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Abstract

This paper investigates the general equilibrium consequences of assuming that the time it takes

an individual to obtain a skill depends on the average level of education in the neighborhood of

his/her birth. These neighborhood e�ects provide an incentive for the high educated to break-o�

and form an exclusive neighborhood. Economic segregation is implemented by a zoning require-

ment which speci�es that members of the better neighborhood must purchase an exogenously

given amount of housing services. The investigation reveals that individuals born into better

neighborhood prefer economic segregation while those born into the less well-o� neighborhood

prefer the case of one neighborhood. The analysis also shows that various measures of economic

inequality increase with the change from one to two neighborhoods, and increase with the exclu-

sivity of the zoning restriction. The behavior of the agents in this model is similar to a central

hypothesis of The Truly Disadvantaged [19].



1 Introduction

This paper investigates the general equilibrium consequences of assuming that the time it takes

an individual to obtain a skill depends on the average level of education in the neighborhood of

his/her birth. These neighborhood e�ects provide an incentive for the high educated to break-o�

and form an exclusive neighborhood. Economic segregation is implemented by a zoning require-

ment which speci�es that members of the better neighborhood must purchase an exogenously

given amount of housing services. The investigation reveals that individuals born into better

neighborhood prefer economic segregation while those born into the less well-o� neighborhood

prefer the case of one neighborhood. The analysis also shows that various measures of economic

inequality are increasing in the exclusivity of the zoning restriction. The behavior of the agents

in this model is similar to a central hypothesis of The Truly Disadvantaged [19].

Instead of assuming that education has external e�ects, previous studies have treated edu-

cation as a local public good. Durlauf [4] and Benabou [1] have shown that if capital markets

are imperfect and education is a local public good whose quality is determined by its resources,

then a voting mechanism causes society to split up into distinct neighborhoods. The equilib-

rium of the multi-neighborhood economy is not Pareto optimal. Papers by Epple et al [5] and

Fernandez and Rogerson [6] investigate the allocation of a local public good and the welfare

properties of models in which individuals with exogenously determined incomes endogenously

determine where to live. But these papers su�er from an empirical problem. The Coleman

Report [3] noted that there was no simple relationship between a school's resources and average

student outcomes. More recently, Hanushek [8] attributes inter-school di�erences in achievement

to di�erences in teacher quality. The distribution of teacher quality is determined not just by

salaries but also by the environment that the school has to o�er. This environment is largely de-

termined by the neighborhood. Further empirical support for the importance of a neighborhood

based mechanism comes from a series of earnings regressions done by Betts [2]. Using the NLSY

panel data set, he found that dummy variables for the high school attended were statistically

signi�cant in predicting labor market success, while the actual measures of school quality were

not. Perhaps, the dummy variables were picking up the neighborhood e�ects. Minicozzi [12] has

found that income based measures of neighborhood quality have signi�cant nonlinear e�ects on

social mobility.
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The Gautreaux Program in Chicago is a natural experiment that suggests the importance

of neighborhood e�ects. A court ordered attempt to redress previous racial discrimination

in public housing resulted a sample of public housing residents receiving vouchers for better

apartments in either the city or the suburbs of Chicago. Rosenbaum [13] and Rosenbaum and

Popkin [14] argue that the selection process yielded a sample representative of a majority of

the African American public housing residents. Since people admitted to the program were

randomly assigned to city or suburban spots, the authors argue that the program serves as a

natural experiment. Rosenbaum [13] �nds that the children of those that received suburban

apartment had signi�cantly better educational achievement and early labor market success.

In the sociological literature, Wilson [19, 20] argues that adults \collectively socialize" the

next generation. Wilson [19] found that the number of extreme poverty tracts in Chicago

was increasing and that much of increase could be attributed to out-migration by middle- and

working class families. This out
ow increased the incidence of poverty in these areas giving rise

to \concentration e�ects" and \social isolation" of its residents. According to Wilson [19, pp.

46-62], the high concentration of poverty deprived the children of the remaining residents of

successful role models. Role models provide information. Wilson [19, p. 56] notes that

the very presence of [middle- and working class] families provides mainstream role

models that help keep alive the perception that education is meaningful, that steady

employment is a viable alternative to welfare, and that family stability is the norm,

not the exception.

Wilson also argues that a high incidence of poverty will a�ect the social norms governing

the community. His point can be buttressed by a more economic logic. Social norms imposed

and enforced by resident adults can be especially important in controlling drug use and criminal

activity by adolescents. Because of the higher opportunity costs, higher levels of education

among adults reduce drug use and criminal activity. An out
ow of adults with high opportunity

costs will increase the proportion of in the neighborhood adults engaging in such activities. This

increase reduces the e�ectiveness of the group of all adults in collectively pressuring adolescents

not to engage in such behavior.

Surveys by Jencks and Mayer [9] and Gephart [7] classify Wilson's theory as a theory of

\collective socialization." Neighborhood adults outside of the family collectively play an impor-
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tant role in socializing the children of the neighborhood. Both surveys conclude that there is

some evidence that growing up in a poor neighborhood reduces an individual's education and

adversely a�ects her/his chances of labor market success.

This paper examines the general equilibrium e�ects of one formalization of collective social-

ization. Collective socialization is here reduced to the idea that the psychic and time costs of

obtaining a given level of education are higher in poor neighborhoods than in better neighbor-

hoods. Here, the psychic and time costs of obtaining a given level of education are decreasing

in the quality of the neighborhood.

Marshall's [11] concept of local external e�ects provides the argument for the proposed ex-

tension and standard technique the e�ect into a formal model. Marshall [11, p. 271] argued that

industries tend to agglomerate in given localities because, once established, their presence and

activity greatly reduce the costs of training workers and advancing the production technology.

The relevant part of this often quoted passage is that

the mysteries of the trade become no mysteries; but are as it were in the air, and

children learn many of them unconsciously.

Children learn some of the skills of a trade through normal social interaction. This process of

knowledge transfer from adults to children is not be limited to any speci�c skill. The general

formulation of Marshall's idea has adults transferring general human capital to children through

normal social interaction. The more educated the adults in a neighborhood are, the higher will

be the rate of knowledge transfer that occurs from social interaction. Such transfer can be as

simple as what a child picks up from a conversation between the parents of her/his friends.

Alternatively, the process may be more formal. For instance, consider a youngster who is born

to technologically challenged parents and is interested in computer programming. The higher

the average level of education in the neighborhood, the greater the probability that the child

will encounter an adult, or another child, willing and able to help. Wilson argues that collective

socialization is a key determinant of the educational and labor market success of the children of

a neighborhood. He cites middle class 
ight as an important cause in the sharp increase in the

number of very bad neighborhoods and their serious decrease in quality.

The \collective socialization" mechanism modeled in this paper complements the work of

Benabou [1] and Durlauf [4] because it evades Coleman type problems. It also extends the ideas
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of Epple et al [5] and Fernandez and Rogerson [6] because both incomes and the sorting of

individuals over neighborhoods are endogenous.

Neighborhood e�ects are not the only factor that determines the time it takes a child to

learn. All of the above arguments for neighborhood e�ects, and many more, imply that the time

cost of education should be decreasing in the level of parental human capital. Individual ability

is also an important factor in �xing an individual's opportunity.

Individuals in this model world choose their training, where to buy a house and how much

to consume. One can remain low skilled and go straight to work at the low wage. Alternatively,

an individual can spend some time studying to become high skilled before earning the high

wage. The time required is strictly decreasing in the average skill level in the child's formative

neighborhood, the parents' level of education and the child's ability level. Wages clear the labor

markets. There are two cases. In the one neighborhood case there is no zoning and everyone lives

in a single neighborhood. When there is zoning, individuals endogenously distribute themselves

over the two neighborhoods. The equilibria of the one and two neighborhood cases are derived

and compared.

In the two neighborhood case, only the high skilled can a�ord to purchase the exogenously

zoned minimum house size and enter the high neighborhood. The average level of education in

the low neighborhood is increasing in the number of high skilled people who purchase houses

in this neighborhood. Numerical simulations of the theoretical model show that there are wide

ranges of parameters for which several key results hold. Those born into the better neighborhood

prefer the case of two neighborhoods to the single neighborhood case. In contrast, those born

into the low neighborhood from low skilled parents prefer the single neighborhood case.

An increase in the exogenous zoning requirements generates a process similar to that de-

scribed in The Truly Disadvantaged. The middle class of high skilled in the low neighborhood


ees into the better neighborhood. This 
ight raises the cost of becoming high educated for

those born into the low neighborhood. Those born into the low neighborhood, of either high or

low skilled parents, are made worse o�, while those born into the high neighborhood are made

better o�.

The middle class 
ight is due to a wealth e�ect. An increase in the exogenous zoning

requirement raises the value of a spot in the better neighborhood relative to one in the worse

neighborhood. Since children inherit the spots of their parents, an increase in this di�erence
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in inherited wealth makes it relatively easier for children of the high neighborhood to become

high skilled than for children of the low neighborhood. The increase in the di�erence of relative

di�culties causes some of the middle class to move from the low to the high neighborhood.

There is more economic inequality, less social mobility and the distribution of opportunity is

more unequal in the two neighborhood case than in the one neighborhood case. Increasing the

zoning requirement for entry into the high neighborhood, increases economic inequality, lowers

social mobility and makes the distribution of opportunity more unequal.

This paper also provides a new framework for analyzing economic opportunity. The cost that

an individual of a given ability must pay to become high skilled depends on the circumstances of

her/his birth. Those born into better situations have to pay less to become high educated than

those born into less fortunate surroundings. This paper identi�es lower opportunity costs with

more opportunity. Furthermore, the cost of education function is parameterized so as to permit

the derivation of the analytic cumulative distribution function of opportunity. The behavior of

this CDF is examined over several cases and it is found that there is greater inequality in oppor-

tunity when there are two neighborhoods than when there is only one. Furthermore, increases

in the degree of exclusivity of the better neighborhood increase inequality in the distribution of

opportunity.

2 The Model

2.1 The Inhabitants and Their Utilities

In this world, individuals must make three choices. People must decide where to purchase a

house, how much to consume, and what skill level to obtain.

People care about their own consumption, the quality of their housing and the expected

utilities of their children. They earn income from work and also inherit the house of their parent

which they may either sell or choose to inhabit. People spend their incomes on consumption

and housing.

Individuals are born from a single parent, who is either high or low skilled. Everyone is born

low skilled and this level of human capital is normalized to 1. Some people become high skilled

and this level of human capital is parameterized at ~H units of human capital.

There may be either one or two neighborhoods. Houses yield dwelling services to their single
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inhabitants. All houses within a neighborhood are identical. When there is one neighborhood,

all houses yield a single unit of dwelling services and neighborhood choice is trivial. When there

are two neighborhoods, one of them contains a higher proportion of high skilled residents than

the other. The neighborhood with a higher average level of skill is denoted as the high skilled

or better neighborhood. The other is known as the low skilled or worse neighborhood. In the

two neighborhood case, low neighborhood houses o�er a single unit of dwelling services while

high houses yield DH units. DH is set by exogenously determined zoning restrictions.

