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specified control rule derived via dynamic programming contains both backward and
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1. Introduction

The increasing use of inflation targeting by central banks over the last 10 years
has generated a new interest in monetary policy rules. Svensson (1997) has drawn
a distinction between instrument rules, such as that of Taylor, which are backward
looking, and targeting rules which are specifically forward looking. In this paper
we describe some computationally simple methods for linearising a non-linear model
with rational expectations using stochastic perturbation and show that a properly
specified control rule derived via dynamic programming contains both backward and
forward looking features. The literature in this area is voluminous and continues to
grow and there is still considerable interest in improving existing algorithms and in
deriving methods that can be applied to non-linear, dynamic, stochastic models.

Given the clear advantages of the forward-looking targeting rule over the back-
ward looking instrument rule, at first glance the superiority of the optimal feedback
rule may appear odd. In fact, the terminology is misleading because in the stan-
dard linear, quadratic Gaussian case, the optimal rule contains both forward-looking
and backward looking elements. There are certain conditions under which the feed-
back component of the optimal rule becomes a constant function of the lagged state,
but even in this case there will still remain a forward-looking element that comes
through the so-called tracking gain of the control rule (Holly and Corker, 1984). This
of course quite separate from the forward-looking element that arises when private
agents formulate expectations rationally.

In principle there are clear advantages to having monetary policy expressed as a
rule - at least formally- since in a forward-looking world building credibility through
the transparency of the decision-making process, may make the process of inflation
targeting more effective. What we propose to do in this paper is to describe some
methods for computing the ’optimal’ control rule using dynamic programming while
also allowing expectations to be forward-looking. For this to be entirely convincing as
a feasible solution we must assume that there is a sufficient commitment technology in
place to prevent the issue of time inconsistency raising its head. Given that Central
Bank independence is an important element in the conduct of inflation control, it
seems unlikely that the Central Bank would play hard and fast with the expectations
of the public . The dynamic programming solution is also straightforward to calculate
and provides a natural benchmark against which to compare other ’handcrafted’ rules
of the instrument or targeting variety.

In this paper we consider the design of feedback rules for inflation targeting.
We adopt a stochastic linearisation approach in order to produce a linear reduced
form version of a small model of the UK economy. We then use the method of
Christodolakis (1987) in order to take into account the presence of forward-looking
expectations. We then solve for the dynamic programming optimal control rule and
use the method of Amman(1996) in order to ensure that the saddlepoint features
of a forward looking uncovered interest parity condition are satisfied along with the
dynamic programming solution. Because the model is now linear it is straightforward
to compute the policy frontier that traces out the trade-off between inflation volatility
and output volatility We then explore how these methods perform when there are



shocks to the economy that drive the inflation rate away from its desired path.
2. The Method

In this section we describe the steps we go through in order to (1) linearise a
non-linear rational expectations model, (2) estimate a reduced form, (3) convert it
into state space form and (4) compute the optimal control solution while satisfying
the saddlepoint requirements of the rational expectations solution.

2.1 The Linearization

Assume we can write our non-linear, stochastic model as:
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There are m endogenous variables, y, with a maximum lag of s, a maximum
lead of v and a maximum of r lagged values of n exogenous variables, x; e; is m-
dimensional vector of white noise processes. We can expand (2.1) about some initial
path to give:
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The perturbations to the initial path are defined as:

Ut =Yt — Yo, Tt =Tt — Tot, Et =&t — Eot (2.3)

In general (2.2) is time-varying. However, we want to obtain an approximation
to this time-varying representation. We will also only be interested in some subset
of the endogenous variables, the targets and a subset of the exogenous variables,
among which will be the policy instruments. Assume v = 0, then we can write this
representation in vector polynomial form in the lag operator L, as:

A(L)ji + O(L)jies + B(L)F, = & (2.4)

