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Abstract

This paper is concerned with the organization of transactions of

goods and services between consecutive stages of activity. An economic

theory of organization, transaction cost economics (TCE)|which pro-

poses that organizational form (e.g. market and hierarchy) is adjusted

to the attributes of transactions|is extended with the idea that the

governance of transactions should be analyzed within the wider net-

work of the �rms they connect, and that agents' behavior is guided by

adaptive learning rather than by optimization.

An agent-based computer simulation model is developed and exper-

imented with, to study the patterns of governance that emerge from

interactions between agents making and breaking relations. In each

of a sequence of timesteps, a matching algorithm assigns buyers to

suppliers or to themselves, implementing their choices for market and

hierarchy, respectively. From each timestep to the next, the agents are

allowed to adapt their preferences for each other|that determine the

outcome of the matching|to their experiences. Patterns of economic

organization are thus `grown' as the outcome of processes of interac-

tion between boundedly rational agents adaptively searching for `good'

organization.
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1 Introduction

This paper is concerned with the organization of transactions of goods or

services between stages of activity. Two consecutive stages might be brought

together within a single �rm|using hierarchy to organize transactions be-

tween the stages; or the di�erent stages could be distributed across separate,

specialized �rms|using the market to organize transactions between them.

Other organizational forms `between market and hierarchy' could also be

used. According to transaction cost economics (Coase 1937, Williamson

1985), the decision between these alternatives is made by `aligning' organi-

zational form with the attributes of the transaction to be organized.

In the current paper, it is attempted to deal with Coase's (1998, p. 73)

recent observation that \[w]e cannot con�ne our analysis to what happens

within a single �rm", but that \[w]hat we are dealing with is a complex inter-

related structure" (Coase 1995, p. 245). Furthermore, although TCE builds

its main `discrete alignment hypothesis' on the assumption that economic

agents are boundedly rational and potentially opportunistic, we submit that

it is precisely their bounded rationality that may prevent economic agents

from performing this alignment successfully, especially in the context of the

complex interrelated structures that Coase (1995) suggests we are dealing

with. Therefore, instead of searching for optimal mechanisms of governance

that �rms should (but may never) use, we use computer simulations to model

the process by which agents adaptively search for satis�cing|rather than

optimal|organizational forms, to generate hypotheses about which forms

economic agents (come to) use.

The next section discusses governance in more detail. Networks of �rms

are viewed as complex systems containing adaptive agents (Holland 1992,

Holland and Miller 1991), as discussed in Section 3. Section 4 introduces

`matching', the tool used to build Coase's (1995) complex interrelated struc-

tures from individual �rms' preferences for di�erent organizational forms.

Section 5 develops the computer simulation model in which these complex

interrelated structures are build in each of a sequence of timesteps, while

�rms may adapt their preferences from each timestep to the next. Results

from experimentation with the simulation model are presented and discussed

in Section 6. Section 7 concludes.

2 Governance

The unit of analysis in TCE, as its name suggests, is the transaction. \A

transaction occurs when a good or service is transferred across a techno-

logically separable interface. One stage of activity terminates and another

begins" (Williamson 1981a, p. 552). Rather than focus on individual stages

of activity|viewing the �rm as a production function to be optimized|TCE
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focuses on transactions between stages of activity and views the �rm as one

of the organizational forms that may be used to organize such transactions.

The core of the argument is that the �rm and the market are alternative

forms for organizing transactions, that transactions carry costs (transaction

costs) and that the various organizational forms have di�erential abibilities

to economize on these costs, so that for some transactions, it is economic to

organize them within a �rm's hierarchy rather than on the market.

The interchangeability of market and hierarchy in this respect was recog-

nized for the �rst time by Coase (1937), who received the 1991 Nobel Prize

in Economics for his discovery of the signi�cance of transaction costs in elu-

cidating The Nature of the Firm; Olson (1965)1 and Williamson (1975) fol-

lowed up on Coase's insights, distinguishingmarket and hierarchy as alterna-

tives. Later on, Williamson (1979, p. 234) additionally acknowledged some

\intermediate modes of organization", \in which bilateral dependency condi-

tions are supported by a variety of specialized governance features (hostages,

arbitration, take-or-pay procurement clauses, tied sales, reciprocity, regula-

tion, etc.)" (Williamson 1991, p. 269).

Solving governance problems in particular circumstances requires, ac-

cording to TCE, that organizational form (`governance') is aligned with the

attributes of the transaction to be organized, in a discriminating|mainly

transaction cost economizing|way; in general, the trade-o� should be con-

sidered between costs of transaction, organization and production. As for

the attributes, a transaction occurs with a certain frequency, is surrounded

by a certain degree of uncertainty, and, most importantly, is supported

by investments in assets with a certain degree of speci�city, i.e. the ex-

tent to which those assets can not be redeployed outside the transaction

and make sustaining the transaction a necessary condition for obtaining

returns on investments in them. Because of the �rst of TCE's two behav-

ioral assumptions|that agents are boundedly rational|contracts are nec-

essarily incomplete, so that before the end of the period during which the

transaction needs to be sustained, unforeseen contingencies may arise to

which the parties will have to adapt. However, when separate, autonomous

�rms are involved, then because of TCE's second behavioral assumption|

that agents are potentially opportunistic|this adaptation can not be as-

sumed to be cooperative (i.e. in their mutual interest), but will rather result

in costly haggling over the distribution of the unforeseen gains or losses

(Williamson 1981a). When organizing a transaction between such separate

autonomous �rms, therefore, the potential loss of returns on investments

in speci�c assets, as well as the probability of that loss, increase with the

speci�city of the assets. With increasing speci�city, the costs of safeguard-

1Olson (1965, p. 12) writes about \economic organizations that are mainly means

through which individuals attempt to obtain the same things they obtain through their

activities on the market".
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ing against the expected loss eventually become so high that the transaction

should be removed from the market and organized within the �rm, where

adaptation is more likely to be cooperative and the costs lower.

3 Complex adaptive systems

3.1 Complex systems . . .

Recently, the founding father of transaction cost reasoning, Coase (1995, p.

245), noted that

\[t]he analysis cannot be con�ned to what happens within a

single �rm. The costs of coordination within a �rm and the

level of transaction costs that it faces are a�ected by its ability

to purchase inputs from other �rms, and their ability to supply

these inputs depends in part on their costs of coordination and

the level of transaction costs that they face which are similarly

a�ected by what these are in still other �rms. What we are

dealing with is a complex interrelated structure."

Holland (1992) and Holland and Miller (1991) suggest to study economic

systems as `complex adaptive systems', where a complex adaptive system

(CAS) \is a complex system containing adaptive agents, networked so that

the environment of each adaptive agent includes other agents in the system"

(Holland and Miller 1991, p. 365). The CAS approach thus appears to be

ideally suited to deal with Coase's (1995) observation, which is what is

attempted in the current paper.

