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Abstract

The Finite Element Method is a well-studied and well-understood method to solve
partial differential equation. Its applicability to financial models formulated as pdes
is demonstrated. Its advantage concerning the computation of accurate “Greeks” is
delineated. This is demonstrated with bond- and option-pricing models.
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1 Introduction

Many pricing models can be cast into continuous time. This naturally leads to
partial differential equations. These pdes are usually linear and parabolic. To avoid
clutter in notation we restrict our attention to the case of linear models depending
on maximal two factors.! These models have been solved traditionally with Finite
Differences (FD). Many different FD techniques exist ([1], ch. 2); the most important
have been introduced to financial problems ([15], ch. 15; [8], ch. 10; [29], ch. 16-22;
[9]). The usefulness of Finite Elements (FE) has been recognized by many autors
([14], p. 47; [8], p. 212; [10], p. 1664; [11], p. 582; [13], p. 586; [23]; [6], [30], sec. 2.5.4)
but to our knowledge the first to explore this idea in some more detail was [26].

!This does not include the nonlinear model with transaction cost by [19] (see also ([29], ch. 13)
and the 3-factor swaption model by Dempster and Hutton [7]. These models can also be solved
with FE, but this will not be demostrated here.
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2 Derivation

2.1 A pure Finite Element Approach

e results in linear system with positive-definite coefficient matrix
e unusual treatment of time

e hybrid approach is based on this

2.2 A Hybrid Finite Di erences/FiniteElement Approach

e name due to Duffie, typical name in mathematical and engineering literature:
time-dependent finite element methods

e results in system of linear ordinary differential equations which is well-known
in economics, compare ([25], p. 305)

e exposition here is based on ([3], ch.4) and ([5], ch. 11)
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3 Examples

3.1 Barrier Options

3.1.1 Double Barrier

We consider a 1-year up-and-out-down-and-out call option f with continuous
monitoring,? where the underlying stock S is at 100, the strike X is at 100, volatility
o is 20 %, the risk-free rate 7 is 10 % (continuous compounding), and the barriers are
set at 75 and 130, with a no rebate. This leads to the following well-posed backward

parabolic pde problem:

of
ot

+TS§£+;0252§;]; = rf
f(T,5) = max(S— X,0)
f(t,7) = 0
F(t,130) = 0

(1)
(2)
(3)
(4)

The analytical solution involves a series which goes from —oo to co. For numerical
purposes this series has to be cut off after some finite number of terms. It has been
shown in [17] that it is sufficient to consider only the terms from -2 to 2 because all
other terms are very close to zero. Here, for the analytical solution, we have taken

the terms from -5 to 5.3

Underlying Fair Value
Analytical Numerical
errlim 0.01 errlim 0.001 errlim 0.0001
Error Error Error
76 0.27306 | 0.27376 | 0.26 % | 0.27317 | 0.04 % | 0.27317 | 0.04 %
80 1.22027 | 1.22357 | 0.27 % | 1.22092 | 0.05 % | 1.22087 | 0.05 %
90 2.90287 | 2.90875 | 0.20 % | 2.90378 | 0.03 % | 2.90378 | 0.03 %
100 3.52511 | 3.52456 | 0.02 % | 3.52395 | 0.03 % | 3.52533 | 0.01 %
110 2.89967 | 2.89187 | 0.27 % | 2.89670 | 0.10 % | 2.89932 | 0.01 %
120 1.47489 | 1.46833 | 0.44 % | 1.47269 | 0.15 % | 1.47458 | 0.02 %
129 0.13192 | 0.13137 | 0.42 % | 0.13181 | 0.08 % | 0.13192 | 0.01 %
Data of FE-Run
Cycles 25 57 72
Nodes 223 219 219
Cells 74 72 130

Table 1: Double Barrier Option

2Solutions to problems with discrete monitoring can be found by applying the adjustment
formulae by Glasserman et al. to the continous-monitoring solution.
3Tt is the normal case that analytical solutions to option pricing problems involve infinite series
and/or indefinite integrals. This has led ([29], p. ) to the recommendation not to look for analytical
solutions (which are usually not easy to find) but to solve the pde with numerical methods directly.
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3.1.2 Single Barrier

The following example is based on the example in ([2], p. 225f). Consider a 6-month
up-and-out call option f, where the underlying stock is at 100 S, the strike X is at
100, volatility o is 20 %, the risk-free rate is r 5 % (continuous compounding), and
the barrier is set at 110, with a rebate payment of 10.

This leads to the following well-posed backward parabolic pde problem:

2
88{ + 7’52‘]; + ;02522512 = rf (5)
f(T,5) = max(S— X,0) (6)
f(£,0) =0 (7)
f(t,110) 10 (8)
‘ Und. ‘ ‘ Fair value ‘ Delta ‘ Gamma ‘ Theta ‘ Vega
80 | Analytical | 0.43223 0.08507 | 0.01295 | -0.00542 | 0.08714
Numerical | 0.43221 0.08507 0.01298
Error 0.0040 % | 0.0000 % | 0.1965 %
90 | Analytical | 2.10253 0.26128 | 0.01999 | -0.01179 | 0.16924
Numerical | 2.10252 0.26130 0.01992
Error 0.0003 % | 0.0068 % | 0.3707 %
100 | Analytical | 5.60968 0.42205 | 0.00939 | -0.01012 | 0.12730
Numerical | 5.60975 0.42204 0.00927
Error 0.0012 % | 0.0014 % | 1.3159 %
105 | Analytical | 7.79972 0.44635 | 0.00031 | -0.00552 | 0.06339
Numerical | 7.79971 0.44635 0.00051
Error 0.0001 % | 0.0000 % | 65.707 %
109 | Analytical | 9.56930 0.43406 | -0.00625 | -0.00110 | 0.011462
Numerical | 9.56929 0.43405 | -0.00620
Error 0.0001 % | 0.0029 % | 0.8342 %

