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Abstract

This study develops Bayesian methods of estimating the parameters of the
stochastic switching  regression model. Markov Chain Monte Carlo methods data
augmentation and Gibbs sampling are used to facilitate estimation of the posterior
means. The main feature of these two methods is that the posterior means are
estimated by the ergodic  averages of samples drawn from conditional distributions
which are relatively simple and more feasible to sample from than the complex joint
posterior distribution.     

A simulation study is conducted to compare model estimates obtained using
data augmentation, Gibbs sampling and maximum likelihood EM algorithm and to
determine the effect of accuracy and bias of the researcher’s prior distributions on
parameter estimates.
  

1. INTRODUCTION

Economic systems are intrinsically dynamic. These dynamics are

characterized by changing economic relationships. Shocks to the economy may be

due to an economic crisis, a change in the society’s economic behavior,

improvement in technology, economic policy revisions or a major revamp in the

political system.  Whatever the source of change is, econometric models must be

able to incorporate changing economic relationships.    

An econometric model that allows for change is the stochastic switching

regression model where it is assumed that an observation yj , may have been

generated by one of s alternative regression models or regimes, i.e.

yj = x ij ’ �i + �ij       yj  �  Regime i   i = 1, 2, ... , s      j = 1, 2, ... , n       (1.1)

where n is the sample size, x ij is a vector of observed independent variables,  is� i

a vector of regression coefficients and  �ij  is an unobserved random error.      

Information on the separation of the sample observations into the various

regimes is often not available. If the switch is stochastic, some random process

determines which regression model an observation is believed to have been
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generated from. The stochastic switching regression model is formulated as follows:

yj  = x ij 
’ �i  +  �ij     with probability  �i      0 < �i < 1         (1.2)�

s

i�1

� i � 1

�ij � iid N (0 , �i
2 )     i = 1, 2,..., s    j = 1, 2, ... , n       

where the mixing parameter �i is the probability that an observation  yj  is generated

by the  ith regime. 

The stochastic switching regression model has numerous applications in the

field of economics.  Quandt (1972) used this model to estimate the demand and

supply schedules of housing starts in disequilibrium markets.   Quandt and Ramsey

(1978) applied the stochastic switching regression model to estimate the

Hamermesh wage bargains model. Kon and Jen (1978) also applied the stochastic

switching regression model  to  characterize  a  mutual  funds  manager’s  decision

making  process.   Beard, Caudill and Gropper (1991) estimated the multiproduct

cost function of all U.S. banks using this model.   

In the absence of information as to which observations follow which

regression model, estimation of the regression parameters becomes complicated

and cumbersome to implement. In the past, three methods have been introduced

to estimate the stochastic switching regression model.     

One method is by the method of moments discussed by Day (1969) and

Cohen (1967). The sample moments are equated to the corresponding theoretical

central moments about the mean.   However,  this method  does not provide

standard errors of the estimates.   

Another method, introduced by Quandt and Ramsey (1978) is the moment

generating function estimation method.   Their method minimizes the sum of

squared deviations of the sample from the theoretical moment generating function

to derive parameter estimates.    The moment generating function method produces

estimates closer to the true values than estimates from the method of moments.

However, there is a problem of choosing a satisfactory value of  �  in the moment

generating function,  E[e�Y].  

Another strategy of estimating the stochastic switching regression model is

to implement maximum likelihood estimation using iterative algorithms.   According
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to Hartley (1978), the Expectation Maximization (EM) of Dempster and Rubin (1977)

can provide maximum likelihood estimates of the stochastic switching regression

parameters.    However, the  EM algorithm has some known drawbacks.   When the

components are not well separated or when initial values are far from the true

values, the EM  algorithm converges intolerably slowly  (Celeux and Diebolt 1985).

To remedy this problem, Celeux and Diebolt  added a stochastic step to prevent the

iteration from staying in an unstable stationary point of the likelihood function. This

modified EM algorithm, is the Stochastic Expectation Maximization (SEM) algorithm.

