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Abstract

Learning with bounded memory in stochastic frameworks is incomplete in the
sense that the learning dynamics cannot converge to an REE. The properties of
the dynamics arising from such rules are studied for models with steady states.
If in standard linear models the REE is in a certain sense expectationally stable
(E-stable), then the dynamics are asymptotically stationary and forecasts are un-
biased. We also provide similar local results for a class of nonlinear models with
small noise and their approximations.
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1 Introduction

There exists by now a sizeable literature that studies the dynamics of adaptive learning
in macroeconomic and market equilibrium models. Two fundamental issues addressed
in this literature are (i) can economic agents, who relyoonlihe ‘e stimation rules and
forecasting with data on relevant variables, learn to have rational expectations in the
long run and (ii) what are the stable outcomes of such learning processes. The literature
has been recently surveyed in (Evans and Honkapohja 1998) and (Marimon 1997).

A common starting pointin this research is to postulate that economic agents behave
like econometricians, i.e. they use standard econometric techniques to estimate the
parameters of the stochastic process of the relevant variables and forecast the future
values using these estimated parameter values. The assumed form of the stochastic
process, the perceived law of motion (PLM), is taken to be correctly speci¢ ed in the sense
that with right parameter values it coincides with the rational expectations equilibria
(REE) of interest. In the most commonly studied frameworks learning is complete in
the sense that the economy settles in an REE if the learning dynamics converges. For
most circumstances the condition for the convergence of learning dynamics has turned
out to be the so-called expectational stabilty (E-stability) condition. We will de¢ ne
E-stability precisely below.

The possibility of nonconvergence of learning dynamics has also been considered in
the literature. It may be the case that the economy has no stable REE for particular
values of the model paramete¥sAnother possibility is that learning dynamics is in-
complete in the sense thatit has no chance of converging to an REE for any parameter
cong¢ guration, see e.g. Section 5 of (Evans and Honkapohja 1998) for a discussion and
references. The incompleteness of learning may arise for di%2erent reasons. First, the
PLM may be incorrectly speci¢, ed. Second, the procedure for estimating the PLM may
not yield exact convergence. Nevertheless, dynamics of incomplete learning may give a
good approximation to actual economic ddta.

Several papers in the literature have considered learning with a ¢ nite memory, and
such rules have been shown to resultin complete learning in various deterministic models.
Given suitable values of structural parameters, the learning economy can indeed ¢ nd an
REE, see e.g. (Guesnerie and Woodford 1991), (Grandmont 1985), (Grandmont and
Laroque 1986), (Balasko and Royer 1996) and (Grandmont 1998), though for other
parameter values the REE may be unstable. In contrast, learning with a ¢ nite memory

INote that the dynamics are econometrically misspecic, ed during learning, but the misspecic, cation
will disappear in the limit if the learning dynamics converges to an REE.

2This is discussed e.g. by (Grandmont and Laroque 1991), (Bullard 1994) and (Grandmont 1998).

3(Marcet and Nicolini 1998) argue that dynamics with certain type of incomplete learning provides
a good description of the inA ation processes in Latin America. (Sargent 1998) suggests that a similar
form ofincomplete learning may be an essentialingredient in the rise and decline of inA ation in post-war
America.



is known to lead to incomplete learning in the same models when random shocks are
present. For example, if agents try to learn a steady state by computing a sample
mean from a ¢ nite data set of ¢ xed length, the resulting dynamics cannot converge to a
rational expectations solution for any parameter values when a random shock is present,
see (Evans and Honkapohja 1995Dh).

This ¢ nding invites a further study into the nature of incomplete learning with ¢ nite
memory when the economy is subject to random shocks. In this paper we show that,
despite incompleteness, dynamics of learning can have several attractive properties in
standard framework$.Most importantly, E-stabilty has a key role for stationarity of
the learning dynamics. Generally speaking, under E-stability the state of economy has a
unigue invariant distribution in the long run. Learning is then asymptotically unbiased
in the sense that the mean of the ¢ rst moment of the forecast is correct There is also
approximate convergence of the higher moments with the approximation improving as
the support ofthe shock becomes small. Finally, we obtain some results on the inA uence
of the memory length on the residual variance of the forecasts.

These properties seem relatively intuitive, but their precise statements require con-
siderable care. In this paper we derive these results for standard frameworks, where
agents try to learn a steady state. Several wel-known models fall into the categories of
models analyzed in this paper, and we start by discussing two examples.

Example 1. (The Muth market model) Consider a competitive market with a pro-
duction lag. Demand is assumed to be a downward-sloping function of the market price,
while supply depends on the expected price in consequence ofa production lag. For sim-
plicity, assume that suppliers are identical in their economic characteristics, including
expectations and learning rules.

Postulate the demand function

qf = (1 — Byp,

and the supply function
q; = Co+ DE} | p; + vy,

where ¢i,i = d,s, denote quantities demanded and supplipdis the market price,
E?} ,p, denotes the (in general non-rational) price expectation of the suppliersy,and
aniid random shock with mea6. B,C;,Cy; and D are positive parameters.

