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1 Introduction

There exis ts by now a sizeable lite rature that s tudies the dynamics of adaptive learning
in macroeconomic and market equilibrium models . Two fundamental issues addressed
in this literature are (i) can economic agents , who rely on ´on-line´estimation rules and
forecasting with data on re levant variables, learn to have rational expectations in the
long run and (ii) what are the stable outcomes of such learning processes. The litera ture
has been recently surveyed in (Evans and Honkapohja 1998) and (Marimon 1997).

A common starting point in this research is to postula te that economic agents behave
like econometricians, i.e . they use standard econometric techniques to estimate the
parameters of the stochastic process of the re levant variables and forecast the future
values using these estimated parameter values. The assumed form of the stochastic
process, the perceived law of motion (PLM), is taken to be correctly speci¿ ed in the sense
that with right parameter values it coincides with the ra tiona l expecta tions equilibria
(REE) of interest.1 In the most commonly studied frameworks learning is complete in
the sense that the economy settles in an REE if the learning dynamics converges. For
most circumstances the condition for the convergence of learning dynamics has turned
out to be the so-called expectational s tability (E-stability) condition. We will de¿ ne
E-stability precisely be low.

The possibility of nonconvergence of learning dynamics has also been considered in
the literature . It may be the case that the economy has no stable REE for particular
values of the model parameters .2 Another poss ibility is that learning dynamics is in-
comple te in the sense that it has no chance of converging to an REE for any parameter
con¿ guration, see e.g. Section 5 of (Evans and Honkapohja 1998) for a discuss ion and
references. The incompleteness of learning may arise for di¾ erent reasons. Firs t, the
PLM may be incorrectly speci¿ ed. Second, the procedure for estimating the PLM may
not yie ld exact convergence. Nevertheless, dynamics of incomple te learning may give a
good approximation to actual economic data.3

Severa l papers in the lite rature have considered learning with a ¿ nite memory, and
such rules have been shown to result in complete learning in various determinis tic models .
Given suitable values of s tructura l parameters, the learning economy can indeed ¿ nd an
REE, see e.g. (Guesnerie and Woodford 1991), (Grandmont 1985), (Grandmont and
Laroque 1986), (Balasko and Royer 1996) and (Grandmont 1998), though for other
parameter values the REE may be unstable. In contrast, learning with a ¿ nite memory

1Note tha t the dynamics are econometrica lly misspeci¿ ed during learning, but the misspeci¿ cation
will disappear in the limit if the learning dynamics converges to an REE.

2This is discussed e.g. by (Grandmont and Laroque 1991), (Bullard 1994) and (Grandmont 1998).
3(Marce t and Nicolini 1998) argue tha t dynamics with certa in type of incomplete learning provides

a good description of the inÀ ation processes in Latin America. (Sargent 1998) suggests that a s imilar
form of incomplete learning may be an essentia l ingredient in the rise and decline of inÀ ation in post-war
America.
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is known to lead to incomplete learning in the same models when random shocks are
present. For example, if agents try to learn a steady sta te by computing a sample
mean from a ¿ nite data set of ¿ xed length, the resulting dynamics cannot converge to a
ra tiona l expectations solution for any parameter va lues when a random shock is present,
see (Evans and Honkapohja 1995b).

This ¿ nding invites a further s tudy into the nature of incomplete learning with ¿ nite
memory when the economy is subject to random shocks. In this paper we show that,
despite incomple teness, dynamics of learning can have several a ttractive properties in
standard frameworks.4 Most importantly, E-s tability has a key role for s tationarity of
the learning dynamics. Genera lly speaking, under E-stability the sta te of economy has a
unique invariant dis tribution in the long run. Learning is then asymptotica lly unbiased
in the sense that the mean of the ¿ rst moment of the forecast is correct There is a lso
approximate convergence of the higher moments with the approximation improving as
the support of the shock becomes small. Fina lly, we obta in some results on the inÀ uence
of the memory length on the res idual variance of the forecasts .

These properties seem re lative ly intuitive, but their precise statements require con-
s iderable care. In this paper we derive these results for standard frameworks, where
agents try to learn a steady sta te. Several well-known models fa ll into the categories of
models analyzed in this paper, and we start by discussing two examples.

Example 1. (The Muth market model) Consider a competitive market with a pro-
duction lag. Demand is assumed to be a downward-s loping function of the market price,
while supply depends on the expected price in consequence of a production lag. For s im-
plicity, assume that suppliers are identica l in the ir economic characteris tics , including
expectations and learning rules.

Postula te the demand function

^_
|
' �� � �R|

and the supply function
^r
|
' �2 n(.W

|3�
R| n �|c

where ^�
|
c � ' _c rc denote quantities demanded and supplied,R| is the market price,

.W

|3�
R| denotes the (in general non-ra tiona l) price expectation of the suppliers , and�| is

an ��_ random shock with meanf. �c��c �2 and( are positive parameters .
Using equality of supply and demand, the reduced form of this model takes the form

R| ' kn q.W

|3�
R| n �|c (1)

where �| ' ��3��|, k ' �3�E�� � �2� and q ' ��3�(.5 A (stochastic) s teady sta te
equilibrium can be written in the form

	R| '
k

�� q
n �|�

4As is well-known, most dynamic economic models with expectations are self-re ferentia l. (Mitra
1999) considers the implications of bounded memory for some non-self-re ferentia l s tochastic models .

