

premium, as represented by 2,500 points z̃ m( ) drawn from p z A( ) for each model.  In each

figure, the vertical line indicates the observed value of .008 for the risk free rate and the

horizontal line indicates the observed value of .0618 for the equity premium.  The

supports of the Rietz and mixture model predictive densities include the observed values,

but those of the Mehra-Prescott and Labadie model predictive densities do not.  This is

qualitative corroboration of the failure of the latter two models to explain the equity

premium puzzle in the weak econometric DSGE literature, and the ability of the Rietz

model to account for the observed means.  It extends this corroboration to the mixture

model.

Figures 4.2.1–4.2.4 can be used to explore the workings of all four models in some

detail, by examining the parameter values or the history of consumption growth

underlying the points plotted.  This can be done by color coding the points for values of

one of the parameters, like the relative risk aversion parameter α , or by software that

provides a full display of parameter values and the simulated time series after clicking on

a point.  For example, high values of the risk free rate correspond to low values of δ .

Negative values of the risk free rate and high equity premia in the Rietz and mixture

models typically reflect high risk aversion in conjunction with a low probability of very

negative growth rates.  The values of the risk free rate and equity premium in the Rietz

and mixture models close to the historical averages typically correspond to situations in

which very negative growth rates were possible but did not occur during the simulated

90-year history.
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Table 4.2.2 provides approximations of the log marginal likelihood, log p zo A( )[ ], of

each of the four models under the weak econometric interpretation.  A bivariate Gaussian

density kernel was centered at the observed sample mean for the riskless return and

equity premium, and 25,000 points z̃ m( ) were drawn from the predictive density p z A( ).
The density kernel was symmetric.  Various standard deviations were used as indicated in

the left column of Table 4.2.2.  The most concentrated kernel (top line) puts almost all of

its weight on returns within 0.001 of the observed value.  The least concentrated kernel

(bottom line) extends weight to returns within 0.02 of the observed value.  As one moves

down the rows, approximations show greater bias (because they include values of z̃ m( )

farther from the data point) but less variance (because more points are given weight).

Asymptotic standard errors are indicated parenthetically.  Table 4.2.2 shows that the

marginal likelihoods of the Mehra-Prescott and Labadie models are zero.  For the more

concentrated kernels the Rietz and mixture models have indistinguishable marginal

likelihoods.  For the less concentrated kernels the mixture model is favored, but the

Bayes factor is never more than about 2:1.

4.3.  Logical problems with the weak econometric interpretation

As the DSGE literature emphasizes, all models are approximations of reality, and it

is important to clarify which aspects of reality a model is intended to mimic.  In the

strong econometric interpretation of a model, this limited scope is recognized in the

choice of the random vector y.  If, subsequently, attention is shifted to only a subset of

the original variables, there are no conceptual difficulties: one simply works with the

marginal distributions of the included variables.

The dimensions of reality addressed by DSGE models entail a reduction of a

different kind.  For example, the equity premium models are intended to explain sample

means of the riskless return and equity premium, but no other aspects of these returns.

This is not possible.  If the model accounts for T +( )1 -year averages as well as T-year

averages, then the model also has implications for the year-to-year returns.  One cannot

choose to believe the former but not the latter.
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More significantly, the DSGE literature takes the short-run dynamics of these

models literally, in establishing the sampling distribution of the set of statistics z that

summarize the relevant aspects of the behavior of the actual economy.  This fact is

emphasized in Kydland and Prescott (1996).  It is made quite clear in careful calibration

studies, for example Gregory and Smith (1991, p. 298) and Christiano and Eichenbaum

(1992, pp. 436 and 439).  It is inherent in the formal Bayesian implementation of the

weak econometric interpretation set forth here.  On the other hand, it is ignored in that

part of the DSGE literature that reduces econometrics to an informal comparison of two

numbers, the observed value and the predictive mean.  However, the sampling

distribution of the statistic z is often a function of profoundly unrealistic aspects of these

models, aspects that lie outside the dimensions of reality the models were intended to

mimic.  For example, in the equity premium models the sampling distribution of average

asset returns over the 90-year period are closely related to the variances of these returns,

through the usual arithmetic for the standard deviation of a sample mean.  In establishing

the sampling distribution of these means through repeated simulation of the model, one is

taking literally the second moments of returns inherent in the model.  These are precisely

the dimensions the original model was not intended to capture (Mehra and Prescott, 1985,

p. 146), and the models are unrealistic in these dimensions.  For example, the sample

standard deviation of the equity premium is .164 over the period 1889-1979, whereas at

prior median values the standard deviation is .055 in the Mehra-Prescott model and .258

in the Rietz model.  The weak econometric interpretation of DSGE models leads to

formal methods for model comparison that are easy to implement and have an

unambiguous interpretation.  As a byproduct, there are some interesting and useful visual

displays.  But the assumptions that underlie the weak econometric interpretation are in

fact the same as those made in the strong econometric interpretation: the model is

assumed to account for all aspects of the observed sequence of quantities and/or prices.