However, for small sample sizes, the EM and SEM algorithms are not reliable.

Another well known criticism pertains to the maximum likelihood of the switching

regression itself.  According to Maddala and Nelson (1975), Kiefer (1978), Swamy

and Mehta (1975) and Quandt and Ramsey (1978), the maximum likelihood

function for the switching regression model is unbounded at the edges of the

parameter space. Another criticism of the maximum likelihood method is that it does

not provide parameter estimates accurate enough to be useful for small and

moderately large samples.  Hosmer (1973) conducted a Monte Carlo experiment

which showed this disadvantage of using the maximum likelihood method.

This study will focus on estimating the stochastic switching regression model

using Bayesian analysis.   This method is particularly useful when there is some

prior knowledge of the parameters as suggested by economic theory or previous

research.  Bayesian analysis combines prior information on the parameters (through

the prior distribution) with information on the current sample (through the likelihood

function) to provide and update estimates of the parameters using the posterior

distribution.  The complexity involved in evaluating the integral necessary to obtain

the mean of the posterior distribution  is a major drawback of Bayesian analysis. 

Even when a closed form expression for the posterior distribution exists,

computation of the posterior mean is computationally very cumbersome. This is

especially true for a complex model like the stochastic switching regression model.

As a solution to this computational problem in implementing the Bayesian approach,

Markov Chain Monte Carlo (MCMC) methods can be used to indirectly sample from
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the joint posterior distribution.   This alleviates the computational difficulty of

evaluating the posterior mean.    

This research explores the usefulness of Markov Chain Monte Carlo methods

for computing Bayesian estimates of the parameters of the stochastic switching

regression model. A simulation study is conducted to compare the parameter

estimates of a market disequilibrium model and a structural change model obtained

by data augmentation, Gibbs sampling and the maximum likelihood EM algorithm.

The simulation study focused on the effect of accuracy and bias in  the prior

distributions on the Bayesian estimates of the regression coefficients.

In Section 2, the posterior distribution of the stochastic switching regression

model is presented.    Section 3 discusses the Markov Chain Monte Carlo methods,

Gibbs sampling and data augmentation and how they are implemented for the

stochastic switching regression model. The simulation methodology and results are

described in Section 4. 

2. POSTERIOR DISTRIBUTION OF THE STOCHASTIC SWITCHING

REGRESSION MODEL 

Consider the stochastic switching regression model, for  n  observations over

s  regimes

yj   = x ij
‘�i      +   �ij with  probability  �i       0 < � i < 1                (2.1)�

s

i�1

�i � 1

i = 1, 2,..., s ,  j = 1, 2,..., n   

The errors �ij  are normally and independently distributed as normal with mean  0

and  variance   �i
2    i.e.  �ij � iid N (0 , � i

2 ) .   Define the vector of parameters as �

= {�1,..., � s , � 1 ,..., � s , � 1
2,...,� s

2}.   The conditional distribution of the sample

observation  yj   given a value of the parameter vector is

                (2.2) f (yj |�) � �

s

i�1
�i�i (yj |� )

 where:                    

      �i (yj |�) � 1

(2��i
2 )1/2

exp �
1

2�i
2

(yj � x ij �� i )
2

Therefore, the likelihood for the switching regression model is
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                  (2.3)L(� |Y ) � �
n

j�1
[�

s

i�1
�i �i (yj |� ) ]

To avoid problems with noninformative priors only conjugate priors are considered

in  this study. The joint prior distribution of the parameters is

                             g (� ) � g(�1 , ... ,�s ,�1 , ... ,� s ,�2
1 , ... ,�2

s )

