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Abstract

This paper describes how a decision making system for a market selection game can be auto-
matically designed during the iterative execution of the game. Our market selection game is a non-
cooperative repeated game where many players compete with one another at several markets. At
each iteration of our game, every player is supposed to simultaneously choose a single market from
several ones for maximizing his own pro�t obtained by selling his product at the selected market.
It is assumed in our market selection game that the market price of the product is determined by
the demand-supply relation at each market. For example, if many players bring their products to a
particular market, the market price at that market becomes low. On the contrary, the market price
is high if the total amount of products brought to the market is small. In this manner, the market
price at each market is determined by the actions of all players. Each player's pro�t at each iteration
of the game mainly depends on the market price at the selected market. So every player wants to
choose a market with a high market price, i.e., a market that is not chosen by many other players. In
this paper, we intend to design a decision making system that automatically chooses a single market
for a player based on the market prices of all markets at the previous iteration of the game. That
is, the inputs to the decision making system are the market prices at the previous iteration, and the
output is a single market from which the player is likely to obtain the highest pro�t at the current
iteration of the game. We mainly examine two approaches to the design of decision making systems.
One approach is based on a fuzzy reinforcement learning technique called \fuzzy Q-learning". In this
approach, knowledge related to the market selection is automatically acquired in the form of fuzzy
if-then rules during the iterative execution of the game. The antecedent part of each fuzzy if-then rule
is linguistically conditioned by the market prices at the previous iteration (e.g., If the price at Market
1 was high and the price at Market 2 was low). The consequent part is the expected pro�t obtained
from each market at the current iteration (e.g., then 23$ from Market 1 and 10$ from Market 2).
The expected pro�t in the consequent part is automatically adjusted during the iterative execution
of the game. In the other approach, the design of a decision making system is handled as a pattern
classi�cation problem where a feature vector consists of the market prices at the previous iteration.
The class label for the feature vector (i.e., the desired output corresponding to the feature vector) is
the market from which the player would obtain the highest pro�t at the current iteration if he chose
that market. That is, the class label is the optimal market for the player at the current iteration (not
the actually selected market at the current iteration). It should be noted that the optimal market for
the current iteration is known only after all the players made the market selection. In this manner,
a single input-output pair (i.e., a single training pattern) is obtained after a single iteration of the
game is completed. This means that the available information for the design of the decision making
system increases during the iterative execution of the game. By computer simulations, we examine
the performance of these two approaches. The main contributions of this paper in comparison with
our previous studies are twofold: to propose the handling of the market selection game as a pattern
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classi�cation problem and to examine the performance of decision making systems for the market
selection game with dynamically changing market conditions.

Key words: Market selection, demand-supply relation, market price, repeated game, decision mak-
ing, pattern classi�cation, fuzzy rule-based systems, reinforcement learning.

1 Introduction

We have already formulated a market selection game as a multi-player non-cooperative repeated game
where each of many players (e.g., 100 players) is supposed to iteratively choose a single market from
several ones (e.g., �ve markets) to sell his product [1]. At each iteration of our market selection game,
every player simultaneously makes the market selection. The pro�t of a player at each iteration of the
game is de�ned by the market price at the selected market and the transportation cost to that market.
That is, the pro�t is the di�erence between the market price and the transportation cost. Whereas the
transportation cost from each player to each market is prespeci�ed as a constant, the market price at each
market varies depending on the number of players choosing that market at each iteration of the game. If
many players choose a particular market, the market price at that market becomes low. On the contrary,
the market price is high if only a small number of players choose that market. Thus, for obtaining a high
pro�t, a player has to choose a market that is not chosen by many players. We have examined various
strategies for our market selection game such as a random selection strategy, a minimum transportation
cost strategy, an optimal strategy for the previous actions, a mimic strategy of the nearest neighbor player,
a Q-learning-based strategy, and a fuzzy Q-learning-based strategy [2]. In this paper, we mainly examine
two approaches that can automatically design decision making systems for our market selection game in
an adaptive manner. One approach is the fuzzy Q-learning-based strategy [1,2]. The other is the handling
of the design of a decision making system as a pattern classi�cation problem. The main aim of this paper
is to examine the adaptability of these approaches to dynamically changing market conditions. In our
computer simulations, the demand-supply relation at each market (i.e., mechanism for determining the
market price) and the strategies of other players are changed during the repeated execution of our market
selection game. Such situations were not considered in our previous studies [1,2].