5.  Minimal econometric interpretation of DSGE models

The logical problems encountered in the claim that DSGE models account for only a

few sample moments of observed sequences of quantities and prices prevents the
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development of this notion into coherent methods of inference about these models.  To

broaden the claim to assert that DSGE models in fact provide likelihood functions leads

to outright dismissal of most of these models (Section 3).  This section considers a more

modest claim for DSGE models, also studied by DeJong, Ingram and Whiteman (1996):

only that they account for population moments of specified, observable functions of

sequences of prices and/or quantities.  A DSGE model, A, with a given parameter vector

θA , implies population moments m z= [ ]E ,θA A , where z y= ( )f  is the same vector of

sample moments considered under the weak econometric interpretation.  If A is endowed

with a prior distribution p θA A( ) , then A provides a distribution for m as well.  If the

mapping from θA  to m is one-to-one, then the DSGE model rationalizes any m in terms

of behavioral parameters of  the model A.

By not claiming to predict sample moments, the minimal econometric interpretation

avoids the logical pitfall that predicting sample moments and carrying out inference

based on the model’s predictive distribution leads inevitably back to a conventional

likelihood function.  The cost entailed in this retreat is that the DSGE model, by itself,

now has no implications for anything that might be observed.  To endow such a model

with empirical content it is necessary to posit, separately, a link between the population

moment m and the observable sequence of prices and/or quantities y.  DeJong, Ingram

and Whiteman (1996) also noted the need for such a link.  This section shows how to do

this formally, and provides some examples of the procedure.  The result is an integration

of atheoretical, data-based macroeconometric models with DSGE models.

5.1.  Formal development

Let A and B denote two alternative DSGE models, each describing the same vector

of population moments m by means of the respective densities p m A( ) and p m B( ) .  The

densities could be degenerate at a point but in general are not because of subjective

uncertainty about parameter values in both models.

Introduce a third, econometric model E, that provides a posterior distribution for the

moment vector m, given the data yo : p ,m yo E( ).  The moment vector m is the same

vector of population moments described by A and B.  For example, A and B might refer to
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two of the equity premium models introduced in Section 2, m could be the 2 1×  vector of

unconditional means for the riskless rate and the equity premium, and E might be a vector

autoregression for the riskless rate and equity premium.  The posterior distribution

p ,m yo E( ) could be obtained using conventional posterior simulation methods.

Assumption 1.  For any E, p , , p , , p ,y m y m y mA E B E E( ) = ( ) ≡ ( ).

Assumption 1 acknowledges that since A and B claim only to describe m, then if m is

known in the context of E, A and B can have nothing further to say about y.  As a

consequence:

Result 1.  p , ,
p , , p ,

p ,
p ,A E

A E A E

E
A Em y

y m m

y m
m( ) = ( ) ( )

( ) = ( ).

Of course, p , , p ,B E B Em y m( ) = ( ) as well.  Since the models A and B  have no

implications for y beyond m, then if we knew m we could draw conclusions about A and

B without even collecting data yo .

In fact, we don’t know m.  We will use E to link the unknown m to the observed

yo , but it will be convenient if E itself does not take a stance on m.

Assumption 2.  p m E const( ) ∝ , p , pm mA E A( ) = ( ) , and p , pm mB E B( ) = ( ).

Heuristically, E says nothing about m either absolutely or relative to A and B.

As a consequence of Assumptions 1 and 2, one can draw conclusions about A and B

conditional on the data yo , and the model E used to link population moments and data.

Result 2.

 p , p , , p , p , p ,A E A E E d A E E do o o oy m y m y m m m y m( ) = ( ) ( ) = ( ) ( )∫ ∫
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= ( ) ( )
( ) ⋅ ( ) ∝ ( ) ( ) ( )∫ ∫

p , p

p
p , p p p ,

m

m
m y m m m y m

A E A E

E
E d A E A E do o .

As a consequence of Result 2,

(5.1.1)      
p ,

p ,

p

p

p p ,

p p ,

A E

B E

A E

B E

A E d

B E d

o

o

o

o

y

y

m m y m

m m y m

( )
( ) = ( )

( ) ⋅
( ) ( )
( ) ( )

∫
∫

.

