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Abstract

The paper considers two neighboring countries wishing to make a joint
effort to control pollution emission. We use a differential game model
that includes emission and investment in abatement technology as control
variables. First, a coordinated solution that maximizes joint welfare is
derived. Then we show that this outcome can be achieved as an incentive
equilibrium in which each country uses an emission strategy that is linear
in the other country’s emission level. Further, we study the bargaining
problem for allocating the joint welfare between the two countries, where
the status quo is given by the open-loop Nash equilibrium. Finally, we
design a mechanism for allocating over time the individual total costs
which ensures that the players will stick to the joint optimization solution
for the whole duration of the game.
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1 Introduction

Differential games and optimal control methodologies have been applied by
many scholars during the last decade to study environmental problems (see
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e.g. Van der Ploeg and de Zeeuw (1992), Dockner and Van Long (1993), Martin
et al. (1993), Kaitala and Pohjola (1995), Kaitala et al. (1995), Haurie and Za-
ccour (1995), Germain et al. (1997, 1998)). It has been shown in this literature
that coordination of countries’ emission strategies leads to a lower total level of
pollution and to a higher total welfare than non cooperative emission strategies.
A focal point of these studies is how to insure that the countries involved in the
pollution control negotiations will indeed implement the coordinated emission
policies. This problem stems from the fact that joint optimization (cooperative
or coordinated solution) guarantees collective rationality but not necessarily in-
dividual. Indeed, it may be the case that some players get a lower total welfare
in the joint optimization solution than in the non cooperative scenario. If the
only issue is how to allocate the total welfare, as it is typically the case in a
static setting, it is easy to reestablish individual rationality. For instance, one
may allocate the total cooperative welfare using any solution concept of coop-
erative game theory (e.g. Shapley value, core) where individual rationality is
guaranteed. This approach is followed in e.g. Filar and Gaertner (1997) where
the total emission reduction is allocated to four different regions by means of
Shapley value. In a dynamic context, we still need to allocate the total welfare.
There is however a difficulty which stems from the fact that the agreed upon
sharing rule at initial time may not meet the individual rationality requirement
at a later date (see Haurie (1976)). If one wishes that, at any intermediate
date, each player finds it individually rational to stick to cooperation for the
remaining horizon, then an intertemporal allocation mechanism is needed. This
dynamic rationality principle has been dealt with in the literature in different
manners.

A first option is to assume that the implementation of cooperative strategies
is binding. Under these circumstances, there is no issue. A second option is
to design a mechanism which supports the cooperative agreement as an equi-
librium. Yet another approach is to use the concepts of agreeability (Kaitala
and Pohjola (1990)) and time-consistency (Petrosjan (1993, 1997), Petrosjan
and Zaccour (1999)). They require, at any intermediate date, that any player’s
cooperative-welfare-to-go (including possibly a suitable side payment) be higher
than its non cooperative counterpart for the remaining horizon, along the op-
timal state trajectory. The assumption here is that the game has been played
cooperatively till that date. Finally, one may aim to achieve an instantaneous
dynamic rationality result, that is at any instant of time each player’s instan-
taneous cooperative outcome dominates his instantaneous non cooperative one.
Note that agreeability and time-consistency do not necessarily imply instanta-
neous dynamic rationality, nor the other way around.

This paper considers two neighboring countries that wish to coordinate their
emission strategies to control pollution. We first determine optimal emission
levels under cooperation (joint maximization of welfares) and non cooperation.
In the latter case, we look for an open-loop Nash equilibrium. The corre-
sponding outcomes will play the role of the status quo point in the cooperative
welfare sharing problem. It is shown that it is possible to achieve the coopera-
tive emission levels as an incentive equilibrium. To construct such equilibrium,
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we assume that each player determines his incentive strategy as a linear func-
tion of neighbor’s one. Finally, we design an allocation mechanism of total
individual welfares that insures instantaneous dynamic individual rationality.

The rest of the paper is organized as follows. In Section 2 we introduce a
simple ecological economics model. In Section 3 we derive the joint maximiza-
tion solution and an open-loop Nash equilibrium. In Section 4 we construct
an incentive equilibrium. In Section 5 we deal with the issue of sharing of the
joint optimal welfare and design an instantaneous individually rational alloca-
tion mechanism. In Section 6 we conclude.

2 The ecological economics model

Consider two neighboring countries (or regions) whose industrial activities create
pollution as an undesirable by-product. For i = 1, 2 denote by Yi(t) the rate
of production in country i at time t ∈ [0, T ], and let Ui(Yi(t)) represent the
instantaneous utility derived from producing at the rate Yi(t) ≥ 0. The utility
functions are increasing, strictly concave and satisfy U ′(0) = +∞. The latter
assumption implies that zero production is unprofitable. Denote by Ei(t) the
rate of emission resulting from production of region i and let Ki(t) represent
region i’s stock of abatement capital by time t. The emission rate is given
by Ei(t) = αi(Ki(t))Yi(t) (c.f. Van der Ploeg and de Zeeuw (1992)). Thus,
the emission rate is proportional to current output Yi(t). The proportionality
factor αi(Ki(t)) decreases with the size of the stock of abatement capital, that is,
α′i(Ki(t)) < 0 and to account for decreasing returns in the abatement activities
we assume α

′′

i (Ki(t)) > 0. Region i can raise its stock of abatement capital
through investment. Denote the rate of physical investment by Ii(t) and the
cost incurred by Ci(Ii(t)). The investment cost function is increasing and
convex. The capital stocks evolve according to the standard dynamics

.