2 Formulation of Our Market Selection Game

In this section, we illustrate our market selection game formulated in our previous studies [1,2]. In Fig. 1,
we show an example of our market selection game, which is used in computer simulations of this paper. As
shown in Fig. 1, many players and several markets are involved in our market selection game. We denote
the number of players by n (n = 100 in Fig. 1). Each player is indexed by i where i = 1; 2; � � �; n. The
number of markets is denoted by m (m = 5 in Fig. 1). Each market is indexed by j where j = 1; 2; � � � ;m.
Our market selection game is iterated for a prespeci�ed number of iterations. Let us denote the total
number of iterations by T (T = 1000 in our computer simulations). Each iteration is indexed by t (i.e.,
t = 1; 2; � � � ; T ). We assume that each player has a single product to be sold at each iteration.

The action of each player at each iteration is to select a single market where his product is sold. An
example of such actions of all players is illustrated in Fig. 1 (b). Let us denote the action of the i-th
player at the t-th iteration of our game by xtij where i = 1; 2; � � � ; n, j = 1; 2; � � � ;m, t = 1; 2; � � � ; T , and

xtij =

�
1; if the i-th player chooses the j-th market at the t-th iteration,
0; otherwise.

(1)
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(a) Locations of 100 players and 5 markets. (b) Example of the actions of 100 players.

Figure 1: Example of our market selection game, which is used in computer simulations of this paper.

Because every player is supposed to choose a single market from the givenmmarkets for selling his product
at each iteration of the game, the following relation holds:

mX
j=1

xtij = 1 for i = 1; 2; � � � ; n; t = 1; 2; � � � ; T: (2)

We assume that all players simultaneously perform the market selection at each iteration of our game.
Thus no player knows the current actions of the other players when he chooses a market. This means that
no player knows the optimal market selection for the current iteration of the game.

We assume that the market price of the product is determined by the demand-supply relation at each
market. For example, if many players bring their products to a particular market, the market price at that
market becomes low. On the contrary, the market price is high if the total amount of products brought to
the market is small. In this manner, the market price at each market is determined by the actions of all
players. The total amount of products that are sold in the j-th market at the t-th iteration is calculated
from (1) as follows:

Xt
j =

nX
i=1

xtij for j = 1; 2; � � �;m; t = 1; 2; � � � ; T: (3)

We assume that the market price of the j-th market at the t-th iteration is determined by the following
linear demand-supply relation:

ptj = aj � bj �X
t
j for j = 1; 2; � � �;m; t = 1; 2; � � � ; T; (4)

where aj and bj are positive constants that specify the demand-supply relation in the j-th market. An
example of the demand-supply relation is shown in Fig. 2 where the market price is determined by the
following relation:

ptj = 100� 3 �Xt
j : (5)

This relation is used in our computer simulations.
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Figure 2: Illustration of the demand-supply relation.

It is assumed that that the transportation cost cij of the product from the i-th player to the j-th
market depends on the distance between the player and the market. Let us denote the distance between
the i-th player and the j-th market by dij. We assume that the transportation cost cij is given as follows:

cij = c � dij for j = 1; 2; � � �;m; t = 1; 2; � � � ; T; (6)

where c is the transportation cost for the unit distance. In our computer simulations, we specify the value
of c as c = 1. In this case, the transportation cost cij is given as cij = dij. Since the locations of players
and markets are �xed during the iterative execution of the game, the transportation cost cij is handled
as a prespeci�ed constant.

Let us denote the pro�t of the i-th player at the t-th iteration by rti . We de�ne the pro�t rti as follows
when the i-th player chooses the j-th market for selling his product (i.e., when xtij = 1):

rti = ptj � cij for i = 1; 2; � � � ; n; t = 1; 2; � � � ; T: (7)

It should be noted that the pro�t rti of the i-th player depends on the actions of the other players through
the market price ptj (see (3) and (4)). The aim of each player in our game is to maximize his own total
pro�t ri over T iterations:

ri =
TX
t=1

rti for i = 1; 2; � � � ; n: (8)

The point in our market selection game is to choose a market that is not chosen by many other players.
That is, when the choice of a player is di�erent from many other players, that player obtains a high pro�t.
On the contrary, if a player chooses the same market as many other players, his pro�t is not high. This
is the main characteristic feature of our market selection game. The deterioration of the pro�t by the
same action of many players can be observed in some real- world situations. For example, if many drivers
choose the same highway, they will not be able to drive fast due to heavy traÆc jams. When only a small
number of drivers choose another highway, they may enjoy a comfortable drive.