5Some other models , e.g. a vers ion of the Lucas' is land model, a lso lead to the same reduced form.
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To model learning it is postulated that agents think that the economy is in a steady
state but do not know the value of the constant. In other words, they have a PLM of
the formR| ' �n�| and they form an estimate of the value of� using past observations
on prices. In this model the estimate is also the forecasted price.W

|3�R|. Computing
the sample mean for a set of data is the standard sta tis tica l technique for estimating an
unknown mean, so that a natura l estimate of� at time | is given by

�| ' A3�

A[
�'�

R|3�

if agents use pastA prices in computing the sample mean. Substituting the estimate
into (1) yie lds

R| ' kn
q

A

A[
�'�

R|3� n �| (2)

which is an�-EA � process. The forecast for the equilibrium price is also�

A

SA

�'� R|3�
which is a random variable with a nontrivia l asymptotic variance ifR| follows (2). This
shows that forecasts from ¿ nite-memory rules cannot converge to ra tiona l expectations
equilibria . In this paper we are interested in the properties of the dynamics (2).

Example 2. Severa l common economic models lead to the reduced form

+| ' kn q.W

| +|n� n �| (3)

in which the current va lue of the endogenous variable depends on its expected va lue
for next period. Again�| is an ��_ random shock. (Sometimes an exogenous non-iid
variables is added to the reduced form. We omit it for s implicity.)

For example, the demand for money is assumed to be a linear function of expected
inÀ ation in the simple monetary inÀ ation model. Assuming a constant nominal stock of
money then yie lds (3) as the reduced form. Other examples leading to (3) are the model
of a small open economy with purchasing power parity on prices and open interest rate
parity, and the model of risk-neutra l asset pricing in which the current asset price is the
present value of expected price next period plus dividends.6

Model (3) has a stochastic s teady sta te solution of the form+| ' 	� n �|, where
	� ' k

�3q
and a natura l learning rule estimating the constant, assumed unknown, is to

use the sample mean from a set of past values of+|, i.e . the estimate in period t is
given by�| ' A3�

SA

�'� +|3�. (This assumes that current va lue of+| is not used in the
estimation. This avoids a simultane ity problem in the model.) Again the dynamics of
learning can be described by an�-EA � process.

These two examples have a convenient linearity property, and the learning dynamics
can be analyzed by standard techniques from time series analysis . We will s tudy the

6See (Evans and Honkapohja 1998), Section 3.3.1 for a more deta iled discuss ion and references.
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¿ rst and second moments of the learning dynamics described by the�-EA � process in
Section 2.

Nonlinear models with stochastic steady states also appear in the literature. In
Section 3 we take up a genera l class of nonlinear models which was analyzed for complete
learning by (Evans and Honkapohja 1995b). It turns out that, for models with small
shocks, E-stability implies useful asymptotic properties for learning dynamics locally
around a steady sta te when agents try to learn a (stochastic) s teady sta te with a natura l
¿ nite-memory rule. We also linearize the process and obta in an approximation which is
an �-��EAc A � process.

Sta tionarity of this�-�� approximation is brieÀ y analyzed in Section 4. There
we also consider a generalization of model (3) in Example 2 to incorpora te observation
errors . It is shown that E-stability yie lds stationarity of both processes.

Section 5 concludes.

2 Linear AR Models

2.1 Preliminaries

We start with the class of models mentioned in Examples 1 and 2 of the Introduction.
Reca ll tha t these are of the following general form

%| ' kn q.W

| %|n� n �| (4)

or

%| ' kn q.W

|3�%| n �|c (5)

depending on the dating of the expecta tions and time period they concern. Here%| is
an endogenous variable,.W

| %|n� is the subjective expectation of%|n� held by agents at
time | and �| is a sequence of white noise shocks.

We focus on steady state solutions of models (4) and (5).7 These rational expecta tions
solutions may be written as%| ' 	�n�|c where 	� ' k

�3q
� As discussed above, in modeling

learning we postulate that agents think that they are in a steady sta te but do not know
the value of the constant	�. In other words, they have a PLM of the form%| ' �n �|
and they form an estimate of the value of� using past observations on%|. In the class
of models covered by Example 1 the estimate is a lso the forecast.W

|3�%| (or .W

| %|n� for
the class covered by Example 2).

Before considering learning we de¿ ne precise ly the concept of E-stability which, as
noted, will play a key role. With the PLM of the above form agents use the estimated
value of the constant as the ir forecast. If� is the va lue of the forecast the temporary
equilibrium or actual law of motion (ALM) of the economy is given by

%| ' kn q�n �|�

7As is well-known, (4) can have other solutions besides steady states .
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This de¿ nes a mapping from the PLM to the ALM which takes the formA E�� ' knq�.
E-stability is de¿ ned by considering the ordinary di¾ erentia l equation

_�

_�
' A E��� ��

If this di¾ erentia l equation is loca lly asymptotica lly stable (l.a .s .) a t the REE	� ' k
�3q

,
then the equilibrium is said to be weakly E-stable . The formal E-stability condition is
A �E 	�� ' q 	 �. This formula tion of E-stability is closely connected to convergence of
real-time learning schemes, see (Evans and Honkapohja 1998) for a deta iled discussion.

This notion has been strengthened in several ways in the lite rature. For the results
of this paper the concept of itera tive E-stability turns out to be centra l. We stay that
the REE is ite rative ly E-stable if it is locally asymptotica lly s table in itera tions of the
A �6@R, i.e . if the di¾ erence equation

�?n� ' A E�?�

is locally asymptotica lly s table at	�. The formal condition for ite rative E-stability is
m A �E 	�� m'm q m	 � in this case.

The notion of iterative E-stability is re lated to concepts of rationalizability in game
theory, and the connection between these concepts has been explored by (Guesnerie 1992)
and (Evans and Guesnerie 1993) in the context of rational expectations. We also remark
that another re la ted concept is s trong E-stability in which the E-stability is required to
be robust to overparameteriza tions of the PLM of the agents . For the linear frameworks
(4) and (5) of this section weak and strong E-stability happen to coincide, while for the
nonlinear models in the next section the condition for itera tive E-stability is identica l to
that of strong E-stability.8

2.2 Stationarity and Unbiasedness

After these pre liminaries we begin to ana lyze learning dynamics with bounded memory
for models (4) and (5). As noted above, computing the sample mean for a set of data is
the standard way for estimating an unknown constant, so that an estimate of� at time
| is given by

A3�

A[
�'�

%|3� (6)

if agents use pastA prices in computing the sample mean. For some results we can in
fact cons ider forecasting by a weighted sample mean, i.e .