In the two neighborhood case, people must choose from the following menu

1. remaining low skilled and living in the low neighborhood;

2. staying low skilled but buying a house in the high neighborhood;

3. achieving the high level of skill but purchasing a house in the low neighborhood.

4. becoming high skilled and buying a house in the high neighborhood;

Any choice from this menu is a path. Each path is uniquely identi�ed by a skill level and a

neighborhood. Skill level is denoted by ht 2 fL;Hg: A neighborhood choice is Nt 2 fL;Hg:

The four possible states are LL; LH; HL; and HH; where the �rst letter gives the skill level,

ht and the second indicates neighborhood choice, Nt.

It is important to highlight the distinction between the skill level and the amount of human

capital wielded by someone with that skill. Skill is a binary variable over Low and High. So an

individual has a skill level ht 2 fL;Hg: The parent's skill level, ht�1 is restricted to the same set.

Human capital, denoted by H, is a binary variable over the levels of human capital that accrue

to each state. The human capital of a low skilled individual is normalized to 1. A high skilled

individual has ~H units of human capital, where ~H is a parameter of the model. An individual

has Ht 2 f1; ~Hg units of human capital. The parent's level, denoted by Ht�1, is also in f1; ~Hg.

There are three important restrictions on the time cost of education function. The study time

required to become high skilled should be strictly decreasing in the average level of education

in the neighborhood. It should also be strictly decreasing in an individual's own ability and

strictly decreasing in the parent's level of education. It will be necessary to integrate over the
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cost function, the following functional form was chosen,

c(Ht�1; Nt�1; !) =
1

Ht�1
�HNt�1

(1� !); (1)

where

� Nt�1 denotes the child's formative neighborhood, chosen by the parent

� ! is the ability level of the individual

� Ht�1 is the amount of human capital managed by the parent

Ht�1 =

8<
: 1 if the parent is low skilled

~H if the parent is high skilled

� �HNt�1 is the average level of human capital in the child's formative neighborhood.

This function speci�es the amount of time that a given child must study in order to become

high skilled. Note that since ! 2 [0; 1] the range of possible costs is [0; 1
Ht�1 �HNt�1

], and that the

upper bound is less than or equal to 1.

People have 1 unit of time which they must divide between work and study. Consider an

individual with ability ! born to a parent with a skill level ht�1 in a neighborhood with an

average human capital level of �HNt�1 : If this person remains low skilled, then her/his income

does not depend on the cost function. By going straight to work, s/he earns the low wage,

WL. However, if this person becomes high skilled then s/he has � = 1� 1
Ht�1 �HNt�1

(1�!) units

of time to work at the high skilled wage. Becoming high skilled will result in an income of

� =WH

�
1� 1

Ht�1 �HNt�1
(1� !)

�
:

Since both skill levels are in the choice sets of individuals from both neighborhoods, a new

approach must be taken to the identi�cation of opportunity. R. H. Tawney provides a colorful

and useful de�nition of equal opportunity,

[Equality of opportunity] obtains in so far as, and only in so far as, each member of

a community, whatever his birth, or occupation, or social position, possesses in fact,

and not merely in form, equal chances of using to the full his natural endowments of

physique, of character, and of intelligence. In proportion as the capacities of some are

sterilized or stunted by their social environment, while those of others are favored or
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pampered by it, equality of opportunity becomes a graceful, but attenuated �gment.

[17]

This de�nition implies that equal opportunity occurs when a person with ability ! faces the

same opportunity cost of becoming high skilled, regardless of her/his birth. If two people of

the same ability level have di�erent opportunity costs of becoming high skilled because they are

born into distinct circumstances, then they have di�erent opportunities in life. If a person is

born into a social position with ability ! has a higher opportunity cost of becoming high skilled

than another individual with the same ability born into a better social position, then the former

has less opportunity. The above speci�cation of the time cost of education function suggests

that an individual's \opportunity" is Ht�1
�HNt�1 . In this formulation, opportunity varies over

initial states but is una�ected by one's own ability.

This paper investigates the nature and degree of inequality that is purely a product of social

and technological causes. Hence, the ability of a child is assumed to be independent of the

ability level of the parent and ability is assumed to distributed Uniform [0; 1].

People have Cobb-Douglass preferences over dwelling services and consumption. Parents

discount the value of their children's utility at a factor � 2 (0; 1): Given this information, one

can now write down maximization problem facing each individual in this economy. A person

with ability !, born to a parent with skill ht�1 and into a neighborhood with an average human

capital level of �HNt�1 must solve

max
X;Nt;ht

X
D
1�

Nt

+ � ~Vht;Nt (2)

such that

PXX + PDDNt =Wht

�
1� St

1

Ht�1
�HNt�1

(1� !)

�
+ PDDNt�1 ;

Nt 2 fL;Hg and Nt�1 2 fL;Hg;

and

ht 2 f1; ~Hg and ht�1 2 f1; ~Hg

where

� X is the amount of the consumption good
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� Nt is the neighborhood chosen by the child

� Nt�1 is the neighborhood chosen by the parent

� ~Vht;Nt is the expected value function for the path ht; Nt

� PD is the price of a unit of dwelling services

� PX is the price of a unit of the consumption good

� DNt is the amount of dwelling services in the neighborhood chosen by this person.

� DNt�1 is the amount of dwelling services in the neighborhood chosen by the parent of this

person.

� ht is the skill level chosen by this person

� Ht is the level of human capital that corresponds to the skill level chosen by this person

� Wht is the wage that corresponds to the chosen skill level.

� St is an indicator variable that equals 1 if ht = H and zero otherwise.

The combination of an initial state and a terminal state completely determine the levels

consumption and dwelling services. For example, the budget constraint of someone of ability

level ! who is born into the LL state and chooses the path LL is

WL + PD � 1 = X + PD + 1:

Thus, if someone born into LL chooses to go LL then s/he will consume

X =WL:

Hence, the lifetime utility of that this path o�ers someone from LL is

LU(!;LL;LL) =W


L + � ~VLL:

One can perform similar calculations on an individual from a general state ht�1Nt�1. Let

LU(!; S0; S1) be the lifetime utility obtained by a person of ability ! born into state S0 who
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opts for state S1: The calculations imply that someone with ability level ! born into the state

ht�1Nt�1 must choose between the following four lifetime utilities,

LU(!; ht�1Nt�1; LL) =
�
WL + PD(DNt�1 � 1)

�

+ � ~VLL (3)

LU(!; ht�1Nt�1; LH) =
�
WL + PD(DNt�1 �DH)

�

D

1�

H + � ~VLH (4)

LU(!; ht�1Nt�1;HL) =

�
WH �

WH

Ht�1
�HNt�1

(1� !) + PD(DNt�1 � 1)

�

+ � ~VHL (5)

LU(!; ht�1Nt�1;HH) =

�
WH �

WH

Ht�1
�HNt�1

(1� !) + PD(DNt�1 �DH)

�

D

1�

H + � ~VHH (6)

Note that the �rst two choices are independent of the individuals ability level !:

2.2 Which Paths are Chosen In Equilibrium

This section demonstrates that only 3 of the four paths will be chosen in any stable equilibrium.

Consider the problem of a person with an ability level ! who is born into some initial state.

This person will choose the path that o�ers the highest lifetime utility. On a graph of the four

possible paths over ability, each person ! will choose the path that o�ers him/her the highest

level of lifetime utility. Thus, only the paths on the outer envelope will be chosen.

The Lifetime Utilities for each path derived in equations (3-6) have three key implications.

First, as is shown in Appendix B, the HH path is steeper over ! than the HL path. Second,

as is clear from the equations, both the LL and LH paths are independent of ability. Finally,

that the vertical intercept for HL path is higher than the vertical intercept of the HH path is

a necessary condition for the HL path to be chosen in some equilibrium. Were the intercepts

reversed since the HH curve is steeper than the HL path, the HL path would never be chosen in

equilibrium. These three results imply that there are four possible con�gurations of the Lifetime

Utilities when graphed over ability.

Consider Case 1, depicted in �gure 1. Ability ! is on the horizontal axis and lifetime utility

is on the vertical axis. The line \UHH" in the graph gives the lifetime utility for each ability

level ! for someone born into this general initial state. In case 1, the outer envelope touches

the paths LH, HL and HH: There is an important general point that can be gleaned from this
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Figure 1:

Case 1

Ability

ULL

UHH

UHL

ULH

w_1 w_2

LU

0 1

graph. Since the LH and LL are both independent of ability they both have zero slopes when

graphed over !. Thus, the outer envelope will only touch three of the four possible paths.1

While for any particular initial path either ULH is always above ULL or ULL is always above

ULH, this is not su�cient to show that one path dominates the other for all initial states. It

may be the case that while ULL dominates ULH for one initial path, ULH dominates ULL

for another initial path. This paper assumes that one path dominates the other for all initial

paths. Hence, only three of the four states can exist in equilibrium.

Returning to the particulars of this speci�c case, were these three paths to be chosen in

equilibrium, only high educated people would purchase homes in the\low" neighborhood while

a mix of high and low skilled people enter the \high" neighborhood. If the labels mattered, then

this situation could be ruled out the basis of consistency. In this case, the low neighborhood must

have an average skill level that is less than or equal to that of the \high" neighborhood. However,

microeconomic convention maintains that the labels are not so important. This convention

implies that an equilibrium in which the low and high neighborhoods switch with each generation

does exit. In this equilibrium, each new generation reverses the ranking of the neighborhoods.

1There is a set of parameters for which the two paths coincide. However, this extremely special case that can

easily be ignored.
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Figure 2:

Ability

ULL

UHH

UHL

ULH

w_1 w_2

LU

0 1

Case 2

The good neighborhood becomes the bad and vice-versa. This equilibrium would require a

degree of neighborhood rejuvenation and decline that is clearly counter-factual. For this reason,

the equilibrium pictured in Case 1 is deemed to be \unstable", and ruled out.

Having ruled out the situation in Case 1, one can now turn Case 2 posited in Figure 2. Here

the paths HH, HL and LL are all chosen in equilibrium, giving rise to a three state model.

There is nothing to rule out this situation and it is examined in detail as the \Three Path

Case." The states can be interpreted as the High, Middle and Low classes, respectively. This

interpretation ranks the states in an intuitive fashion with HH at the top, HL in the middle

and LL on the bottom. This ranking of the states is employed through out the paper. Of

special interest are the conditions in which the \Middle class" of HL shrinks. And, where are

the former residents of HL going?

Case 3, drawn in Figure 3, details a situation in which the outer envelope only touches two of

four paths. In this case only the states HH and LH will be chosen for all initial states. If only

these two paths are chosen, then everyone will go to the \high" neighborhood. If everyone goes

to the \high" neighborhood then there will only be one neighborhood. The \One Neighborhood

Case" is analyzed extensively in subsequent sections.

In Case 4, illustrated in Figure 4, the outer envelope only touches the paths HH and LL.
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Figure 3:

Ability

ULL

UHH

UHL

ULH

LU

0 1

Case 3

w

This would give rise to the case of complete economic segregation. In this two state model,

individuals would either choose high education and a house in the high neighborhood or low

education and a house in the low neighborhood. This situation may exist. However since this

paper seeks to investigate the role of the middle class in generating \concentration e�ects", the

two state model is not examined here.