In order to derive a constant coefficient, linear representation we perturb a subset
of the instrument vector, the expectational variables and the error process. The
perturbations are a sequence of orthogonal white noise processes. The use of a white
noise perturbations is one way of meeting a basic identifiability condition (Hannan,
1971) that the perturbations have an absolutely continuous spectrum with spectral
density non-zero on a set of positive measures in (—m,7). The white noise sequence,
since it contains all frequencies, will excite all of the dynamic modes of the non-linear
model. Define z; = (§r+1,2+,2¢)" as a stacked vector then:



i,j=1,...,p; s;t=1,....,T

with p = 2m +n; 6;; is the Kronecker delta and A; sets the size of the perturba-
tion to the instruments, the expectational terms and to the equation error processes.
We can then write the relationship between the target variables, the perturbed in-
struments, the expectational terms and the errors as an autoregressive distributed
lag model:

Aoyr = Avye—1 + oo + AsYi—s + D1ys1 + By + ... + Brxy—y (2.6)

Since the perturbations are orthogonal by construction, Ag is an identity matrix
and the matrices A to A, are diagonal, so each equation can be estimated separately.

2.2 State Space form

For the case of ¢, = 0, the state vector is simply defined as:

20 = (Yo oes Y515 Tt 1y woves Ty 1) (2.7)

and the state transition matrix:

2t = Azi—1 + Bay + Dz (2.8)
where:
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zisa f=nx (s+r—1) dimensional vector, = is a m-dimensional vector. The
transition matrix Ais f x f, Bis f xm, Dis f x f.

Since the state space form contains forward-looking expectations we could follow
the approach of Blanchard and Kahn (1980), Sims (1996), Amman and Kendrick
(1998), Anderson (1998), among others, and solve explicitly for the rational expec-
tations solution. For the present let us hold the expectation fixed. We rewrite the
state transition equation as:

Zt = AZt_l + Bl’t -+ C'et (29)

the vector e subsumes the expected values, and in general could also include any
other exogenous variables as well as stochastic error terms.



2.3 The optimal Control Solution

To solve for the optimal control rule we define a loss function for the monetary
authorities in terms of the state variables z and the control or instrument variables,
x.

1 n
L= 3 Z(Zt — 2B Q(z — 28 + (xp — ) Ny — ) (2.10)
t=0

where the superscript defines desired values for the state variables and the pol-
icy instruments, @ is a symmetric, semi-positive definite f x f matrix, and N is a
symmetric m X m positive definite matrix.

To minimize (2.10) subject to the state transition equation (2.9) we can apply the
well-known method of dynamic programming to compute an optimal control rule of
the form:

vy = Kiz1 + ke (2.11)

where K; (t = 1,,T) are a sequence of feedback control matrices and k; (¢t = 1,T))
represents what is known as the tracking gain in the control literature. These are
solved for recursively by first solving the period T' problem to obtain a solution for
o7 conditional on xp_1. This is used to write a value function for period 1" which
depends on xp_1 and which in turn forms part of the objective function for the period
T — 1 problem. Using this procedure, along with the terminal conditions Hr = @
and kp = hp = Qz% we can solve for the sequence of feedback control matrices and
tracking gains as:

Kp=—(N+ B HyrB)"Y(B'Hr A) (2.12.a)
kr = —(N + B'HyB) B/ (HrCep — hy — N1£) (2.12.b)
Hr 1 =@+ (A + BKT)/HT(A -+ BKT) (2.12.0)
hr_1 = kr_1 + (A —+ BKT)/(hT — HyCer + N:L‘%) (212d)

These are solved recursively to obtain the control rule: Note that the feedback
gains, K; , for i = 1,T, depend only on the (constant) matrices of the transition
equation and the loss function. The feedback part of the control rule then feeds
only off the lagged state vector z;_1. By contrast, the tracking gains vary over
time depending upon the current and future values of the exogenous variables and
expectations in the vector e. This is the feedforward part of the control rule.

2.4 Incorporating Rational Expectations

The solution in (2.12) is the well-known regulator problem for a non-rational
expectational model. However, in the vector e, which appears in the recursion for
the tracking gain, we have an expectation of the state in the next period.