3 Various Strategies for Our Market Selection Game

We have already examined the performance of various strategies for our market selection game in our
previous study [2]. In this section, we brie
y describe those strategies.
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3.1 Random Strategy

The simplest strategy for our market selection game is a random strategy where a player randomly selects
a market from the given m markets. The random strategy can be obtained by specifying the market
selection probability Pr(xtij = 1) as

Pr(xtij = 1) = 1=m; j = 1; 2; � � � ;m: (9)

That is, each of the m markets is randomly selected with the same probability. This strategy takes no
factors into account when it chooses a market. Thus we are not likely to obtain a high pro�t from this
strategy. We use the random strategy for calculating a base line pro�t, which are compared with pro�ts
obtained by other strategies.

3.2 Minimum Transportation Cost Strategy

Another simple strategy is a minimum transportation cost strategy where a player chooses its nearest
market for minimizing the transportation cost. This strategy is very e�ective when the transportation
cost c for the unit distance is large. If we assign the minimum transportation cost strategy to all players
in the market selection game in Fig. 1 (a), every player always chooses its nearest market as in Fig. 1 (b).
The e�ectiveness of this strategy depends on not only the unit transportation cost but also the locations
of the player adopting this strategy and the given markets.

3.3 Optimal Strategy for Previous Actions

Since every player simultaneously performs the market selection at each iteration of our game, no player
knows the current actions of the other players before he chooses a market. This means that no player
knows the optimal market selection for the current iteration of the game. Every player, however, can
calculate the optimal market for the previous actions of the other players. This strategy, which is referred
to as an optimal strategy for the previous actions, is actually optimal only when the other players choose
exactly the same markets as in the previous iteration. Of course, the optimal strategy for the previous
actions is not always optimal for the current actions because the other players usually change their choices.
At the �rst iteration of our game, a player adopting this strategy chooses the nearest market with the
minimum transportation cost because there is no information about the previous actions of the other
players. While this strategy is optimal when all the other players adopt the minimum transportation cost
strategy, it does not work well when many other players adopt the random strategy (i.e., when many
players changes their actions). As we will show by computer simulations later, the performance of the
optimal strategy for the precious actions is terribly poor when many players adopt this strategy.

3.4 Mimic Strategy of Nearest Neighbor Player

The optimal strategy for the previous actions requires the information about the demand-supply relations
of all the m markets (i.e., aj and bj for all the m markets) and the actions of the other players at the
previous iteration of the game. When such information is not available, we need simpler strategies that
do not require a lot of information. One of such simple strategies is a mimic strategy of the nearest
neighbor player where a player simply mimics the previous action of the nearest neighbor player. At the
�rst iteration of the game, a player adopting this strategy randomly chooses a market because there is no
available information. Since a player has almost the same transportation cost to each market as its nearest
neighbor player, this strategy is promising when its nearest neighbor player is using a good strategy. The
pro�t of a player adopting this strategy totally depends on the performance of its nearest neighbor player.
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3.5 Q-learning-based Strategy

The above four strategies do not use any information about the actual pro�t obtained from each market
during the previous execution of the game. In order to choose a market based on the pro�t that has
already been obtained from each market, we can use Q-learning [3], which is a well-known reinforcement
learning scheme. In a Q-learning-based strategy, a player stores and updates a Q-value for each market
during the execution of our repeated game. The Q-value can be viewed as the expected pro�t obtained
from that market. Let Qt

ij be the Q-value of the i-th player for the j-th market at the t-th iteration of
our game. The Q-value for the selected market is modi�ed after the t-th iteration as

Qt+1
ij =

�
(1� �) �Qt

ij + � � rti; if xtij = 1;
Qt
ij; otherwise;

(10)

where � is a positive learning rate. In our computer simulations, � is speci�ed as � = 0:9, and the initial
value of each Q-value is speci�ed as Q1

ij = 100. As shown in (10), only the Q-value for the selected market
is updated. That is, the update of Q-values is based on the actually obtained pro�t at each iteration of
our game.