The posterior odds ratio, on the left, is the product of a prior odds ratio and the Bayes

factor

p ,

p ,

p p ,

p p ,

y

y

m m y m

m m y m

o

o

o

o

A E

B E

A E d

B E d

( )
( ) =

( ) ( )
( ) ( )

∫
∫

.

The expression p p ,m m y mA E do( ) ( )∫  is the convolution of two densities: the

density for m implied by the DSGE model, A, and the posterior density for m implied by

the econometric model E given the data yo .  Loosely speaking, the greater the overlap

between these two densities, the greater the Bayes factor in favor of Model A.  This

looser interpretation underlies the confidence interval criterion proposed in DeJong,

Ingram and Whiteman (1996), for univariate m.  The odds ratio (5.1.1) provides an exact

interpretation for multivariate m.  The development here also emphasizes the importance

of a flat prior for the moments (Assumption 2), as opposed to simply a convenient diffuse

prior for m.

Models A and B can be compared on the basis of three simulations of the moment

vector m: one drawn from A, one from B, and one from the posterior distribution in E.

Informal comparison can be based on a visual inspection of the clouds of points from

these three models.  A more formal comparison can be made by means of the kernel

density approximation,

(5.1.2) p , p K ,A E A E MNo
A
r

E
s

s

N

r

M
y m m( ) ∝ ( )( ) ( )⋅ − ( ) ( )

== ∑∑2

11
.

It is important to keep in mind that the comparison between DSGE models under the

minimal econometric interpretation is always contingent on the choice of the common

econometric model E that provides the link to reality.  This is inescapable.  It is therefore
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prudent to be explicit about the chosen model E, and to explore the sensitivity of results

to the choice of E.

5.2.  Minimal econometric interpretation of the equity premium model

In the equity premium example the vector m consists of the population means for the

risk free rate and the equity premium.  Here we use perhaps the simplest econometric

model E with implications for m: a first-order Gaussian bivariate autoregression for the

risk free rate at equity premium, with stationarity imposed:

y m F y mt t t t− = −( ) + =( )−1 1879 1978ε , .K

where the 2 1×  vector yt  consists of the observed risk free rate and equity premium in

the indicated year, and ε t

IID

~ N ,0 Σ( ).
Draws of m from the posterior distribution were obtained using a Metropolis within

Gibbs posterior simulation algorithm.  An improper prior for β, ,F Σ( ), flat subject to the

stationarity condition on F, was employed.  This prior satisfies Assumption 2 above.

Some posterior moments for the parameters are indicated in Table 5.2.1.  There is modest

autocorrelation in the riskless rate (about .4), less in the equity premium (about .2), and

very little cross correlation between the two time series.  The innovation variance in the

equity premium exceeds that of the risk free rate by a factor of more than 10.  The

implied standard deviation for the equity premium is over .16, and that for the riskless

rate is over .05.

The posterior distribution of m is presented graphically in Figure 5.2.1.  The range of

values well within the support of the posterior distribution extends far beyond the

observed sample means.  A centered 90% posterior credible interval for the mean of the

risk free rate extends from -0.9% to 2.6%.  For the equity premium the range is much

larger: from 2.2% to 9.7%.  Even with 90 years of data, there is great uncertainty about

the population mean of the equity premium.  This uncertainty is due to the great variance

in the equity premium from year to year.  It is not due to drift: there has been no tendency

for the equity premium to rise or fall secularly (Mehra and Prescott, 1985, Table 1), and

the autocorrelation in the simple model used here is only .4.
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Figure 5.2.1 provides p ,m yo E( ).  Figures 5.2.2–5.2.5 provide p m A( ) for each of

the four models A.  For each model, parameters were drawn from the same prior

distributions used in the weak econometric interpretation.  (These priors are summarized

in Table 4.2.1.)  Then, the corresponding population moments were computed.  For the

Mehra-Prescott and Rietz models there are closed form expressions for these moments.

For the Labadie and mixture models, a simulation of 1,000 periods was made

corresponding to each set of parameter values drawn from the prior.  Then a second

antithetic simulation (i.e., shocks with signs reversed) was made.  Then the mean of the

risk free rate and equity premium averaged over the two 1,000-period simulations was

used in lieu of the population mean.