                    (2.4)� g(�1 , ... ,�s ) �
s

i�1
[g(� i |�

2
i ) g(� 2

i ) ]

assuming that the mixing parameters  are independent of the regime(�1 ,...,�s )

parameters  and  that   is independent of ,(�1 ,...,�s ,� 2
1 ,...,� 2

s ) (� i , � 2
i ) (�i ���� , � 2

i � )

i � i ’ .   The assumptions regarding the form of the prior distributions are that the

conjugate prior   g (�1 ,...,  �  s )   of    is the Dirichlet distribution with parameters� i

(�1 ,..., �s )  and the conjugate prior     is the normal-gamma distribution.g(� i , �i
2 )

The prior distribution    is then a multivariate normal with mean    andg(� i |�i
2 ) A i

covariance    and the prior distribution    of      is then an inverse-� i
2Qi g(�i

2 ) �i
2

gamma with parameters    and    .   Combining the likelihood  (2.3) and� i / 2 � i / 2

the  prior distribution  (2.4), the joint posterior distribution becomes,

     .               (2.5)g(� |Y ) � �
n

j�1
�
s

i�1
�i �i (yj |� ) g(�1 , ... ,�s ) �

s

i�1
[g(� i |�

2
i ) g(� 2

i ) ]

Since the posterior distribution  (2.5) takes into account all the possible

partitions of the sample { y1 , y2 ,..., yn }  into at most  s  groups, implementing the

Bayesian approach of the stochastic switching regression model becomes

intractable as the sample size becomes reasonably large, like n = 50.  As a solution

to this computational problem in implementing the Bayesian approach, Markov

Chain Monte Carlo methods can be used to sample indirectly from the joint posterior

distribution. 

3. MARKOV CHAIN MONTE CARLO METHODS

FOR MIXED REGRESSION 

Markov Chain Monte Carlo methods provide a way of estimating the features

of a distribution by using samples drawn indirectly from the distribution.   These
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methods are most valuable for complicated distributions, such as high-dimensional

joint distributions, from which it is generally infeasible to sample directly. To

circumvent the difficulty of sampling from a complicated distribution, the MCMC

method constructs a Markov chain with equilibrium distribution identical to the

desired distribution.   Suppose  	 ( 1 ) , 	 ( 2 ), ...  	 ( I )..., 	 ( m )    is a realization of a

Markov chain where   	  ( l )  converges to  	  in distribution almost surely as  m

approaches infinity, then, the ergodic average of a function h(	 I ) of 	 will approach

E[h(	)]  almost surely.  In order to make this approach useful, the Markov chain

must be easy to simulate from.

3.1 Gibbs Sampling

A form of the MCMC method that  is  especially suited  to the  problem  at

hand is Gibbs sampling.  In Gibbs sampling, the parameter vector � is partitioned

into  r  arbitrary groups, .  Instead of directly sampling from the� � �	1 ,...,	r �
complex joint conditional distribution a Markov chain is generated by sampling from

the full conditional distributions    

f (  | Y, ,... , ,... ) , k = 1,..., r  	k 	1 	k�1 	k�1 	r

corresponding  to the  partitioning.  Under regularity conditions (Tierney 1991) as

t  approaches infinity 	 k 
(m) converges in distribution to the 	 k and (	1 

(m),...	 k 
(m)...,

	 r 
(m)) converges in distribution to (	1,...	k...,	r).  In contrast to the maximum

likelihood method EM and SEM algorithms and the bootstrap resampling method,

the MCMC Bayesian methods are useful even for finite sample size since

convergence results depend only on the number of iterations.