A[
�'�

>�%|3�, where;� G >� � f and
A[
�'�

>� ' �� (7)

8Discuss ions of the E-s tability concepts for di¾ erent frameworks are given in (Evans and Honkapohja
1995a) and (Evans and Honkapohja 1998).
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(6) is obvious ly a specia l case of (7).
Substituting the weighted mean into (4) or (5) yie lds

%| ' kn q
A[

�'�

>
�
%|3� n �| (8)

which is an�-EA � process. The ¿ rst question one needs to ask about such a process is
whether it is s tationary or not. This question is answered in the following proposition.

Proposition 1 (i) If the steady state is ite rative ly E-stable , i.e .m q m	 �c then %| is
(covariance) stationary for a llA � ��

(ii) If it is weakly E-unstable, i.e .q : �, then the process is non-sta tionary.

Proof. Consider the following equation

�� qPA

�'�
>
�
5� ' f (9)

We need the roots of (9) to be outs ide the unit circle for s ta tionarity.
Suppose thatm q m	 �� Then we have

� 	m
�

q
m'm PA

�'�
>
�
5� m� PA

�'�
>
�
m 5 m�c (10)

where the ¿ nal inequa lity follows from the triangle inequality. Suppose for a root52 we
have m 52 m� �� Then for a ll�c m 52 m�� �� It then follows from (10) that

� 	 PA

�'�
>
�
m 5 m�� PA

�'�
>
�
' �

which is a contradiction. This proves (i).
To prove (ii) cons ider the characteris tic polynomia l

REb� ' bA � q>
�
bA3� � q>

2
bA32 � ���� q>

A3�
b� q>

A
(11)

If q : � we haveRE�� 	 f, so that by continuityREb� must have a root greater than one.
This proves (ii).

Weak E-stability has a lso a further implica tion:

Corolla ry 2 If the steady sta te is weakly E-stable , i.e .q 	 �, then in the case (6) of
equa l weights<A W G ;A � A W the process is stationary.

Proof. We consider only the caseq 	 �� due to Proposition 1. We basically replica te
the proof of (Giona 1991). Consider the characteris tic polynomia l (11) which may be
rewritten in this case as

REb� ' bA n
m q m E�� bA �

E�� b�A
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De¿ nê Eb� G' E��b�REb�� Observing thatb ' � is not an eigenvalue (s inceRE�� : f�,
the roots of̂ Eb� are the same as that ofREb�� The roots of̂ Eb�c on the other hand, are
given by solving the equation

bAi�bn E��
m q m

A
�jn

m q m

A
' f� (12)

From (12) we have (on re-arranging)

m b m'm ��
m q m

A
n

m q m

AbA
m�m ��

m q m

A
m n

m q m

A m bA m

The proof now proceeds by contradiction. Assume that there exis ts some eigenvalueb
such thatm b m: �� Then we can chooseA W such that;A � A W we have �q�

A
	 � and

m bA m: 2� Consequently;A � A W it is true that

m b m	 ��
m q m

A
n

m q m

2A
' ��

m q m

2A
	 �

which contradictsm b m: �� Now let us assume that;A � A W there exists at least one
eigenvalue on the unit circle, that is ,b ' e�w� In this case we have

� 'm
m q m

A
e3�A w n E��

m q m

A
� m

This last equation impliesw ' fc but we have already ruled outb ' � as an eigenvalue.
Hence;A � A Wc all the e igenvalues are inside the unit circle.

The results demonstra te that itera tive and weak E-stability are closely connected
to sta tionarity properties for learning dynamics with natura l ¿ nite-memory rules for
learning a stochastic s teady state. With such rules exact convergence cannot obta in,
but s tationarity prevails if the underlying model has an itera tive ly E-stable rational
expectations equilibrium and it may prevail even with just weak E-stability.

If the dynamics is sta tionary, it makes sense to consider further properties of learning
with these ¿ nite-memory rules. Inspecting (8) it is immediate ly seen that the uncon-
ditional mean of%| converges to the rational steady sta tek

�3q
under the postulated

learning rule, and therefore the (unconditional) mean of the forecast a lso converges to
the same value. Thus we have:

Proposition 3 If the dynamics (8) is s tationary, then learning is asymptotica lly unbi-
ased, i.e . the mean of the forecast

SA

�'� >�%|3� converges to the steady sta te	� ' k
�3q

.

2.3 Second Moment Properties

Here we are interested in determining the asymptotic variance of estimation errors when
the process is stationary. We thus impose weak E-stability, i.e .q 	 � (and strengthen
it if necessary). In order to compute this variance we ¿ rst need to ca lcula te the second

8



moments of the%| process. This is a standard problem in time series econometrics , and
one makes use of the Yule Walker equations, see e.g. Chapter 3 of (Hamilton 1994). The
Yule Walker equations for this�-EA � process yie ld a system ofA s imultaneous linear
equations which can be solved for the ¿ rstA auto-corre la tions of the process.

