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Abstract. We describe a theoretical formalism for the dimensional analysis of

arbitrary stationary time series. We use this setting to study which properties

are to be satis�ed by a dimension concept in order to discern chaotic time series

from white noise. In particular it follows that correlation dimensions can dis-

criminate chaotic time series from white noise processes with L1{marginals,

but not from arbitrary white noise. We also justify how the dimensional anal-

ysis can be put in practice using standard delay-embedding methods.

1. Introduction

The idea that some low-dimensional non-linear deterministic systems are able to

emulate true stochastic dynamics is standard in economics and applied sciences. As

a result, the modern analysis of time series has among its primary goals the distinc-

tion between such deterministic dynamics and genuine stochasticity from observed

data. A main tool for this issue has been the use of some sort of dimension, in the

belief that random processes are high-dimensional phenomena whereas interesting

chaotic deterministic systems are low-dimensional.

The dimensional analysis of time series has been so far intimately linked to the

delay embedding method [12, 14], which relies on the existence of an underlying

smooth �nite-dimensional dynamics where the data were recorded via a smooth

observable (this is the strange attractor hypothesis (SAH)).

In this note we adopt a simple approach towards a general dimensional theory

of arbitrary stationary time series, in particular, without assuming the SAH. The

starting point is that, given a discrete time series (ui)i, the basic objects to look at

are the �nite dimensional probability distributions of the time series, here denoted

by �(m), m = 1; 2; : : : . Any sort of dimensional analysis on the series then aims to

compute the numerical sequence of dimensions of these joint distributions. Since

many di�erent de�nitions of dimensions of a measure are available (see e.g. [13, 15]),

a preliminary step consists of deciding what an admissible concept of dimension is

(in order to do dimensional analysis). This is the main concern of section 2 below.

Our results apply to the correlation dimension, originally de�ned in [8], which

is the most important dimension in the nonlinear analysis of economic time series

(see e.g. [3, 4, 9, 6]). Correlation dimension is usually de�ned from a data set fxigi
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as the scaling exponent of the (spatial) correlation statistic

C(r) = lim
n!+1

1

n2
cardf(i; j) : dist(xi; xj) < r; 1 � i; j � ng

with respect to r as r goes to zero. We use instead a theoretical approach to

correlation dimension (see the de�nition in (3.1)) that was considered in [5] and in

[13]. Results in [13] and [1] guarantee that, under rather general conditions, the

correlation statistic above converges almost surely to the correlation integral on

which the theoretical approach is built.

Say that a measure-dimension dim(�) is admissible for dimensional analysis of

stationary time series if it is monotonic (see properties (3) and (3*) below) and

satis�es that8<
:

if ui is purely stochastic; then dim�(m) = m; for m = 1; 2; : : : ;

if the SAH holds; then dim�(m) = dim� < +1; for all m large enough:

Here � denotes the invariant measure of the hidden deterministic system; by purely

stochastic we mean that the series is a realization of an independent stationary

process composed of absolutely continuous random variables. (see Theorems 4.1

and 4.2 for precise statements). It is proved that Hausdor� and packing dimen-

sions from fractal geometry [7, 10]are admissible. Also, correlation dimensions are

admissible provided that the process has marginal densities which are essentially

bounded. In section 3 we provide possible modi�cations of correlation dimensions

to be admissible in the sense above.

A �nal concern is whether the information required to develop the proposed

dimensional analysis can be recovered from the data series. Theorem 4.3 in section

4 justi�es that the delay embedding method renders probability distributions that

approximate the �nite dimensional distributions of the process.

2. A framework to define dimensions of Borel measures

Let (X; d) be a metric space, B(X) denote the Borel �-algebra in X , and BM(X)

stand for the class of non-null �nite Borel measures on X . A dimension of measures

dim(�) is a mapping from BM(X) to the non-negative reals that satis�es certain

natural dimension{like properties. We consider the following basic list:

(1) (Boundedness) If X = R
m , then dim � � m for any � 2 BM(Rm ).

(2) (Discrete measures) If � 2 BM(X) is a discrete measure, then

dim� = 0.

(3) (Monotonicity) If �; � 2 BM(X) are such that � is absolutely con-

tinuous with respect to �, then dim� � dim�.

(4) (Lipschitz mappings) Let g : X 7! Y be a Lipschitz mapping, � 2
BM(X), and assume that the mapping dim is also de�ned in BM(Y ),

then dim(g]�) � dim�, where g]� 2 BM(Y ) is the induced measure

de�ned by g]�(A) = �(g�1(A)), A 2 B(Y ).
(5) (Absolutely continuous measures) If X = R

m , and � 2 BM(Rm ) is

absolutely continuous with respect to the Lebesgue measure Lm; then
dim� = m.

Properties (3), (4) and (5) are essential for the dimensional analysis of time

series. In fact, in section 4 it is proved that any measure dimension satisfying those

properties is admissible for the dimensional analysis of time series.
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Further useful properties follow from the properties above, in particular property

(4) implies

(6) (Bilipschitz invariance) If g : X 7! Y is bi{Lipschitz (i.e. both g and

g
�1 are Lipschitz), then dim� = dim � � g�1.