Using equality of supply and demand, the reduced form of this model takes the form

pe = o+ BE{_pr + uy, (1)

whereu; = —B v, a = B™'(C; — C;) and 8 = —B™'D.®> A (stochastic) steady state
equilibrium can be written in the form
R «
D= m + ug.
4As is well-known, most dynamic economic models with expectations are self-referential. (Mitra
1999) considers the implications of bounded memory for some non-self-referential stochastic models.
SSome other models, e.g. a version of the Lucas' island model, also lead to the same reduced form.
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To modellearning it is postulated that agents think that the economy is in a steady
state but do not know the value of the constant. In other words, they have a PLM of
the formp, = A+u; and they form an estimate of the value Atising past observations
on prices. In this model the estimate is also the forecasted @jcep,. Computing
the sample mean for a set of data is the standard statistical technique for estimating an
unknown mean, so that a natural estimateAodt time ¢ is given by

T
Ay =T"" Zpt—i
i—1

if agents use past prices in computing the sample mean. Substituting the estimate
into (1) yields

3 T
P =a+ ?Zptfi‘i‘ut (2)

i=1

which is anAR(T) process. The forecast for the equilbrium price is a%@lept_i

which is a random variable with a nontrivial asymptotic variancg; follows (2). This

shows that forecasts from ¢ nite-memory rules cannot converge to rational expectations
equilibria. In this paper we are interested in the properties of the dynamics (2).

Example 2. Several common economic models lead to the reduced form
Y= a+ BEiy +u ()

in which the current value of the endogenous variable depends on its expected value
for next period. Againu; is aniid random shock. (Sometimes an exogenous non-iid
variables is added to the reduced form. We omit it for simplicity.)

For example, the demand for money is assumed to be a linear function of expected
inA ation in the simple monetary inA ation model. Assuming a constant nominal stock of
money then yields (3) as the reduced form. Other examples leading to (3) are the model
of a smallopen economy with purchasing power parity on prices and open interest rate
parity, and the model of risk-neutral asset pricing in which the current asset price is the
present value of expected price next period plus dividehds.

Model (3) has a stochastic steady state solution of the fgyma= A + v;, where
A= ﬁ and a natural learning rule estimating the constant, assumed unknown, is to
use the sample mean from a set of past valueg;ofe. the estimate in period t is
given by A4, = T1 ZZ.TZI yi—;. (This assumes that current value ipfis not used in the
estimation. This avoids a simultaneity problem in the model.) Again the dynamics of
learning can be described by aAR(T) process.

These two examples have a convenient linearity property, and the learning dynamics
can be analyzed by standard techniques from time series analysis. We will study the

6See (Evans and Honkapohja 1998), Section 3.3.1 for a more detailed discussion and references.



¢ rstand second moments of the learning dynamics described by R{€) process in
Section 2.

Nonlnear models with stochastic steady states also appear in the lterature. In
Section 3 we take up a generalclass of nonlinear models which was analyzed for complete
learning by (Evans and Honkapohja 1995b). It turns out that, for models with small
shocks, E-stabilty implies useful asymptotic properties for learning dynamics locally
around a steady state when agents try to learn a (stochastic) steady state with a natural
¢ hite-memory rule. We also linearize the process and obtain an approximation which is
an ARMA(T,T) process.

Stationarity of this ARM A approximation is brieAy analyzed in Section 4. There
we also consider a generalization of model (3) in Example 2 to incorporate observation
errors. Itis shown that E-stability yields stationarity of both processes.

Section 5 concludes.

2 Linear AR Models

2.1 Prelminaries

We start with the class of models mentioned in Examples 1 and 2 of the Introduction.
Recall that these are of the following general form

=+ BB xq + v 4)

or

T = o+ BE;_ ¢ + vy, 5)

depending on the dating of the expectations and time period they concern. diere
an endogenous variabldz,,, is the subjective expectation ef.; held by agents at
time ¢t andv; is a sequence of white noise shocks.

We focus on steady state solutions of models (4) and (Bhese rationalexpectations
solutions may be written as;, = fl+vt, where A = ﬁ. As discussed above, in modeling
learning we postulate that agents think that they are in a steady state but do not know
the value of the constamt. In other words, they have a PLM of the form = A + u,
and they form an estimate of the value 4fusing past observations an. In the class
of models covered by Example 1 the estimate is also the foreEAs%; (or Ef x4 for
the class covered by Example 2).

Before considering learning we de¢ ne precisely the concept of E-stability which, as
noted, will play a key role. With the PLM of the above form agents use the estimated
value of the constant as their forecast.Alfis the value of the forecast the temporary
equilibrium or actual law of motion (ALM) of the economy is given by

xt:Oé‘i‘BA‘i‘ut

"As is well-known, (4) can have other solutions besides steady states.
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This de¢ nes a mapping from the PLMto the ALM which takes the fB{®) = a+GA.
E-stabilty is de¢ ned by considering the ordinary di% erential equation

dA

o= T(A) — A.

If this di¥%aerential equation is locally asymptotically stable (l.a.s.) at the I%]EE%,

then the equilbrium is said to be weakly E-stable. The formal E-stability condition is

T’(/l) = B < 1. This formulation of E-stability is closely connected to convergence of

real-time learning schemes, see (Evans and Honkapohja 1998) for a detailed discussion.
This notion has been strengthened in several ways in the literature. For the results

of this paper the concept of iterative E-stability turns out to be central. We stay that

the REE is iteratively E-stable if it is locally asymptotically stable in iterations of the

T — map, i.e. ifthe di¥%erence equation
An—l—l = T(An)

is locally asymptotically stable ad. The formal condition for iterative E-stability is
| T'(A) |=| B |< 1 in this case.