3.2 . . . and adaptive agents

It is granted that TCE assumes bounded rationality, albeit for the sole

purpose of rendering problematic the combination of asset speci�city and

opportunism; all three are needed as conditions for the existence of �rms,

i.e. conditions under which the market looses (some or even all of) its ad-

vantage because of increasing transaction costs.2 However, after assuming

bounded rationality (for this purpose), TCE goes on to hypothesize align-

ment of transactions with governance structures, while it is precisely their

bounded rationality that may prevent economic agents from successfully per-

forming this alignment, especially in the context of the `complex interrelated

structures' that Coase (1995) suggests we are dealing with.

2These conditions, by the way, although necessary, are not necessarily su�cient. The

theory says that under these circumstances �rms may exist, but it does not explain how

they come into existence: it speci�es the conditions under which �rms have a comparative

advantage over markets, but not what is required for this advantage to be translated into

the actual emergence of �rms (cf. Axtell 1999), which is addressed in the current paper|it

can not be done within TCE's conceptual framework.
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In this paper, therefore, a di�erent approach than the application of the

mathematical logic of economic optimization (or `alignment') will be taken to

generate propositions about how economic activity is organized. Individual,

boundedly rational economic agents are simulated in a computational model,

along with the decentralized trades they initiate between each other. As

in Vriend's (1995, p. 205) model, then, \market interactions depend in a

crucial way on local knowledge of the identity of some potential trading

partners". The agents themselves decide whether they want to make or buy.

Moreover, the option to `buy' really just consists of a number of alternatives

to buy from. A market has to be `made', before it can ever used as a

governance form (Vriend 1995, Vriend 1996, Weisbuch et al. 1998). Rather

than rely on standard, anonymous random matching devices, these decisions

are also explicitely incorporated in the model. Agents are assumed to have

di�erential preferences for di�erent potential trading partners (Weisbuch et

al. 1998).

Economic organization is studied from the bottom up (cf. Epstein and

Axtell 1996); the resulting distribution of economic activity across di�erent

organizational forms emerges from processes of interaction between these

agents, as they adapt future decisions to past experiences. The system may

or may not settle down and if it does, the resulting equilibrium may or

may not be transaction cost economic; in any case, \[i]t is the process of

becoming rather than the never-reached end points that we must study if

we are to gain insight" (Holland 1992, p. 19).

3.3 Agent-based Computational Economics (ACE)

\[T]he specialization to economics of the basic Complex Adaptive Systems

(CAS) paradigm"3 described above, goes under the name Agent-based Com-

putational Economics (ACE). This approach is used more and more often

to study problems in economics, such as in the repeated prisoner's dilemma

(Klos 1999, Miller 1996, Stanley et al. 1994), social dilemmas (Glance and

Huberman 1994) and on �nal-goods markets (Albin and Foley 1992, Vriend

1995), stock markets (Arthur et al. 1997), industrial markets (P�eli and

Nooteboom 1997), whole-sale markets (Kirman and Vriend 1998, Weis-

buch et al. 1998), labor markets (Tesfatsion 1999), spatial political models

(Kollman et al. 1992, Miller and Stadler 1998), etc. As shown in the current

application, the ACE-approach is also very well suited for studying economic

organization.

The essence of this approach is that economic phenomena are studied as

they emerge from actual (simulated) interactions between individual, bound-

edly rational, adaptive agents. They are not deduced from abstract models

3Quoted from the ACE website, maintained by Leigh Tesfatsion at:

http://www.econ.iastate.edu/tesfatsi/ace.htm
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employing representative agents, auctioneers or anonymous, random match-

ing, etc. Rather, whether an interaction takes place between any two given

agents is left for them to decide. What the agents subsequently do in that

interaction is their own|possibly sub-optimal|decision, that they make on

the basis of their locally available, incomplete information and as a result of

their own (cognitively-limited) processing of that information. Appropriate

forms of reasoning are induction and abduction, rather than deduction as

used in optimization models that are solved for `never-reached end points'.

4 Matching

The crucial insight underlying our model of �rms attempting to solve prob-

lems of organization, is that their choices between market or hierarchy can

also be seen as the result of a process in which buyers are assigned to suppli-

ers or to themselves, respectively. Such a process, in turn, can be generated

by executing a so-called matching algorithm. The simulation model pre-

sented in Section 5, therefore, uses such a matching algorithm;4 the current

section describes the algorithm in some detail.

A matching algorithm produces a set of matches (a matching) on the

basis of individual agents' preference rankings over other agents. Besides a

preference ranking, each agent maintains a `minimum tolerance level' that

determines which other agents are acceptable, namely those agents that are

somehow `better' than the agent's minimum tolerance level; agents will not

(want to) be matched to other agents they deem unacceptable. Finally, each

agent has a maximum number of matches it can be involved in at any one

time (a quotum).

The algorithm used is Tesfatsion's (1996) deferred choice and refusal

(DCR) algorithm, which extends5 Gale and Shapley's (1962) deferred ac-

ceptance algorithm.6 The DCR algorithm is used with some quali�cations.

First of all, only disjoint sets of buyers and suppliers are allowed, so that

there are no agents that can be buyer as well as supplier. So, although

buyers may be their own supplier, they can not supply to other buyers.

Furthermore, we allow di�erent agents to have di�erent quota|i.e. di�erent

maximum numbers of matches allowed at any moment in time|because dif-

ferent buyers and suppliers are likely to want di�erent numbers of partners.

4See (Roth and Sotomayor 1990) for an excellent introduction to and overview of

matching theory.
5To be precise, the DCR algorithm allows both sides of the market to be coincident,

overlapping or disjoint, and it also allows arbitrarily speci�ed o�er and acceptance quota.
6These algorithms produce stable matchings, which are matchings that have no block-

ing (pairs of) agents, i.e. (pairs of) agents who can (bi- or) unilaterally improve upon

their actual situation under the matching by|rather than to their actual match|being

matched to (each other or) themselves. The DCR algorithm was used because it provides

a way of assigning agents to each other, not because it produces stable matchings; in the

current application, stability is just a side-e�ect.
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Finally, and most importantly, unlike the DCR algorithm, we do allow buy-

ers to be matched to themselves, in which case they are their own supplier.

Each buyer includes itself as one of the alternatives in its preference ranking,

and suppliers not ranking higher than the buyer are unacceptable. This e�ec-

tively endogenizes the buyer's preferences for di�erent organizational forms;

a buyer prefers to remain single (and `make') rather than `buy' from an

unacceptable supplier. The argument is that buyers on industrial markets

don't necessarily need a supplier to make a pro�t; they can choose to make

rather than buy what they need. On �nal goods markets, the agents on both

sides of the market are qualitatively di�erent from one another: consumers

are individual people but �rms are groups of individuals; people can not do

certain things that organizations can do. On industrial markets, the agents

on both sides of the market are �rms, so that a buyer-�rm may perform the

same functions as a supplier-�rm|albeit less e�ciently because the buyer

does not specialize in performing those functions|and thereby economize

on the costs of coordinating the transaction with the supplier-�rm; deter-

mining whether the buyer-�rm should or should not perform a function itself

is at the heart of transaction cost economic reasoning.7

The algorithm Buyers may have one or more suppliers and suppliers may

have one or more buyers; each buyer b has an o�er quotum, ob (� 1) and

each supplier s has an acceptance quotum, as (� 1). Before the matching,

all buyers and suppliers establish a strict preference ranking over all their

alternatives. The algorithm then proceeds in a �nite number of steps.