Firs t de¿ ne the�|� auto-corre lation as

4� G'
�J�E%|3�c%|�

T @oE%|�
c

where �J�E%|3�c%|� denotes the covariance between%|3� and %| and T @oE%|� denotes
the variance of%|� To economize on notation we also de¿ ne@ G' q

A
. The Yule Walker

equations in our case are

4� ' @n @E4� n 42 n ���n 4A3��

42 ' @4� n @n @E4� n 42 n ���n 4A32�

4� ' @E42 n 4�� n @n @E4� n 42 n ���n 4A3��

�������

4A3� ' @E4A32 n 4A3� n ���n 4�� n @n @4�
4A ' @E4A3� n 4A32 n ���n 4�� n @

Proposition 4 Ifm q m	 �c then the above system of equations has a unique solution
4� ' 4 ' q

E�3q�Anq
c for a ll � such that� � � � A�

Proof. TheA linear s imultaneous equations need to be solved for theA unknowns
4�c 42c ���c 4A � However, on careful observation one sees that the following is true4� ' 4A ;
42 ' 4A3�; 4� ' 4A32 or, in genera l,4� ' 4A3�n��

This means that we can reduce the dimensiona lity of the equations to be solved for.
As mentioned above, one can match the auto-corre lations pairwise, so that we have to
distinguish between two cases: whenA is even and whenA is odd. We ¿ rst consider the
case whenA is even.

CASE 1: A ' 2� ( � is a pos itive integer greater than or equal to2� In this case we
can reduce the above set ofA equations into� equations to solve for the� unknowns
4�c 42c ���c 4� � The resulting� equations are

4� ' @n @E4� n 242 n ���n 24��

42 ' @4� n @n @E4� n 42 n 24� n ���n 24��

�������

4�3� ' @E4�32 n 4�3� n ���n 4�� n @n @E4� n ���n 4�3� n 24��

4� ' @E4�3� n 4�32 n ���n 4�� n @n @E4� n ���n 4�3� n 4���

There is an easy way to solve the above set of equations. Firs t, subtract the second
equation from the ¿ rst to get4�� 42 ' @E 42�4�� or E4��42�E�� @� ' f� Since m q m	 �
implies thatm @ m	 � for a ll A � �c we get4� ' 42� Analogously, in general, subtracting
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equation� n � from equation� (where � � � � � � �� one getsE4� � 4�n��E�� @� ' fc
so that4� ' 4�n��

This proves that a ll the auto-corre lations are the same so that we can get the common
value, say4c from a single equation. This yie ldsE�� @� 2@E� � ���4 ' @ or

4 '
@

�� @� 2@E� � ��
'

@

�� @EA � ��
�

CASE 2: A ' 2� n �( � is a pos itive integer greater than equal to2� In this case
we can reduce the above set ofA equations into� n� equations to solve for the� n�
unknowns4�c 42c ���c 4� c 4�n�� The resulting� n � equations are

4� ' @n @E4� n 242 n ���n 24� n 24�n��

42 ' @4� n @n @E4� n 42 n 24� n ���n 24� n 4�n��

��������

4� ' @E4�3� n 4�32 n ���n 4�� n @n @E4� n ���n 4� n 4�n��

4�n� ' @E4� n 4�3� n ���n 4�� n @n @E4� n ���n 4�3� n 4���

Note that in this case we get an extra equation corresponding to the unmatched
autocorre lation at lag�n�� Here, ana logously as for the ¿ rst case, subtracting equation
� from equation� n � for a ll � � � � � we get4� � 4�n� ' �@4� n @4�n� which implies
E4� � 4�n��E�� @� ' f, and s ince@ 9' � we get4� ' 4�n��

This proves that aga in we have4� ' 4 for a ll � � � � � n�� Using this fact we can
now easily get4 from the ¿ rst equation. This again gives us4 ' @

�3@EA3��
�

Note that this also shows that the solution is unique. So ¿ nally we get the common
value of4 for a ll A � � as

4 '
@

�� @EA � ��
'

q

A

�� q

A
EA � ��

'
q

E�� q�A n q
�

This proves the proposition for a llA � e� One can also check easily that the same is
true forA ' �c 2c ��

We are now in a position to get the asymptotic variance of%|� Firs t de¿ ne�� to be
the �|� autocovariance, so that

4� '
��
�f

c

where �f is the asymptotic variance of%|� From (Hamilton 1994), p. 59, we have�f '
@
SA

�'� �� n j2 ' @�f
SA

�'� 4� n j2 ' �f@A4n j2 ' �fE
q2

E�3q�Anq
� n j2� So ¿ nally solving

for �f yie lds

�f ' j2E��
q2

E�� q�A n q
�3� ' j2E

E�� q�A n q

E�� q�EA n q�
��

Clearly�f is decreas ing inA and inj2 if the process is stationary.
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We ¿ nally turn to the forecast error to see how it behaves withA� Denote the forecast
error of the least squares estimate from the REE based on memoryA ast|EA �� We have,
by de¿ nition,

t|EA � '
A[
�'�

�

A
%|3� � 	��

Proposition 5 The asymptotic variance of forecast error, Var(t|EA ��c decreases mono-
tonica lly with A and j2� As A $ 4c Var(t|EA �� $ f�

Proof. T @oEt|EA �� ' T @oE
SA

�'�
�

A
%|3��. Thus

T @oEt|EA �� ' E
�

A
�2d

A[
�'�

T @oE%|3�� n
A[
�'�

A[
�'�c��'�

�J�E%|3�c %|3��o

' E
�

A
�2d

A[
�'�

�f n 2

A[
�'�

A[
�'�c�	�

�J�E%|3�c %|3��o

' E
�

A
�2dA�f n 2�f4iEA � �� n EA � 2� n ���n 2 n �jo

' E
�

A
�2dA�f n 2�f4

A EA � ��

2
o '

�fd� n EA � ��4o

A
'

j2

E�� q�Eq n A �
�

If m q m	 �c this is clearly decreas ing monotonically inA and in j2� Also note that
*�4A<" T @oEt|EA �� ' f�

2.4 Generalization to Higher Order Models

The preceding results can be easily genera lized for the steady states of some higher order
linear models . For example, cons ider the model

%| ' kn qf.
W
|3�%| n q�.