The notion of iterative E-stability is related to concepts of rationalizability in game
theory, and the connection between these concepts has been explored by (Guesnerie 1992)
and (Evans and Guesnerie 1993) in the context of rational expectations. We also remark
that another related conceptis strong E-stabllity in which the E-stability is required to
be robust to overparameterizations ofthe PLM of the agents. For the linear frameworks
(4) and (5) of this section weak and strong E-stabilty happen to coincide, while for the
nonlinear models in the next section the condition for iterative E-stability is identical to

that of strong E-stability.

2.2 Stationarity and Unbiasedness

After these preliminaries we begin to analyze learning dynamics with bounded memory
for models (4) and (5). As noted above, computing the sample mean for a set of data is
the standard way for estimating an unknown constant, so that an estimatataime

t is given by
T
T Z Ti—i (6)
=1

if agents use pasfk prices in computing the sample mean. For some results we can in
fact consider forecasting by a weighted sample mean, i.e.

T T
> gy i, wherei:p; > 0andy g =1, (7)

i=1 i=1

8Discussions ofthe E-stability concepts for di3s erent frameworks are given in (Evans and Honkapohja
1995a) and (Evans and Honkapohja 1998).



(6) is obviously a special case of (7).
Substituting the weighted mean into (4) or (5) yields

T
T =a+ [ Z i T+ Uy (8)

i=1

which is anAR(T) process. The ¢ rst question one needs to ask about such a process is
whether it is stationary or not. This question is answered in the following proposition.

Proposition 1 (i) If the steady state is iteratively E-stable, i|e3 |< 1, then z; is
(covariance) stationary for afl > 1.

(i) If it is weakly E-unstable, i.e .3 > 1, then the process is non-stationary.
Proof. Consider the following equation
1= A8 2" =0 9)
We need the roots of (9) to be outside the unit circle for stationarity.
Suppose thafg |< 1. Then we have
1<l 5 = S 1< S| = I, (10)

where the ¢ nalinequality follows from the triangle inequality. Suppose for azbuoe
have| 2" |< 1. Then for alls, | 2" |'< 1. It then follows from (10) that

1<l | 2 < S =1

1=

which is a contradiction. This proves (i).
To prove (i) consider the characteristic polynomial

p(A) = AT — 5,‘11)\T71 - ﬁMQ)\Tig — oo = Blp 4 A — Bur (11)

If 3 >1we havep(l) < 0, so that by continuity(A) must have a root greater than one.
This proves (i).

Weak E-stabilty has also a further implication:

Corollary 2 If the steady state is weakly E-stable, i@ < 1, then in the case (6) of
equal weightsdT™ : VT > T™* the process is stationary.

Proof. We consider only the cage< —1 due to Proposition 1. We basically replicate
the proof of (Giona 1991). Consider the characteristic polynomial (11) which may be
rewritten in this case as

7, 18127

PN = A T



De¢ neg(A) := (1-A)p(A). Observing that = 1is notan eigenvalue (singg1) > 0),
the roots ofy(\) are the same as that pf\). The roots ofg(A), on the other hand, are
given by solving the equation

181, , 18]

A=A+ (- o+

— 0. (12)

From (12) we have (on re-arranging)

181, 19] 1, 18]
M=l ISl e e

The proof now proceeds by contradiction. Assume that there exists some eigenvalue
such that| A |> 1. Then we can choos&™ such thatvT > T* we have@ < 1land
| AT |> 2. ConsequenthT > T* it is true that

IBI 161

PN -2 - D -1

2T 2T

which contradicts| A |[> 1. Now let us assume thatl’ > T* there exists at least one
eigenvalue on the unit circle, that ia,= €?. In this case we have

This lastequation implie8 = 0, butwe have already ruled odt=1as an eigenvalue.
HenceVT > T*, all the eigenvalues are inside the unit circli

The results demonstrate that iterative and weak E-stabilty are closely connected
to stationarity properties for learning dynamics with natural ¢ nite-memory rules for
learning a stochastic steady state. With such rules exact convergence cannot obtain,
but stationarity prevails if the underlying model has an iteratively E-stable rational
expectations equilbrium and it may prevail even with just weak E-stability.

If the dynamics is stationary, it makes sense to consider further properties of learning
with these ¢ nite-memory rules. Inspecting (8) it is immediately seen that the uncon-
ditional mean ofr; converges to the rational steady sta@g under the postulated
learning rule, and therefore the (unconditional) mean of the forecast also converges to
the same value. Thus we have:

Proposition 3 If the dynamics (8) is stationary, then learning is asymptotlcally unbi-

ased, i.e. the mean of the forecagf | ;xe—; converges to the steady stajb_ =5

2.3 Second Moment Properties

Here we are interested in determining the asymptotic variance of estimation errors when
the process is stationary. We thus impose weak E-stabilty,d.ec 1 (and strengthen
it if necessary). In order to compute this variance we ¢ rst need to calculate the second
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moments of ther; process. This is a standard problem in time series econometrics, and
one makes use ofthe Yule Walker equations, see e.g. Chapter 3 of (Hamilton 1994). The
Yule Walker equations for thisAR(T') process yield a system @f simultaneous linear
equations which can be solved for the ¢Fsauto-correlations of the process.