The key  to estimating the parameters of the stochastic switching regression

model, is to express the model in terms of missing (or latent) data Z = {  } ,  i=1,zi j

2,..., s , j=1, 2,..., n. The latent variable assumes the value 1  if the  j th   observation

   is generated by the   i th regression model and  0  otherwise.  If  the data  Z =yj

{  }  were observed, estimation would be straightforward.  However, since  Z  is notzi j

observed, the elements of Z can be viewed as unknowns that must be estimated

along with the other model parameters.  Consequently, the parameter vector is �

= {	k} = {Z, ... , ... ,  ...  } for the stochastic switching regression�1 �s �1 �s �
2

1 �
2

s
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model. In Gibbs sampling the parameter vector � is broken down into subvectors,

{Z}, � = { � 1,...,� s }, { �1 ,..., �s } , and  { �1
2,...,�s

2 }.  The Gibbs sampling algorithm

is then to generate parameter values from the full conditional distributions with

starting values  Z (0) , � 
(0) ,  �i 

2  (0) and � i 
(0)  

(1) Z (m����1) � f (Z | Y , � (m) , � (m)
i , � 2 (m)

i )

(2) � (m����1) � f (� | Y , Z (m����1) , � (m)
i , � 2 (m)

i )

(3) � 2 (m�1)
i � f (� 2

i | Y , Z (m����1) , � (m�1)
i , � (m )

i )

(4) � (m����1)
i � f (� i | Y , Z (m����1) , � (m�1)

i , � 2 (m�1)
i )

After equilibrium is reached at the a th iteration, sample values are averaged to

provide  consistent estimates of the parameters or their function,   

Ê [h(	k) ] �
�

t

m�a�1

h(	k)
(m)

t � a
The marginal posterior distribution is estimated as

f (	k ) �
�

t

m�a�1

f (	k |	1
(m),...	k�1

(m),	k�1
(m)...	r

(m) )

t � a
and the estimate of the predictive density is 

� f (Y f |� ) g(� |Y )d� �
�

t

m�a�1

f (Y f |� (m) ,X (f ) )

t � a

3.2 Data Augmentation

One form of Gibbs sampling that is well suited to the stochastic switching

regression  model is data augmentation, introduced by Tanner and Wong (1987).

In data augmentation, the natural hierarchical structure of the model is incorporated

in partitioning.  For the stochastic switching  regression  model,  the parameter

vector  w = { }  is  partitioned  into two groups, {Z}Z , �1 , ... , �s , �1 , ... , � s , � 2
1 , ... , � 2

s

and  � = {  } where each group corresponds to a�1 , ... , �s , �1 , ... , � s , � 2
1 , ... , � 2

s

hierarchical level. In data augmentation r independent values of of  areZ (m����1)

drawn to reduce variability.  Although r=1 is enough for point estimation, a larger r

is required for small sample size  (Diebolt and Robert 1994). The data augmentation

algorithm is 
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(1) Generate r independent values of from the conditional distributionZ (m����1)

Z (m����1) � f [Z | (Y , � (m ) ) ]

(2) Generate  � ( m+1 )  from the conditional distribution

 .  � (m����1) � f [� | (Y , Z (m����1) ) ]

Since  �  is a vector, values of the parameters are generated sequentially. 

(2.1)  � (m����1) � f [� | (Y , Z (m����1) ) ]

(2.2)  �i
2 (m�1) � f [�i

2 | (Y , �(m����1), Z (m����1) ) ]

(2.3)  � (m����1)
i � f [� i | (Y , � 2 (m�1)

i , � (m����1) , Z (m����1) ) ]

where starting values   are specified.  The expected value of theZ (0 ) , � (0 )

parameters or their function, the marginal as well as the predictive distributions are

estimated  similarly as in Gibbs sampling.       

3.3 Conditional Distributions 

The conditional distributions necessary to implement the MCMC methods

Gibbs sampling and data augmentation are identical except for the conditional

distributions of the error variances which differ in parameters. The conditional

distribution of the latent variable  is a multinomial distributionf [Z | (Y , � (m ) ) ]

 z (m�1 )
i j | Y , � (m ) � Multinomial (w (m�1 )

j )

where:

   w (m�1)
ij � �

(m)
i �i (yj |� i

(m),�2 (m)
i )

�
s

i�1

�
(m)

i �i (yj |� i
(m),�2 (m)

i )
       

     �i (yj |� i
(m) ,�2 (m)

i ) � 1

(2��i
2 (m) )1/2

exp �
1

2�i
2 (m)

(yj � x ij �� i
(m) ) 2

The conditional distribution of the mixing parameters is a Dirichlet distribution 

� (m����1) | (Y ,Z (m����1) ) � Dirichlet (�1�n1
(m�1) , �2�n2

(m�1) ,...,�s�ns
(m�1))

where:
 .n (m�1)

i � �
n

j�1

z (m�1)
i j

is the number of observations in each regime according to the latent data  Z .