W
|3�%|n� n �|

¿ rst analyzed in (Evans 1985) for E-stability.
If the agents have a PLM of the stochastic s teady-state form

%| ' @n �|

the itera tive E-stability condition ismqf n q�m 	 �.9 Assume now that agents make
forecasts of the unknown constant@ by computing the sample mean@| '

SA

�'�
�

A
%|3�

9See (Evans 1985). Evans' de¿ nition of E-stability is iterative E-s tability in our te rminology. (The
dis tinction between E-stability and itera tive E-stability was made only more recently.) Note that one
could make a distinction between weak and strong itera tive E-stability, but this is not needed in this
paper.
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from past data%|3�c � � � c %|3A and us ing the estimate as the forecast. The actua l law of
motion is given by

%| ' kn Eqf n q��@| n �| ' kn Eqf n q��
A[
�'�

�

A
%|3� n �|c

which is an�-EA � process. This process is a very minor modi¿ cation to (8), and the
above results apply for this framework.10

3 Nonlinear Models

3.1 Preliminaries

In this section we consider learning of a steady state for the class of nonlinear models

%| ' MECE%|n�c �|n��
ec �|�c (13)

discussed in (Evans and Honkapohja 1995b). HereM andC are given twice di¾ erentiable
functions,%| is the value of the (scalar) variable of interest at time|c and�| is a sequence
of independently and identica lly distributed random shocks with meanf and variance
j2
�
. CE%|n�c �|n��

e denotes the subjective expecta tions ofCE%|n�c �|n�� formed in period
|� We will introduce some further assumptions later.

A ra tiona l s teady sta te is a function%E�� such that

;� G %E�� ' ME.�CE%E��c ��c ��c

where the expectation.� is taken with respect to a random variable which has the
same dis tribution as the iid shocks�|� For later purposes	% denotes the steady sta te of
the corresponding nonstochastic model, i.e .	% ' MECE	%c f�c f�� (Evans and Honkapohja
1995b) provide an exis tence theorem for this kind of s teady state when the support of
the shock�| in (13) is suÁ ciently small.11

Example 3. (The basic overlapping generations model with shocks.) In the basic
overlapping generations (OG) model with production agents supply labor?| and produce
(perishable) output when young and consumeS|n� when old. The utility function of the
representa tive agent of generation| is LES|n���T E?|�� Holding money is the only means
of saving, and there is a ¿ xed quantity of money�f. Output is assumed to be equal to
labor supply plus and an additive productivity shock, so that output^| is given by

^| ' ?| n b|c

10The new fea ture brought by the genera lization is that this framework has other equilibria bes ides
steady states .

11To our knowledge, exis tence of the s tochastic s teady state equilibria has not been analyzed in full
genera lity.
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whereb| is an ��_ positive productivity shock. The budget constra ints areR|n�S|n� ' �|

and R|^| ' �|� The ¿ rst-order condition plus the market clearing condition^|n� ' S|n�
and R|*R|n� ' ^|n�*^| yie lds

E?| n b|�T
�E?|� ' .W

| EE?|n� n b|n��L
�E?|n� n b|n����

Since E?n b�T �E?� is strictly increas ing in?c and letting�| � b| �.Eb|�c this equation
can be solved for?| Letting %| � ?| the model can be put in the standard form (13).

Returning to the genera l framework, suppose that agents are trying to learn the
steady state. Agents have to forecast the quantityCE%|n�c �|n��

e which is a constant
.�CE%E��c �� in the steady state. The learning problem for the agents is to ¿ nd this
value. The data are given by the past observationsCE%�c ���cCE%2c �2�c �����cCE%|3�c �|3��c
and the agents are assumed to use the sample mean of these observations to forecast
CE%|n�c �|n��

e�
We continue to focus on learning with a ¿ nite memory lengthA G At date | agents

useA past observations to estimateCE%|n�c �|n��
e� The estimate and forecast at date|c

B|c is given by

B| '

A[
�'�

>�CE%|3�c �|3��c

where >� is a weight such that
SA

�'� >� ' �c >� � f� The genera l results in this section
hold for genera l weighting schemes, but in Section 4 attention will be focused on the
most important case of the sample mean, i.e . the weights are equal>� ' A3�.

Given the forecastB|c the actua l law of motion of%| from (13) is given by

%| ' MEB|c �|��

Substituting forB| in the above equation, we ¿ nally get the dynamical system

%| ' ME

A[
�'�

>�CE%|3�c �|3��c �|� (14)

(14) is the law of motion we are concerned with. This form can cover a wide variety
of overlapping generations models with shocks to either pre ferences or technology. A
specia l case arises ifC is independent of its second argument.12

3.2 Markovian Formulation

We now start to analyze the process (14) for some general properties . First, observe
that (14) can be written as a Markov process in the following manner. De¿ ne the sta te
vector

f|3� ' E%|3�c %|32c ��c %|3A c �|3�c �|32c��c �|3A �
��

12For example , the dynamics in an overlapping generations model with a multiplicative shock to the
disutility of labor and with agents trying to learn a stochastic steady sta te would follow a process in
which the current va lue of the state variable depends only on the current shock and past sta tes.
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Then we can write 5
99999999997

%|

%|3�

���
%|3An�

�|
�|3�
��
�|3An�

6
::::::::::8
'

5
99999999997

	MEf|3�c �|�
f�c|3�

���
fA3�c|3�

�|
fAn�c|3�

��
f2A3�c|3�

6
::::::::::8
c (15)

where

	MEf|3�c �|� � ME

A[
�'�

>�CE%|3�c �|3��c �|�� (16)

This can be written compactly as

f| ' 8 Ef|3�c �|�c (17)

where the right hand side of (15) de¿ nes8�
Since f|3� and �| are independent,f| is a Markov process with some state space

� � U
2A . The ¿ rst question we study is whether there exists a unique invariant proba-

bility for (17) and whether any initia l probability dis tribution converges to this invariant
probability asymptotically. It should be emphasized that this ana lys is will be loca l s ince
we will assume that the underlying noise is small (in a sense to be made precise shortly),
s ince the exis tence of equilibria is known only for this case and since the linearization of
(14) can be justi¿ ed only in models with small noise.