1. In the �rst step, each buyer sends a maximum of ob requests to its

most preferred, acceptable suppliers.8 Because the buyers typically

have di�erent preference rankings, the various suppliers will receive

di�erent numbers of requests.

2. The suppliers �rst reject all requests received from unacceptable buy-

ers.9 Then, each supplier `provisionally accepts' a maximum of as
requests from its most preferred acceptable buyers and rejects the rest

(if any).

7Recently, theories have been developed from the `competence perspective' (e.g.

Nooteboom 1992, P�eli and Nooteboom 1997), that stress other arguments for �rms to

set up relations with other �rms. The extensions of transaction cost economics proposed

in the current paper also go in that direction.
8The algorithm structurally favors the agents that send the requests; buyers seem more

plausible than suppliers in that respect.
9For the moment, we assume that all buyers are acceptable to the suppliers; suppliers

do not, like the buyers, have any alternative, so they will rather supply to any buyer than

remain single. It might be investigated, however, whether for a supplier it is worthwhile

to also use a tolerance level for protection against being exploited by buyers.
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3. Each buyer that was rejected in any step �lls its quotum ob in the

next step by sending requests to (ob minus the number of outstand-

ing, provisionally accepted, requests) next-most-preferred, acceptable

suppliers that it has not yet sent a request to.

4. Each supplier again rejects requests received from unacceptable buy-

ers and provisionally accepts the requests from a maximum of as most

preferred, acceptable buyers from among newly received and previ-

ously provisionally accepted requests and rejects the rest. As long as

one or more buyers have been rejected, the algorithms goes back to

step 3.

The algorithm stops if no buyer sends a request that is rejected. All pro-

visionally accepted requests are then de�nitely accepted. An example-

application of this matching algorithm is presented in Appendix A.1.

5 The simulation model

Firms sell a di�erentiated product on a �nal-goods market; the simulation

model, however, really only captures the industrial market on which these

�rms are buyers, possibly interacting with suppliers. Governance pertains to

the transaction between the production and the sales of the product. Each

�rm always sells the product himself, and chooses to either produce the

product himself, or let a supplier produce it for him, in which case the �rm

is a buyer. These choices are generated by the DCR matching algorithm:

each buyer is either matched to a supplier or to himself, expressing his choice

between market- and hierarchichal governance, respectively. The simulation-

dynamic refers to the fact that the algorithm is applied in each of a sequence

of discrete timesteps. The outcome of the matching in each timestep is

determined by the agents' preference rankings over acceptable alternatives,

while the agents may change their preference ranking from each timestep to

the next.

After the matching in each timestep, suppliers that are matched to a

buyer produce for their buyer(s), while buyers that are `self-matched' (not

matched to a supplier) produce for themselves. Assets that suppliers invest

in for the production for a certain buyer, are speci�c to that buyer to the

extent that the buyer's product is di�erentiated; the remainder of the assets

is `general purpose'. Suppliers enjoy scale-economies in accumulated general

purpose assets used in the production for multiple buyers. Furthermore,

as their relation lasts longer, a supplier becomes more e�cient at using

speci�c assets in the production for a particular buyer. After the production,

all buyers sell their products on the �nal-goods market. The events in

this latter part of each timestep|i.e., after the matching|may lead the

agents to adapt their preference rankings, used by the DCR algorithm in the
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next timestep. The way preferences are established is described in the next

section (5.1). Section 5.2 discusses the implementation of the simulation.

5.1 Preferences

The preferences used in the matching process are based on so-called `scores'

that each agent x assigns to all the agents y it can possibly be matched to:

scorexy expresses the pro�t that x expects to make as a result of coordinating

a transaction with y (in a buyer's case, y may be equal to x). It is a

function of (1) the pro�t x can potentially make as a result of coordinating

the transaction with y and (2) x's trust in y, which is interpreted as x's

assessment of the probability that y will let x realize that pro�t potential|

i.e. the probability that y will not behave opportunistically. In order to be

able to allow agents to attach di�erent weights to pro�tability versus trust,

however, simple multiplication of the two is turned into a Cobb-Douglas

functional form:

scorexy = pro�tability�xxy � trust
1��x
xy ;

where scorexy is the score x assigns to y, pro�tabilityxy is the pro�t x may

make `through' y, trustxy is x's trust in y and �x 2 [0; 1] is the importance

x attaches to pro�tabilityxy relative to trustxy, i.e. the `pro�t-elasticity' of

the scores that x assigns. It is the value of �x that x may adapt from each

timestep to the next. The next two sections (5.1.1 and 5.1.2, respectively)

describe how pro�tability and trust are determined.

5.1.1 Pro�tability

A buyer's potential to generate pro�ts for a supplier is a function of the

buyer's position on the �nal market|where he is a seller|as expressed in

the degree of product di�erentiation on the market. A supplier's potential

to generate pro�ts for a buyer is determined by the supplier's e�ciency in

producing for the buyer.

Product di�erentiation The model allows for varying degrees of prod-

uct di�erentiation, i.e. price/cost ratios: not all the �rms in an industry sell

the same, homogeneous product, or at least, consumers perceive di�erent

�rms' products as being imperfect substitutes. Consumers have idiosyn-

cratic tastes and �rms' products have di�erent characteristics, which means

that, relative to its competitors' products, each �rm's product variant is

more or less unique. Because \consumers (. . . ) are prepared to pay more

for variants that are better suited to their own tastes" (Anderson et al. 1992,

p. 1), �rms that sell those particular variants have some degree of `market

power': they can raise the price for which they sell their product, without

losing at least some of their customers to competitors, as long as the extent
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to which their product is better suited to those customers' tastes|relative to

their competitors' products|more than o�sets the price-increase. This de-

gree of market power will be expressed in a buyer-speci�c variable db 2 [0; 1]

that determines the pro�t the buyer will make when selling his products.

We will be experimenting with di�erent values for db to see how they a�ect

the choices that buyers make.

E�ciency As set out above, a buyer's choice of organizational form per-

tains to the transaction between the production of a product on the one

hand, and the sales of that product on the other hand. A buyer will ei-

ther be self-matched and produce the product himself, or be matched to a

supplier who produces it for him. A supplier, on the other hand, may be

matched to multiple buyers for which she produces a particular product.10

Whoever does it, producing a product requires assets to be invested in|

1 unit of assets is required to produce 1 product, but increasing e�ciency

may decrease this amount. Since \asset speci�city is never valued by itself

but only because demand is thereby increased in design or performance re-

spects" (Williamson 1981a, p. 558), we will assume a relation between the

di�erentiation of a buyer's product, and the speci�city of the assets invested

in to produce that product. The rationale is that, if a buyer i's product

is di�erentiated (di > 0), then, relative to consumers' tastes, i's product is

di�erent from his competitors' products. Assets invested in to produce i's

product can then not easily be switched to the production of those com-

petitors' (di�erent) products. In other words, those assets are then speci�c

to the production of i's product. On the other hand, if products are not

di�erentiated, then they are all the same, and assets invested in to produce

the product for one buyer can easily be switched to producing products for

other buyers. The simplest way to model this relation, is to assume that

asset speci�city is equal to product di�erentiation, i.e. the proportion of the

asset required to produce a product for a buyer that is speci�c to that buyer,

is equal to the extent to which that buyer's product is di�erentiated.