First de¢ ne théth auto-correlation as

Cov(xy—;xy)
pi =
Var(z)

where Cov(z,—; x;) denotes the covariance betweepn; and z; and Var(z;) denotes
the variance oft;. To economize on notation we also de¢ me= %. The Yule Walker
equations in our case are

p1 = a+alpy+py+...+pr_y)
py = apy+a+alpy+py+ ...+ pry)
ps = alpy+py) +a+alp;+py+ ...+ pr_s)

pro1 = alpr_o+prs+...+p)+a+ap
pr = alpr_i+pr_a+..+p)t+a

Proposition 4 If| 5 |< 1, then the above system of equations has a unique solution

o 8 . .
pl—p—m, for all 7 such thatl < <T.

Proof. TheT lnear simultaneous equations need to be solved forfhenknowns
p1, Ps, -+, pp- HOWEVeEr, on careful observation one sees that the following is giue pr;
P2 = Pr—1; P3 = Pr—p OF, In generalp; = pr_; 4.

This means that we can reduce the dimensionality of the equations to be solved for.
As mentioned above, one can match the auto-correlations pairwise, so that we have to
distinguish between two cases: wh&ns even and whefl' is odd. We ¢ rst consider the
case wherl is even.

CASE 1: T =2M; M is a positive integer greater than or equa®tdn this case we
can reduce the above set’Bfequations intaM equations to solve for tha/ unknowns
P1, P9, -5 Ppr- The resultingM equations are

p1 = a+alpy+2py+ ... +2py)
py = apyta+alpy+py+2p5+...+2py)

Pr—1 = alprr—g+ pr—g + -+ p1) ta+alpr + ..+ par—1 + 2pu)
Py = alpy—1+ Pz o+ p1) Fa+alpy + o+ pa—1 + par)-

There is an easy way to solve the above set of equations. First, subtract the second
equation from the ¢ rstto g@f—p, = a( p, —p;) Or (p; —p,)(1—a) =0. Since| f|< 1
implies that| a |< 1 forall T > 1, we getp, = p,. Analogously, in general, subtracting

9



equationj + 1 from equation;j (wherel < j < M —1) one gets(p; — p;,1)(1 —a) =0,
so thatp; = p;, ;.

This proves that allthe auto-correlations are the same so thatwe can getthe common
value, sayp, from a single equation. This yieldd —a — 2a(M — 1))p =a or

. a . a
PeT a—2a(M—-1) 1—aT—1)

CASE 2: T =2M +1; M is a positive integer greater than equalXan this case
we can reduce the above setbequations intaM + 1 equations to solve for thé/ + 1
unknownspy, py, ..., Par, Pars1- 1he resultingM 4 1 equations are

p1 = a+alp+2ps+ .. +2py +200141)
py = apyta+alpy+py+2p5+ ..+ 20y + Pari1)

P = alpy—1+ Py + o+ p1) Fatalpy + .o+ par+ parsa)
Prurr = alpar+ pa1+ -+ p1) Fatalpr+ .o+ par1 + par)-

Note that in this case we get an extra equation corresponding to the unmatched
autocorrelation atlag/+1. Here, analogously as for the ¢ rst case, subtracting equation
j from equationj + 1 forall1 <j < M we getp; — p; 1 = —ap; + ap;; Which implies
(p; — pjs1)(1 —a) =0, and sincea # 1 we getp; = p;,;.

This proves that again we hayg =p foralll <¢ < M +1. Using this fact we can
now easily gef from the ¢ rst equation. This again gives pis ﬁ

Note that this also shows that the solution is unique. So ¢ nally we get the common
value ofp forallT > 1 as

S

B a _ B B
S 1-aT-1) 1-£m1 -1 (1-BT+p

p

This proves the proposition for all > 4. One can also check easily that the same is
true forT =1,2,3. &
We are now in a position to get the asymptotic variance,0First de¢ ney, to be

the ¢th autocovariance, so that
_

Yo'

where~, is the asymptotic variance af. From (Hamilton 1994), p. 59, we havg, =
2 .

e Y+ 0 = ayg L pi+ 0% = 700Tp+ 0% = yo(g=a75) + 02 S0 ¢ nally solving

for -, yields
2 1-8)T+p3
— 0.2 1— ﬁ— -1 _ 0_2 ( )
O ) A ey T
Clearlyy, is decreasing il and ino? if the process is stationary.

Pi
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We ¢ nally turn to the forecast error to see how it behavesTiilbe note the forecast
error ofthe least squares estimate from the REE based on mefhasy;(T). We have,

by de¢ nition,
T
=3
= oy —
i=1 T

Proposition 5 The asymptotic variance of forecast error, ¥4T()), decreases mono-
tonically with T"and ¢%. As T' — oo, Var(Y,(T)) — 0.