Comparisons of Figures 5.2.2–5.2.5, with their respective counterparts in Figures

4.2.1–4.2.4, reveal similar patterns.  But the distributions in the earlier figures are more

diffuse, relative to those in the latter figures which are more neatly demarcated and

somewhat more compact.  The difference reflects the sampling variation in 90-year

averages, which is present in Figures 4.2.1–4.2.4 but not Figures 5.2.2–5.2.5.

In the minimal econometric interpretation, a model receives support to the extent that

the posterior density p ,m yo E( ), presented in Figure 5.2.1, overlaps with the model

predictive density p m A( ), presented in one of Figures 5.2.2–5.2.5, in a manner that is

made explicit in equation (5.1.1).  Because the posterior density p ,m yo E( ) is so diffuse,

there is overlap between this density and each of the model densities, as careful

inspection of Figures 5.2.1–5.2.5 will indicate.  This is true even of the Mehra-Prescott

and Labadie models, which received no support under the weak econometric

interpretation.  The reason is that the weak econometric interpretation takes literally the

very small variance in the riskless return and equity premium implied by these two

models.  Given this small sampling variation the observed averages cannot be accounted

for in these models.  Given the much greater sampling variation that emerges in the

bivariate autoregression used here, it becomes clear that the evidence in the historical

record to be explained is much weaker.  This finding underscores the point made

forcefully by Eichenbaum (1991, p. 611) that assuming the population moment is equal

to the sample moment can be treacherous.  “Data” and “facts” are not the same.
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Formal approximation using (5.1.2) underscores these informal findings.  Using

1,000 draws of the posterior mean (every tenth draw from the Gibbs sampler, after

discarding the first 1,000 draws) and 5,000 independent draws of population moments

from each of the models, the approximations presented in Table 5.2.2 were obtained.  The

alternative Gaussian kernels employed are the same as those for Table 4.2.2.  The

marginal likelihood for the mixture model is higher than that for the Labadie model

(Bayes factor about 5:1), and that for the Labadie model is higher than for either the Rietz

or Mehra-Prescott models.  For the Labadie and mixture models log marginal likelihoods

are stable across kernels of different bandwidths.  For the Mehra-Prescott  and Rietz

models, log marginal likelihoods increase with bandwidth, reflecting the more tangential

relation between p m A( ) and p ,m yo E( ) in these models.

6.  Summary and conclusion

This study has examined three ways in which computational experiments can be

used to see how well dynamic, stochastic general equilibrium (DSGE) models explain

observed behavior.  Since these models imply distributions for the paths of prices and

quantities, a straightforward, likelihood based approach—termed the strong econometric

interpretation in this study—is perhaps the most obvious.  It is widely recognized that

most DSGE models fail under this interpretation because they predict exact relations that

are not found in the data.

The widespread interpretation of DSGE models in the macroeconomics literature is

that they are intended only to mimic the world along a carefully specified set of

dimensions.  This interpretation is sometimes reduced to a list of sample moments, on the

one hand, and a list of corresponding moments of the model’s predictive distribution, on

the other.  Careful investigators recognize that some basis for comparison of these two

sets of moments is needed.  Kydland and Prescott (1996) clearly indicate that what is at

stake is whether the sample moments are consistent with the predictive distribution of the

model for those moments.  This inherently Bayesian approach—termed the weak

econometric interpretation in this study—takes the period-to-period dynamics of the

models literally.  While it confines itself to just a few dimensions of the data, in
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accounting for sampling variation it makes the same assumptions as does the strong

econometric interpretation.  It is therefore subject to the same criticism, that those

assumptions are inconsistent with what is observed.

To isolate the idea that DSGE models explain only certain dimensions, in a way that

does not run afoul of the literal incredibility of these models, this study examined the

implications of the claim that DSGE models predict only certain specified population

moments of observable data.  Since population moments are never observed, an auxiliary

econometric model must also be assumed if the DSGE model is to have any refutable

implications.  The study showed that atheoretical econometric models with a Bayesian

interpretation can perform this function.  Under this set of assumptions—termed the

minimal econometric interpretation in this study—formal Bayesian model comparison is

possible, and is free of the logical problems associated with the weak econometric

interpretation.

These ideas were illustrated using the “equity premium puzzle’” models of Mehra

and Prescott (1985), Rietz (1988), Labadie (1989), and Tsionas (1994).  The weak

econometric interpretation reiterated both the inability of the Mehra-Prescott and Labadie

models to account for the sample average risk free rate and equity premium in the U.S.,

and the ability of the Rietz model and the mixture models developed by Tsionas to do so.

This reflects the fact that it is the weak econometric interpretation that is dominant in the

DSGE literature of macroeconomics.  This application provided a rich graphical

interpretation of these models as well as Bayes factors for the comparison of models.