2.3 Who Chooses Which State: The Three Path Case

Each person is born into a speci�c state with an ability level. In the Three Path Case, for each

initial state, those with the lowest abilities will choose LL, the more able will prefer HL and

the remaining most able will opt for HH. For each pair of contiguous states, there is a person

with a unique ability level who is indi�erent between the two states. This person is known as

the cuto� person and her/his ability level is termed a cuto� ability level.

Another look at Figure 2 helps to clarify the point. The qualitative situation pictured in

Figure 2 holds for all initial states, although the magnitudes and slopes di�er. In the �gure,

those with an ability strictly below w1 prefer LL, because it is gives them the highest lifetime

utility. The person with ability w1 is indi�erent between the LL and HL paths because they

o�er exactly the same lifetime utility. Thus, w1 is a cuto� level. Continuing out the ability
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Figure 4:

Ability

ULL

UHH

UHL

ULH

LU

0 1

Case 4

w

axis, those with abilities strictly between w1 and w2 prefer the HL path, while w2 is indi�erent

between HL and HH. Hence, w2 is also a cuto� level.

In Figure 2 there are two cuto� levels. The generality of the initial state implies that there

are two cuto� levels for each initial state. Thus, there are six cuto� levels for the Three State

Case. The precise algebraic derivations of all six is found Appendix A.2.

While the cuto�s are de�ned as part of the solution to the utility maximization problem, the

cuto�s also identify the conditional transition probabilities. Since ability is distributed uniform

over [0; 1] and i.i.d. over generations, the probability that someone born into LL will choose the

LL path is !LL1. In general, let Pr fhtNtjht�1Nt�1g be the probability of choosing the path

htNt conditional on being born into ht�1Nt�1. The assumption that ability is Uniform [0,1] and

i.i.d. implies that

� Pr fLLjLLg = !LL1

� Pr fHLjLLg = !LL2 � !LL1

� Pr fHHjLLg = 1� !LL2

� Pr fLLjHLg = !HL1
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� Pr fHLjHLg = !HL2 � !HL1

� Pr fHHjHLg = 1� !HL2

� Pr fLLjHHg = !HH1

� Pr fHLjHHg = !HH2 � !HH1

� Pr fHHjHHg = 1� !HH2

In any long run equilibrium, the number of people in each state must be given by the total

number of people who choose to be in that state. For instance, the number of people in LL must

be the sum of those who opt for LL and were born into the states LL, HL and HH. De�ne

�LL to be the fraction of the total population that chooses the LL path. Then

�LL = Pr fLLjLLg �LL + Pr fLLjHLg�HL + Pr fLLjHHg�HH (7)

where �HL is the fraction of the population that chooses the HL path and �HH is the fraction of

the population that chooses the HH path. The analogous constraints on the sizes of the other

two states are

�HL = Pr fHLjLLg �LL + Pr fHLjHLg�HL + Pr fHLjHHg�HH (8)

and

�HH = Pr fHHjLLg�LL + Pr fHHjHLg �HL + Pr fHHjHHg �HH : (9)

Since the conditional probabilities have been found in terms of the cuto�s, these equations can

be rewritten as

�LL = !LL1�LL + !HL1�HL + !HH1�HH ; (10)

�HL = (!LL2 � !LL1)�LL + (!HL2 � !HL1)�HL + (!HH2 � !HH1)�HH ; (11)

and

�HH = (1� !LL2)�LL + (1� !HL2)�HL + (1� !HH2)�HH : (12)
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Since the �'s are population fractions, they must sum to one, i.e.

�LL + �HL + �HH = 1: (13)

Because the conditional probabilities for each state sum to one, equations (10) -(12) are

linearly dependent. However, any two of these three equations and the condition that the

population fractions sum to one, equation (13), uniquely determine the population fractions in

terms of the cuto�s. The solutions are provided in Appendix A.3.

Since the population is normalized to 1, �LL + �HL is the size of the low neighborhood and

�HH is the size of the high neighborhood. These population fractions also determine the labor

supplies; �LL is the supply of low skilled labor and �HL + �HH is the supply of high skilled

labor.

2.4 Who Chooses Which State: The One Neighborhood Case

In the One Neighborhood Case, there are also cuto�s and transition probabilities. However,

in the One Neighborhood Case, there are only two paths. Since everyone lives in the same

neighborhood, the neighborhood e�ect is same for all and the cost functions only di�er over the

parent's skill choice.

Consider the problem of an individual with ability ! born into either initial state, in a One

Neighborhood world. This person's problem is depicted in Figure 5. Being a Lifetime utility

maximizer, this person will choose the higher of the two paths available. As in the Three Path

Case, the highlighted outer envelope illustrates the choice for each person !. Figure 5 also shows

that there is a single ability level, w, at which the two lifetime utilities are equal. Everyone with

an ability level less than w opts to remain low skilled, i.e. they choose the path L. Those with

ability levels at least as large as w become high skilled by choosing the H path.

The equations that specify the lifetime utility available for each ability level and each initial

state are given in Appendix A.4. This appendix also derives the equations that can be explicitly

solved for the cuto�s for the low and high states which are !L and !H , respectively. As in the

Three State Case, the cuto�s yield the conditional transition probabilities from one state to the

other. Let Pr fhtjht�1g be the probability that someone born into the state ht�1 choose the

state ht. Then, in terms of the cuto�s, the conditional transition probabilities are

� Pr fLjLg = !L

16



Figure 5:

LU

Ability
w

L

H

One Neighborhood
Case

� Pr fHjLg = 1� !L

� Pr fLjHg = !H

� Pr fHjHg = 1� !H

In any long run equilibrium for the One Neighborhood Case, the number of people in each

state must be given by those that choose to enter it. Thus, for the low state

�L = !L�L + !H�H ; (14)

where �L is the fraction of the population in the low state and �H is the fraction of the population

in the High state. There is a similar equation for �H , but, like the Three Path Case, the fact that

the conditional transition probabilities sum to one over each state makes it linearly dependent on

Equation (14). However, the fact that the two populations fractions must sum to one provides

a second linearly independent equation which is

�L + �H = 1: (15)

The solution to these two equations and two unknowns is given in Appendix A.5. Since �L

is the fraction of the population that remains low educated, it gives the supply of low skilled

labor. Similarly, �H is the supply of high skilled labor.
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2.5 The Expected Value Functions of the States in the Three Path Case

The people in this economy use dynamic programming to determine their optimal paths. From

a solution standpoint, the key objects of interest are the expected value functions for each path.

This section sets up the derivation of the equations that can be solved for the expected value

functions in the Three Path Case. The actual equations are given in Appendix A.6.

The Optimality Equation of Dynamic Programming requires that the value of the LL path

for person ! is

VLL(!) = max
n
W



L + � ~VLL; �

WH �
WH

�HNL

(1� !)

�

+ � ~VHL;�

WH �
WH

�HNL

(1 � !) + PD(1�DH)

�

D

1�

H + � ~VHH

�
(16)

Hence, the expected value function is

~VLL = E[VLL(!)] =

Z 1

0

VLL(!)d!: (17)

Since the cuto�s conveniently allow one to clear out the max function, the problem reduces to

~VLL =

Z !LL1

0

h
W



L + � ~VLL

i
d!

+

Z !LL2

!LL1

��
WH �

WH

�HNL

(1� !)

�

+ � ~VHL

�
d!

+

Z 1

!LL2

��
WH �

WH

�HNL

(1� !) + PD(1�DH)

�

D

1�

H + � ~VHH

�
d!: (18)

Similar arguments for the other two states imply that

~VHL =

Z !HL1

0

h
W



L + � ~VLL

i
d!

+

Z !HL2

!HL1

" 
WH �

WH

~H �HNL

(1� !)

!

+ � ~VHL

#
d!

+

Z 1

!HL2

" 
WH �

WH

~H �HNL

(1� !) + PD(1�DH)

!

D

1�

H + � ~VHH

#
d!: (19)
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and

~VHH =

Z !HH1

0

h
(WL + PD(DH � 1))
 + � ~VLL

i
d!

+

Z !HH2

!HH1

��
WH �

WH

~H2
(1� !) + PD(DH � 1)

�

+ � ~VHL

�
d!

+

Z 1

!HH2

��
WH �

WH

~H2
(1� !)

�

D

1�

H + � ~VHH

�
d!: (20)

Performing the integration in equations (18)-(20) yields a system of three equations and three

unknowns that can be uniquely solved for the ~VLL; ~VHL; ~VHH for given values of the parameters

and the other endogenous variables. The equations that result from the integration are given in

Appendix A.6.

2.6 The Expected Values of the States: The One Neighborhood Case

As in the Three Path Case, the methodology for obtaining the Expected Value functions is to �nd

the Value Function for each state using the Optimality Equation of Dynamic Programming and

then use the cuto�s to eliminate the maximum operator leaving a simple integration calculation.

Using the Optimality Equation of Dynamic Programming, the value to person ! of being

born into the low state is

VL(!) = max

�
W



L + � ~VL;

�
WH �

WH

�H
(1� !)

�

+ � ~VH

�
: (21)

Hence, the Expected Value Function is

~VL = E[VL(!)] =

Z 1

0

VL(!)d!: (22)

The cuto�s can be used to clear out the maximum operator, leaving

~VL =

Z !L

0

h
W



L + � ~VL

i
d! +

Z 1

!L

��
WH �

WH

�H
(1� !)

�

+ � ~VH

�
d!: (23)

Carrying out the integration yields that

~VL = !LW


L + !L� ~VL

+
�H

WH(
 + 1)

"
W


+1
H �

�
WH �

WH

�H
(1� !L)

�
+1
#
+ (1� !L)� ~VH (24)
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Similarly, the Optimality Equation of Dynamic Programming implies that the value of the

high state to person ! is

VH(!) = max

�
W



L + � ~VL;

�
WH �

WH

~H �H
(1� !)

�

+ � ~VH

�
: (25)

The corresponding Expected Value Function is

~VH = E[VH(!)] =

Z 1

0

VH(!)d!: (26)

Again, the cuto�s can be used to clear out the maximum operator, yielding

~VH =

Z !H

0

h
W



L + � ~VL

i
d! +

Z 1

!H

��
WH �

WH

~H �H
(1� !)

�

+ � ~VH

�
d!: (27)

The result is that

~VH = !HW


L + !H� ~VL

+
~H �H

WH(
 + 1)

"
W


+1
H �

�
WH �

WH

~H �H
(1� !H)

�
+1
#
+ (1� !H)� ~VH : (28)

Equations (24) and (28) can be uniquely solved for ~VH and ~VL for given values of the parameters

and the other endogenous variables.

2.7 The Market for Dwelling Services

The production and pricing of dwelling services is assumed to be the same in either case. In

contrast, the di�erent partitions of the population over the states and distinct levels of dwelling

services purchased per individual give rise to two aggregate demand equations. In the market

for dwelling services, only the aggregate demand equation changes over the two cases.

The market for dwelling services is assumed to be perfectly competitive. The production

side of the market is modeled by a single representative producer, known as \the Developer".

The Developer has a Cobb-Douglass technology for providing dwelling services, D from low and

high skilled labor, LL and LH , respectively. The production function is

D = SDL
�DL

1��D
H (29)

where SD is a scale factor for the production function and �D is expenditure share of low skilled

labor. SD should be interpreted as a �xed capital endowment for the dwelling services sector.
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Because the addition of a savings decision would signi�cantly complicate the model, physical

capital is taken as �xed.