If a buyer produces for himself, it makes no sense to distinguish between

buyer-speci�c and non-speci�c assets.11 A buyer calculates his own score

(his minimum tolerance level) using e�ciency = 0, trust = 1 and � = 1.

If a supplier produces for one or more buyers, however, then the assets she

10A more general version of the model would allow for the possibility of multiple com-

ponents per product and for multiple sources per component. A buyer may then be

matched to the same or to di�erent suppliers for the production of the various com-

ponents; a single supplier may attain economies of scope in the production of di�erent

components for the buyer (see Williamson 1981b, note 18, p. 1547), whereas multiple sup-

pliers may gain (external) economies of cognitive scope in their production for the buyer

(cf. Nooteboom 1992, P�eli and Nooteboom 1997).
11Remember that overlap between both sides of the market is not allowed, which takes

away the possibility for buyers to replicate the market's production cost advantage by

producing for themselves as well as for their competitors.
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invests in, are split into two categories: buyer-speci�c and non-speci�c|i.e.

general purpose|assets. As explained above, the percentage of the 1 unit

required for each buyer that is speci�c to that buyer, is the same as the

extent to which that buyer's product is di�erentiated. The supplier adds

the remaining, general purpose part for each buyer, across all the buyers

she is matched to. We will assume that the supplier's continuous use of

buyer-speci�c assets is subject to learning-by-doing, and that the supplier's

accumulation of general purpose assets across the production for multiple

buyers, is subject to scale economies. Both these relations are modeled using

the following function:12

y = max

�
0; 1�

1

ax+ 1� a

�
;

which is represented graphically in Figure 1 for di�erent values of a.
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Figure 1: E�ciency of scale and of learning-by-doing.

If the x-axis measures a supplier's accumulation of general-purpose as-

sets in the production for multiple buyers, then the y-axis gives the suppli-

er's scale-e�ciency in using those general-purpose assets. The number of

general-purpose assets that supplier j needs to produce for buyer i, is equal

to (1� di)(1� es;j), where di is the di�erentiation of buyer i's products and

es;j is supplier j's scale e�ciency, which is the function value in Figure 1

of supplier j's total number of general purpose assets, accumulated across

all the buyers she is matched to. If the x-axis measures the number of con-

secutive matches between a supplier and a buyer, then the y-axis gives the

12Di�erent values for the a-parameter may be used for the two functions. In the pro-

gram, the parameter for the scale-e�ciency function is scaleFactor, while the parameter

for the learning-e�ciency function is learnFactor.
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supplier's buyer-speci�c e�ciency in using assets, speci�c for that buyer.13

The number of buyer-speci�c assets that a supplier j needs to produce for

a buyer i, is equal to di(1� eil;j), where e
i
l;j is supplier j's `learning e�cien-

cy' (e�ciency due to learning by doing) for buyer i, which is the function

value in Figure 1, of the number of consecutive matches between buyer i

and supplier j.

The graph shows that a supplier can be more scale-e�cient than a buyer

producing for himself only if the scale at which she produces is larger than

the maximum scale with which a buyer might produce for itself: the graph

is positive only for more than 1 general purpose assets. Furhermore, a sup-

plier's buyer-speci�c e�ciency is 0 in their �rst transaction, and only starts

to increase if the number of transactions is larger than 1, which implements

TCE's fundamental transformation, according to which (Williamson 1981b,

p. 1548),

\[w]hat may have been (and commonly is) an e�ective large-

numbers-bidding situation at the outset is sometimes transform-

ed into a bilateral trading relation thereafter. This obtains if,

despite the fact that large numbers of quali�ed bidders were pre-

pared to enter competitive bids for the initial contract, the win-

ning bidder realizes advantages over nonwinners at contract re-

newal intervals because nontrivial investments in durable speci�c

assets are put in place (or otherwise accrue, say in a learning-

by-doing fashion) during contract execution."

In the current model, the emphasis is put on the second option mentioned

(between brackets). The relative e�ects of investments in durable speci�c

assets vs. learning-by-doing advantages will be the subject of future work.

In summary: pro�tabilityxy The way pro�ts are made, then, is that

suppliers may reduce costs by generating e�ciencies for buyers, while buyers

may increase returns, when they sell more di�erentiated products. The pro�t

that is made resulting from both partners' contributions, is shared equally

between the buyer and the supplier involved.

5.1.2 Trust

TCE assumes potential opportunism. In the model, opportunism means

that an agent may break a `relation', i.e. a sequence of matches, without

taking the partner into account. If agents know that their partner may be

opportunistic, they can assign a probability to the event of their partner

behaving opportunistically. This probability is 1 minus the probability that

13For now, the same function is used for both relations, although a learning curve is

usually represented by a sigmoid function (cf. Simon and Blume 1994, p. 365).
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the partner does not behave opportunistically, which we will call the agent's

trust in the partner. Following Gulati (1995), we will assume trust to in-

crease with the duration of a relation: as a relation lasts longer, one starts

to take the partner's behavior for granted, and to assume the same behav-

ior (i.e. commitment, rather than breaking the relation) for the future. In

the model, this increase over time is implemented using a variation of the

function presented in Figure 1. The addition is a base-level of trust:

y = b + (1� b)

�
1�

1

ax+ 1� a

�
;

where b is the base-level of trust and x is the number of consecutive matches

the agents have been involved in. The parameter a is again a di�erent one

than in the functions for scale- and learning-e�ciency. In the program, this

parameter is called trustFactor.

Technically, a base-level is desirable because if � = 1, the exponent on

trust is 0, and the base-level prevents trust from becoming 0 (00 is unde�ned,

and makes the program crash). Theoretically, Hill (1990) also assumes that

a certain proportion of the population will never be opportunistic, so that

proportion may be taken as the agents' minimum probability-assessment

that their partner will not be opportunistic; another interpretation is that

this re
ects a certain elementary decency in the population. Figure 2 shows

the relation we assume between the past duration of a relation and agents'

trust in each other (depending on an agent-speci�c value for the a-parameter

in the function; i.c. a = :5).
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Figure 2: Trust.

A relation is broken if, during the matching, a buyer does not send any

more requests to the supplier or he does, but the supplier rejects them. If
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an agent y, involved in a relation with an agent x `breaks' their relation,

then x's trust in y decreases; in e�ect, x's trust drops by a certain factor

(< 1) times the distance between the current level and the base-line level of

trust; it stays there until the next time x and y are matched, after which is

starts to increase again.