There is a large class of methods for solving this problem. However, there is in
principle a difficulty with the computation of an optimal control solution in this case
because of the time inconsistency problem first identified by Kydland and Prescott



(1977). In essence there are two components to this problem. The first concerns the
use of Bellman’s principle of optimality. Consider the problem of minimizing;:

J (s Y1, T, Tev1) (2.13)

where y are targets of policy, and the xs are instruments, subject to:

Yy = fi(@e, Tey1) (2.14.a)

Ytr1 = fer1 (Y, Te, Tey1) (2.14.b)

The first equation can be thought of as representing a situation in which ex-
pectations of what the policymaker will do tomorrow affects what happens today.
Assuming, as is normal differentiability and an interior solution, the first order con-
ditions for (2.13) are:

aJ  Of <8J dJ 9 ft+1> fisn O
— (= =0 2.15
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a0J 0 fi (2 aJ aft+1> Ofirn 0J 0 (2.16)
0T Ori1 \ Oy Y1 Oyt O0xi41 OYiq1 '

But the solution provided by the method of dynamic programming for period ¢t+1
is:

0 8J Ofinr
Orir1 Oyry1 Oz

=0 (2.16)
and for period ¢:

.7 8ft<8J . afm) Ofi1 0J
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Now while the FOC for period ¢ corresponds to the first period FOCs in (2.15),
the FOC for t 4+ 1 does not. This is because the model is not causal (i.e. 21— is

oz
not equal to zero). The solution derived by dynamic programming is referred Lt% as
time-consistent. It ignores the term 82&1' A way of deriving the time-inconsistent
solution was originally proposed by Buiter (1981). Note that the feedback part of the
control rule in (2.12.a) does not depend on the matrix C. So the contingent part of
the rule that depends on the lagged state is independent of the expectational term.
However, the current state and the actual value of the instrument depend on the
expectation through the tracking gain. So the problem is to compute the jump in the
expectational variables. To do this we follow the procedure of Amman and Kendrick

(1992) and treat this part of the problem iteratively.

=0 (2.17)

e Step 1: For initial assumptions about the expected path for the expectational
state, z;44, § = 1,T — 1, and a terminal condition for T', compute the feedback
and tracking gains. Store the feedback gains.



e Step 2: Update the vectors B9tz 4, for i = 1,7, where j is an iteration
counter, using B9tz = MBIz 4+ (1 — A\)P Tz, for i = 1, T, where X is the
relaxation factor (Fisher et al, 1986).

e Step 3: Recompute the tracking gain matrices.

e Step 4: Test whether: | Ei+iz,; — JTlz, |< g, for i = 1,T, where € is an
arbitrarily small convergence criteria. If not true go to step 2.

e Step 5: Stop.

This provides what we can refer to as the expectations-consistent optimal rule
that satisfies (2.16). However, as is well known that is very far from being the end of
the matter since, ex post, there is an incentive for policymakers to renege on previous
commitments and to act in a time-inconsistent way. Because economic agents are
assumed to be aware of this possibility the first best, expectations consistent policy
is not actually implementable. Since Kydland and Prescott’s paper the literature on
economic policy has been dominated by various proposals for resolving this difficulty.
The standard model uses a surprise supply function. A positive inflation bias results
because the level of output the policymaker aims for is higher than the natural rate.
However, as Bean(1998) persuasively argues it is more convincing to see the infla-
tion bias coming from political considerations. Democratic politicians may seek an
electoral advantage by inflating the economy prior to an election. Thus the act of
delegation to an independent central bank will be enough to rid economic policy of
its inflationary bias®.For the remainder of this paper we assume that central bank
independence is sufficient to eliminate any inflation bias in policy.

3. An Application

In this section we provide an application to the UK. We use a small non-linear
model of the UK economy in order to generate a linearization and then use the
linearization to examine a policy question in which the Bank of England uses the
short term interest rate in order to pursue a target path for the rate of inflation.
Expectations are forward looking in the foreign exchange rate market so the effective
exchange rate is determined by an uncovered interest parity condition. The expected
change in the exchange rate is equal to the risk adjusted interest rate differential.