For obtaining a high pro�t, it is a natural idea to select the market with the highest expected pro�t
(i.e., highest Q-value) at each iteration of our game. On the other hand, it is also possible that we may
obtain a high pro�t from a rarely selected market with a low Q-value in dynamically changing market
conditions. That is, a pro�table market after the change of the market conditions may be hidden by a low
Q-value caused by the low pro�tability of the market before the change. For searching for such a hidden
market, it is required to select not only the market with the highest Q-value but also the other markets.
In the Q-learning-based strategy, the market selection is probabilistically performed based on the Q-value
for each market. The selection probability Pr(xtij = 1) of each market is de�ned by the roulette wheel
selection with the linear scaling as follows:

Pr(xtij = 1) =
Qt
ij �minfQt

ijg
mP
j=1

(Qt
ij �minfQt

ijg)
; for i = 1; 2; � � �; n; j = 1; 2; � � � ;m; t = 1; 2; � � � ; T; (11)

where minfQt
ijg = minfQt

ijjj = 1; 2; � � �;mg.

3.6 Fuzzy Q-learning-based Strategy

The Q-learning-based strategy only uses the actually obtained pro�ts during the previous iterations of our
repeted game. Other information is not utilized in the market selection by the Q-learning-based strategy.
Since the pro�t directly depends on the market prices, they seem to be very important information in the
market selection. In an extended version of the Q-learning, which is called \fuzzy Q-learning", continuous
states and/or continuous actions can be handled [4,5]. In our market selection game, the market price of
each market in the previous iteration is used as a continuous state variable in a fuzzy Q-learning-based
strategy [1,2]. The estimation of the expected pro�t from each market (i.e., Q-value for each market) is
conditioned by the market prices of all markets in the previous iteration. In our computer simulations,
the market price of each market is partitioned into two linguistic values \low" and \high" in Fig. 3. These
two linguistic values are used as antecedent fuzzy sets of fuzzy if-then rules of the following type:

Rule Rs: If p
t�1
1 is As1 and � � � and pt�1m is Asm then Qt

i1 = qtsi1 and � � � and Qt
im = qtsim, s = 1; 2; � � � ; N ,

(12)
where Rs is the label of the s-th fuzzy if-then rule, s is a rule index, pt�1j is the market price of the j-th

market at the (t � 1)-th iteration, Asj is an antecedent fuzzy set, Qt
ij is a Q-value, qtsij is a consequent
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real number, and N is the number of fuzzy if-then rules. When we have two linguistic values (\low" and
\high") as antecedent fuzzy sets for the market price of each of the m markets, the number of fuzzy if-then
rules for each player is N = 2m. In our computer simulations with �ve markets (i.e., m = 5), the number
of fuzzy if-then rules for each player is N = 25 = 32.

0.0 100

1.0
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e
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p

Market price

low high

Figure 3: Membership functions of \low" and \high".

The Q-value of each player for each market at the t-th iteration is calculated by a fuzzy reasoning
method from the fuzzy if-then rules in (12). Let us de�ne the compatibility grade of the previous market
prices pt�1 = (pt�11 ; pt�12 ; � � � ; pt�1m ) with the fuzzy if-then rule Rs by the product operation as

�s(p
t�1) = As1(p

t�1
1 )� As2(p

t�1
2 ) � � � � �Asm(p

t�1
m ); (13)

where Asj(�) is the membership function of the antecedent fuzzy set Asj. The Q-value of the i-th player
for the j-th market at the t-th iteration is calculated by a fuzzy reasoning method as follows:

Qt
ij =

NP
s=1

�s(pt�1) � qtsij

NP
s=1

�s(pt�1)

for i = 1; 2; � � � ; n; j = 1; 2; � � �;m; t = 1; 2; � � � ; T: (14)

The consequent qtsij of each fuzzy if-then rule is updated after the market selection (i.e., when the actual
pro�t is obtained) in a similar manner to the Q-learning-based strategy as

qt+1sij =

�
(1� � � ��s(p

t�1)) � qtsij + � � ��s(p
t�1) � rtij; if xtij = 1;

qtsij; otherwise;
(15)

where

��s(p
t�1) =

�s(p
t�1)

NP
s=1

�s(pt�1)

: (16)

As in the Q-learning-based strategy, the rule adjustment in (15) is performed only for the selected market.
The amount of adjustment in (15) for each consequent value of a fuzzy if-then rule is proportional to the
compatibility grade of the rule with the previous market prices.