5.2 Implementation

5.2.1 Agent-based, object-oriented programming

The simulation was developed in the general-purpose, object-oriented pro-

gramming language SIMULA (Birtwistle et al. 1973). The object-oriented

paradigm is very well suited for agent-based modeling (see McFadzean and

Tesfatsion 1996, Epstein and Axtell 1996), and for real-world modeling in

general, which was the philosophy underlying the development of SIMULA

as the �rst object-oriented language. Although the original language (SIM-

ULA I) was a SIMUlation LAnguage, the second and �nal version, SIMULA

67 (nowadays just called SIMULA), is a general-purpose language, and the

acronym now stands for SIMple Universal LAnguage. Object-oriented tech-

nology `simulates' the real-world, which gives it several desirable properties.

Object-oriented programs are modular; the modules are described in classes.

These serve as `templates' for the creation (instantiation) of objects, which

represent actual objects in the real world. Classes consist of declarations of

data (properties, attributes) and methods (behavior) that operate on those

data. Subclasses may be de�ned that inherit the data and methods of the

superclass, and may be re-de�ned or supplemented with data and methods

speci�c for the subclass. Objects may also send messages to other objects.

Object-oriented programming thus consists of specifying classes. If a pro-

gram is run, the objects interact with each other by sending messages.

5.2.2 Simulation

The simulation proceeds as a sequence of discrete timesteps (see the pseudo-

code listing for the simulation program in Table 1). Such a sequence is called

a `run'; each simulation experiment may be replicated several times (mul-

tiple runs), to reduce the in
uence of draws from random distributions on

the results. During the step initialize simulation in Table 1, certain

parameters are set for the simulation as a whole. The user is prompted to

supply the number of buyers and suppliers, as well as the number of runs,

and the number of timesteps in each run. The program's random num-

ber generator is seeded and �nally, the agents are instantiated and given a

number for identi�cation. There is a general class agent, from which two

subclasses, buyerAgent and supplierAgent are derived. The general class

contains data and methods (called `procedures' in SIMULA) that all agents

14



Begin simulation

initialize simulation;

For run:=1 Step 1 Until totalRuns Do:

f
initialize agents;

For timestep:=1 Step 1 Until totalTimesteps Do:

f
For agent:=1 Step 1 Until totalAgents Do:

f
choose a value for alpha;

calculate scores;

establish preference ranking;

g
matchAgents;

For supplier:=1 Step 1 Until totalSuppliers Do:

If matched Then produce and deliver;

For buyer:=1 Step 1 Until totalBuyers Do:

If not matched Then produce;

For buyer:=1 Step 1 Until totalBuyers Do:

sell;

For agent:=1 Step 1 Until totalAgents Do:

update;

g
g
End simulation;

Table 1: Pseudo-code for the simulations.

have in common. They are `inherited' by the two subclasses and supple-

mented with data and methods that are speci�c for buyers and suppliers,

respectively (see Appendix A.2).

5.2.3 Runs

The program then contains a set of nested for-loops, which control the re-

quired runs and, per run, the required timesteps: the statement

For run:=1 Step 1 Until totalRuns Do: {...}

lets the {...}-part be executed totalRuns times|i.e. as many times as the

value of the variable totalRuns. The statement sets the variable run to

1 and increments it with 1 (Step 1) at the end of each loop. As long as

the value of run is smaller than or equal to the value of totalRuns, the

{...}-part is executed, otherwise the program continues after the closing }.
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At the start of each run, each of the agents is initialized. For example,

the agents' pro�ts (from the previous run) are re-set to zero and the agents'

trust in other agents is re-set.14 After this agent-initialization, the actual

simulation starts, consisting of a sequence of timesteps.

5.2.4 Timesteps

The matching algorithm is applied to the agents in each timestep, while the

agents may adapt their preferences for other agents from each timestep to

the next. In each timestep, before matching takes place, each agent chooses

a value for � to calculate scores with, calculates scores, and ranks (potential)

partners on the basis of these scores, using randomdraws to settle the ranking

of alternatives with equal scores. Then, the agents are matched by the

matching algorithm; suppliers that are matched to a buyer produce for and

deliver to that buyer, while suppliers that are not matched do nothing;

buyers that are not matched produce for themselves. Then, the buyers

sell their products on the �nal-goods market|whether produced by their

supplier or by themselves. Finally, at the end of each timestep, the agents

do some updating on the basis of their experiences during the timestep.

The description of each of these events follows. What happens before

the matching in any timestep (except the �rst, in which this is trivial)15 is

in
uenced by the events after the matching in the previous timestep. These

latter events are therefore discussed �rst.

The matching Two 2-dimensional `arrays' (matrices) are maintained in

the program, in which connections (matches) before and after execution of

the matching algorithm are stored. Right before each matching, the entries

in the array of current connections are copied into the array of previous

connections, and the array of current connections is cleared: the matching

algorithm starts from scratch in each timestep and after it has �nished, the

resulting matches are stored in the array of current connections. Then, right

after the matching, the entries in the two matrices are compared for each

pair of agents, and the result of this comparison is classi�ed as one of the

following events in the life-cycle of a relation.16

Start: two agents start a relation if they are matched to each other in a cer-

tain timestep, while they were not matched in the previous timestep.

14A complete overview of all the di�erent variables and parameters is given in Ap-

pendix A.3.
15Before the �rst matching, all buyers are the same for each supplier and vice versa.

Because the matching algorithm needs strict preferences and random draws are used to

break ties between alternatives with equal scores, all agents' preference rankings in the

�rst timestep are random.
16If two agents are matched to each other neither before nor after the matching, then

there is, of course, no event in a relation's life-cycle that this corresponds to.
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Continue: two agents continue a relation if they are matched to each other

in a certain timestep, while they were also matched to each other in

the previous timestep. If a relation continues, the agents' trust in each

other increases, as does the supplier's e�ciency in using buyer-speci�c

assets (if any).

Break: a relation breaks if, while two agents were matched to each other in

the previous timestep, either the buyer does not send a request to the

supplier or he does, but the supplier rejects the request. If a relation

breaks, the trust of the agent who did not break the relation in the

agent who did, decreases.

These events and the agents' perception, interpretation and evaluation of

them may trigger reactions that may lead the agents to change their prefer-

ence ranking, which, in the next timestep, may change the outcome of the

matching and trigger the occurrence of further events.

Production and trade Producing one product requires (at most) one

unit of assets|increasing e�ciency decreases this amount. A buyer always

produces with e�ciency 0 if he chooses to make,17 so he always needs 1

unit of assets to produce one product, costing 1 monetary unit. Buyer i's

prospects when making, then, are as depicted in Figure 3. A supplier, on
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Figure 3: A buyer's returns, costs, and pro�t when making.