3.1 The Linearized Model

The linearization was obtained by passing white noise through both the short term
interest rate and the (exogenised) exchange rate for 92 periods and storing the effect
of these stochastic perturbations on inflation (RPIX) = m, and output growth =g.
In order to smooth the use of the interest rate, r, as an instrument we also included
as an endogenous variable, the first difference of the interest rate, Ar. The vector
y in (2.4) is now y' = (7, g, eer, Ar). We then estimated a distributed lag model of

’It is interesting to note that on the day that the UK government announced that the Bank of
England was to have operational independence, interest rates on UK 10 year bonds fell relative to
German 10 year bonds by almost half of a percentage point.



inflation and output growth on the interest rate and the exchange rate, eer, with five
lags in inflation and output growth, and eight in the interest rate and the exchange
rate. We use an uncovered interest parity condition that the expected change in the
exchange rate is equal to the interest rate differential between the domestic interest
rate and the overseas interest rate, rw. We also want to allow for the possibility
of independent shocks to inflation and output growth. So the vector of exogenous
variables, is now defined as € = (eery 1, rwe, €, & gt), where the last two elements
are designed to allow for shocks to inflation and output growth, and eer;y; is the
expected exchange rate. This means our linearization takes the structural form:

Aoyr = A1ye—1 + .. + Asys—s + Diey + By + ... + Bewy—g

where:
1 0 aq3 O 00 10 B1
0 1 g 0 loo o1 B
Ad=log o1 o PT1 2100 BT
0 00 1 0 0 00 1
. ain 0 a3 0 . 0 0 aps 0 . Bj1
10 @22 Qo3 0 0 0 aps 0 | By
;Az_ 0 0 0 0 ’;Az_ 0 00 01’ ;Bﬂ_ 0
0 0 0 0 0 0 0 0 0
and Ba(4) = —1.

This produced a 39 dimensioned state vector.

The linearisation method also provides some diagnostic information. For example,
a simple regression of inflation on output resulting from the perturbations to the
interest rate gives:



Effect on Inflation and Output of Stochastic
Perturbations to Interest Rate
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Figure 1: Stochastic Perturbations to Interest Rate
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Figure 2: Stochastic Perturbations to Exchange Rate



Dependent Variable: Axw
Method: Least Squares

Variable Coefficient  t-Statistic
C -0.008102  -0.559238
Amy_q 0.428850 4.693387
Ami_o -0.544334  -4.835404
Ami_g 0.259059 2.250824
ATy -0.704680  -6.439743
Ami_s 0.004484 0.073881
Oyt_1 0.226832 6.375036
Oyt -0.095983  -2.328444
oyt 3 0.098812 2.170162
oYt -0.033774  -0.728274
Oy s 0.106045 2.534038
Oyt 6 0.067147 2.078174
Oyt _7 0.032141 1.098118
Oyr_g 0.074717 2.538922

R-squared 0.766780
Durbin-Watson  2.305172

Note that the relationship is specified in terms of the change in the perturbation
(this restriction is easily accepted: a Wald test gave a p-value of 0.65) This confirms
the unit root in the process for inflation. In Figures 1 and 2 we have plotted the paths
for inflation and output as an outcome of one particular stochastic realisation. In the
first figure we show the effect on inflation and output of just the realisation for the
interest rate. In Figure 2 we show the effect of just the realsiation for the exchange
rate. THe figures confirm some of the sylised facts of inflation-output relationships.
Output tends to lead, responding to interest rates first. The effect on inflation comes
through later. There isalso considerable persistence in inflation. In figure 2 we show
the effect of the exchange rat on output and inflation. Now the effect on inflation
and output is more or less immediate. Negative shocks to the exchange rate raise
both output and inflation.
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3.2 Some Ilustrative Simulations

In this section we turn to some illustrative simulations designed to highlight some
of the features of the methodology. In particular we want to demonstrate how the
optimal control rule can be forward-looking and respond to anticipated shocks and
how this forward-lloking component interacts for the forward-looking feature of the
exchange rate market. One of the perceived drawbacks of a feedback rule is that
it appears to be invariant to changes in expected shocks to the economy emanating
from exogenous variables. For example, if a downturn in world economic activity
is expected or energy prices are expected to rise sharply, a feedback rule will not
produce a change in monetary policy until the effects of the exogenous events show
up in the lagged state vector. While it is true that the feedback rule only works off
the lagged state, it is not true that the optimal control rule is not forward-looking
and capable of responding in anticipation of future shocks. This forward-looking role
is provided by the tracking gain, the second part of the control rule.