The list above plus some other natural properties and di�erent implications

among them were considered in [11].

It can be proved that important de�nitions of dimensions of measures from

fractal geometry, namely Hausdor� and packing dimensions (see [10, 7] for their

de�nitions and properties), satisfy properties (1) to (5).

3. Correlation dimensions

The most widely used dimension in chaotic time series analysis has been the cor-

relation dimension, denoted by �(�) here, introduced by Grassberger and Procaccia

in [8]. The upper and lower correlation dimensions of � 2 BM(X), as considered

by Cutler [5], are de�ned by

�(�) = lim inf
r!0

log
R
�(B(x; r))d�

log r
; �(�) = lim sup

r!0

log
R
�(B(x; r))d�

log r
:(3.1)

Correlation dimensions thus indicate the scaling behaviour of the expected masses

of balls of radius r (usually called correlation integrals of �) as r goes to zero. It

turns out that correlation dimensions do not satisfy important properties of the list

in section 1.

Theorem 3.1. The correlation dimensions � and � do not satisfy properties (3)

and (5)

Proof. We outline here the proof given in [11], which consists on the construction

of a Borel measure on the real line which is absolutely continuous with respect to

the Lebesgue measure L1 (which obviously has correlation dimension one) but it

has null correlation dimensions. Let I � R be the unit interval, 0 < a < 1,

and choose a sequence "n > 0 so that the intervals In = [an
2

� "n; a
n2

+ "n] are

pairwise disjoint. For n 2 N, de�ne �n(A) = cnL
1(A \ In) for A 2 BM(I), so that

�n(I) = a
n, and thus cn = a

n
=2"n. It follows that �(�n) = �(�n) = 1 for all n.

Let � =
P

n2N �n 2 BM(I). For r > 0 small, we have
Z

�(B(x; r))d�(x) �
a
n

1� a
�([0; r]) �

a
n

1� a

X
i>n

a
i =

a
2n

(1� a)2
;

which in turn implies that �(�) � �(�) = 0.

In order to proceed with a meaningful dimensional analysis using correlation di-

mensions properties (3) and (5) must be recovered somehow. This may be achieved

by either weakening the requirements (3) and (5) or modifying the de�nitions of

correlation dimensions. Both possibilities are explored in [11].

We �rst look at which properties standard correlation dimensions do satisfy.

Weaker versions of (3) and (5) are naturally de�ned as follows.

(3*) If �; � 2 BM(X) are such that � has a density h 2 L1(�) with

respect to �, then dim� � dim�.

(5*) If X = R
m and � 2 BM(X) has a density h 2 L1(Lm), then

dim� = m.
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Notice that (3*) is equivalent to the fact that there exists C > 0 such that �(A) �
C�(A) for A 2 B(X), and thus requires a form of absolute continuity stronger than

(3). Theorem 3.2 below is the key result regarding the behaviour of correlation

dimensions.

Theorem 3.2. [11] The upper and lower correlation dimensions satisfy properties

(1), (2), (3*), (4) and (5*).

Regarding possible modi�cations of correlation dimensions, it turns out that the

limit versions of correlation dimensions introduced by Y Pesin in [13] satisfy the

full list (1)-(5). Moreover, the following general result is proved in [11].

Theorem 3.3. Let dim be a measure-dimension mapping satisfying properties (1),

(2), (3*), (4), and (5*). Then the modi�ed dimension dimM de�ned by

dimM� = lim
�!0

supfdim�jZ : Z 2 B(X); �(Z) � �(X)� �g(3.2)

for � 2 BM(X), satis�es properties (1) to (5).

4. Dimensional analysis of time series

This section concerns the role of dimension in the analysis of real{valued time

series. We formulate the time series problem in terms of ergodic theory as follows.

Let (X; f; �) be a probabilistic dynamical system, that is, X is a metric space, � is a

probability measure in BM(X), and f : X 7! X is a measurable �-preserving map-

ping. We assume that the pair (f; �) is ergodic. Let h : X 7! R be an observable of

the system: h is a �-measurable function such that ui = h(f i(x0)); i = 0; 1; 2; : : : ,

where x0 2 X is distributed according to �. Any time series (ui)i observed either in

a smooth dynamical system or as a realization of a stochastic process is a particular

case of the formulation above. Indeed, the deterministic case is obtained if

(D)

8><
>:

X is a compact p� dimensional manifold;

f is a C2 mapping;

and h is C2
:

The stochastic case arises if

(S)

8><
>:

X = R
1 is the space of realizations of the process Ui;

f is the shift mapping f((u0; u1; u2; : : : )) = (u1; u2; : : : );

and h is given by h((u0; u1; u2; : : : )) = u0:

Notice that the f -invariance of the measure � implies that the series ui is strictly

stationary. Recall that �(m) denotes the �nite m-dimensional distribution of the

series ui.

If a measure dimension dim satis�es property (4) and thus property (7), we may

consider Rm endowed with the maximum norm, which is more convenient for com-

putacional purposes.

Theorem 4.1 below addresses the case of the dimension of time series under the

SAH.