17A buyer is not allowed to produce for and supply to other buyers (his competitors), so

he can not generate scale-economies. Learning-by-doing is also not possible for the buyer,

because savings resulting from this are assumed to be related to the advantage due to the

cognitive distance between the buyer and his supplier (cf. Nooteboom's (1992) external

economies of cognitive scope, and the simulations by P�eli and Nooteboom (1997)).
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the other hand, may enjoy economies due to scale and due to learning by

doing, as explained in Section 5.1.1. The di�erence between unity and the

supplier's costs are the savings that the supplier generates, and the prices at

which the supplier's production is traded with each of her buyers is such that

these savings are shared equally between the buyer and the supplier. Finally,

when the buyer sells his products, the price he receives is a function of the

di�erentiation of his products. If the buyer has bought, rather than made,

then like the supplier's savings, any returns resulting from di�erentiation

are shared equally between the buyer and the supplier. This means that

when a buyer i buys from a supplier j, the pro�ts they may make are equal:

�i = �j = 0:5di + 0:5die
i
l;j + 0:5(1 � di)es;j;

where di is the di�erentiation of buyer i's products, eil;j is supplier j's learn-

ing e�ciency for buyer i, and es;j is supplier j's scale e�ciency. If the buyer

buys, therefore, he faces the situation presented in Figure 4. The buyer's
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Figure 4: A buyer's costs when buying. The plot for `costs(d)'|the buyer's

sharing of his returns from di�erentiation with the supplier|coincides with

the plot for `min.costs(learn)'.

returns are the same as in Figure 3; his costs are unity minus half of the sup-

plier's savings due to scale- and learning-e�ciency, and he also shares half

of his returns from product di�erentiation with the supplier (`costs(d)').

It follows, in Figure 5, that the buyer's pro�ts when buying fall any-

where inbetween the lines `min.pro�t(b)' and `max.pro�t(b)'. Compared

to the buyer's situation when making (the line `pro�t(m)'), buying is more

attractive|in terms of potentially attainable pro�ts|when di�erentiation

(and therefore asset speci�city) is low, than when it is high, which is in line

with transaction cost intuition.
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Figure 5: A buyer's pro�ts when making or buying.

Updating An agent in a CAS is adaptive if \the actions of the agent

in its environment can be assigned a value (performance, utility, payo�,

�tness, or the like); and the agent behaves in such a way as to improve this

value over time" (Holland and Miller 1991, p. 365; see also (Vriend 1995)).

The adaptive character of the arti�cial agents in the model refers to the

possibility for the agents to change the value they use for � from each

timestep to the next, which leads to a change in the scores they assign to

di�erent agents and to a di�erent preference-ranking. Each agent has several

possible values for � 2 [0; 1]; the number is a parameter in the simulation.

To each value, each agent assigns a strength,18 which expresses the agent's

con�dence in the success of using that particular value; the various strenghts

always add up to a constant C.

The strength of the value that was chosen for � at the start of a particular

timestep (see below), is updated at the end of that timestep, on the basis

of the agent's performance during that timestep, which is assumed to be

related to the value of � used. Updating means that the agent adds the

pro�t obtained during the timestep to the strength of the value used for

�. After this, the three strengths are renormalized to sum to C again (see

(Arthur 1993) for a discussion of this learning mechanism). This is done by

multiplying each of them with the ratio C=(C+pro�t). At this point, as an

output of the simulation, each agent x's weighted average value for �x|the

18See (Arthur 1991, Arthur 1993, Kirman and Vriend 1998, Lane 1993) for discussions

and applications of these so-called `classi�er systems' to models in economics; good general

introductions are (Booker et al. 1989), (Goldberg 1989) and (Holland et al. 1986).

19



`pro�t-elasticity' of the scores that x assigns|is calculated:

X
�x=0;:::;1

�x � strength(�x):

This indicates where x's emphasis lies: because the value with the highest

strength pulls the weighted average in its direction, the emphasis lies on low

values for � if the weighted average �x is low and vice versa.

Choosing � The process of updating described in the previous paragraph

concludes each timestep. The next timestep starts with each agent choosing

a value to be used for � when calculating other agents' scores. The choice

between the di�erent possible values for � is probabilistic|a simple roulette

wheel selection|with each value's selection probability equal to its relative

strength, i.e. its strength divided by C.

Calculating scores As explained above, scores are Cobb-Douglas func-

tions of pro�tability and trust:

scorexy = pro�tability�xxy � trust
1��x
xy ;

where scorexy is the score x assigns to y, pro�tabilityxy is the pro�t x may

make `through' y, trustxy is x's trust in y and �x 2 [0; 1] is the importance

x attaches to pro�tabilityxy relative to trustxy, i.e. the `pro�t-elasticity' of

the scores that x assigns.

Before a matching, the agents determine other agents' scores on the basis

of suppliers' scale-e�ciency in the previous timestep. Only after the match-

ing does it become clear to how many and which buyers each supplier is

actually matched, and what the real extent of her scale-e�ciency is. Expec-

tations of the supplier's position on each buyer-speci�c learning curve, on

the other hand, will already be accurate before the matching|assuming, of

course, that the relation makes it through the matching.

6 Results: adaptive governance

Experiments were run with the parameters and variables as shown in the

right-most column of Table 4 in Appendix A.3. The value for product dif-

ferentiation was varied in 6 experiments, each of which was run for 250

timesteps and replicated 25 times: results are typically presented as aver-

ages over those 25 runs. Before going to the results, it is worthwhile to

consider what may be expected from the simulations. The experimental

variable `di�erentiation' of the buyers' products is tied to the speci�city of

the assets that suppliers invest in to support their production for those buy-

ers. Initially, therefore, the buyers are confronted with the score-di�erentials
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�

d 0 0.25 0.5 0.75 1

0.25 0.50 0.23 0.06 -0.05 -0.13

0.35 0.40 0.17 0.01 -0.10 -0.18

0.45 0.30 0.11 -0.04 -0.15 -0.23

0.55 0.20 0.03 -0.10 -0.20 -0.28

0.65 0.10 -0.04 -0.16 -0.25 -0.33

0.75 0.00 -0.12 -0.22 -0.30 -0.38

Table 2: Di�erence between suppliers' initial scores and a buyer's own score

(= d) for di�erent values of di�erentiation and of the buyer's �.

given in Table 2. The values in Table 2 are calculated as follows. The score

that a buyer i assigns to a supplier j, is

scorei;j = (0:5di + 0:5die
i
l;j + 0:5(1 � di)es;j)

� � tji
(1��)

;

with the supplier's initial learning-e�ciency for buyer i, eil;j = 0, the suppli-

er's initial e�ciency of scale, es;j = 0 and buyer i's initial trust in supplier

j, t
j
i = 0:75. The score that buyer i assigns to himself is equal to di, be-

cause that is his pro�t when he makes and he uses � = 1 to calculate his

own score. The values in the table give the di�erence between these two;

initially (in the �rst timestep), these values are the same for all buyers. As

di�erentiation increases, the number of distinct values for � that yield a net

score-advantage for suppliers|which they need for buyers to consider them

acceptable|decreases. If d = 0:75, there is no value for � that gives sup-

pliers a net advantage so we may expect no outsourcing at all in that case.