We are particularly interested in the relative roles of the feedback and tracking
gains when shocks to inflation are anticipated and when they are not. However, there
is a complication because the expected exchange rate appears in the tracking gain
when expectations are rational. In order to disentangle the forward looking part of
the control rule from the forward-looking exchange rate, we first examine a version
of the model in which the exchange rate does not appear.

We consider shocks of two types. First there is an unanticipated shock to the
initial state. Inflation turns out to be 5 percentage points higher than expected. In
the absence of any monetary response the effect on the path for inflation relative
to the base inflation rate, is shown in Chart 1. As we have noted above there is
considerable persistence in the inflation rate. When the optimal control rule is used
(with no exchange rate pass-through) the path for inflation in Chart 1 does return
to base more quickly, but much of the inflationary spurt is unavoidable, even though
interest rates are raised by 5 percentage points. Note, that there is no forward-looking
element to the interest rate jump (Chart 2). Once the shock occurs there is nothing
else to anticipate.

The second shock is an anticipated shock to inflation. The inflation rate is ex-
pected to receive a 2 percentage point shock in each of periods 3 and four, so the
shock is expected (with certainty) to occur in 6 months time. The forward looking
nature of the optimal control rule is now clear. In Table 1 we show the response of
inflation and interest rates to the expected shock. The tracking gain component of
the optimal control rule generates an immediate jump in the interest rate in response
to the expected rise in inflation. Once the shock has passed, the tracking gain term
drops back to zero.

11



Table 1

Inflation | Interest Rate | Tracking gain
Initial State 0 0 0
1 0.00 3.33 3.33
2 0.00 6.20 3.07
3 2.00 5.79 2.76
4 3.83 5.34 1.27
5 3.88 4.56 0.00
6 4.16 3.97 0.00
7 3.59 3.44 0.00
8 2.84 3.02 0.00

In Chart 7 onwards we show the effect of allowing for the exchange rate chan-
nel. The forward looking response of the exchange rate now delivers a considerable
increase in the potency of monetary policy. The monetary contraction triggers an
immediate jump in the exchange rate which bears down on inflation. However, this is
also associated with larger, and more volatile, output losses. In Chart 8 we show the
interest rate outcome. What is particularly striking is that the tracking gain contri-
bution is negative. This is because the tracking gain includes a term in the expected
exchange rate. The tracking gain leans against the jump in the exchange rate and is
a measure of the extent to which monetary policy would have to be tighter in order
to achieve the same inflation path without the help of the exchange rate appreciation.

In Charts 11 to 14 we show the outcome when the inflation shock is anticipated.
The inclusion of the exchange rate channel enhances the effectiveness of monetary
policy considerably. As before, the forward-looking part of the control rule triggers
a monetary tightening in anticipation of the future shock. This actually reduces
inflation prior to the shock as the exchange rate appreciates.

4. Calculating the Policy Frontier

In this section we show how the linearisation can be used in a straightforward way
to compute the policy frontier. Since an inflation target regime involves the use of one
instrument, the interest rate, while the objective function includes both inflation and
output, we do not have strict controllability. The trade-off is in terms of the relative
volatility of inflation and output. We can trace out the policy frontier by varying the
relative weights on inflation and output in the objective function and calculate the
effect on the volatility of inflation and output. Since we have a linearized model of
the form:

2zt = Az + By + Cep + ft (41)
where £, ~ N(0,) and:

xp = Kz + ky

The state covariance X; = E(z;2;) evolves under control as:

12



Asymptotic Policy Frontier
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Figure 3: Asymptotic State Variance. The weight on output has been fixed at 5 and
the weight on inflation varies from 0 to 30.

Y1 = (A+ BK)Y (A + BKy) + Bk B + (4.2)

where the covariance of the tracking gain is:
kt]{?;: == (N —+ B/HtB)ilBI(HtCGt - ht)(HtC’et - ht)/B[(N -+ BIHtB)il]/ (43)

We set the initial variance of inflation and output to 1.51 and 2.2 respectively.
Each point on the frontier corresponds to a weight on inflation which varies between
0 and 30, while the weight on output is fixed at 5. When the weight on inflation is
zero stabilising output leads to a large increase in the variabiilty of inflation, while
stabilising inflation suggests that in the medium term relevant to the conduct of
monetary policy, the the policy frontier is almost rectangular. This confirms the
finding of Svensson (1997) that in order to stabilize output, inflation targeting may

13



be difficult to implement in the short-run, for the simple reason that Central Bank
have imperfect control over current inflation.