Theorem 4.1. Assume the hypotheses in (D) above, and let dim(�) be a measure-

dimension satisfying property (4) of section 2. For m � 2p+ 1, dim�(m) = dim�

generically.



A FORMALISM FOR THE DIMENSIONAL ANALYSIS OF TIME SERIES 5

Proof. For m 2 N, let Jm : X 7! R
m be the `delay mapping' de�ned by

Jm(x) = (h(x); h(f(x)); : : : ; h(fm�1(x))):

The joint distribution �(m) of the series ui satis�es �(m) = ��J�1m . Takens theorem

[14] implies that for m � 2p+1 the mapping Jm0
is generically an embedding onto

Jm(X). Assume that Jm is actuallly an embedding. Since X is compact, Jm is

bi-Lipschitz, and property (6) of section 2 thus gives dim�(m) = dim�.

The theorem below deals with the dimensional analysis of white noise processes.

Theorem 4.2. Let (R1 ;B(R1 ); �) be the probability space of a real{valued sta-

tionary stochastic process Ui, i = 0; 1; 2; : : : .

i) For any dimension mapping dim satisfying (4) we have dim�(m) � dim�(m+1)
for all m = 1; 2; : : : .

Assume that the process fUigi is independent.

ii) If the random variables Ui have an L1-density w.r.t. L1 and dim further satis�es

(5), then dim�(m) = m for all m = 1; 2; : : : .

iii) If the Ui's have an L1-density w.r.t. L1 and dim satis�es (5*), then dim�(m) =

m for m = 1; 2; : : : .

Proof. Let gm : Rm+1 7! R
m be the projection mapping

gm((u0; u1; : : : ; um)) = (u0; u1; : : : ; um�1):(4.1)

Since �(m) = �(m+1) � g
�1
m and gm is a contraction, claim i) follows from (4).

Let �i denote the distribution of Ui. Since the variables Ui are independent, the

�nite dimensional distribution �(m) coincides with the cartesian product measure

�0 � �1 � : : : � �m�1 (it can be easily checked that they coincide over the class

of m{dimensional rectangles and therefore over the class B(Rm )). Since every �i

is absolutely continuous with respect to L1, the measure �0 � �1 � : : : � �m�1 is

absolutely continuous with respect the m{dimensional Lebesgue measure Lm. It

follows from (5) that dim�(m) = dim(�0� : : :��m�1) = m. This proves claim ii).

In the same way, claim iii) follows from (5*).

In view of Theorems 4.1 and 4.2 we considered as admissible a measure dimen-

sion that satis�es properties (3), (4) and (5). Notice that monotonicity is not

required for both theorems to hold, it is a key property to compare the sizes of dif-

ferent measures. Notice that the correlation dimension satis�es the hypotheses of

Theorems 4.1 and 4.2 (parts i) and ii)), and it is thus valid to discern deterministic

time series from certain white noise processes: those with L1-marginals. Modi-

�ed dimension mappings, according to de�nition (3.2), are also capable to discern

determinism from arbitrary independent and identically distributed processes.

Since the analysis rests on the computation of dim�(m), the reconstruction of

the distributions �(m) becomes essential. This is, in a sense, a stochastic version of

the problem solved by Takens theorem under the SAH. Theorem 4.3 below provides

a solution for the reconstruction problem in the stochastic case, and also gives a

meaningful interpretation of the delay embedding method when the SAH does not

hold.

Theorem 4.3. (Measure-theoretic reconstruction theorem). Assume the hypothe-

ses in (S) above. For x0 2 R
1 and m 2 N, let �x0;m;n denote the n-length sample

measure de�ned by

�x0;m;n =
1

n

n�1X
i=0

�
x
(m)

i

;
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where x
(m)
i = (ui; ui+1 : : : ; ui+m�1) for each i and �x stands for the Dirac measure

at x. Then, for �-a.e. x0, �x0;m;n ! �(m) weakly for m = 1; 2; : : : .

Proof. For m 2 N, let �m be the projection mapping R1 ! R
m

�m((u0; u1; : : : )) = (u0; : : : ; um�1);

and let g : Rm ! R be �(m)-integrable. For �-a.e. x0 2 R
1 the Ergodic Theorem

gives

Z
gd�(m) =

Z
g � �md� = lim

n!+1

1

n

n�1X
i=0

g(�m(f
i
x0)) =

(4.2)

lim
n!+1

1

n

n�1X
i=0

g(x
(m)
i ) = lim

n!+1

Z
gd�x0;m;n:

Let Q denote the class of subsets of Rm obtained as �nite intersections of closed

balls of Rm with rational radii and rational coordinates. Since the characteristic

function of any A 2 Q is �(m)-integrable and Q is a countable set, we obtain from

(4.2) that

lim
n!+1

�x0;m;n(A) = �(m)(A); for all A 2 Q

for �-a.e. x0. Since every open set of Rm can be written as a �nite or countable

union of elements in Q, [2, Theorem 2.2] implies that �x0;m;n converges weakly to

�(m) for �-a.e. x0. This holds for every m and the claim follows.
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