Proof. Var(Yy(T)) = Var(> | 7T—;). Thus

Var(Y(T)) = ZVar Ty +Z Z Cov(wy—_i, x1—j)]

i=1 j=1,i#j

270-1—22 Z Cov(xy_i, x1—;)]

_ (%)2[T70+2fyop{(T—1)+(T—2)+...+2+1}]
T(T - 1)] _ 0+ (T =1p] o
2 T (1-8)(6+T)

If | B |< 1, this is clearly decreasing monotonically i and in¢?. Also note that
limy e Var(Y,(T))=0. &

1
= (T)Q[T% + 290p

2.4 Generalization to Higher Order Models

The preceding results can be easily generalized for the steady states of some higher order
inear models. For example, consider the model

ry = a+ By Bz + BBl T + v

¢ rstanalyzed in (Evans 1985) for E-stability.
If the agents have a PLM of the stochastic steady-state form

Ty = a + U

the iterative E-stabilty condition 43, + 8,] < 1.° Assume now that agents make
forecasts of the unknown constamty computing the sample mean = ZL %xt_z-

°See (Evans 1985). Evans' de¢ nition of E-stability is iterative E-stability in our terminology. (The
distinction between E-stability and iterative E-stabilty was made only more recently.) Note that one
could make a distinction between weak and strong iterative E-stability, but this is not needed in this
paper.
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from past datar;_1,...,z;_ 7 and using the estimate as the forecast. The actual law of
motion is given by

~

= a4+ (By + B)a + v = a+ (By + 51) Z Ti—i + Uy,

which is an AR(T) process. This process is a very minor modi¢, cation to (8), and the
above results apply for this framewotk.

3 Nonlnear Models

3.1 Prelminaries

In this section we consider learning of a steady state for the class of nonlinear models

ry = H(G(2411,Ve41)%, vr), (13)

discussed in (Evans and Honkapohja 1995b). HEr@ndG are given twice di¥serentiable
functions,z; is the value ofthe (scalar) variable of interest at timandw, is a sequence
of independently and identically distributed random shocks with meéamd variance
02. G(ziy1,v41)¢ denotes the subjective expectationsGifr;,q,v:.1) formed in period
t. We will introduce some further assumptions later.

Arational steady state is a functiaf{v) such that

Vo a(v) = H(EwG(2(w), w),v),

where the expectatio, is taken with respect to a random variable which has the
same distribution as the id shocks For later purpose$ denotes the steady state of
the corresponding nonstochastic model, ie= H(G(%,0),0). (Evans and Honkapohja
1995b) provide an existence theorem for this kind of steady state when the support of
the shocky, in (13) is suA ciently smaf?!

Example 3. (The basic overlapping generations model with shocks.) In the basic
overlapping generations (OG) modelwith production agents supply lajpemd produce
(perishable) output when young and consuepng when old. The utility function of the
representative agent of generatibis U(c;1) —V(n:). Holding money is the only means
of saving, and there is a ¢ xed quantity of mondy. Outputis assumed to be equalto
labor supply plus and an additive productivity shock, so that ougpist given by

G = ne + A,

10The new feature brought by the generalization is that this framework has other equilbria besides
steady states.

1To our knowledge, existence of the stochastic steady state equilbria has not been analyzed in full
generaliy.

12



where )\ is aniid positive productivity shock. The budget constraints ptgc;.1 = M;
andp,q; = M,;. The ¢ rst-order condition plus the market clearing conditign = ¢;41

andp,/pi1 = quv1/q Yields
(nt + )\t)vl(nt) = E:((’I’Lt+1 —+ )\t+1)U'(nt+1 + )\t+1))-

Since (n+ A\)V'(n) is strictly increasing im, and lettingv, = A\; — E()\;), this equation
can be solved fon, Letting z; = n, the model can be putin the standard form (13).

Returning to the general framework, suppose that agents are trying to learn the
steady state. Agents have to forecast the quabiity:,1,v:1)¢ which is a constant
E,G(z(w),w) in the steady state. The learning problem for the agents is to ¢ nd this
value. The data are given by the pastobservati@(s,v,), G(z2,vs), ..., G(zt 1,V 1),
and the agents are assumed to use the sample mean of these observations to forecast
G(CEt+1, Ut-‘,—l)e-

We continue to focus on learning with a ¢ nite memory lengthAt date ¢t agents
useT past observations to estima€¥z;,1,v:41)°. The estimate and forecast at date
0, IS given by

T
O = Z,U/iG(xtfiavtfi)a
i=1

where u,; is a weight such thaE;frzl w; = 1,u;, > 0. The general results in this section
hold for general weighting schemes, but in Section 4 attention will be focused on the
most important case of the sample mean, i.e. the weights are egual’~!.

Given the forecaséd;, the actual law of motion of; from (13) is given by

Ty = H((St, ’Ut).

Substituting foré, in the above equation, we ¢ nally get the dynamical system

T
Ty = H(Z ,UZ'G(xt—i?vt—i): Ut) (14)
i=1

(14) is the law of motion we are concerned with. This form can cover a wide variety
of overlapping generations models with shocks to either preferences or technology. A
special case arises is independent of its second arguméhnt.

3.2 Markovian Formulation

We now start to analyze the process (14) for some general properties. First, observe
that (14) can be written as a Markov process in the following manner. De¢ ne the state
ve ctor

!
X1 = ($t71,$t72, --,SEth,Utfl,Uth,--,Uth) .