The market selection is performed based on the calculated Q-values in (14). The selection probability
of each market is de�ned by (11) in the same manner as in the Q-learning-based strategy.
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4 Handling as Pattern Classi�cation Problem

In this section, we propose the handling of our market selection game as a pattern classi�cation problem.
That is, the design of a decision making system for our game is handled as the design of a pattern
classi�cation system.

4.1 Data Generation

A pattern classi�cation problem can be described as dividing a pattern space into several disjoint sub-
spaces using labeled training patterns. Thus the reformulation of our market selection game as a pattern
classi�cation problem involves the de�nition of a pattern space and the collection of labeled training pat-
terns. We de�ne the pattern space of our pattern classi�cation problem by the previous market prices
pt�1 = (pt�11 ; pt�12 ; � � � ; pt�1m ) as in the fuzzy Q-learning-based strategy where the input space is de�ned
by pt�1. Thus the pattern space of our pattern classi�cation problem is the m-dimensional continuous
space Rm.

After each iteration of our market section game, we have a pattern vector pt�1 = (pt�11 ; pt�12 ; � � � ; pt�1m ).
The point in the handing of our game as a pattern classi�cation problem is how to de�ne the class label
corresponding to the pattern vector pt�1 = (pt�11 ; pt�12 ; � � � ; pt�1m ). In our game, the market selection can
be described as choosing a single market after the previous iteration is completed. If our aim is to imitate
a particular player, the class label should be the actually selected market by that player at the current
iteration. In this case, a pair of the market prices pt�1 = (pt�11 ; pt�12 ; � � � ; pt�1m ) at the (t� 1)-th iteration
and the actually selected market at the t-th iteration is obtained as training data when the t-th iteration
of our game is completed. Since our aim is not to imitate a particular player but to design a decision
making system that hopefully works better than the player, we use as the class label the optimal market
from which the player would obtain the maximum pro�t at the t-th iteration of our game. It should be
noted that we can easily calculate the optimal market for the player after each iteration of the game (of
course, it is impossible to identify the optimal market for any player before the current iteration of our
game is completed). Thus the class label corresponding to the market prices pt�1 = (pt�11 ; pt�12 ; � � � ; pt�1m )
at the (t � 1)-th iteration is the optimal market for the player at the t-th iteration. We obtain such an
input-output pair after each iteration of our game is completed. Since we have m markets, our problem
is an m-class pattern classi�cation problem with the m-dimensional pattern space .

The �rst input-output pair is obtained after the second iteration is completed (in the �rst two iterations,
the nearest market is selected). Thus when we design a decision making system for the third iteration,
we have just a single input-output pair. In general, (t� 2) input-output pairs are available for the design
of a decision making system for the t-th iteration of our game. It should be noted that di�erent players
have di�erent training data because the optimal market is not the same for all players.

Let us illustrate the generation procedure of training data for Player A in Fig. 4. For illustration
purpose, we iterated our market selection game by assigning the random strategy to all the 100 players in
Fig. 4. Simulation results for the �rst �ve iterations are shown in Table 1. From this table, we have the
following four input-output pairs as training data, which are available when we design a decision making
system for the sixth iteration of our game.

After the 2nd iteration: (40, 31, 25, 37, 67); Market 2.
After the 3rd iteration: (52, 58, 37, 34, 19); Market 2.
After the 4th iteration: (40, 55, 37, 52, 16); Market 5.
After the 5th iteration: (49, 52, 37, 10, 52); Market 2.
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Table 1: Simulation results of the �rst �ve iterations for Player 1.