Conditional upon the latent data  Z  which classifies each observation into a regime,
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the Bayesian posterior distributions for the standard regression model apply.  Thus,

the conditional distribution of the error variance is anf [�i
2 | (Y , �(m����1), Z (m����1) ) ]

inverse-gamma                          

       �
2 (m�1)
i � IG[(�i�n (m�1)

i ) / 2 , (�i�S (m����1)
i ) / 2 ]

where:

      S (m����1)
i � Y (m����1)

i �Y (m����1)
i � A i �Q

����1
i A i � C (m����1)

i � (X (m����1)
i �X (m����1)

i � Q ����1
i )C (m����1)

i

   .C (m����1)
i � (X (m����1)

i �X (m����1)
i � Q ����1

i ) �1 (X (m����1)
i �Y (m����1)

i � Q ����1
i A i )

The conditional distribution of the regression coefficients  f [� i | (Y,� 2 (m�1)
i , � (m�1),

is  a multivariate normal  with mean   and variance-covariance matrixZ (m����1) ) ] C (m����1)
i

   �
2 (m�1)
i (X (m����1)

i �X (m����1)
i � Q ����1

i ) �1

 ] .     �
(m����1)
i � N[C (m����1)

i , � 2 (m�1)
i (X (m����1)

i �X (m����1)
i � Q ����1

i ) �1 ]

For Gibbs sampling the conditional distribution of the error variance f (� 2
i |Y,

 is also an inverse gamma but with parametersZ (m����1) , � (m�1)
i , � (m )

i )

 and   , (�i � ki � n (m�1)
i ) / 2 (�i � E (m����1)

i ) / 2

�
2 (m�1)

i | � (m )
i � IG

�i � ki � n (m�1)
i

2
,
�i � E (m����1)

i

2

where :

E (m����1)
i � (Y (m����1)

i � X (m����1)
i �

(m )
i ) � (Y (m����1)

i � X (m����1)
i �

(m )
i )

.                                        � ( � (m )
i � A i ) �Q

����1
i (� (m )

i � A i )

3.4 Specification of Hyperparameters                                                         

In the following discussion a two component stochastic switching regression

model in log-form will be considered. Bayesian estimation requires the prior

distribution of  the mixing parameter   �  ~ Beta (� 1 , � 2 ) . It is assumed that there

is little prior information about  � so �1  and  �2  are set so that the mean of   �   was

0.5 and the standard deviation is 0.15. These values are �1 =

 and  � 2 = � 1 . [1 � 4Var(� ) ] / [8 Var( � ) ]

Bayesian estimation also requires the prior distributions ,�
2
i � IG(�i /2 ,�i /2 )

i = 1, 2 ,  and  .   When a regression model
 � N(A1 , �1
2 Q1 ) � � N(A2 , �2

2 Q2 )
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is fit in log-form, the model parameters are interpreted as elasticities.  Economists

often have prior beliefs about elasticities.  Let the prior values for the means of the

regression parameters be    and    .  The actual values usedA1 � [ 
̂l ] A2 � [ �̂l ]

for   and   will be discussed in the simulation section.   Given the specificationA1 A2

of    and   ,  the parameters    and    i  (i=1, 2)  were set so that the meanA1 A2 �i �i

of    was   and the mean of   was   .  These means give a�
2

1 �
k

l�1


̂
2

l �
2

2 �
k

l�1

�̂
2

l

coefficient of determination R2 of  0.50 , which is a typical value for economic data.