12For example, the dynamics in an overlapping generations model with a multiplicative shock to the
disutility of labor and with agents trying to learn a stochastic steady state would follow a process in
which the current value of the state variable depends only on the current shock and past states.
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Then we can write

—_ - A

i Ty H(thl,’l)t) |
Ty Xi-1
Ti—T+1 — XTfl,tfl (15)
Uy Uy ’
Vp—1 XT+1,t71
| Vt-T41 | | Xor—11
where
T
H(X; 1,v) = H(Z G (T, Vi), 1) (16)
i=1

This can be written compactly as
X = F(thla Ut)a (17)

where the right hand side of (15) de¢ ng's

Since X;_; andwv; are independentX; is a Markov process with some state space
A C R?. The ¢ rst question we study is whether there exists a unique invariant proba-
bility for (17) and whether any initial probability distribution converges to this invariant
probability asymptotically. It should be emphasized that this analysis will be local since
we willassume that the underlying noise is small (in a sense to be made precise shortly),
since the existence of equilibria is known only for this case and since the linearization of
(14) can be justi¢, ed only in models with small noise.

3.3 Asymptotic Properties

It turns out that the existence of the unigque invariant distribution with small noise and
starting points in a neighborhood of the steady state can be established, if the steady
state of the corresponding nonstochastic model is iteratively E-stdble.obtain this
condition suppose that in the nonstochastic model agents have af&Pabbut the
expectationg=(z,0)¢, wherez is the unknown steady state. Then the- map is given
by
T(0) = G(H(6,0),0)

yielding the condition for iterative E-stability given in Condition 2 below.

We now proceed to the general analysis of (14) or (17). We make the following
assumptions.

Condition 1 v; € [—&,,¢&,] for all £.

Condition 2 (lterative E-stability) D, H(G(%,0),0)D,G(%,0) |< 1.

BFor this class of models iterative E-stability is in fact equivalent to strong E-stabilty, compare
(Evans and Honkapohja 1995b).
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We ¢ rst show that with Conditions 1 and 2 and wiftsmallenough, the state space
of the Markov process (17) may be assumed to be compact. This is the content of the
following lemma.

Lemma 6 Assume Conditions 1 and 2 aadsmall enough. Then the state space of
(17), callit N(e,) C A, may be assumed to be compact.

Proof. We wantto show that |f X;—; |[< e and| v, |< &, then we have| X; ||< ¢,
too. (The vector norm will be speci¢ ed later.) Given the structure of (15) it is clear
that it is basically the ¢ rst component of the vector which is problematic (as the other
components are merely de¢ nitions). The ¢ rst componeX; afescribes the process
(14) for z;. We will now prove that for suitable, if | z;—; |< e, foralli=1,2,.,T
and| v_; |<eg, foralli=0,1,2,..,7 then we have z;, |< ¢, too. By choosing some
appropriate vector norm (like the max norm), this in turn shows thftX, ; ||< e
and| v |[<e,, then we have| X; ||< ¢, too.

Assume, without loss of generality, that the perfect foresight steady staite=i$¥.
We linearize (14) around the vect(0,0, ....,0) € R?T+! and get a second order residual
term in the Taylor series expansion in the following manner:

T T
T = Z ;T + Bovr + Z Bivi—i + (X1, oo, Tt Uty oy V), (18)
i—1 i—1

where o, = u;D1HD1G, B; = 1; D1HD»G, for ¢ = 1,2,..,T and 8, = D;H; D;H being
the partial derivative o with respect to theth argument, etc. These derivatives are
evaluated at values corresponding to the nonstochastic steady state. Note also that,
with the normalizationt = 0, the constant term in the Taylor series0is

Using the mean value theorem, the residu@) satis¢ es

| T(.’I?tfl, ..,xt,T,vt,..,vt,T) |§ K(l Tr—1 | 4.+ | Ti—T | + | V¢ | —+ | Vi—1 | +.. +

| v |)-
Taking absolute values in (18) we get

| [<lon |z [+t [ar |l zer |+ 8o [l v [+ By [l vea |+ +

| /BT || UVt—1 | + | r(xt—b oy Lt—T'5 Ut "7vt—T) |
T T

< Y el [ |+ ) B+ B ) Lo | K+ Bo ) o |
1=1 i=1

(TK+ | DiHD\G |)ey + (TK+ | DiHD>G |)e, + (K+ | D2H |)e,

IN

if |z |<e, foralli.
Since% and% are zero when evaluated at the origin (which is the steady state
here), the constamt’ can be made as close to zero as desired by restricting the analysis
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to a small enough neighbourhood of the origin. We choose the neighborhood so that
1-TK-| DiHD,G |> 0. Then we choose, such that
(TK+ | D1HD:\G |)ep + (TK+ | D1HDsG |)e, + (K+ | DoH |)e, < e,
or in other words
e > (TK+ | DlHDQG | +K+ | DQH |)€v
= 1-TK—-| DiHD\G |
By condition 2 and the choice oK this inequalty is well de¢ ned. This proves the
lemmal m
We now prove that under suitable assumptions there exists a unique invariant prob-
ability for (17) and that them—step transition probability of this Markov process con-
verges weakly to this invariant probability, as— oo, for every point in the state space.
We use the results of (Bhattacharyya and Lee 1988) to prove these assertions.
By Lemma 6 the state spac¥(e,) of (17) may be assumed to be compact. Hence-
forth, we assume that, in (19) is set so that equality holds. Thué(e,) is a compact
metric space. We begin by proving the following lemma.

(19)

Lemma 7 There existg, SuA ciently small such that for ati; € [~¢,,e,] = N, the
process (17) is a strict contraction a¥i(e,), i.e. || F(h,v) — F(0,v) ||<]|| h | for all
h € N(g,),h # 0.