4. Discussion and Conclusions

We shown in this paper that a properly specified control rule derived by the
method of dynamic programming has both a forward and a backward looking dimen-
sion. The feedback part of the rule responds to the lagged state, but the forward-
looking tracking gain allows monetary policy to respond in anticipation of future
shocks. We have also described a linearisation method for a nonlienar model that
allows the use of a control rule with rational expectations.

Our approach also addresses in a straightforward way the concerns of Svensson
and others that monetary policy needs a forward-looking dimension. Information
about the future path for inflation not already reflected in the lagged state can be
incorporated into the current setting for monetary policy through the tracking gain
part of the optimal control rule

References

[1] Amman, H. (1996) “Numerical Methods for Linear-Quadratic Models”, chapter
13 of Amman, H.M., Kendrick, D.A. and Rust, J. (eds) Handbook of Computa-
tional Economics: Volume 1, Amsterdam: North Holland.

[2] Amman, H. and Kendrick, D. (1992) “Forward Looking Variables in Determin-
istic Control”, Annals of Operational Research.

[3] Amman, H. and Kendrick, D. (1998) ”Linear Quadratic Optimisation for Models
with Rational Expectations”, Mimeo, University of Amsterdam.

[4] Anderson, P.A. (1979) “Rational Expectations Forecasts from Nonrational Mod-
els®, Journal of Monetary Fconomics, 5, pp. 67-80.

[5] Anderson, G. (1998) “A Reliable and Computationally Efficient Algorithm for
Imposing the Saddlepoint Property in Dynamic Models®, Mimeo, Federal Re-
serve Board.

[6] Bean, C. (1998) “The New UK Monetary Arrangements: A View from the Lit-
erature”, Fconomic Journal, 108, November, pp.1795-1809.

[7] Bernanke, B. S., and Woodford, M. (1997), “Inflation Forecasts and Monetary
Policy”, Journal of Money, Credit, and Banking 29, 653-684.

[8] Blanchard, O.J. and Kahn, C.M. (1980) “The Solution of Linear Difference Mod-
els under Rational Expectations”, Econometrica, 48, pp. 1305-1311.

[9] Blinder, A. S. (1997), “Central Banking in Theory and Practice: The 1996
Robbins Lectures”, MIT Press, Cambridge, forthcoming 1997.

14



[10]

[19]
[20]

[21]

[22]

23]

[24]

Buiter, W.H. (1981) “The Superiority of Contingent Rules over Fixed Rules in
Models with Rational Expectations”, Fconomic Journal, 19, September, pp.
647-70.

Chow, G.C. (1970), Analysis and Control of Dynamic Economic Systems, John
Wiley and Sons, New York.

Christodoulakis, N. (1989) “Extensions of Linearisation to Large Econometric
Models with Rational Expectations”, Computers amd Mathematics with Appli-
cations.

Currie, D., and Levine, P. (1984), “Simple Macropolicy Rules for the Open
Economy”, Economic Journal 95 (Supplement), 60-70.

Currie, David, and Paul Levine (1993), Rules, Reputation and Macroeconomic
Policy Co-ordination, Cambridge University Press, Cambridge.

Fair, R.C. and Taylor, J. B. (1983), “Solution and maximum likelihood estima-
tion of dynamic nonlinear rational expectations models”, Econometrica, 51, pp.

1169-86.

Fisher, P.G., Holly, S. and Hughes Hallett, A. J. (1986) “Efficient solution tech-
niques for dynamic rational expectations models”, Journal of Economic Dynam-
ics and Control, 2.

Haldane, A.G. (1997a), “Designing Inflation Targets”, in Philip Lowe, ed., Mon-
etary Policy and Inflation Targeting, Reserve Bank of Australia, Sidney, 74-112.

Haldane, A.G., and Batini, N. (1998), “Forward-Looking Rules for Monetary
Policy”, Bank of England, mimeo.

Haldane, A.G., ed. (1995), Targeting Inflation, Bank of England, London.