3.3 Asymptotic Properties

It turns out that the exis tence of the unique invariant dis tribution with small noise and
starting points in a ne ighborhood of the steady sta te can be established, if the steady
state of the corresponding nonstochastic model is itera tive ly E-stable.13 To obtain this
condition suppose that in the nonstochastic model agents have a PLMw about the
expectationsCE	%c f�e, where 	% is the unknown steady state . Then theA �6@R is given
by

A Ew� ' CEMEwc f�c f�

yie lding the condition for iterative E-stability given in Condition 2 below.
We now proceed to the general analys is of (14) or (17). We make the following

assumptions.

Condition 1 �| 5 d�0�c 0�o for a ll |�

Condition 2 (Ite rative E-stability)m (�MECE	%c f�c f�(�CE	%c f� m	 ��

13For this class of models ite rative E-s tability is in fact equiva lent to strong E-s tability, compare
(Evans and Honkapohja 1995b).
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We ¿ rst show that with Conditions 1 and 2 and with0� small enough, the state space
of the Markov process (17) may be assumed to be compact. This is the content of the
following lemma.

Lemma 6 Assume Conditions 1 and 2 and0� small enough. Then the state space of
(17), call it �E0�� � �c may be assumed to be compact.

Proof. We want to show that ifn f|3� n� 0 and m �| m� 0�c then we haven f| n� 0c
too. (The vector norm will be speci¿ ed la ter.) Given the structure of (15) it is clear
that it is bas ically the ¿ rst component of the vector which is problematic (as the other
components are mere ly de¿ nitions). The ¿ rst component off| describes the process
(14) for %|. We will now prove that for suitable0% if m %|3� m� 0% for a ll � ' �c 2c ��c A
and m �|3� m� 0� for a ll � ' fc �c 2c ��c A then we havem %| m� 0% too. By choosing some
appropria te vector norm (like the max norm), this in turn shows that ifn f|3� n� 0
and m �| m� 0�c then we haven f| n� 0c too.

Assume, without loss of generality, that the perfect fores ight s teady state is	% ' f�
We linearize (14) around the vectorEfc fc ����c f� 5 U

2An� and get a second order res idual
term in the Taylor series expansion in the following manner:

%| '

A[
�'�

k�%|3� n qf�| n

A[
�'�

q��|3� n oE%|3�c ��c %|3A c �|c ��c �|3A �c (18)

wherek� ' >�(�M(�Cc q� ' >�(�M(2Cc for � ' �c 2c ��c A andqf ' (2M( (�M being
the partia l derivative ofM with respect to the�|� argument, etc. These derivatives are
eva luated at va lues corresponding to the nonstochastic s teady state. Note also that,
with the normaliza tion	% ' fc the constant term in the Taylor series isf�

Using the mean value theorem, the res idualoE�� satis¿ es

m oE%|3�c ��c %|3A c �|c ��c �|3A � m� gEm %|3� m n��n m %|3A m n m �| m n m �|3� m n��n

m �|3A m��

Taking absolute values in (18) we get

m %| m�m k� mm %|3� m n��n m kA mm %|3A m n m qf mm �| m n m q� mm �|3� m n��n

m qA mm �|3A m n m oE%|3�c ��c %|3A c �|c ��c �|3A � m

�
A[
�'�

Egn m k� m� m %|3� m n
A[
�'�

Egn m q� m� m �|3� m nEgn m qf m� m �| m

� EAgn m (�M(�C m�0% n EAgn m (�M(2C m�0� n Egn m (2M m�0�

if m %|3� m� 0% for a ll �.
S ince Yo

Y%|3�
and Yo

Y�|3�
are zero when evaluated at the origin (which is the steady sta te

here), the constantg can be made as close to zero as desired by restricting the analys is
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to a small enough neighbourhood of the origin. We choose the ne ighborhood so that
�� Ag� m (�M(�C m: f. Then we choose0% such that

EAgn m (�M(�C m�0% n EAgn m (�M(2C m�0� n Egn m (2M m�0� � 0%

or in other words

0% �
EAgn m (�M(2C m ngn m (2M m�0�

�� Ag� m (�M(�C m
(19)

By condition 2 and the choice ofg this inequa lity is well de¿ ned. This proves the
lemma.14

We now prove that under suitable assumptions there exis ts a unique invariant prob-
ability for (17) and that the?�step trans ition probability of this Markov process con-
verges weakly to this invariant probability, as? $ 4c for every point in the state space.
We use the results of (Bhattacharyya and Lee 1988) to prove these assertions.

By Lemma 6 the sta te space�E0�� of (17) may be assumed to be compact. Hence-
forth, we assume that0% in (19) is set so that equa lity holds. Thus�E0�� is a compact
metric space. We begin by proving the following lemma.

Lemma 7 There exis ts0� suÁ ciently small such that for a ll�| 5 d�0�c 0�o ' �� the
process (17) is a strict contraction on�E0��, i.e . n 8 E�c �� � 8 Efc �� n	n � n for a ll
� 5 �E0��c � 9' f.