The minimal econometric interpretation of the same models greatly changed the

nature of the findings, and underscores that point that the methodological issues raised in

this study have substantive implications for macroeconomics.  The most important

finding was that we in fact have limited information about the population mean of the

equity premium, because year-to-year fluctuations have been so great.  The posterior

distribution for the mean of the risk free rate and the equity premium supports values

consistent with the original Mehra-Prescott model, the other models considered in this

study, and quite likely with all other DSGE models designed to address this question.  In

short, there is no evidence of an equity premium puzzle.
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These substantive findings illustrate the dangers of informal or undisciplined

readings of the evidence in macroeconomic time series.  To push ahead with methods

based on assumptions known to be incompatible with what is observed, or to ignore

uncertainty that is manifest in the record, can lead large and well-intentioned groups of

investigators astray.  The benefits of an analytically rigorous economic theory will be

realized only when harnessed to the same high standards for measurement.
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Table 4.2.1

Deciles of prior distributions

                           λ3  ω 2( )    α   δ

0.1 .185 .332 .281 .840

0.2 .277 .491 .499 .907

0.3 .358 .677 .756 .939

0.4 .434 .917 1.077 .958

0.5 .509 1.26 1.500 .970

0.6 .583 1.77 2.089 .979

0.7 .659 2.68 2.978 .986

0.8 .738 4.61 4.509 .991

0.9 .826 11.12 8.016 .995

Table 4.2.2

Weak econometric interpretation

Log marginal likelihoods

    Gaussian kernel
       smoothing           Mehra-Prescott          Rietz          Labadie               Mixture
  standard deviation          model                  model          model                  model

.0005 −∞ 2.60 −∞ 2.46
(.99) (.78)

.0010 -406 2.09 -575 2.40
(.64) (.43)

.0020 -101 2.22 -143 2.83
(.28) (.23)

.0050 -17.6 2.11 -21.9 2.88
(1.0) (.13) (.4) (.09)

.0100 -3.01 2.16 -2.95 3.04
(.03) (.06) (.04) (.04)
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Table 5.2.1

Bivariate first order autoregression
Risk-free rate (rt) and equity premium (et )
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                               Parameter                   Posterior mean    Posterior standard deviation

m1 .0088 .0106

m2 .0591 .0227

f11 .4362 .0907

f12 -.0972 .0303

f21 -.0065 .3143

f22 .2003 .1077

σ11 .0022 .0003

σ 22 .0268 .0041

σ12 -.0009 .0008
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Table 5.2.2

Minimal econometric interpretation

Log marginal likelihoods

    Gaussian kernel
       smoothing           Mehra-Prescott          Rietz          Labadie               Mixture
  standard deviation          model                  model          model                  model

.0005 .53 .93 2.11 3.62
(.14) (.16) (.12) (.06)

.0010 1.28 .91 2.14 3.86
(.06) (.08) (.06) (.02)

.0020 1.61 .99 2.24 4.05
(.03) (.04) (.03) (.01)

.0050 1.89 2.066 2.22 4.141
(.01) (.008) (.01) (.004)

.0100 2.321 1.975 2.514 4.205
(.003) (.005) (.005) (.002)
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Figure 4.2.1 Predictive distribution for the risk free rate and the equity premium

under the weak econometric interpretation in the Mehra-Prescott model.
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Figure 4.2.2 Predictive distribution for the risk free rate and the equity premium

under the weak econometric interpretation in the Rietz model.
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Figure 4.2.3 Predictive distribution for the risk free rate and the equity premium

under the weak econometric interpretation in the Labadie model.
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Figure 4.2.4 Predictive distribution for the risk free rate and the equity premium

under the weak econometric interpretation in the Mixture model.
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Figure 5.2.1 Posterior distribution of the population mean values of the risk free

rate and equity premium, based on 1889-1978 annual data and a bivariate, �rst-

order autoregression.
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Figure 5.2.2 Predictive distribution for the expectation of the risk free rate and

the equity premium under the minimal econometric interpretation of the Mehra-

Prescott model.
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Figure 5.2.3 Predictive distribution for the expectation of the risk free rate and the

equity premium under the minimal econometric interpretation of the Rietz model.
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Figure 5.2.4 Predictive distribution for the expectation of the risk free rate and

the equity premium under the minimal econometric interpretation of the Labadie

model.
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Figure 5.2.5 Predictive distribution for the expectation of the risk free rate and

the equity premium under the minimal econometric interpretation of the Mixture

model.