Table 2: Double Barrier Option

3.2 Plain Vanilla European Call

In contrast to the barrier problems which posses boundary conditions by their very
nature this is not the case with simple European calls and puts. The boundaries
have to be approximated. Here we use the approximation by ([29], p. ).* This also
leads to a well-posed backward parabolic pde problem:

) Of 1 4 02
R (9)
f(1,5) = max(S— X,0) (10)

4This point is discussed in some more detail in ([18], ch. 3) and -with numerous numerical
studies- in [27].
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f(t,0) = 0 (11)

f(t,100) = S—Xe ™™ (12)

‘ U. ‘ Solution ‘ Fair V. ‘ Delta ‘ Gamma ‘ Speed ‘ Vega ‘ Theta ‘ Rho

30 | Analytical | 0.09141 | 0.05370 | 0.02573 2.31569 | -0.61511 | 0.75985
Numerical | 0.09139 | 0.05372 | 0.02539 2.31605 | -0.61510 | 0.76045
Error [%] | 0.02002 | 0.03465 | 1.30772 0.01561 | 0.00129 | 0.07882
33 | Analytical | 0.41154 | 0.17463 | 0.05516 6.00707 | -1.73655 | 2.67569
Numerical | 0.41153 | 0.17465 | 0.05469 6.01050 | -1.73650 | 2.68050
Error [%] | 0.00190 | 0.00811 | 0.85089 0.05706 | 0.00300 | 0.17983
36 | Analytical | 1.22015 | 0.37420 | 0.07443 9.64623 | -3.15435 | 6.12554
Numerical | 1.22013 | 0.37422 | 0.07438 9.64500 | -3.15500 | 6.13000
Error [%] | 0.00203 | 0.00400 | 0.07336 0.01278 | 0.02046 | 0.07279
39 | Analytical | 2.68005 | 0.59686 | 0.07019 10.67579 | -4.194921 | 0.29884
Numerical | 2.68006 | 0.59687 | 0.07066 10.67500 | -4.195001 | 0.30000
Error [%] | 0.00024 | 0.00022 | 0.66413 0.00736 | 0.00180 | 0.01129
42 | Analytical | 4.75942 | 0.77913 | 0.04996 8.81342 | -4.55909 | 13.98205
Numerical | 4.75942 | 0.77912 | 0.04975 8.81000 | -4.56000 | 13.98500
Error [%] | 0.00006 | 0.00120 | 0.42786 0.03875 | 0.01991 | 0.02112
45 | Analytical | 7.28782 | 0.89564 | 0.02845 5.76025 | -4.45367 | 16.50808
Numerical | 7.28782 | 0.89565 | 0.02823 5.76000 | -4.46000 | 16.51000
Error [%] | 0.00001 | 0.00111 | 0.75287 0.00427 | 0.14223 | 0.01162
48 | Analytical | 10.07750 | 0.95669 | 0.01354 3.11957 | -4.20826 | 17.92174
Numerical | 10.07750 | 0.95671 | 0.01334 3.10000 | -4.20000 | 17.90000
Error 0.00005 | 0.00259 | 1.47273 0.62736 | 0.19635 | 0.12133
51 | Analytical | 12.99433 | 0.98391 | 0.00558 1.45049 | -4.00860 | 18.59253
Numerical | 12.99430 | 0.98390 | 0.00556 1.45000 | -4.00000 | 18.60000
Error 0.00019 | 0.00096 | 0.34530 0.03402 | 0.21465 | 0.04018

3.3 Capped Power Option

Table 3: Plain Vanilla European Call

There is a closed-form solution to power option. But within the market place only
capped power options are traded to which an analitical solution is not known.
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3.4 Term Structure Models
3.4.1 Single Factor: Vasicek

Face | T | Analytical solution | Numerical solution | Error
value with PDFase2D™

51| 3.5 4.7343 4.7340 0.0003

51 4.0 4.4838 4.4836 0.0002

51| 4.5 4.2475 4.2474 0.0001

105 | 5.0 84.5408 84.5455 0.0047

Table 4: Differences in computing the Vasicek model with FE/FD and analytically

with interest rates between 0 and 21 %
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3.4.2 Two Factors: Duffie/Kan

Grid Size N Exact

Short rate z ‘ Long rate z; | 111 ‘ 221 ‘ 331 00
0.1070 0.1584 0.8464 | 0.8531 | 0.8532 | 0.8535
0.0336 0.0791 0.9179 | 0.9251 | 0.9246 | 0.9246
0.0710 0.0593 0.9411 | 0.9420 | 0.9421 | 0.9424

Table 5: The Duffie-Kan model - an FD approach by Duffie-Kan

Number of Elements Exact

Short rate zg ‘ Long rate z; 38 ‘ 97 ‘ 2476 00
0.1070 0.1584 0.8256 | 0.8421 | 0.8533 | 0.8535
0.0336 0.0791 0.8992 | 0.9163 | 0.9247 | 0.9246
0.0710 0.0593 0.9223 | 0.9411 | 0.9419 | 0.9424

Table 6: The Duffie-Kan model - a hybrid FE/FD approach by the author
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3.5 Rainbow Options
3.5.1 Call on the Maximum of two Risky Assets
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3.5.2 Basket Option
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4 Conclusions
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A  Further Computations

This appendix includes further computations and remarks thereupon.
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B Codes
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