Notice that for any d < 0:75, no matter how much smaller, the suppliers do

have a net advantage, which, furthermore, if matches do occur, increases

over time with suppliers' increasing learning e�ciency and also when suppli-

ers are matched to more than 1 buyer. The situation in Table 2, therefore,

is likely to shift in favor of suppliers as time progresses. In general, then, we

would expect more making (and less buying) when di�erentiation increases.

The proportion of economic activity under hierarchichal (as opposed to

market) governance in the di�erent experiments is shown in Figure 6. This

shows that, as expected, the proportion made is higher when di�erentiation

is high than when it is low, and if d = 0:75, nothing is bought; the buyers

make everything themselves (the plot for d = 0:75 coincides with the top

border of the graph). Notice however, that in all experiments, the proportion

made decreases during approximately the �rst 20 timesteps, after which it

increases and more strongly so, when d is higher.

The corresponding plot for the buyers' average normalized pro�ts is

shown in Figure 7|notice that the y-axis was re-scaled to 0.5{1 to make

the results clearer. Again, the plot for the case d = 0:75 coincides with the
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Figure 6: Proportion `made' (as opposed to `bought').

top border of the graph. This normalized pro�t is the buyers' pro�t divided

by the maximum attainable pro�t, which is the pro�t they would make in

a relation with a supplier with maximum scale- and learning-e�ciency.19

Figure 7 shows, �rst of all, that the initial decrease in `proportion made'
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Figure 7: Buyers' normalized pro�ts.

(see Figure 6) is `good' for the buyers when di�erentiation is low (their

normalized pro�t increases during this initial period), but `bad' when di�er-

19This is corrected for the fact that the suppliers' scale-e�ciency is limited because

their acceptance quotum is set to 3; if as is unlimited, the system quickly settles in a state

where all buyers buy from the same supplier.

22



entiation is high, since the theoretically most appropriate choice is to make

when di�erentiation is high. Eventually, this is also what the agents learn.

Furthermore, in several of the experiments, the agents are performing poorer

than they could be. This is because `perfomance as it could be' is based on

pro�t made in a relation with a supplier with maximum scale- and learning-

e�ciency. Since each supplier can have a maximum of 3 buyers (as = 3), this

requires that the 12 buyers together buy from only 4 suppliers. That this

network con�guration does nog always emerge, is shown in Figure 8, which

depicts the buyers' average normalized pro�ts in each of the 25 individual

runs of experiment d = 0:35. In this experiment, there are three levels at
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Figure 8: Buyers' normalized pro�ts in 25 runs of experiment d = 0:35.

which average pro�ts `stabilize'; almost 1 (6 runs), and approximately 0.9

(15 runs) and 0.8 (4 runs). The �rst of these levels corresponds to the sit-

uation where the 12 buyers buy from 4 suppliers (with their maximum of 3

buyers each) and no buyer makes anything. The second level corresponds

to the situation where 9 buyers are consistently matched to 3 suppliers and

the other three buyers are either making or buying, but not all three from

the same supplier at the same time. Also, there is much switching between

suppliers in this case, so these three buyers form no long-lasting relations.

The �nal level (0.8) corresponds to the situation when even more buyers

are not consistently buying from the same supplier who is matched to her

maximum number of buyers. If the simulation is re-run with 12 buyers but

only 4 suppliers, most of the runs quickly lock in to the level 1 described

above.

The corresponding weighted average � for the buyers, averaged over all

buyers, is displayed in Figure 9. The weighted average � goes up in all ex-

periments and more strongly when di�erentiation is higher. When d = 0:75,
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Figure 9: Buyers' weighted average �.

there is hardly any e�ect on this variable: because there is no outsourcing at

all in this case, the pro�t that is made is the same no matter which value was

used for �, so no one value is better than the rest in this sense. Because the

buyers do attain maximum normalized pro�t when di�erentiation is higher,

the higher weighted average � that emerges in that case can be called opti-

mal. However, the buyers do not perform as well when di�erentiation is low,

which implies that the weighted average � may not be optimal (too high or

too low), although the agents may not be aware of this. The optimum may

be out of reach of the path-dependent process of interaction and learning

that unfolds among the agents. When looking at the 25 individual runs of

the experiment d = 0:25, it appears that relatively high pro�ts are corre-

lated with no `making' (only buying), and a relatively low weighted average

�! Further research will be done to investigate this further.

7 Conclusion

This study was motivated by the observation that, while the main hypothesis

of transaction cost economics is that agents are able to align organizational

form with the attributes of transactions in a discriminating, (transaction

cost) economic way, the agents' bounded rationality may prevent them from

performing this alignment successfully, i.e. economically. An agent-based

computer simulation model was developed and implemented to generate al-

ternative propositions about which organizational forms boundedly rational,

adaptive agents learn to use. It was shown that under some circumstances,

agents are indeed unable to optimize successfully, because the network they

form, along with other agents, may not evolve to an optimal con�guration.
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The agents learn `individually', and in this case (as in many others), a pop-

ulation of agents pursuing their own self-interest does not|by any invisible

hand|lead to a globally optimal outcome; consequently, some of the gains

from trade are not reaped. This may be interpreted as an example of how

\the analysis cannot be con�ned to what happens within a single �rm"

(Coase 1995, p. 245).

An often-used technique in agent-based computational models is the ge-

netic algorithm (see (Holland and Miller 1991) for a discussion and (Miller

1996, Tesfatsion 1999) for examples). A genetic algorithm (GA) is essen-

tially a computational search heuristic that simulates evolutionary processes

of selection and reproduction, operating on a population of potential solu-

tions in its search for the optimal solution. In ACE-models, it operates on

individual agents' behavioral rules, and genetic operators are assumed to

model cultural, rather than genetic, transmission of ideas and behaviors.

Using a GA, the optimal distribution of economic activity may have been

found in the current experiments, but it is my opinion that a GA is not an

accurate model of the learning of individual, boundedly rational agents that

we have tried to capture in the current application (cf. Klos 1999).

The appropriateness of GA's as a model of learning in economics is the

subject of much debate (Brenner 1998, Chattoe 1998, Riechmann 1999);

explicit comparisons between social learning, modeled using a GA, and in-

dividual learning are reported in (Klos 1999) and (Vriend 1998), among oth-

ers. There, it was shown that outcomes di�er signi�cantly between the two

approaches. The GA comes out on top, but, in my opinion, at the expense

of some very strong modeling assumptions|that many authors implicitely

impose|about the extent of the agents' perception and computational ca-

pacity (see Klos 1999, for a more detailed discussion). Tesfatsion (1999, p.

13{14, emphasis added) is aware of this, given her observation that

\[a]n important caution is in order here, however. Given the

extent of information currently allowed to agents during the

evolution step|i.e., knowledge of the complete strategies of all

other agents of the same type, whether expressed in interactions

or not|the evolution step is more appropriately interpreted as

an iterative stochastic search algorithm for determining poten-

tial equilibrium strategy con�gurations rather than as a cultural

transmission mechanism per se. The resulting earnings outcomes

will be used in subsequent work as benchmarks against which

to assess the e�ectiveness of more realistically modelled cultural

transmission mechanisms".