It  is assumed that there is weak prior information about the error variance thus, �i

and     were also chosen so that the standard deviation of    was  �i �
2

1 �
k

l�1


̂
2

l / 3

and     was . These choices set to  0,  the lower bound for    three�
2

2 �
k

l�1

�̂
2

l / 3 �
2

i

standard deviations from the mean.  Finally, values for  and  are  required.Q1 Q2

Let  the  economist 's  prior values for the standard deviation of    be  and for
l �
� l

the standard deviation of  be .  Small values of   and   reflect high levels�l �
� l

�
� l

�
� l

of confidence in the prior means    and  .  For simplicity it is assumed that  
̂l �̂l Q1

and     are diagonal.  The diagonal elements of     are set at    andQ2 Q1 �
� l

2 / µ
�

2
1

the diagonal elements of    are set at    where    and     are theQ2 �
� l

2 / µ
�

2
2

µ
�

2
1

µ
�

2
2

expected values of   and     respectively.                 �
2

1 �
2

2

4. SIMULATION

4.1 Methodology

Bayesian estimation of two different switching regression models is

investigated.   The first model is a market disequilibrium model       

     y1 j  =  
0  +   
1 x 1 j   +  
2 x 2 j   +  � 1 j    ,      � 1 j  ~ N(0,� 1
 2)                    (4.3)

     y2 j  =  �0  +  �1 x 1 j   +  �2 x 4 j   +  � 2 j   ,      � 2 j  ~ N(0,� 2
 2)                     (4.4)

     yj   =  y1 j              with probability      � 

          yj   = y2 j               with probability     (1- � )                  

where x1  represents price, x2 is a random supply shock and x4  is a random demand

shock.  The prior parameter values are values are   ,  ,   ,
̂0 � 0 
̂1 � 1 
̂2 � 1

, , , which are typical elasticities.   �̂0 � 0 �̂1 � �1 �̂2 � 1

          The second model represents a structural change model 
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y1 j  =  
0  +   
1 x 1 j   +  
2 x 2 j   +  � 1 j   ,      � 1 j  ~ N(0,� 1
 2)                     (4.5)

     y2 j  =  �0  +  �1 x 1 j   +  �2 x 2 j   +  � 2 j     ,      � 2 j  ~ N(0,� 2
 2)                     (4.6)

     yj   =  y1 j              with probability      � 

          yj   = y2 j               with probability     (1- � )                

The prior parameter values are   ,  ,   ,  ,  ,
̂0 � 0 
̂1 � 1 
̂2 � 1 �̂0 � 0 �̂1 � 0.5

.  Again, these are typical elasticity values.   �̂2 � 0.5

          Two factors were investigated in the simulation.  The first factor is the

economist‘s degree of belief in the prior means on the regression coefficients �  and

�.   This was investigated by performing one complete simulation for   =    ,�
� l

�
� l

l > 0,  set at each value  0.1, 0.2,..., 2.0 .     The standard deviation of     =  �
�0

�
�0

was fixed at  5.0 .    The second factor is whether the economist ‘ s prior means on

�   and  �  were correct.    This was investigated by setting the true regression

coefficients equal to a certain fraction of the prior means.    The fractions used  are

m = 1.00, 0.75 ,  0.50 , 0. 25 .   The prior distributions on the regression parameters

are  while the true regression parameters are  . TheN(A i , � i
2 Qi ) N(mA i , � i

2 Qi )

constant   m   represents  "bias"  in the prior distributions.  When  m = 1 the true and

prior distributions are identical.  For  m  less than  1 ,  the prior distribution is

"biased"  upward.        

There are a total of   2 x 20 x 4 = 160   distinct sets of prior values, one for

each of the two model at the twenty levels of    =     and four levels of  m . The�
� l

�
� l

sample size was set at  n = 50 which is typical of economic data.  For each of the

160 distinct sets of initial values, 400 data sets where used.  Occasionally, the

methods gave extremely poor estimates. Hence, for each set of prior values, the

simulation results are summarized by computing a  5%  trimmed mean of the

absolute deviations from the true parameter values . 