Since the technology is constant returns to scale, pro�t maximization requires a zero pro�t

assumption. Thus, it is assumed that this cost minimizing developer prices at unit cost:

PD =
1

SD

�
WL

�D

��D � WH

1� �D

�1��D

(30)

In the Three Path Case, there are two levels of dwelling services. Without loss of generality,

the level for the low neighborhood is normalized to one. It is assumed that exogenous zoning

laws have set the level dwelling services for the high neighborhood at D = DH : The level for DH

was set exogenously to facilitate the analysis of how di�erent degrees of exclusivity in the high

neighborhood a�ect the model. For nearly every level of DH there is some mechanism via which

the inhabitants would choose DH . Although, some mechanisms are more credible than others,

the goal is to focus the e�ects of raising the degree of exclusivity rather than the mechanism

itself.

Since the size of the total population is normalized to 1, aggregate demand for dwelling

services in the Three Path Case is given by

DD3 = (�LL + �HL) + �HHDH (31)

Market clearing implies that

(�LL + �HL) + �HHDH = D: (32)

In the One Neighborhood Case, everyone purchases an identical quantity of dwelling services.

Convention and the need to compare this case with the Three Path Case, require that this

quantity be normalized to one. Hence, aggregate demand for the One Neighborhood Case is

DD1 = 1 (33)

So market clearing for this case requires that

1 = D: (34)
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2.8 The Market for the Consumption Good

The production and pricing of the Consumption is also the same in both the Three Path Case

and the One Neighborhood Case. The complication that the aggregate demands are di�erent is

avoided by using Walra's Law to drop the consumption market clearing condition in each case.

What remains of the Consumption Good sector is identical over the two cases.

The perfectly competitive representative �rm that produces the consumption good X has

Cobb-Douglass technology that enables it to produce X according to

X = SXL
�XL

1��X
H (35)

where SX is a scale factor for the production function and �X is expenditure share of low skilled

labor. As in the Dwelling services sector, the scale factor should be interpreted as a �xed capital

endowment.

The consumption good is used as the numeraire. The zero pro�t condition implies that the

producer prices at unit cost. Hence, cost minimization implies that

1 =
1

SX

�
WL

�X

��X � WH

1� �X

�1��X

(36)

2.9 The Labor Markets

Since the production side of both sectors is the same in each case, the factor demands are also

the identical. The supplies of high and low skilled labor, however, di�er over the two cases.

Consider the Three State Case �rst. After deriving the demands for low and high skilled labor

for each of the two sectors, one can incorporate the market clearing conditions for each type of

labor. Since only those in state LL supply low skilled labor, market clearing requires that

�LL =
�DPDD

WL

+
�XX

WL

: (37)

The �rst term on the RHS of equation (37) gives the demand for low skilled labor from the

dwelling services sector. The second term is the demand for low skilled labor from the consump-

tion sector. Since people in both HL and HH supply high skilled labor, market clearing for

high skilled labor requires that

�HL + �HH =
(1� �D)PDD

WH

+
(1� �X)X

WH

: (38)
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The �rst term on the RHS of equation(38) gives the demand for high skilled labor from the

dwelling services sector. The second term is the demand for high skilled labor from the con-

sumption sector.

In the One State Case, those in state L supply low skilled labor while those in H supply

high skilled labor. Since the factor demands are the same as in the Three Path Case, market

clearing for low skilled labor in the One Neighborhood Case is

�L =
�DPDD

WL

+
�XX

WL

: (39)

And market clearing for high skilled labor requires that

�H =
(1� �D)PDD

WH

+
(1� �X)X

WH

: (40)

2.10 Equilibrium

In both the Three Path Case and the One Neighborhood Case, the models are two sector general

equilibrium models in which the constant returns to scale representative �rms earns zero pro�ts.

An equilibrium for this class of models is a set of prices and quantities in which consumers

maximize their utilities, �rms minimize costs, �rms earn zero pro�ts and all markets clear.

This section identi�es the equations that are used in computing an equilibrium for each case.

However, it is important to note that, in each case, the systems of equations are necessary

but not su�cient conditions for an equilibrium. In both cases, there are restrictions on the

endogenous variables that are only implicit in the equations. Speci�cally, utility maximization

in the Three Path Case implies that the high cuto� must be greater than the low cuto� for each

initial state. Also, in both cases, all the cuto�s must be in [0; 1]. If, for some parameters, the

approximate numerical solution to the system of equations necessary for an equilibrium for that

case violates either of these additional restrictions then that case can not be an equilibrium to

the model for those parameters.

First, consider the equations necessary for an equilibrium of the Three State case. Consumer

maximization places restrictions on the six cuto�s and the three expected value functions. The

logic of the restrictions is developed in the text while the actual equations are given in equations

(51)-(56), (71), (74), and (77) in Appendices A.2 and A.6. As shown in section 2.3, optimal

behavior by the individual consumers implies that the population divides itself over the states
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according to the population fractions given in equations (57)-(59). These population fractions

determine the total labor supplies for low and high skilled workers. The implications of cost

minimization and market clearing are derived in sections 2.7 -2.9. The equations that must hold

in equilibrium are (30), (32), (36), (37) and (38). This case is subject to both of the additional

restrictions: the high cuto� must be greater than the low cuto� for each initial path and all the

cuto�s must be in [0; 1].

The numerical solutions discussed in the following section prove that an equilibrium exits for

those parameters considered. The numerical experiments also show that there are parameteriza-

tions for which the Three Path Case is not an equilibrium for the model. For these parameters,

one of the other cases, e.g. the Two Path Case, is an equilibrium.

Now consider the equations necessary for an equilibrium of the One Neighborhood Case.

Consumer maximization places restrictions on the two cuto�s and the two expected Value func-

tions. The logic of the restrictions is derived in the text. Equations (65), (68), (24), and (28)

impose these conditions algebraically. Section 2.4 shows that equations (14) and (15) describe

how the rational agents will allocate themselves over the two states. These population fractions

determine the supplies of low and high skilled labor. The implications of cost minimization and

market clearing are derived in sections 2.7 -2.9. The restrictions are imposed algebraically in

equations (30), (34), (36), (39) and (40). This case is only subject to the additional restriction

that the cuto�s be in [0; 1].

There are 11 equations and 11 unknowns in the system of equations necessary for an equi-

librium in the One Neighborhood Case. The numerical solutions discussed in the next section

demonstrate that there are equilibria for the parameters considered. There are other parame-

terizations for which the One Neighborhood Case can not an equilibrium for this model because

the cuto� lie outside [0; 1].

3 Empirical Aspects

The net returns to education are increasing in the average level of human capital in the child's

neighborhood. This result follows directly from the assumption that the time cost of education

is decreasing in the average level of human capital in the child's neighborhood and the existence

of an equilibrium. This assumption is an empirically testable hypothesis. An empirical project
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using data from the Panel Study on Income Dynamics, PSID, and its con�dential geocode

supplement is now underway to test this hypothesis.

In addition, if neighborhood choice and lifetime parental income are su�ciently correlated,

then this model also implies that the net returns to education should be increasing in the lifetime

income of one's parents. This hypothesis directly contradicts standard labor economic theory.

According to the traditional theory, higher parental lifetime incomes allow children to loosen

�nancial constraints and obtain more education than children of equal ability from less well o�

parents. Since there are decreasing returns to schooling, these children of better o� parents

should have more education but earn a lower return.2 The author is currently investigating

whether the returns to education are increasing or decreasing in parental lifetime income using

data from the PSID.

4 Numerical Aspects

4.1 Solution Method

The equations for both cases were coded in GAUSS and solved using the Constrained Optimiza-

tion module. This module uses the Sequential Quadratic Programming method.3 The model

was solved with the equations as a set of nonlinear equality constraints to a dummy optimiza-

tion problem because it avoids the re-parameterization that is necessary when using a simple

systems of equations solver and Cobb-Douglas production functions.4 Inequality constraints

were imposed to keep the solution algorithm from seeking outside of legal domains. The small

number of endogenous variables and a good choice of additional constraints permitted the use

of a Newton's method with full calculated Hessian matrix.

2See Willis [18] for the outline of a formal model that produces this result.
3For further details on the algorithm used see Schoenberg [16].
4When trying to solve a system of equations that involve endogenous variables to a fractional exponential

power, the model must be re-parameterized to keep these variables from appearing in a form that might be

negative. For instance, the equation

PD =
1

SD

�
WL

�D

�
�D
�

WH

1� �D

�1��D

might be coded as

PD =
1

SD

�
exp(WL)

�D

�
�D
�
exp(WH)

1� �D

�
1��D

. The values for WL and WH can then be easily calculated afterwards.
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Good starting values were found to important in quickly �nding a solution. For this reason,

an initial solution vector was found from a set of random starting values. This starting vector was

then used to start each set of simulations. However, it was veri�ed that, for assorted parameter

values, random starting values produce the same solution vector as the initial solution vector.

4.2 Choice of Parameters

There are eight parameters which must be chosen before the numerical simulations can be per-

formed. Five of the eight specify the two production technologies. Two of the �ve technological

parameters are the expenditure shares of low skilled labor for the housing and consumption, �D

and �X , respectively. The �xed capital endowments for the housing and consumption sector

SD, SX , respectively, must also be set. Finally, ~H is amount of human capital required to be-

come high skilled. The budget share of consumption and the factor by which parents discount

the expected the utility of their children pin down the preferences. The last parameter, DH is

socially determined.

There are wide ranges of the parameters that yield equilibrium solutions for both the One

Neighborhood Case and the Three Path Case. However, there are parameters for which is not

possible to solve either the One Neighborhood Case nor the Three Path Case. In addition, there

are parameter choices for which it is possible to obtain numerical solutions to the Three Path

Case that are not equilibria because they violate the restrictions on the cuto�s. Speci�cally,

there are parameters which cause the Three State Model to reduce to the Two Path Case. The

numerical simulations indicate that are four parameters which must be properly scaled with

each other to obtain an equilibrium solution. They are ~H, DH , SD, and SX . This result is to

be expected. The population is scaled to one and is endogenously divided between low and high

skilled labor. If DH exceeds 1 by too much for the speci�ed capital endowments, then it will not

be feasible to produce the required amount of housing. ~H scales the di�erence between low and

high skilled labor. If ~H is too high for speci�c values of the other three, then those born into

the HH state will have too much of an advantage and the solution will not be an equilibrium.

In this case the Three Path Case becomes the Two Path Case.

The �xed capital endowments determine which industry is more capital intensive. Similarly,

the expenditures shares of low skilled labor specify that one industry is relatively intensive

in low skilled labor and that the other is relatively intensive in high skilled labor. Extensive
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experiments found that as long as the capital endowments remain properly scaled to the other

parameters, switching the capital intensity had no qualitative impact on the model. Reversing

the relative intensities in low and high skilled labor reversed the changes in the high and low

skilled wages for particular simulations but it did not alter any of the fundamental results on

ranking the cases or the degree of inequality. These results are documented in supplemental

numerical result appendix, available from the author upon request.