No. of Market Prices Player A's Optimal
iterrations Market 1 Market 2 Market 3 Market 4 Market 5 Selection Market

1 40 31 25 37 67 Market 1 Market 5*
2 52 58 37 34 19 Market 5 Market 2
3 40 55 37 52 16 Market 4 Market 2
4 49 52 37 10 52 Market 2 Market 5
5 61 58 31 28 22 Market 1 Market 2

*The optimal market at the �rst iteration is not used as a part of training data.

       Market Player

Player A

Market 5

Market 4

Market 3

Market 2
Market 1

0 50 100
0

50

100

Figure 4: Location of Player A.

4.2 Pattern Classi�cation Technique

For simplicity of notation, let us denote the (t � 2) input-output pairs available for the t-th iteration of
our game as (xk;Ck) = (xk1; xk2; � � � ; xkm;Ck), k = 1; 2; � � �; t�2 where xkj is the market price of the j-th
market at the k-th iteration (i.e., xkj = pkj ) and Ck is the optimal market at the (k+ 1)-th iteration. Our
task is to choose a single market for the t-th iteration of our game based on those training data (xk;Ck),
k = 1; 2; � � � ; t� 2 and the previous market prices pt�1 = (pt�11 ; pt�12 ; � � � ; pt�1m ). This task is rephrased as
designing a pattern classi�cation system from the training data (xk;Ck), k = 1; 2; � � � ; t�2, for classifying
the new input pattern pt�1 = (pt�11 ; pt�12 ; � � � ; pt�1m ).

One of the most commonly used pattern classi�cation techniques is the nearest neighbor classi�cation
where an input pattern is classi�ed as the class of its nearest neighbor training pattern. In this paper,
we use the nearest neighbor classi�cation for our market selection game. The distance between the new
input pattern pt�1 = (pt�11 ; pt�12 ; � � � ; pt�1m ) and each of the training patterns xk = (xk1; xk2; � � � ; xkm),
k = 1; 2; � � � ; t� 2 is measured as

Distance(pt�1;xk) =
q
(pt�11 � xk1)2 + (pt�12 � xk2)2 + � � �+ (pt�1m � xkm)2: (17)

The new input pattern pt�1 is classi�ed as the class Ck� of the nearest neighbor training pattern xk� with
the minimum distance. In the context of our market selection game, the above nearest neighbor classi�-
cation for the market selection at the t-th iteration can be described as the following three procedures:
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1. Find the k�-th iteration at which the market prices are the most similar to those at the (t � 1)th
iteration.

2. Find the optimal market Ck� at the (k�+1)-th iteration from which the player would have obtained
the highest pro�t.

3. Choose the market Ck� for the t-th iteration.

4.3 Adaptation of Classi�cation System

If the market conditions (e.g., demand-supply relations of some markets and strategies of other players)
change during the iterative execution of our market selection game, the importance of information about
old iterations is less than that of new information. For handling such di�erence in the importance of
available information, we modify the distance measure in (17) so that new patterns are more likely to be
selected as the nearest neighbor training pattern than old patterns as

Modi�edDistance(pt�1;xk) = �(t�2�k) �Distance(pt�1;xk); (18)

where � is a positive constant (� � 1). In the modi�ed distance measure in (18), �(t�2�k) can be viewed
as a penalty factor introduced for increasing the distance between the input pattern pt�1 and old patterns
xk's. When � = 1, the modi�ed distance measure in (18) is actually the same as the distance measure
in (17). If we think that old information is much less important than new information, we may assign a
relatively large value (i.e., 1.1) to �. On the contrary, if we think that old information is valuable as much
as new information, � should be almost the same as 1.0. In our computer simulations, we specify � as
� = 1:0 in the case of the �xed market conditions, and 1.1 when the market conditions are variable.

5 Computer Simulations

In this section, we examine the performance of the fuzzy Q-learning-based strategy and the nearest
neighbor classi�cation strategy through computer simulations on the market selection game in Fig. 1.
For evaluating the performance of these two strategies, we also examine the other strategies described in
Section 3.