Proof. We continue to assume, without any loss of generality, that the determinis tic
steady sta te isEfc fc ��c f�� Firs t, note that

8 E�c ��� 8 Efc �� ' (8 Efc ���n oE�c ��

Here (8 denotes the Jacobian of8 with respect to ¿ rst (vector) argument. It then
follows that

n 8 E�c ��� 8 Efc �� n'n (8 Efc ���n oE�c �� n (20)

� n (8 Efc �� nn � n n n oE�c �� n

The 2A � 2A Jacobian matrix(8 Efc f� at the steady state takes the form�
8�� 8�2

82� 822

�
c

where theA � A submatrices are given by

8�� '

3
EEEEEEEC

>�i >2i >�i � � � >
A3�i >

A
i

� f f � � � f f
f � f � � � f f

f f �
. . .

...
...

...
...

. . . . . . f f
f f � � � f � f

4
FFFFFFFD

c

14We note here that in genera l the constantN will depend onW= In particular, the larger isW
the smaller mustN be. There are , however, specia l cases where a uniform result is obta inable when
�

l
@ r+W�4,. This happens when the functionaK+[w�4> yw, is e ither independent ofyw or additive and

linear in it.
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8�2 '

3
C >

�
V � � � >

A
V

f � � � f
f � � � f

4
D c 82� ' fc 822 '

3
EEEEEEEC

f f f � � � f f
� f f � � � f f
f � f � � � f f

f f �
. . .

...
...

...
...

. . . . . . f f
f f � � � f � f

4
FFFFFFFD

�

Here we have introduced the notationi ' (�M(�Cc V ' (�M(2C.
Consider now the eigenva lues of(8 Efc f�. From the partitioned form it is seen that

the matrix(8 Efc f� � bU2Af2A is block triangular, so that its determinant is equa l to
the product of the determinants of8�� � bUAfA and822 � bUAfA . Thus the eigenvalues
of (8 Efc f� consis t of the e igenvalues of8�� and822. Zero is the only e igenva lue of822.
The specia l form of8�� implies that its e igenvalues must satis fy the polynomial equation

REb� ' bA � i>
�
bA3� � ���� i>

A3�
b� i>

A
' fc

see e.g. (Hamilton 1994), Proposition 1.1. Ifb 9' f, dividing through bybA and setting
5 ' b3� we obta in equation (9) withq ' i. The argument in Proposition 1 yie lds that
the roots of this equation must have modulus less than one ifm i m	 ��

Thus condition 2 implies that the spectra l radius of the matrix(8 Efc f� is s trictly
less than one. Then there exists some matrix norm such thatn (8 Efc f� n	 �c see (Horn
and Johnson 1985), Lemma 5.6.10. Now, by uniform continuity of the matrix norm in
its e lements, it follows that there exists0� suÁ ciently small such that for;�| 5 d�0�c 0�o
' �� G n (8 Efc �|� n	 B 	 �� Moreover,n oE�c �� n� 	B n � n2 for some	B s ince oE�c �� is
2nd order in�.

It now follows from (20) that for a lln � n small enough we have

n 8 E�c ��� 8 Efc �� n� En (8 Efc �� n n	B n � n� n � n	n � n �

This proves that8 E�c �� is a strict contraction on the state space�E0���

Proposition 8 There exis ts a unique invariant probability for the Markov process8 on
the state space�E0�� and the?�step transition probability of8 converges weakly to this
invariant probability, as? $ 4c for every point in�E0���

Proof. Lemmata 6 and 7 show that the conditions of Corolla ry 2.3 of (Bhattacharyya
and Lee 1988) are satis¿ ed on��

This result demonstra tes how, with small noise, iterative E-stability of the steady
state of the nonstochastic model yie lds attractive limiting properties for the learning
dynamics with small noise. Obvious ly, if�| � f for a ll |c ite rative E-stability a lso
guarantees loca l s tability of the dynamical system (14) or (17).
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3.4 Error Bounds

To obtain further information on the model (14), it appears necessary to revert to the
linearization. This will be done in the next section. Here we brieÀ y discuss errors bounds
for the res idua l termoE%|3�c ��c %|3A c �|c ��c �|3A � in the Taylor series expansion (18).

Rewrite (14) as
%| ' -E%|3�c ��c %|3A c �|c ��c �|3A � (21)

Consider the lineariza tion of (21). The residua loE%|3�c ��c %|3A c �|c ��c �|3A � in the Tay-
lor series (18) cons is ts of terms of the formY2-

Y%|3�Y%|3�
Ej�E%|3�%|3��, Y2-

Y�|3�Y�|3�
Ej�E�|3��|3��

and Y2-
Y%|3�Y�|3�

Ej�E%|3��|3�� at some pointj.15 Assuming that a ll the second order par-
tia l deriva tives are bounded, it can be shown that the mean residua l is bounded above
by the express ion�02�. For example,

m .d
Y2-

Y%|3�Y�|3�
Ej�E%|3��|3��o m� . m

Y2-

Y%|3�Y�|3�
Ej�E%|3��|3�� m

� ��. m %|3��|3� m� ��

t
.%2|3�.�2|3� ' ��0%0� � �20

2

�c

where �� are constants . Likewise, the absolute va lue of the means of the other terms
Y2-

Y�|3�Y�|3�
Ej�E�|3��|3�� and Y2-

Y%|3�Y%|3�
Ej�E%|3�%|3�� are bounded by expressions of the

same form.
Consider next the second order moments of%|� Viewing the %| process as a linear

�-��EAc A � process plus a res idual, these moments can be computed from the Yule
Walker equations with error terms. If these res iduals can be shown to be small, then
the second order moments derived from the linearized process will be close to the true
second order moments of%|�

Recall that the Yule Walker equations are derived by multiplying%| in (21) by
%|3� E� ' �c 2c ��c A � and then taking expecta tions of both s ides. Thus an individual
representa tive term in the residua l of these equations is of the form

Y2-

Y�|3�Y%|3�
Ej�E�|3�%|3�%|3��

with the absolute va lue of the mean bounded above by

m .d
Y2-

Y�|3�Y%|3�
Ej�E�|3�%|3�%|3��o m� ��0�

�
.E%e|3��.E%e|3��

� �
e � �e0

�

�

where we have applied Hvlder's inequality twice. Here we have also used the fact that
%2| � 02% � ��02� for some �� . S imilar bounds can be found for the other terms involved
in the residua ls of the Yule Walker equations.