The expenditure shares of low skilled labor must be less than .5. Aside from this restriction,

they are free. Values of .3 for �D and .4 for �X were chosen for the base case. Housing

services was thus assumed to be relatively intensive in high skilled labor. This assumption can

be reversed without changing the fundamental results of the model. Values of 4 and 3 were

chosen for the �xed capital endowments of the housing and consumption sectors, respectively.

Again, the assumption that housing is capital intensive relative to consumption can be reversed

without altering any of the fundamental conclusions. The high skill level was set at 1.3. How

the model behaves when ~H is changed is the subject of further investigation.

Convention requires that the budget share of housing .3. The rate at which parents discount

the utility of their children , � , was set to .8. Changes of about 25% in either of these values

had no e�ect on any of the results. Finally, 1.2 was chosen as a base case value for the amount

of housing services that must be purchased to enter the high neighborhood. How changes in the

value a�ect the model is discussed in the next several sections.

5 Results

There are four sets of results, all which can be obtained for a wide range of parameters. The �rst

set of results concerns the cuto�s. Both the low and the high cuto�s are strictly decreasing in

the initial state. This implies that average level of ability in each skill level is strictly decreasing

in the initial state. The second set revolves around who prefers which case. Those born into the

low state or neighborhood prefer the single neighborhood case to the case of two neighborhoods.

Furthermore, those born into the low neighborhood prefer that the zoning requirement for the

high neighborhood be smaller. In contrast, those born into the high neighborhood strictly prefer

high levels of exclusion. The third set asks whether there is more or less inequality. Inequality

is measured by Lorenz dominance, Social mobility and second order stochastic dominance in
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the distribution of opportunity. It is found that there is more inequality in the Three Path case

than when there is only one neighborhood. Moreover, inequality increases with increases in the

zoning requirement for the high neighborhood. The fourth set of questions characterizes and

explains the behavior of the model. The major result is that an increase in the exclusivity of

the high neighborhood generates results like those described in The Truly Disadvantaged [19].

5.1 The Cuto�s and Average Ability

Employing the ranking of the states discussed in section 2.2, both the low and the high cuto�s

are strictly decreasing in the initial state. To see this point,consider Figure 6. It is clear from

the graph that !LL1, which is labeled as omLL1, is strictly greater than !HL1, which is labeled

as omHL1. Similarly, !HL1 is always above !HH1, which is labeled omHH1. The graph also

shows an analogous ranking for !LL2 > !HL2 > !HH2, which bear similar labels. These ranking

results imply that the average level of ability in each state is decreasing in the resident's initial

state. Since ability is distributed Uniform [0,1] in all the initial states, the average ability level of

those in HH conditional on starting in state htNt is a =
1
2
(1+!htNt). Thus, the average ability

level of those in HH conditional on their starting in HH is 1
2
(1 + !HH2): In contrast the avenge

ability levels for those in HH from HL and LL, respectively, are 1
2
(1 +!HL2) and

1
2
(1 +!LL2):

Since !LL2 > !HL2 > !HH2 the result follows immediately. Similar results also hold for those

in the HL and LL states.

There are two important points contained in these results. First, this model produces a

situation in which a child of lesser ability born into better circumstances can go farther in

life a child born into more di�cult surroundings. This situation raises the issue of fairness.

Second, the declining average ability level suggests that future versions of the model should

consider production functions that depend on ability. If lower ability level of those in high

skilled positions negatively a�ects production more than the presence of high ability people in

low skilled positions raises production, then there will be e�ciency gains in a fairer sorting

process.
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Figure 6:
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5.2 Who Likes Which Case?

If person !, born into some state S, gets a higher lifetime utility in the One Neighborhood Case

than in the Three Path Case, then person ! will prefer the former case. The only issue with

these comparisons is that the states change between the cases. Someone born into the LL state

in the Three Path Case would be born into L in the One Neighborhood Case. Hence, person !

born into LL will prefer whichever of the two cases that o�ers her/him a higher lifetime utility.

Similarly, someone born into HH in the Three State Case would be born into H in the One

Neighborhood Case. Person ! born into HH will also make her/his choice based lifetime utility.

There is no direct analogue for HL in the one state case. Hence, there is no way of comparing

the lifetime utility paths over the two cases for this group of people.

The graph in Figure 7 shows that for these parameters, those born into the LL state would

almost unanimously prefer the One Neighborhood Case to the Three Path Case. To see why

the very able from LL prefer the Three Path Case, consider the lifetime utility of those from

LL who choose HH, given in equation (44). For those with an ability level near 1, the fall in

lifetime utility due to a decrease in current consumption is less than the utility increase from

more dwelling services and a better situation for their children. But, except for these values

very close to one, the increase in the cost of becoming high skilled drives down the lifetime from

consumption by more than enough to leave them strictly worse o�. In particular, two points

should be highlighted. First, those born into LL who stay in LL are worse o�. Second, it is more

di�cult to escape LL in the Three Path Case than it is to escape L in the One Neighborhood

Case. Thus, not only do higher levels of exclusivity make people born into LL who stay in LL

worse o�, the increases in DH also make it increasingly di�cult to escape LL.

In this parameterization, the wage for a low skilled worker is increasing in DH . Qualitatively

similar results are generated when dwelling services are relatively intensive in low skilled labor,

implying that increases in DH raise the low skilled wage. The fall in the lifetime utilities of the

those born into LL who stay in LL is explained by the fact that VLL is smaller than VL and

that VLL is decreasing in DH . This result is shown in the top left graph in Figure 6. The top

left graph in Figure 6 illustrates why it is harder to escape LL in the Three Path Case than it

is L in One Neighborhood case. The graph shows that the low cuto� !LL1 for the Three Path

Case is always above the One Neighborhood Case cuto� !L. The graph also shows that !LL1 is
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strictly increasing in DH , implying that increases in DH make it more di�cult escape LL.

Increases in DH cause the middle class of HL to 
ee the low neighborhood. The bottom left

graph in Figure 6 shows that �HL is strictly decreasing in DH . This middle class 
ight from the

low neighborhood lowers the average level of human capital in the low neighborhood, making it

more di�cult for the children of LL to move up. This result is one of the conclusions reached

by Wilson [19]. This paper contributes to his discussion by adding a formal model of rational

agents that generates the same process.

In contrast to those born into LL, the graph in Figure 8 shows that everyone born into

HH would prefer the Three Path Case to the One Neighborhood Case. The wealth e�ect is

the primary reason for this result. The wealth e�ect has two components an increase in the

stock of the investment and an increase in its price. The quantity increase is due to exogenous

change in the zoning laws. The bottom left graph in Figure 6 shows that the price of a unit of

dwelling services is always higher in the Three Path Case than in the One Neighborhood Case.

Furthermore, this price is strictly increasing in DH . Clearly, these results are do to the increased

demand for dwelling services. Both the increases in PD and DH raise the initial wealth of those

born into HH. As can be seen from equation (48), since WL and VLL are falling, this wealth

e�ect is responsible for the upward shift in the lifetime utility paths of those born into HH.

A change from the One Neighborhood Case to the Three Path Case makes it signi�cantly

easier for someone born into HH to end up in one of the two higher states. Both the shape

of the paths in Figure 8 and the fact that !HH1 is below !H is the top left graph in Figure 6.

Both of these graphs also show that changes in DH have no signi�cant changes on the low cuto�

!HH1.

The dramatic decreases in the high cuto� for those born into HH seen in the top left graph

in Figure 6 is deserves an explanation. Reconsider the Figure 2. For the HH initial state, lines

UHH and UHL graph equation (50) and equation (49), respectively. Since increases in DH

have small e�ects on WH , the slope of UHL is not going to change by much. Furthermore, as

can be seen from the top right graph in Figure 6, the increase in the intercept of UHL due to

increases in DH is somewhat o�set by a falling VHL. In contrast to UHL, increases in DH raise

both the intercept and the slope of UHH. Furthermore, the top right graph in Figure 6 shows

that VHH is increasing in DH . The result is that the distance between the intercepts of UHL

and UHH is shrinking and that the slope of UHH is signi�cantly increasing while the slope of
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UHL rises only slightly. Imagining these changes to Figure 2 illustrates why increases in DH

cause such a large decreases in !HH2:

Unlike LL and HH, the HL path has no analogous counterpart in the One Neighborhood

Case. Still, as can be seen from comparing Figures 9, 7, and 8, the HL is strictly below the

both of the high and low paths in the One Neighborhood Case. Hence, those born into HL

must have been better o� under the One Neighborhood Case. Figure 9 also shows that, except

for the very able, those born into HL prefer smaller levels of DH . It also shows that increases

in DH increase the number of people born into HL that end up in LL. This last point can also

be seen from the top left graph in Figure 6 that shows !HL1 rising with DH . So increases in

the exclusivity of the high neighborhood make the majority of those who remain in the middle

class worse o�. These increases in !HL1 are driven primarily by the rising cost of becoming high

skilled as DH rises. Children of high skilled parents that grow up in the low neighborhood have

higher time costs of education because the average level of human capital in the neighborhood is

falling with DH . To see that the fall in the average level of human capital in the neighborhood is

the culprit, reconsider Figure 2. The graphs of ULL and UHL are given by equations (45) and

(46), respectively. Figure 9 shows that the intercept of ULL has moved down and that UHL

has become steeper. Figure 2 implies that the only way to increase the low cuto� when ULL

falls and the slope of UHL rises is for the intercept of UHL to fall by more than the intercept

of ULL. The top right graph of Figure 6 shows that the distance between VLL and VHL is not

noticeably changing. Furthermore, since the graph in Figure 9 does not change qualitatively

by reversing the relative factor intensities, the changes in the wages are not driving the result.5

Hence, neither the changes in wages nor in VLL and VHL can account for the fact that the

intercept of UHL must fall by more that the intercept of ULL. But equation (46) shows that

a fall in �HL will increase the slope and lower the intercept. Hence, it is the fall in the average

level of human capital in the low neighborhood that explains the increase in the low cuto� for

those born into HL.

So the vast majority of those born into LL are worse o� in the Three Path Case than in the

One Neighborhood Case. A standard question in Welfare Economics is whether or not there

exists a compensation scheme that can leave everyone better o�. In this case, the question is

whether or not those born into HH could transfer some resources to those born into LL and

5The graph that veri�es this statement is in an appendix available from the author upon request.
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HL so that those born into HH would still prefer the Three Path Case while those born into

LL and HL would be indi�erent between the two cases. The large upward shifts in the HH and

the small downward shifts in the LL and HL paths make the existence of such a scheme likely.

However, if the residents of HH are �xing the level of DH then the existence of such transfers

mechanisms is not relevant. If the residents of HH can �x DH on their own, then they do not

need to compensate the other agents and will not unnecessarily relinquish any resources. Hence,

assuming that the residents of HH unilaterally set DH , one must conclude that those born into

HH prefer the Three Path Case while the vast majority of the rest of the population prefers

the One neighborhood Case.

5.3 Inequality Results

The question of how to measure inequality is di�cult.6 This model is robust enough to make

strong statements about three measures of inequality. They are inequality in the distribution

of income, social mobility and inequality in the distribution of opportunity. The Lorenz curve

is used to measure income inequality. A measure of social mobility is derived using �rst order

stochastic dominance of the conditional income distributions. A measure of the distribution of

opportunity is derived based on second-order stochastic dominance of the distribution of the

opportunity costs.