5.1 Performance of Each Strategy

First we examine the performance of each strategy at the �xed market condition. In this subsection,
we assume that all the 100 players use the same single strategy. In computer simulations, our game was
repeated 1000 times (i.e., t = 1; 2; � � � ; 1000). For calculating the average pro�t per each iteration and each
player, such a computer simulation was performed 100 times for each strategy because some strategies
involve stochastic nature based on randomization procedures. Average pro�t obtained by each strategy is
summarized in Table 2. From this table, we can see that good results were obtained by the Q-learning-
based strategy and the fuzzy Q-leaning-based strategy. We can also see that the optimal strategy and
the nearest neighbor classi�cation strategies were the worst among the seven strategies. In our computer
simulations, the roulette wheel selection with the linear scaling in (11) was used for the �rst 100 iterations
of our game in the Q-learning-based strategy and the fuzzy Q-learning-based strategy. After the 100th
iteration, the market with the maximum Q-value (i.e., maxfQt

ijjj = 1; 2; � � � ; 5g) was always selected at
each iteration of our game.
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Table 2: Average pro�t by strategy when all the players use the same strategy.

Strategy Average pro�t
Random selection strategy -15.2
Minimum transportation cost strategy 8.0
Optimal strategy for the previous actions -52.8
Mimic strategy of the nearest neighbor player -17.7
Q-learning-based strategy 16.1
Fuzzy Q-learning-based strategy 13.1
Nearest neighbor classi�cation -84.6

5.2 Competition between Strategies

In this subsection, we examine the competition between two or more strategies. First we examine the
situation where one strategy is adopted by half of the players (i.e., 50 players). The other 50 players adopt
another strategy. All combinations of two strategies were examined in the same manner as in the previous
sections. That is, the competition between each pair of strategies was examined by 100 independent trials
of the repeated game with 1000 iterations. In each trial, 100 players were randomly divided into two
groups of 50 players. Simulation results are summarized in Table 3. From this table, we can see that
good results were obtained by the minimum transportation cost strategy, the Q-learning-based strategy
and the fuzzy Q-learning-based strategy.

Table 3: Simulation results of the competition between two strategies.

Strategy Strategy of the other 50 players
Random Cost Optimal Mimic Q Fuzzy Q Nearest

Random | -15.3 -15.3 -15.2 -15.2 -15.2 -15.2
Cost 12.8 | 17.4 9.1 17.1 16.8 6.2

Optimal -20.4 -18.4 | 2.4 -41.6 7.9 -20.0
Mimic -16.4 -2.4 5.8 | 4.5 2.3 -2.5
Q 16.2 16.9 11.8 16.6 | 16.2 14.0

Fuzzy Q 12.5 13.5 15.3 13.2 13.3 | 12.0
Nearest -17.2 -2.3 -16.3 -22.3 -40.4 -27.3 |

Next we examine the competition between two strategies in a di�erent situation where a single player
uses one strategy and the other 99 players use another strategy. All combinations of two strategies were
examined. The performance of a strategy adopted by a single player was examined by 100 independent
trials of the repeated game with 1000 iterations. Among those 100 trials, each of the 100 players was
selected just once as the player to use the di�erent strategy from the other 99 players. Simulation results
are summarized in Table 4. From this table, we can see that the nearest neighbor classi�cation strategy
worked very well.

Furthermore we examine the competition among the seven strategies. In computer simulations, we
speci�ed the number of players adopting each strategy as follows:

Random strategy: 15 players,
Minimum transportation cost strategy: 15 players,

11



Table 4: Performance of each strategy when it was adopted by a single player.

Strategy Strategy of the other 50 players
Random Cost Optimal Mimic Q Fuzzy Q Nearest

Random | -15.1 -15.2 -15.2 -15.2 -15.2 -15.1
Cost 18.1 | 21.9 13.3 17.6 18.4 -7.1

Optimal 15.2 31.8 | 17.8 19.3 17.7 2.6
Mimic -15.2 6.1 64.2 | 15.1 13.1 10.0
Q 15.3 30.0 21.3 19.5 | 16.1 22.9

Fuzzy Q 12.2 29.2 62.9 17.3 14.2 | 22.9
Nearest 15.3 31.8 64.4 19.6 18.9 17.0 |

Optimal strategy for the previous actions: 14 players,
Mimic strategy of the nearest neighbor player: 14 players,
Q-learning-based strategy: 14 players,
Fuzzy Q-learning-based strategy: 14 players,
Nearest neighbor classi�cation strategy: 14 players.