Proof. We continue to assume, without any loss of generality, that the deterministic
steady state i0,0,..,0). First, note that

F(h,v) — F(0,v) = DF(0,v)h + r(h,v)

Here DF denotes the Jacobian & with respect to ¢ rst (vector) argument. It then
follows that

“ F(hv U) - F(07U) H:H DF(O,U)h+7“(h, U) H (20)
< [ DEQO,0) [l 2 [l + [ r(h,0) ]
The 2T x 2T Jacobian matrXDF'(0,0) at the steady state takes the form
Fll F12
F21 F22 ’

where theT x T submatrices are given by

0 pd pgd e ey ppd

1 0 0o --- 0 0

0 1 0o - 0 0
=19 0o 1 - N

: : T 0 0

0 o --- 0 1 0

4We note here that in general the constdntwil depend onT. In particular, the larger isl"
the smaller must< be. There are, however, special cases where a uniform result is obtainable when
w; = o(T~1). This happens when the functid(X;_, ;) is either independent af;, or additive and
inear in it.
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00 O 00

1 0 O 00

ke R 01 0 00

Fip = o - 0 yFo1 =0, Fpo = .o
0 --- 0 0(.) 1

Do .. ... 00

00 --- 0 10

Here we have introduced the notation= D1H DG, k = D1 HD-G.

Consider now the eigenvalues DiF'(0,0). From the partitioned form it is seen that
the matrix DF'(0,0) — Aar«or is block triangular, so that its determinant is equal to
the product of the determinants 6f; — M. and Fys — AMr«7. Thus the eigenvalues
of DF(0,0) consist of the eigenvalues @i; and Fy,. Zero is the only eigenvalue df;.
The specialform ofy; implies that its eigenvalues must satisfy the polynomial equation

p(A) = A= 9 N — = Opp A= O =0,

see e.g. (Hamiton 1994), Proposition 1.1\ 0, dividing through byA” and setting
z=X"! we obtain equation (9) witl® = 9. The argument in Proposition 1 yields that
the roots of this equation must have modulus less than oh#é ik 1.

Thus condition 2 implies that the spectral radius of the mari(0,0) is strictly
less than one. Then there exists some matrix norm such||tBd(0,0) ||< 1, see (Horn
and Johnson 1985), Lemma 5.6.10. Now, by uniform continuity of the matrix norm in
its elements, it follows that there exists sSuA ciently small such that forv; € [—¢,, ]
= N, : || DF(0,v,) ||< 6 < 1. Moreover,|| r(h,v) ||< & || h ||* for someé sincer(h,v) is
2nd order inh.

It now follows from (20) that for all| » || small enough we have

| E(h,v) = F(0,0) [|< (|| DEQOv) [|+8 | ) | A< |l -
This proves thaf'(.,.) is a strict contraction on the state spabéc,). B

Proposition 8 There exists a unique invariant probability for the Markov prodéss
the state spacé/(e,) and then—step transition probability of' converges weakly to this
invariant probability, as: — oo, for every point inN(e,).

Proof. Lemmata 6 and 7 show that the conditions of Corollary 2.3 of (Bhattacharyya
and Lee 1988) are satis¢, ed 6h W

This result demonstrates how, with small noise, tterative E-stability of the steady
state of the nonstochastic model yields attractive limiting properties for the learning
dynamics with small noise. Obviously, i, = 0 for all ¢, iterative E-stability also
guarantees local stability of the dynamical system (14) or (17).
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3.4 Error Bounds

To obtain further information on the model (14), it appears necessary to revert to the
linearization. This will be done in the next section. Here we brieA y discuss errors bounds
for the residual term(zi—1, .., Ti—7, v, .., vs—7) in the Taylor series expansion (18).
Rewrite (14) as
Ty = R(x4 1, .., Tt 1, Vpy ooy V) (21)

Consider the linearization of (21). The residuéd;_1, .., z:—7, v, .., vs_7) in the Tay-
. . 2 2
lor series (18) consists ofterms of the fogn®Jt—(X) (2-izt—5), 7 2ge (X) (vi—ive—;)

! a'l)t_ia'l)t_j
and %(X)(xt_ivt_j) at some poiniX.'®> Assuming that all the second order par-
;o

tial derivatives are bounded, it can be shown that the mean residual is bounded above
by the expressiod/s2. For example,

O°R O°R
g 1< __O°R o
0xy_;0v;_; (X)(zi-ive—5)] |[< E| B0 (X)(zr—ive ) |

2
< ME |z |< Miy/Ex} Ev} ; = Migge, < Mae,,

where M; are constants. Likewise, the absolute value of the means of the other terms

| El

%(X)(vt,mﬁ) and W(X)(xt,ixt,j) are bounded by expressions of the
same form.

Consider next the second order momentszpfViewing the z; process as a linear
ARMA(T,T) process plus a residual, these moments can be computed from the Yule
Walker equations with error terms. If these residuals can be shown to be small, then
the second order moments derived from the linearized process will be close to the true
second order moments af.