These considerations yie ld the following conclus ion:

Remark 1 The mean absolute res idua ls in the Yule Walker equations are of third order
in the support of the noise.

15Note that we have aga in assumed, w.l.o.g, that the nonstochastic s teady statea{ @ 3=
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4 Linear ARMA Models

In the preceding section it was seen that the lineariza tion of the genera l nonlinear frame-
work yie lded an�-��EAc A � process as an approximation of the origina l model. In this
section we study further the dynamics of the linearized process (but with the restriction
that learning is based on estimation by the sample mean).

The signi¿ cance of the�-�� setup is not limited to this case. A closely re lated
framework can arise in ¿ nite-memory learning in some linear frameworks when observa-
tion errors preva il. We present an example before proceeding to the main result.

Example 4. (A model with observation errors .) Consider model (3) as in example
2. Assume now that agents do not directly observe+|, but only a variable%| ' +| n �|,
where �| represents the observation error, assumed to be��_ with zero mean, constant
variancej2�c and independent of the shock�|. As before,�| is assumed to be��_ with
zero mean and constant variancej2�.

Agents have the perce ived law of motion

%| ' Kn ?J�re

and they estimateK by the sample mean fromA past observations

K| ' A3�
A[
�'�

E+|3� n �|3���

Substituting into (3) leads to a somewhat non-standard�-��EAc A �-type process

+| ' kn
q

A

A[
�'�

E+|3� n �|3�� n �|

describing the dynamics of learning with memory lengthA . Note that this is not a stan-
dard�-��EAc A � process in that the current shock�| is permitted to have a di¾ erent
distribution from the lagged observation errors�|3�. Such a process can neverthe less be
tackled us ing standard time series techniques with minor modi¿ cations.

We now set up a framework that covers both this example and the linearization of
the nonlinear model of Section 3. After centering both processes can be written as

5| ' @

A[
�'�

5|3� n S�| n K

A[
�'�

�|3�c (22)

where 5| ' +| � .+|c @ ' B
A
c K ' �

A
� Formally in example 4 we haveB ' � ' qc and in

the linearized model (18)�| ' �| and B ' (�M(�Cc� ' (�M(2C.
Proceeding with the general ana lys is , we are interested in ¿ nding the condition for

s tationarity of this process. Again ite rative E-stability yie lds this property:
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Proposition 9 Ifm B m	 �, then the process (22) is (covariance) stationary.

Proof. Firs t, it is easily seen that the mean of5| is zero. We then consider the two
cases�| 9' �| and �| ' �| separate ly.

Case 1:�| 9' �|� Using the lag operator and substituting in the values for@ and K we
can write (22) in the form

d��
B

A
Eun u2 n ���n uA �o5| ' S�| n

�

A
Eun u2 n ���n uA ��|�

Using the method of proof in Proposition 1 it is seen that the polynomia l in the lag
operator� � B

A
Eu n u2 n ��� n uA � in the left-hand side has all roots outs ide the unit

circle if m B m	 �. Dividing both sides by this polynomial shows that5| is the sum of two
independent covariance-sta tionary processes

S�|

�� B
A
Eun u2 n ���n uA �

and
�

A
Eun u2 n ���n uA ��|

�� B
A
Eun u2 n ���n uA �

�

Therefore , it is itse lf covariance sta tionary.
Case 2:�| ' �|� In this case, again us ing the method of proof in Proposition 1, it is

eas ily seen that the process is stationary ifm B m	 �.
The following further results are a lso evident.

Remark 2 If the condition for weak E-instabilityB : � holds, the process (22) is not
s tationary, and under weak E-stabilityB 	 � the process is stationary forA suÁ ciently
la rge.

If the learning dynamics (22) is s tationary, it is poss ible to proceed as in Section 2
and derive the asymptotic second moments of the process for5| using the technique to
derive Yule Walker equations. Given knowledge of these moments one can also obta in
the variance of the forecast error in terms of the memory lengthA and the variance
of the dis turbances�| and �|. Unfortunate ly, it appears that unambiguous analytic
results on properties of the variance of the forecast error, which would be comparable
to Proposition 5, are not available . We leave the lengthy deta ils and further analysis to
another paper.

5 Concluding Remarks

Frameworks in which adaptive learning is incomplete are beginning to rece ive attention.
This paper has provided basic analytica l results for dynamics of adaptive learning when
the learning rule has a ¿ nite memory and the presence of random shocks precludes exact
convergence to the REE.

We focused on the case of learning a stochastic s teady state. Our centra l result is that
the E-stability principle , which plays a centra l role in s ituations of complete learning, as
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discussed e.g. in (Evans and Honkapohja 1998), re ta ins its importance in the analys is
of incomplete learning, though it takes a new form. In our setup E-stability guarantees
the stationarity of the dynamics of the learning economy and the unbiasedness of the
forecasts .

Severa l open issues merit a further study. First, the nature of the linear approxi-
mation of the nonlinear framework in Section 3 is clearly worthy of a further analys is .
Second, with incomple te learning it is poss ible to imagine criteria for choosing among
di¾ erent learning rules, so that they would be equilibria within some speci¿ ed class of
rules. (Evans and Honkapohja 1993) and (Brock and Hommes 1997) are examples of
such view points . We expect to cons ider these issues in future work.
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