5.3.1 Lorenz Inequality of Lifetime Income

This paper considers inequality in the distribution of lifetime income, including an individual's

initial wealth. Someone with an ability ! from state ht�1Nt�1 that chooses the path htNt has

a lifetime income of

It = PDDNt�1 +Wht

�
1� Sht

1

Hht�1
�HNt�1

(1� !)

�
(41)

where

Sht =

8<
: 1 if Sht = H

0 Otherwise
:

Inequality in the distribution of income is measured by the Lorenz Curve. For any two param-

eterizations of the model, A and B, if the Lorenz curve that results from A strictly dominates

6See [15, Sen] or [10, Lambert] for good introductions to this issue.
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that of B, then the distribution of income is less equal under B than A.

Since ability a�ects income and ability is continuously distributed, the distribution of income

is continuous. The unconditional distribution was approximated and the Lorenz calculated by

treating this approximation as an empirical income distribution. The approximation algorithm

is described in Appendix A.7. The resulting graph of the Lorenz Curves, Figure 10, shows that

the Lorenz Curve for the One Neighborhood case strictly dominates that of the Three Path

Case. It also shows that as DH grows, each experiment generates a Lorenz Curve which is

strictly dominated by the previous one.

5.3.2 Social Mobility

Income mobility involves the distribution of the child's income, conditional on that of the parent.

If there is more upward movement from the lower incomes and more downward movement

from the upper incomes in A than in B, then there is more social mobility in A than in B.

However, there is no generally agreed upon fashion to make these comparisons for continuous

income distributions. While a general solution to this problem lies beyond the scope of this

paper, a practical solution is readily available. There is general agreement on how to how

measure upward and downward movement conditional upon a parental income. If the cumulative

distribution of income conditional upon a parent's income at X under the parameterization A

�rst order stochastically dominates the same conditional income distribution under B, then

there is more upward movement in A at X. Equivalently, the same condition implies that there

is more downward movement in B than in A. Hence, �rst order stochastic dominance provides

the comparison of upward and downward movement, conditional on any particular parental

income. The question is what parental high and low incomes to choose. The top and bottom

quartiles suggest themselves as good candidates. But these centiles would frequently pick a

member of the HL path as the representative of the top part of the distribution. This choice

would create an \apples and oranges" problem because the children of parents from H do better

in a One Neighborhood world than the children of parents from HL in the Three Path Case. It

is important to pick the upper centile so that it identi�es a member of the highest class in each

case, i.e. a member of H in the One Neighborhood Case and someone from HH in the Three

Path Case. For this reason, the bottom quartile and the top tenth are chosen as the parental low
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and high incomes, respectively.7 To simplify the �nal statement, let FA(ItjIt�1 = X%) be the

cumulative distribution of the child conditional on the parent earning the Xth percentile under

parameterization A. Similarly de�ne FB(ItjIt�1 = X%) be the cumulative distribution of the

child conditional on the parent earning the Xth percentile under parameterization B. Finally,

for any two parameterizations of the of the model A and B, there is less social mobility under

the parameterization B than under A if

1. if FA(ItjIt�1 = 25%) �rst order stochastically dominates FB(ItjIt�1 = 25%)

2. if FA(ItjIt�1 = 90%) is �rst order stochastically dominated by FB(ItjIt�1 = 90%) .

One needs two types of information to implement this social mobility ranking, the centiles

and the graphs of the appropriate conditional cumulative distribution functions (or conditional

CDF's). The 25th and 90th centiles are calculated from the approximated unconditional dis-

tribution of income found above. The analytic conditional CDF's for each parental income are

derived in Appendix A.8.1 and Appendix A.8.2. The incomes from the 25th and 90th centiles

determine which of the conditional CDF's is appropriate. Since the conditional CDF's depend

on !, they are continuous. Hence the graphs of these conditional CDF's are approximations.8

Applying the above social mobility ranking, there is less social mobility in the Three Path

Case than in the One Neighborhood Case if

1. the conditional CDF of the child of the parent who earns 25th centile income in the One

Neighborhood Case �rst order stochastically dominates the same conditional CDF derived

from the Three Path Case

2. the conditional CDF of the child of the parent who earns the 90th centile income in the

One Neighborhood Case is �rst order stochastically dominated by the same conditional

CDF derived from Three State Case.

Figures 11 and 12 shows that both conditions hold. In Figure 11 the CDF of a child's in-

come, conditional on the parent earning the 25th percentile income for the One Neighborhood

7There are parameterizations of the model for which the 90th centile comes from the H state in the One

Neighborhood Case and from the HL in state in the Three Path Case. For these parameterizations, the second

condition does not hold because the upper centile has identi�ed a member of the middle, not the upper, class. It

does hold at higher centiles in which the income is from the HH state.
81,000 points in [0,1] are used in these approximations.
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case, F1(ItjIt�1 = 25%) �rst order stochastically dominates those from the Three Path Case

for assorted values of DH . Figure 12 shows that second condition also holds. In Figure 12, the

conditional CDF of children born to parents in the 90th percentile in the Three State Case, for

various values of DH , stochastically dominate the same conditional CDF in the One Neighbor-

hood case. Since both conditions hold, there is less social mobility in the Three Path Case than

in the One Neighborhood Case.

But these graphs also show that increases in DH lower social mobility. Figure 11 shows that

an increase in DH yields a CDF conditional on the parent earning the 25th percentile which is

�rst order stochastically dominated by the same conditional CDF for the lower value of DH .

Figure 12 shows that an increase in DH yields a CDF conditional on the parent earning the 90th

centile which is �rst order stochastically dominate the same conditional CDF at a lower value

of DH . Thus, the �gures show that both conditions hold for increases in DH .

5.3.3 Inequality of Opportunity

As noted above, this paper identi�es the \opportunity" of an individual with the multiplica-

tive inverse of her/his opportunity cost of becoming high educated. This de�nition permits the

derivation of the analytic cumulative distribution functions of opportunity for the One Neigh-

borhood and Three Path cases. These derivations can be found in Appendix A.9. These CDF's

are graphed in Figure 13. The graph shows that those at the top have much more opportunity

in the Three Path Case than when there is only one neighborhood. In contrast, those at the

bottom end have signi�cantly less opportunity in the Three Path Case than in the One Neigh-

borhood Case. Moreover, increases in DH augment the di�erences in both of these comparisons.

However, the mean is slightly higher in the Three Path Case than in the One Neighborhood

Case. Furthermore, the mean in the Three Path Case is slowly increasing in DH .

If one were to perform linear transformations on the Three Path CDF's so that they had

the same mean as the One Neighborhood CDF, then the CDF for the One Neighborhood Case

would second order stochastically dominate the transformed CDF's from the Three Path Case.

Ranking these cases requires some assumption about relative weights in a mean-variance trade-

o�. Moreover, it is not possible to make a statement about \inequality" per se, only how society

would rank the outcomes. Since the increases in the mean are so small relative to the standard

deviation, if the variance weight is slightly larger than the mean weight, then then society
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would prefer the Three Path Case to the One Neighborhood Case. Furthermore, these same

assumptions imply that an increase inDH generates a less preferable distribution of opportunity.

5.4 General Characterization

The behavior of the model is similar in many respects to the account in the The Truly Disad-

vantaged. The bottom right hand graph in Figure 6 graphs the fractions of the population in

each state over the degree of restrictiveness of the high neighborhood. In the graph, pLL is the

fraction of the population in the LL state, pHL gives fraction of the population in the HL state

and pHH is de�ned in similar manner. The graph shows that as DH increases the middle class

of HL gets smaller. The increases in DH are causing the middle class to 
ee the low neighbor-

hood. The bottom left graph of Figure 6 shows that the price of dwelling services is rising with

increases in DH . So part of the movement is due to a wealth e�ect. The di�erence in the initial

wealths of those born into the low neighborhood and those born into the better neighborhood

is growing because of an increase in the di�erence of the initial stocks and an increase in the

price of the asset. The top left graph in Figure 14 shows the di�erence between the equilibrium

high wage in the One Neighborhood Case and the equilibrium high wage in the Three Path

Case for increasing values of DH . The negative values on the vertical axis imply that the high

wage is higher in the Three Path Case than in the One Neighborhood Case. The downward

slope implies that the wage of the high skilled is rising as DH increases. Since dwelling services

is relatively intense in high skilled labor compared to the consumption good and both of these

changes entail an producing more dwelling services, both of these results on the behavior of the

real wage are to be expected.

The top right graph in Figure 14 shows the di�erence between the equilibrium low wage in

One Neighborhood Case and the equilibrium low wage in the Three Path Case. The positive

values on the vertical axis indicate that the low wage is lower in the Three Path Case than in the

One Neighborhood Case. The upward slope implies that the wage of the low skilled is falling as

DH increases. Again, since the changes shift production into the good which uses high skilled

labor relatively intensively, these results are to be expected.

Hence, the di�erence between the low and high skilled wages in growing, giving rise to an

earned income e�ect. The wealth e�ect and the earned income e�ect combine to raise the

expected value of a spot in the high neighborhood and to lower the expected value of a spot in

43



Figure 13:

44



the low neighborhood. In the The Truly Disadvantaged, this growing wage gap is an important

factor in the analysis. It is interesting to note that none of the fundamental results regarding

the preference rankings of cases, nor the results on increasing inequality depend on the presence

of the earned income e�ect.9

6 Conclusion and Further Work

For a wide range of parameters, the simulations show that nearly everyone born into the low

neighborhood prefers the case of one neighborhood to the case in which there are two neigh-

borhoods. Also shown that those born into the better neighborhood prefer the case of two

neighborhood to the case on only one. The middle class present in the Three Path Case prefer

the One Neighborhood Case. With respect to inequality, the two neighborhood case has more

inequality in the distribution of income, less social mobility and more inequality in the distribu-

tion of opportunity than the one neighborhood case. Furthermore, increases in the exclusivity

of the high neighborhood, increase inequality in the distribution of income, increase inequality

in the distribution of opportunity and reduce social mobility. Finally, this model can produce

results similar to the account in The Truly Disadvantaged. Increases in the exclusivity of the

high neighborhood cause the middle class of high skilled residing in the low neighborhood to


ee, raising the cost of education for those left behind. This result works through a wealth

e�ect in the quantity and price of housing. It does not depend on there being an increase in the

di�erence between the low and high skilled wages.

This model can be extended to include an endogenous savings decision. Not only will this

extension remove the assumption of �xed capital stocks but it will open up the application

of this model to questions of growth and development. The conjecture to be investigated is

that countries with more exclusive neighborhood structures restrict social mobility and thereby

inhibit growth, even when physical capital is endogenously accumulated.

9Graphs con�rming this result are in an appendix available from the author on request.
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A Derivations

A.1 Lifetime Utilities in the Three Path Case

Employing the de�nitions in the text, this subsection details the lifetime utilities that accrue to

each person in each initial state.