4.2. Results

          Simulation results in  Figures 1.1-1.4 and  Figures 2.1-2.4  of the appendix

show that in all cases considered, the Bayesian methods data augmentation and

Gibbs sampling performed similarly. Also, the underlying model structure has
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relatively little impact on estimator performance.  The general relationship between

the error and the prior bias and the prior standard deviation appears to be the same

for both the market disequilibrium and the structural change model, When there is

no  (m=1.00)  or little bias  (m=0.75)  in the means of the prior distributions, the

Bayesian sampling methods provided estimates with mean absolute errors smaller

than the maximum likelihood method estimates, for prior parameter standard

deviations  less than 1.0. For prior parameter standard deviations  between 1.0 and

2.0, the Bayesian and the  maximum likelihood methods provided similar estimates.

Since the regression coefficients for these models in log - form, may be interpreted

as elasticities, the economist‘s prior information may well have standard deviations

less than 1.0. This suggests that the Bayesian methods will provide a practical

improvement over the maximum likelihood method, when the economist has some

considerably accurate prior beliefs about the parameter means. With moderate bias

(m=0.50) in the prior mean, the Bayesian and maximum likelihood  estimates

performed  similarly.   When  bias was large   ( m = 0.25 ),  the maximum likelihood

method performed better than the Bayesian sampling methods for small parameter

standard deviations.  The reason is that a considerable degree of confidence is

attached to an incorrect prior value.

5. CONCLUSION

A Bayesian method of estimating the parameters of the stochastic switching

regression model is developed. MCMC methods data augmentation and Gibbs

sampling are implemented to facilitate computation of posterior means.  Bayesian

sampling estimates are compared with those of the maximum likelihood EM

algorithm. The results of this study suggest that when there is some reliable prior

information about the parameters from previous research or as suggested by

economic theory,  the Bayesian sampling methods are worth implementing for

estimating and updating parameters since they provide more accurate estimates

than the maximum likelihood method.   When there is no reliable information about

the parameters, maximum likelihood method is preferable to Bayesian estimation

for small prior standard deviations.   The sample size used for this study is relatively
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large n=50 to show that MCMC methods are easily implemented even for large

samples. Results may differ when sample size is small because of the well

documented poor performance of the EM and SEM algorithms and maximum

likelihood method in general for small or even moderately large sample size. 
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APPENDIX

Figure 1.1   Disequilibrium Model : True Parameter = Prior  x  1.00 

Figure 1.2   Disequilibrium Model : True Parameter = Prior  x 0.75 

Figure 1.3   Disequilibrium Model : True Parameter = Prior  x 0.50

Figure 1.4   Disequilibrium Model : True Parameter = Prior  x 0.25

Figure 2.1   Structural Change Model : True Parameter = Prior  x  1.00 

Figure 2.2   Structural Change Model : True Parameter = Prior  x 0.75 

Figure 2.3   Structural Change Model : True Parameter = Prior  x 0.50

Figure 2.4   Structural Change Model : True Parameter = Prior  x 0.25



Figure 1.1
Market Disequilibrium Model
True Parameter = Prior x 1.00



Figure 1.2
Market Disequilibrium Model
True Parameter = Prior x 0.75



Figure 1.3
Market Disequilibrium Model
True Parameter = Prior x 0.50



Figure 1.4
Market Disequilibrium Model
True Parameter = Prior x 0.50



Figure 2.1
Structural Change Model

True Parameter = Prior x 1.00



Figure 2.2
Structural Change Model

True Parameter = Prior x 0.75



Figure 2.3
Structural Change Model

True Parameter = Prior x 0.50



Figure 2.4
Structural Change Model

True Parameter = Prior x 0.25