According to Vriend (1998, p. 11), also, \the computational modeling choice

between individual and social learning algorithms should be made more

carefully, since there may be signi�cant implications for the outcomes gen-

erated". As in (Klos 1999), I do not want to say that GA's should not be
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used anymore, but the choice of using them should be made with caution

and they should be used for the right purposes. In the current paper, for

example, if in some circumstances agents are unable to organize optimally,

it would be interesting to �nd out what `optimal' would be in those settings,

what is keeping the agents from attaining it, and how they might go about

reaching that optimum. A GA might very well be used to �nd out what the

optimum is, but that result should not be interpreted as the outcome of a

process of learning. After all, it was because we question TCE's assump-

tion that agents are able to align optimally that the current project was

undertaken, so we shouldn't then use an optimization algorithm to model

boundedly rational agents' adaptive learning.
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A Appendix

A.1 Matching example

For an example of the operation of the matching algorithm, consider Ta-

ble 3, which lists randomly generated preference rankings of 5 buyers over

5 suppliers and vice versa. In addition, the buyers were placed at randomly

supplier

buyer 1 2 3 4 5

1 4,2 5,1 2,4 1,1 3,1

2 1,4 -,2 -,1 -,2 -,5

3 3,1 -,4 4,2 2,4 1,3

4 -,3 -,5 -,5 1,3 2,2

5 -,5 -,3 -,3 -,5 -,4

Table 3: Example preference-rankings in Gale and Shapley's (1962) format.

Buyer 1 ranks supplier 4 �rst, 3 second, 5 third, etc. Supplier 1 ranks buyer

3 �rst, 1 second, 4 third, etc. Buyer 2 has only one acceptable supplier (1);

a `-' means `unacceptable'.

generated positions on their own rankings (expressing their tolerance level)

and suppliers whose ranking was not higher than the buyer's own ranking

are not acceptable and therefore not listed.

If all agents are allowed only one partner (ob = as = 1), the algorithm

produces the following steps.

1. Buyers 1, 2, 3 and 4 send requests to their most preferred suppliers,

i.e. 4, 1, 5 and 4, respectively. The suppliers that receive only one

request accept those provisionally, while supplier 4 rejects the request

from buyer 4 and provisionally accepts the request from buyer 1.

2. Buyer 4 sends a request to its next most preferred supplier, 5, who

accepts buyer 4's request and rejects buyer 3's already provisionally

accepted request, because supplier 5 prefers buyer 4 to buyer 3.

3. Buyer 3 now sends a request to its next most preferred supplier, 4,

which request is rejected, because supplier 4 prefers its already ac-

cepted buyer (1) to buyer 3.

4. Buyer 3 now sends a request to the next supplier on its list, which

is supplier 1, who accepts that request and rejects buyer 2's request,

which it had previously accepted provisionally.

5. Buyer 2 has no more acceptable suppliers so no buyer sends another

request, which stops the algorithm.
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Buyers 1, 3 and 4 are now matched with suppliers 4, 1 and 5, respectively.

The algorithm is also able to handle cases where ob and/or as are greater

than 1. For example, the reader may verify that buyers 1, 2, 3 and 4 will be

matched to suppliers (3 and 4), (1), (1 and 5) and (4 and 5), respectively,

when ob = as = 2.

A.2 Agent-speci�cation

The program consists of a main loop (see Table 1), a procedure called

matchAgents, and the declaration of several classes. The class agent con-

tains the following procedures:

setAlpha This is the procedure that chooses a value to be used for �. A

random number between 0 and 1 is drawn like a roulette wheel being

spun. The wheel is divided like a pie in as many parts as there are

possible values for �, with the size of each part proportional to the

relative strength of the associated value for �.

updateWeights(alphaUsed,payoff) This procedure is called for updating

the strengths, associated with the di�erent possible values for alpha.

The parameter alphaUsed is the value that was used for � and of

which the strength needs to be updated. This is done by adding the

value of payoff to the strength. Then, each strength is multiplied

with the ratio C=(C+payoff), to ensure that they add up to C again.

From the class agent, the classes buyerAgent and supplierAgent are

derived. These subclasses inherit all data and methods from the class agent.

In addition, data and methods are declared speci�cally for the two sub-

classes. The subclass buyerAgent contains the following procedures:

calculateSupplierScores This procedure calculate scores of suppliers and

self as Cobb-Douglas functions of pro�tability and trust, as described

above in Section 5.1. If the buyer's value for � is 0, then the supplier's

score is simply equal to the buyer's trust in the supplier. The buyer

calculates his own score using e�ciency = 0, trust is 1, and � = 1.

buyerProcess If not matched then make; in any case, sell. The suppliers'

equivalent process supplierProcess is executed before the buyers',

so if a buyer is matched to a supplier, that supplier will already have

produced for him.

increaseTrust(subject) This increases the buyer's trust in subject on

the basis of the number of previous times they have been matched.

decreaseTrust(subject) This decreases the buyer's trust in subject.

Besides the data and methods inherited from the class agent, the subclass

supplierAgent contains the following procedures:

28



calculateBuyerScores This procedure calculates the scores the supplier

assigns to each buyer. As in the buyer's equivalent procedure, if a

buyer's pro�tability as well as the supplier's � are 0, the supplier's

trust is used as the buyer's score.

determineScaleEfficiency The supplier adds the general purpose assets

required for producing for all the buyers she is matched to and cal-

culates the scale-function value of this number. This is the supplier's

scale e�ciency.

climbLearningCurve(subject) On the basis of the number of times they

have been matched before, the supplier calculates her e�ciency in

using subject-speci�c assets.

increaseTrust(subject) This procedure increases the supplier's trust in

subject on the basis of the number of previous times they have been

matched.

decreaseTrust(subject) This procedure decreases the supplier's trust in

subject.

produceFor(subject) Based on buyer subject's di�erentiation and the

supplier's (general) scale- and subject-speci�c e�ciency, the supplier

acquires the required assets and produces for subject.

supplierProcess Looking at each buyer in turn, if the supplier is matched

to that buyer, it produces for that buyer (see previous procedure).

A.3 Parameters and variables

This appendix gives a complete overview of all the parameters and variables,

used in the simulation; see Table 4.
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value value

param./var. range used

general number of buyers, B f1; 2; : : :g 12

number of suppliers, S f1; 2; : : :g 12

number of runs f1; 2; : : :g 25

number of timesteps f1; 2; : : :g 250

per di�erentiation [0; 1] f0:25; 0:35; : : : ; 0:75g
buyer ob f1; 2; : : : ; Sg 1

number of values for � f2; 3; : : :g 5

C h0; : : :i 20

baseTrust h0; 1] 0.3

initTrust(subject) h0; 1] 0.75

trustFactor [0; 1] 0.5

per as f1; : : : ; Bg 3

supplier scaleFactor [0; 1] 0.5

learnFactor [0; 1] 0.5

number of values for � f2; 3; : : :g 5

C h0; : : :i 20

baseTrust h0; 1] 0.3

initTrust(subject) h0; 1] 0.75

trustFactor [0; 1] 0.5

Table 4: Parameters and variables in the simulation.
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