Consider �rst those born into the LL state. If someone born into LL chooses to the LL path

then s/he will obtain a the lifetime utility of

LU(!;LL;LL) =W


L + � ~VLL: (42)

As noted in the text, the level of utility is independent of ability. If someone from LL opts for

HL then their lifetime utility is given by

LU(!;LL;HL) =

�
WH �

WH

�HNL

(1� !)

�

+ � ~VHL: (43)

Finally, those from LL who choose the HH path obtain

LU(!;LL;HH) =

�
WH �

WH

�HNL

(1� !) + PD(1�DH)

�

D

1�

H + � ~VHH : (44)

Those born into the HL state have the bene�t of a lower time cost of becoming high skilled.

However, note that someone from HL who choose LL earns the same lifetime utility as some

from LL. The utilities are the same because the states only di�er in there time cost functions

which are not relevant for those who choose to remain low skilled. Hence,

LU(!;HL;LL) =W


L + � ~VLL: (45)

Someone born into HL who chooses HL obtains

LU(!;HL;HL) =

 
WH �

WH

~H �HNL

(1� !)

!

+ � ~VHL: (46)

Person ! born into HL who opts for HH earns

LU(!;HL;HH) =

 
WH �

WH

~H �HNL

(1� !) + PD(1�DH)

!

D

1�

H + � ~VHH : (47)

Those born into the HH state have lower time cost of becoming high skilled and the Wealth

e�ect of inheriting a house in the high neighborhood. The wealth e�ect causes the lifetime utility

of those that remain low skilled to be higher for those born into HH than for those who begin
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life in either of the other two initial states. This can be seen by comparing the lifetime utility

for those from HH who remain low skilled, which is

LU(!;HH;LL) = (WL + PD(DH � 1))
 + � ~VLL (48)

with the utilities of those that opt for the LL that start o� in LL and HL. Both the wealth

e�ect and the lower time cost bene�t those born into HH that choose HL: An person ! from

HH who chooses HL obtains

LU(!;HH;HL) =

�
WH �

WH

~H2
(1� !) + PD(DH � 1)

�

+ � ~VHL: (49)

Both bene�ts also evident for those from HH who choose HH: Person ! from HH who goes

HH obtains

LU(!;HH;HH) =

�
WH �

WH

~H2
(1� !)

�

D

1�

H + � ~VHH : (50)

A.2 The Cuto�s for the Three Path Case

In this section the six cuto�s for the Three Path Case are derived. As noted in the text, for each

initial state there are two cuto�s. The �rst cuto� equates the lifetime utilities from the LL path

and the HL path. For the initial state Ht�1Nt�1, this �rst cuto� is denoted !Ht�1Nt�11. For

instance, the �st cuto� for the LL is denoted !LL1 and it is de�ned as the real number between

0 and 1 that solves

W


L + � ~VLL =

�
WH �

WH

�HNL

(1� !LL1)

�

+ � ~VHL: (51)

For each initial state Ht�1Nt�1, the second cuto� is denoted !Ht�1Nt�12. This cuto� equates

the lifetime utilities of the HL and HH paths. For instance, !LL2 is de�ned to be the real

number between zero and one that solves

�
WH �

WH

�HNL

(1� !LL2)

�

+ � ~VHL =�

WH �
WH

�HNL

(1� !LL2) + PD(1�DH)

�

D

1�

H + � ~VHH : (52)

The cuto�s for the HL state are similarly de�ned. In particular, !HL1 solves,

W


L + � ~VLL =

 
WH �

WH

~H �HNL

(1� !HL1)

!

+ � ~VHL: (53)
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The second cuto�, !HL2 solves

 
WH �

WH

~H �HNL

(1� !HL2)

!

+ � ~VHL =

 
WH �

WH

~H �HNL

(1� !HL2) + PD(1�DH)

!

D

1�

H + � ~VHH : (54)

The �rst cuto� for the HH state, !HH1, solves

(WL + PD(DH � 1))
 + � ~VLL =

�
WH �

WH

~H2
(1� !HH1) + PD(DH � 1)

�

+ � ~VHL: (55)

The second, , !HH2, solves

�
WH �

WH

~H2
(1� !HH2) + PD(DH � 1)

�

+ � ~VHL =�

WH �
WH

~H2
(1� !HH2)

�

D

1�

H + � ~VHH : (56)

A.3 Solving for the Population Fractions

Solving equations (10), (12) and (13) for the population fractions in terms of the cuto�s yields

the following solutions:

�LL =
!HH1 + !HH2!HL1 � !HH1!HL2

Z
(57)

�HL =
�!HH1 + !HH2 � !HH2!LL1 + !HH1!LL2

Z
(58)

�HH =
1 + !HL1 � !HL2 � !LL1 + !HL2!LL1 � !HL1!LL2

Z
(59)

where

Z = 1 + !HH2 + !HL1 + !HH2!HL1 � !HL2 � !HH1!HL2 � !LL1

� !HH2!LL1 + !HL2 !LL1 + !HH1!LL2 � !HL1 !LL2 (60)
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A.4 The Utilities and Cuto�s for the One Neighborhood Case

Consider �rst the lifetime utilities that someone born to a low educated might earn. Since

remaining low skilled implies that the time cost function is not invoked, the lifetime utility of

someone born in state L who remains low skilled is independent of her/his ability level. Let

LU(!;Ht�1;Ht) be the lifetime utility of a person with an ability level ! who is born into the

state Ht�1 and chooses the state Ht. Then the lifetime utility of someone born into L that stays

in L is

LU(!;L;L) =W


L + � ~VL: (61)

In contrast, someone born into the low state with an ability level ! who becomes high skilled

obtains

LU(!;L;H) =

�
WH �

WH

�H
(1� !)

�

+ � ~VH (62)

In contrast to the Three Path Case, since houses are all of the same type, there is no wealth

e�ect. The lack of a wealth e�ect explains why someone born into the high state that does not

become high educated will obtain the same the lifetime utility as someone born into the low

state. This equality can be gleaned from comparing equation (61) and the lifetime utility of

someone born into the high state who remains low skilled which is

LU(!;H;L) =W


L + � ~VL: (63)

Since someone born to high skilled parent has a lower time cost of obtaining skill than someone

born to a low skilled parent, the lifetime utility of someone born into H who becomes high

skilled,

LU(!;H;H) =

�
WH �

WH

~H �H
(1� !)

�

+ � ~VH ; (64)

is higher than someone becomes high skilled but is born to a low skilled parent, for the same

ability level.

The cuto� ability level for the low state is the ability level that equates the lifetime utilities

of the low and high skilled paths for someone born into the low state. Hence, !L solves

W


L + � ~VL =

�
WH �

WH

�H
(1� !L)

�

+ � ~VH (65)
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Similarly, the cuto� for the high state equates the lifetime utilities for the two paths for someone

with that ability level who is born into the high state. Hence,

W


L + � ~VL =

�
WH �

WH

~H �H
(1� !H)

�

+ � ~VH (66)

However, the fact that the lifetime utilities of people who remain low skilled is the same over

the two states implies that�
WH �

WH

�H
(1� !L)

�

+ � ~VH =

�
WH �

WH

~H �H
(1� !H)

�

+ � ~VH (67)

Performing a few lines of algebra on this equation yields that

!H = 1 + ~H!L � ~H: (68)

A.5 The Population Fractions for the One Neighborhood Case

Solving the two equations and two unknowns given in equations (14) and (15) yields

�H =
1� !L

1� !L + !H
(69)

and

�L =
!H

1� !L + !H
(70)

A.6 The Expected Value Functions

This section gives the system of equations that results from carrying the integration required in

equations (18)-(20). From equation (18) one obtains

~VLL(1� !LL1�) = !LL1W


L + ZHLLL (!LL2)� ZHLLL (!LL1)

+ ZHHLL (!1)� ZHLLL (!LL2) + �(!LL2 � !LL1) ~VHL + �(1� !LL2) ~VHH (71)

where

ZHLLL (!) =
�HL

WH(
 + 1)

�
WH �

WH

�HL

(1� !)

�
+1

(72)

and

ZHHLL (!) =
�HL

WH(
 + 1)

�
WH �

WH

�HL

(1� !) + PD(1�DH)

�
+1

D
1�

H : (73)
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From equation (19) one obtains

~VHL = !HL1W


L + !HL1� ~VLL + ZHLHL (!HL2)� ZHLHL (!HL1)

+ ZHHHL (!1)� ZHLHL (!HL2) + �(!HL2 � !HL1) ~VHL + �(1� !HL2) ~VHH (74)

where

ZHLHL (!) =
~H �HL

WH(
 + 1)

�
WH �

WH

~H �HL

(1� !)

�
+1

(75)

and

ZHHHL (!) =
~H �HL

WH(
 + 1)

�
WH �

WH

~H �HL

(1� !) + PD(1�DH)

�
+1

D
1�

H : (76)

From equation (20) one obtains

~VHH = !HH1 (WL + PD(DH � 1))
 + !HH1� ~VLL + ZHLHH(!HH2)� ZHLHH(!HH1)

+ ZHHHH (!1)� ZHLHH(!HH2) + �(!HH2 � !HH1) ~VHL + �(1� !HH2) ~VHH (77)

where

ZHLHH(!) =
~H2

WH(
 + 1)

�
WH �

WH

~H2
(1� !) + PD(DH � 1)

�
+1

(78)

and

ZHHHH (!) =
~H2

WH(
 + 1)

�
WH �

WH

~H2
(1� !)

�
+1

D
1�

H : (79)

A.7 Approximating the Unconditional Income Distribution

The approximation algorithm has two parts. First, set a number of base points for the approx-

imation. All the approximations in this paper used 10,000 points. Then use the population

fractions to partition this number of points into \subset numbers" that sum to the original base

number. For a One Neighborhood Case simulation there will be two numbers, while for a Three

Path Case there will be three numbers. For instance, in a Three Case State case simulation with

10,000 base points and population fractions of �LL = :5, �HL = :2 and �HH = :3 the subset

numbers would be 5,000, 2,000 and 3,000 respectively. These subset numbers are the number

of grid points for the [0,1] interval for each initial state. Continuing the above example, one

would break the [0,1] interval up into 5,000 points for the LL state. This process yields a grid
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of points that approximate the !'s in that state and the size of grid is correctly weighted to the

whole population. Then, for each point in each grid use the cuto�s to determine the income that

would accrue to person with an ! given by that point. The resulting set of 10,000 incomes is

approximates the unconditional income distribution. Treating this approximation of the uncon-

ditional income distribution as an empirical distribution it is trivial to calculation the Lorenz

Curve and the centiles used in the paper and in the derivation of the condition distributions.

A.8 Deriving the Conditional Cumulative Income Distribution Functions

A.8.1 The One State Case

A person's income depends on their random draw of ability and the terminal state of one's par-

ent. The trick to deriving the conditional cumulative distribution function is to determine the

parent's state from her/his income and then use this information to calculate the cumulative in-

come distribution for someone born into that state. In the One Neighborhood case, it is straight

forward to determine the state from the observed income. If the parent had a lifetime income of

WL+PD then s/he �nished in the low state with probability one. Any other income was gener-

ated by a high skilled parent.10 Thus, there are two objects of interest, Pr fItjIt�1 =WL + PDg

and Pr fItjIt�1 6=WL + PDg.