Recall that the Yule Walker equations are derived by multiplyingin (21) by
x, (u=1,2,..,T) and then taking expectations of both sides. Thus an individual
representative term in the residual of these equations is of the form

0’R
o (X) (V=i j Tt
E &vt_j( ) (Vr=iT 1 jT1—u)
with the absolute value of the mean bounded above by
0’R 4

1
X) (Vi) |[< Maeo [E(zy j)E(zy )] " < Mg,

| E [ 8vt_i8xt_j (

where we have applied Hvider's inequality twice. Here we have also used the fact that
z2 < €2 < Me? for some M. Similar bounds can be found for the other terms involved
in the re3|duals of the Yule Walker equations.

These considerations yield the following conclusion:

Remark 1 The mean absolute residuals in the Yule Walker equations are of third order
in the support of the noise.

>Note that we have again assumed, w.l.o.g, that the nonstochastic steady: stdte
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4 Linear ARMA Models

In the preceding section it was seen that the linearization of the generalnonlinear frame-
work yielded anARM A(T,T) process as an approximation of the originalmodel. In this
section we study further the dynamics of the linearized process (but with the restriction
that learning is based on estimation by the sample mean).

The signi¢, cance of thelRM A setup is not limited to this case. A closely related
framework can arise in ¢ nite-memory learning in some linear frameworks when observa-
tion errors prevail. We present an example before proceeding to the main result.

Example 4. (A model with observation errors.) Consider model (3) as in example
2. Assume now that agents do not directly obseyyebut only a variabler; = y; + w,
whereu; represents the observation error, assumed taievith zero mean, constant
variancec?, and independent of the shoek As before,v; is assumed to beid with
zero mean and constant varianeg

Agents have the perceived law of motion

x; = b+ noise

and they estimaté by the sample mean froff past observations

T
by=T" Z(yt—z‘ + ;).

=1
Substituting into (3) leads to a somewhat non-standdRIVI A(T, T')-type process

T
Y =+ g ;(yt_i + w—s) + v

describing the dynamics of learning with memory len@thNote that this is not a stan-
dard ARMA(T,T) process in that the current shoekis permitted to have a di%erent
distribution from the lagged observation errars;. Such a process can nevertheless be
tackled using standard time series techniques with minor modi¢, cations.

We now set up a framework that covers both this example and the linearization of
the nonlinear model of Section 3. After centering both processes can be written as

T T
2 :aZzt,l--l—cvt—l—qut,i, (22)
i=1 i=1

where z; = y — By, a = %,b = % Formally in example 4 we havé = ¢ = 3, and in
the linearized model (18);, = u; andé = D1HD1G, ¢ = D1 HD-G.

Proceeding with the general analysis, we are interested in ¢ nding the condition for
stationarity of this process. Again iterative E-stability yields this property:
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Proposition 9 Iff 6 |< 1, then the process (22) is (covariance) stationary.

Proof. First, it is easily seen that the meanzpis zero. We then consider the two
casesvy; # u; andv, = u; separately.

Case 1l # u;. Using the lag operator and substituting in the value sefandb we
can write (22) in the form

)
[1— T(L + L+ .+ L))z = cvs + %(L + L* + ..+ LT )u,.

Using the method of proofin Proposition 1 it is seen that the polynomial in the lag
operatorl — £(L + L?>+ ... + L") in the left-hand side has all roots outside the unit
circle if | 6 |< 1. Dividing both sides by this polynomial shows thatis the sum of two
independent covariance-stationary processes

cvy %(L+L2+...+LT)ut
8 2 T an s 2 TY'
l-%(L+L*+...+LT) 1-&(L+L*+ ...+ LT

Therefore, it is itself covariance stationary.

Case 2w, = u. In this case, again using the method of proof in Proposition 1, it is
easily seen that the process is stationanfif< 1. W

The following further results are also evident.

Remark 2 If the condition for weak E-instabiligy > 1 holds, the process (22) is not
stationary, and under weak E-stabiliy< 1 the process is stationary f@ suA ciently
large.

If the learning dynamics (22) is stationary, it is possible to proceed as in Section 2
and derive the asymptotic second moments of the process fosing the technique to
derive Yule Walker equations. Given knowledge of these moments one can also obtain
the variance of the forecast error in terms of the memory lerigthnd the variance
of the disturbances; and v,. Unfortunately, it appears that unambiguous analytic
results on properties of the variance of the forecast error, which would be comparable
to Proposition 5, are not available. We leave the lengthy details and further analysis to
another paper.

5 Concluding Remarks

Frameworks in which adaptive learning is incomplete are beginning to receive attention.
This paper has provided basic analytical results for dynamics of adaptive learning when
the learning rule has a ¢ nite memory and the presence of random shocks precludes exact
convergence to the REE.

We focused on the case oflearning a stochastic steady state. Our centralresultis that
the E-stability principle, which plays a central role in situations of complete learning, as
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discussed e.g. in (Evans and Honkapohja 1998), retains its importance in the analysis
of incomplete learning, though it takes a new form. In our setup E-stability guarantees
the stationarity of the dynamics of the learning economy and the unbiasedness of the
forecasts.

Several open issues merit a further study. First, the nature of the linear approxi-
mation of the nonlinear framework in Section 3 is clearly worthy of a further analysis.
Second, with incomplete learning it is possible to imagine criteria for choosing among
di¥%aerent learning rules, so that they would be equilibria within some speci¢, ed class of
rules. (Evans and Honkapohja 1993) and (Brock and Hommes 1997) are examples of
such view points. We expect to consider these issues in future work.
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