In the same manner as in the previous computer simulations, the performance of each strategy was
calculated over 100 independent trials where players adopting each strategy were randomly selected.
Simulation results are summarized in Table 5. From the comparison between Table 2 and Table 5, we can
see that the performance of almost all strategies was improved by competing with many strategies.

Table 5: Simulation results of the competition among the seven strategies.

Strategy Average pro�t
Random selection strategy -15.2
Minimum transportation cost strategy 17.7
Optimal strategy for the previous actions 16.4
Mimic strategy of the nearest neighbor player 8.4
Q-learning-based strategy 16.1
Fuzzy Q-learning-based strategy 12.9
Nearest neighbor classi�cation 15.2

From the simulation results in Table 2 - Table 5, we can see that the performance of each strategy
strongly depends on situations. For example, while the optimal strategy for the previous actions and the
nearest neighbor classi�cation strategy worked very well in Table 4 and Table 5, their performance in the
other tables was not good.

5.3 Adaptation to Dynamically Changing Conditions

In this subsection, we demonstrate how the fuzzy Q-learning-based strategy and the nearest neighbor
classi�cation strategy can adapt to changes of market conditions. First we examine the change of the
demand-supply relation in each market. In the above computer simulations, we used the demand-supply
relation in Fig. 2 (i.e., ptj = 100 � 3 � Xt

j) for all the �ve markets. In this subsection, we change this
demand-supply relation after the 500th iteration of our market selection game as follows:
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Market 1: pt1 = 100� 2 �Xt
1,

Market 2: pt2 = 100� 4 �Xt
2,

Market 3: pt3 = 100� 4 �Xt
3,

Market 4: pt4 = 100� 2 �Xt
4,

Market 5: pt5 = 100� 4 �Xt
5,

The performance of each strategy was evaluated by 100 independent trials of the repeated game with 1000
iterations where the seven strategies were competed as in the previous subsection (i.e., as in Table 5). In
Fig. 5 - Fig. 7, we show the average performance at each iteration obtained by each strategy. From these
�gure, we can see that the above change of the demand-supply relations did not have a large e�ect on the
performance of each strategy.
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Figure 5: Performance of the optimal strategy and the mimic strategy.
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Figure 6: Performance of the nearest neighbor classi�cation strategy and the Q-learning-based strategy.
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Figure 7: Performance of the minimum transportation cost strategy, the random strategy and the fuzzy
Q-learning-based strategy.

Next we examine the change of strategies of other players. In computer simulations, we �rst assigned
the minimumtransportation cost strategy to 99 players. After the 500th iteration, we assigned the optimal
strategy for the previous actions to those 99 players. Throughout 1000 iterations of our game, the fuzzy
Q-learning-based strategy was used for the other single player. Such a computer simulation was performed
100 times so that each of the 100 players was selected as the fuzzy Q-learning player just once. In this
manner, the performance of the fuzzy Q-learning-based strategy was evaluated. We also evaluated the
performance of the nearest neighbor classi�cation strategy in the same manner. For comparison, we also
examined the performance of the Q-learning-based strategy. Simulation results are summarized in Fig. 8 -
Fig. 10. From these �gures, we can see that the fuzzy Q-learning-based strategy and the nearest neighbor
classi�cation strategy could adapt to the change of strategies of other players.

Number of iterations

A
ve

ra
ge

 p
ro

fit

1 200 400 600 800 1000
-20

-10

0

10

20

30

40

50

60

Figure 8: Performance of the Q-learning strategy.
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Figure 9: Performance of the fuzzy Q-learning-based strategy.
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Figure 10: Performance of the nearest neighbor classi�cation strategy.

6 Conclusion

In this paper, we showed how the design of a decision making system for a market selection game can be
handled as a pattern classi�cation problem. The design of the decision making system was viewed as the
design of a pattern classi�cation system. In this context, we proposed a nearest neighbor classi�cation
strategy for the market selection game. Through computer simulations, we examined the performance
of various strategies for the market selection game. Simulation results indicated that the performance of
each strategy strongly depended on situations. Strategies, which worked very well on some situations, did
not work well on other situations. Some adaptable strategies such as the fuzzy Q-learning-based strategy
and the nearest neighbor classi�cation strategy could quickly respond to changes of market conditions.
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