Consider �rst, Pr fItjIt�1 =WL + PDg. In this case, the parent was low skilled. Because

the expected value of the high state is greater than the expected value of the low state, the

cuto� person will earn less than the could be obtained from the low state.11 Hence, there is a

range of incomes accruing to people that choose to become high skilled that is actually lower

than those that remain low skilled. De�ne !LM to be the ability level that equates the high and

low skilled incomes of someone born into the low state, i.e. !LM solves

WL + PD =WH �
WH

�H
(1� !LM) + PD: (80)

A few lines of algebra imply that

!LM = �H

�
WL

WH

� 1

�
+ 1: (81)

10There is a small caveat that must be mentioned. There are two high skilled individuals that earn the income

of WL+PD. However, the probability of two zero probability events is still zero. So the probability that someone

with this income is low skilled is 1.
11To verify this fact, see the cuto� equation (65).
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Note that !LM is strictly greater than !L.

Those born into the low state with an ability below !L will become low skilled an have a

lifetime income of WL + PD: Individuals born into this state with an ability at least as large as

!L will become high skilled and will have incomes of WH(1 �
1
�H
(1 � omega) + PD. Since the

! ability levels are distributed uniform over [0,1], the cumulative income distribution, condition

on a parental income of WL + PD is

Pr

�
It �WH(1�

1
�H
(1� !) + PDjIt�1 =WL + PD

�
=

8>>><
>>>:

! � !L if !L < ! < !LM

!LM if ! = !LM

! if 1 � ! > !LM

(82)

The derivation of Pr fItjIt�1 6=WL + PDg proceeds in a similar fashion. The fundamental

di�erence is that the parent was high educated. De�ne !HM to be the ability level that equates

the lifetime incomes from the high and low states. Solving the equation implies that

!HM = ~H �H

�
WL

WH

� 1

�
+ 1: (83)

Those born to a high educated parent with an ability below !H will become low skilled an

have a lifetime income of WL + PD: Individuals born into this state with an ability at least

as large as !H will become high skilled and will have incomes of WH(1 �
1
~H �H

(1 � !) + PD.

Since the ! ability levels are distributed uniform over [0,1], the cumulative income distribution,

conditional on the parental income not being WL + PD is

Pr

�
It �WH(1�

1

~H �H
(1� !) + PDjIt�1 6=WL + PD

�
=8>>><

>>>:
! � !H if !H < ! < !HM

!HM if ! = !HM

! if 1 � ! > !HM

: (84)

Since the goal is compare the above distributions with those from the Three Path Case, some

normalization is necessary. Convention dictates that [0; 1] should be chosen. It is useful to recall

that the cuto� equations, above, imply that

WH(1�
1
�H
(1� !L) + PD =WH(1�

1

~H �H
(1� !H) + PD: (85)

Furthermore, they are both the minimum income. The largest income is WH + PD obtained

by individuals of unit ability born into either state. Carrying out the normalization yields the
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distributions

Pr

�
INt �

! � !L

1� !L
jIN(t�1) =

�H

1� !L

�
WL

WH

� 1

�
+ 1

�
=

s

8>>><
>>>:

! � !L if !L < ! < !LM

!LM if ! = !LM

! if 1 � ! > !LM

(86)

and

Pr

�
INt �

! � !H

1� !H
jIN(t�1) 6=

�H

1� !L

�
WL

WH

� 1

�
+ 1

�
=8>>><

>>>:
! � !H if !H < ! < !HM

!HM if ! = !HM

! if 1 � ! > !HM

: (87)

A.8.2 The Three Path Case

The derivation of the Pr
�
It � I

��It�1	 is potentially very complicated. The reason is that it is

conceivable that there are regions in which the incomes from distinct states overlap implying

that the parent's terminal state is not known with probability one. Fortunately, the nature of

the problem rules this out. Let I(!S) be the lifetime income of person omega born into state S.

Figure 15 gives a table of the lifetime incomes that accrue to each of the six cuto� individuals

and the incomes of those that remain low skilled.

This table numerically veri�es, for the parameter values discussed in the text, several im-

portant facts:

� I(!LL1) = I(!HL1)

� I(!LL1) < WL + PD < I(!HH1) < WL + PDDH

� WL + PDDH < I(!LL2) = I(!HL2) = I(!HH2):

Other parameterizations yielded the same qualitative results.

Hence, a parental income of WL + PD or WL + PDDH indicates that the parent was low

skilled with probability one. A parental income in [I(!LL1); I(!LL2)) that is not equal to either

of the low skilled incomes indicates that the parent chose HL. Finally, an income at least as
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Figure 15:

WL + PD WL + PDDH I(!HH1) I(!HH2) I(!LL1) I(!LL2) I(!HL1) I(!HL2)

1.8916 2.0764 2.0368 2.3763 1.8538 2.3763 1.8538 2.3763

1.8913 2.1500 2.1099 2.2894 1.8537 2.2894 1.8537 2.2894

1.8909 2.2234 2.1827 2.2567 1.8532 2.2567 1.8532 2.2567

large as I(!LL2) indicates that the parent �nished up in the HH state. These results imply that

there are only three distinct functions that need to be derived.

Consider Pr
n
It �WH(1�

1
�HL
(1� !)) + PD

��It�1 =WL + PD or It�1 =WL + PDDH

o
. Ei-

ther of these two parental incomes indicates that the parent was in state LL with probability one.

Given this parental state, It = WL + PD with probability !LL1: As in the One Neighborhood

Case, because the expected value of the HL state is higher than that of the LL state, there are

some individuals in the HL state that have a lower lifetime income than WL + PD. Let !LLM

be the ability that equates the LL lifetime income with the HL lifetime income. Similar to the

cases above, !LLM > !LL1. A few lines of algebra imply that

!LLM = �HL

�
WL

WH

� 1

�
+ 1: (88)

Using the cuto�s then yields the desired condition cumulative income distribution function.

To simplify notation, let It�1 = LL stand for It�1 = WL + PD or It�1 = WL + PDDH . Then

the object of interest is

Pr

�
It �WH(1�

1
�HL

(1� !)) + PD
��It�1 = LL

�
=8>>><
>>>:

!LL1 � ! if !LL1 � ! < !LLM

!LLM if ! = !LLM

! if !LLM < ! � 1

: (89)

Since a parental income in [I(!LL1); I(!LL2)) = IHL that is not equal to either of the low

skilled incomes indicates that the parent was in the HL, one needs to construct

Pr

�
It �WH(1�

1

~H �HL

(1� !)) + PD
��It�1 2 IHL and It�1 6= ILL

�
:

Similar to the previous cases, !HLM is the ability level that equates the lifetime incomes from
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the LL and HL states. Some algebra implies that

!HLM = ~H �HL

�
WL

WH

� 1

�
+ 1: (90)

To simplify the notation let QHL be the conditions that It�1 2 IHL and It�1 6= ILL. Using the

cuto�s, one can quickly ascertain that

Pr

�
It �WH(1�

1

~H �HL

(1� !)) + PD
��QHL

�
=

8>>><
>>>:

! � !HL1 if !HL1 � ! < !HLM

!HLM if ! = !HLM

! if !HLM � ! < 1

: (91)

If the parent's income was greater than or equal to I(!LL2) then s/he was in state HH. Let

!HHM be the income that equates the incomes from the LL and HH state to a decent of an HH

parent. Algebraically,

!HHM = ~H2

�
WL

WH

� 1

�
+ 1: (92)

As in the previous cases, using the cuto�s yields that

Pr

�
It �WH(1�

1

~H
(1� !))

��It�1 � I(!LL2)

�
=8>>><
>>>:

! � !HH1 if !HH1 � ! < !HHM

!HHM if ! = !HHM

! if !HHM � ! < 1

: (93)

So that they will be comparable with those from the One Neighborhood Case. all of these

distributions are normalized to [0,1]. Since the smallest income in the Three Path Case is

WH(1�
1
�HL
(1� !LL1) + PD and the largest is WH + PDDH the normalized distributions are

Pr

(
INt �

! � !LL1

(1� !LL1) +
�HL
WH

PD(DH � 1)

��It�1 = LL

!
=

8>>><
>>>:

!LL1 � ! if !LL1 � ! < !LLM

!LLM if ! = !LLM

! if !LLM < ! � 1

:

(94)

Pr

8<
:INt � ! � !HL1

(1� !HL1) +
~H �HL
WH

PD(DH � 1)

��QHL
9=
; =

8>>><
>>>:

! � !HL1 if !HL1 � ! < !HLM

!HLM if ! = !HLM

! if !HLM � ! < 1

:

(95)

57



and

Pr

(
INt �

(1� !LL1) +
�H

WH

PD(DH � 1)�
�H
~H2
(1� !)

(1� !LL1) +
�H

WH

PD(DH � 1)

��It�1 � I(!LL2)

)
=

8>>><
>>>:

! � !HH1 if !HH1 � ! < !HHM

!HHM if ! = !HHM

! if !HHM � ! < 1

: (96)

A.9 The Cumulative Distribution Functions of Opportunity

There are two cumulative distribution functions to be derived, one for each case. The random

variable of opportunity is denoted OP . Consider �rst the One Neighborhood Case. In this case

there are only two \opportunities" with positive probability, �HL and �HL
~H. The probability

that someone in the population has opportunity �HL is �L. The remained of the population has

opportunity �HL
~H. So the CDF is

F1(OP ) =

8>>><
>>>:

0 if OP < �H

�l if �H � OP < �H ~H

1 if OP � �H ~H

: (97)

In the three state OP can take on three values. The probability that an individual in the

population has an opportunity of OP = �HL is �LL. With probability �HL OP = �HL
~H. Finally,

with probability �HH an individual has an opportunity of ~H2. The corresponding CDF is

F2(OP ) =

8>>>>>><
>>>>>>:

0 if OP < �HL

�LL if �HL � OP < �HL
~H

�LL + �HL if �HL
~H � OP < ~H2

1 if OP � ~H2

: (98)

B Proofs

Claim 1 For an initial state, the graph of the Lifetime utilities over ability is steeper for those

who choose to become High Educated and purchase a house in the High neighborhood than the

graph for those who become High Educated but purchase a house in the low neighborhood.
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Proof 1

The hypothesis is actually the claim that

@LU(!;Ht�1
�HNt�1 ;HH)

@!
>
@LU(!;Ht�1

�HNt�1 ;HL)

@!
:

Using equations 5 and 6 in the text, one can compute the required derivatives and plug them

into the desired relation to obtain,

�
WH �

WH

Ht�1
�HNt�1

(1� !) + PD(DNt�1 �DH)

�
�1
D

1�

H

WH

Ht�1
�HNt�1

>

�
WH �

WH

Ht�1
�HNt�1

(1� !) + PD(DNt�1 � 1)

�
�1
WH

Ht�1
�HNt�1

: (99)

The above holds if

D


H >

0
BB@
�
WH �

WH

Ht�1 �HNt�1
(1� !) + PD(DNt�1 �DH)

�
�
WH �

WH

Ht�1 �HNt�1
(1� !) + PD(DNt�1 � 1)

�
1
CCA

1�


(100)

Since DH > 1 the above holds if the denominator is greater than the numerator. But a quick

calculation shows that the numerator is in fact less than the denominator as long as DH > 1

which is true by the parameterization of DH . 2
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