Haldane, Andrew G., (1998), “On Inflation-Targeting in the United Kingdom”,
Scottish Journal of Political Economy.

Hall, S.G. (1986) “An Investigation of Time Inconsistency and Optimal Policy
Formulation in the Presence of Rational Expectations”, Journal of Economic
Dynamics and Control, 10, pp. 323-26.

Hannan, E.J. (1971), “The Identification Problem for Multiple Equation Systems
with moving Average Errors”, Econometrica, 39, pp. 751-65.

Kydland, F. and Prescott, E. (1977) “Rules rather than Discretion: the incon-
sistency of optimal plans”, Journal of Political Economy, 85, pp. 473-92.

Rudebusch, G.D. and Svensson, L.E.O. (1998) “Policy Rules for Inflation Tar-
getting” NBER Working Paper No. 6512.

15



[25]

[26]

[27]

28]

[29]

[30]

[31]

[32]

Sims, C.A. (1982), “Policy Analysis with Econometric Models”, Brookings Pa-
pers on Economic Activity (1), 107-152.

Sims, C.A. (1996) “Solving Linear Rational Expectations Models”, Mimeo, Yale
University.

Svensson, Lars E.O. (1996), “Commentary: How Should Monetary Policy Re-
spond to Shocks while Maintaining Long-Run Price Stability?-Conceptual Is-
sues”, in Federal Reserve Bank of Kansas City , op cit.

Svensson, Lars E.O. (1997), “Inflation Forecast Targeting: Implementing and
Monitoring Inflation Targets”, Furopean Economic Review 41, 1111-1146.

Svensson, Lars E.O. (1998), “Open-Economy Inflation Targeting”, Working Pa-
per.

Westaway, P. (1986) “Some Experiments with Simple Feedback Rules on the
Treasury Model”, Journal of Economic Dynamics and Control, Vol 10, pp. 239-
48.

Zarrop, M.B. (1981) Optimal Experimental Design for Dynamic System Identi-
fication, no 21, Berlin, Springer Verlag.

Zarrop, M., Holly, S., Rustem, B. and Westcott, J.H (1979) “The Design of
Economic Stabilisation Policies with Large, Nonlinear Econometric Models: Two
Possible Approaches”, in P. Ormerod (Editor) Economic Modelling, London,
Heinemann.

16



Chart 1: Inflation
4 | \
No interest rate
34 response
2]
1] interest rate
response
0 Tl

94 9% 9 o7 98 99 00 01

Figure 4: The effect on inflation of an unanticipated shock to inflation. No exchange
rate channel

5| Chart 2: Interest Rate

Full interest rate
response

forward looking
response

94 95 96 97 98 99 00 01

Figure 5: The interest rate response to an anticipated shock to inflation. No exchange
rate channel.
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Figure 6: Effect on output growth of monetary response to unanticipated shock to
inflation. No exchange rate channel.
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Figure 7: Response of inflation to an anticipated shock to inflation rate 6 months
ahead. With and without monetary response. No exchange rate channel.
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Chart 5: Interest Rate
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Figure 8: The optimal response of the interest rate to an anticipated shock to inflation
rate 6 months ahead. No exchange rate channel.
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Figure 9: The optimal response of the output growth to an anticipated shock to
inflation rate 6 months ahead. No exchange rate channel.
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Chart 7: Inflation
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Figure 10: Inflation response to an unanticipated inflation shock. With and without
a monetary response. Exchange rate channel.
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Figure 11: Optimal interest rate response to an unanticipated inflation shock. FEx-
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Figure 12: Response of output growth to monetary response to an unanticipated
inflation shock. Exchange rate channel
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Figure 13: Response of exchange rate to monetary response to an unanticipated

inflation shock..
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Chart 11: Inflation
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Figure 14: Inflation response to an anticipated inflation shock. With and without a
monetary response. Exchange rate channel
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Figure 15: Optimal interest rate response to an unanticipated inflation shock. FEx-
change rate channel
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Figure 16: Response of output growth to monetary response to an unanticipated
inflation shock. Exchange rate channel
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Figure 17: Response of exchange rate to monetary response to an anticipated inflation
shock.
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