Ki(t) = Ii(t)− µiKi(t), Ki(0) = K0
i ≥ 0 given (1)

where µi > 0 is a constant rate of depreciation.
The stock of pollution S(t) evolves according to

.

S(t) = E1(t) + E2(t)− δS, S(0) = S0 ≥ 0 given (2)

in which δ > 0 is a constant decay rate of pollution. Each country incurs
a damage cost given by Di(S(t)). This cost is increasing and convex. The
objective of region i is to maximize its social welfare function given by

Wi =
∫ T

0

(Ui(Yi(t))− Ci(Ii(t))−Di(S(t)) dt (3)

subject to (1)-(2)

To illustrate the design of particular incentive strategies, we need to specify
functional forms for cost, emission and utility functions. Omitting the time
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argument, the following ones satisfy the assumptions made above

Ui(t) = LogYi, Ci(Ii) =
1
2
ciI

2
i , αi(Ki) = σie

−βiKi , Di(S) = ϕiS (4)

Given the assumed link between production and emission, the optimization
program of player i can be written as follows

maxWi =
∫ T

0

(
LogEi + βiKi −

1
2
ciI

2
i − ϕiS

)
dt (5)

subject to (1)-(2)

Some remarks are in order regarding the model. A constant term (−Logσi)
should appear in the objective and has been omitted since it does not affect the
derivation of optimal and equilibrium results. Also the results would remain
qualitatively unaltered if one incorporates the following features: (i) adding sal-
vage values as functions of the stocks of abatement capacities and pollution at
terminal date, (ii) multiplying the emission rates in the pollution dynamics by
different constants to account for differential effects on pollution accumulation,
(iii) scaling by a constant the utility function, (iv) adding a linear component
to the investment cost function and (v) assuming a more realistic damage func-
tion, e.g. a quadratic one. It must be stressed for the moment that our model
still captures two of the main ingredients of the debate on pollution reduction,
namely that countries do not necessarily emit at the same rate and that emis-
sions by any country affect the common environment.

3 Cooperative solution and Nash equilibrium

In this section we derive the joint optimization solution and identify an open-
loop Nash equilibrium. The first solution will provide optimal emission levels
and the total welfare to share between the two countries. The open-loop Nash
equilibrium will be used as the status quo point in this sharing problem.

3.1 Cooperative solution

We assume that the cooperative solution is obtained as the result of the joint
optimization problem

max(W1 +W2) =
2∑
i=1

∫ T

0

(
LogEi + βiKi −

1
2
ciI

2
i − ϕiS

)
dt (6)

subject to (1)-(2)

The Hamiltonian is defined by

H =
2∑
i=1

(
LogEi + βiKi −

1
2
ciI

2
i − ϕiS + λi(Ii − µiKi

)
(7)

+θ(E1 + E2 − δS)

4



where λi and θ are the adjoint variables. Optimality conditions include
.

S = E1 + E2 − δS, S(0) = S0 (8)
.

θ = δθ + (ϕ1 + ϕ2), θ(T ) = 0 (9)
.

Ki = Ii − µiKi, Ki(0) = K0
i , i = 1, 2 (10)

.

λi = µiλi − βi, λi(T ) = 0, i = 1, 2 (11)

Ei = −1
θ

(12)

Ii =
λi
ci

(13)

We identify the cooperative solution with the superscript c. Solving the differ-
ential equations (9) and (11) leads to

θc = − (ϕ1 + ϕ2)
δ

(
1− e−δ(T−t)

)
(14)

λci =
βi
µi

(
1− e−δ(T−t)

)
, i = 1, 2 (15)

As expected, θc is negative (pollution stock is a ”bad” one) and λci is positive
(abatement capacity is a ”good” stock). It can easily be checked that θc and λci
are respectively decreasing and increasing over time. Inserting θc and λci into
(12) and (13) respectively leads to the following optimal emission and investment
policies

Eci =
δ

(ϕ1 + ϕ2)
(
1− e−δ(T−t)

) , i = 1, 2 (16)

Ici =
βi
ciµi

(
1− e−δ(T−t)

)
, i = 1, 2 (17)

As is readily seen, emission depends on both players marginal damage costs
and investment is determined such that its marginal cost is equal to the shadow
price of abatement stock. Given the optimal emission and investment policies,
one can solve for the optimal abatement and pollution stocks.

Denote by W c = W c
1 + W c

2 the optimal cooperative outcome, where W c
i is

obtained by inserting the optimal values of control and state variables in player’s
i objective functional. We shall deal with the issue of distributing this joint
welfare later on.

3.2 Nash equilibrium

To identify an open-loop Nash equilibrium, write down the Hamiltonians:

Hi =
(
LogEi + βiKi −

1
2
ciI

2
i − ϕiS + λi(Ii − µiKi

)
(18)

+θi(E1 + E2 − δS), i = 1, 2
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Notice that formally we should insert in player’s i Hamiltonian the r.h.s. of
player’s j abatement stock dynamics multiplied by an adjoint variable. Due
to the decoupling of investment and abatement stock variables of the two play-
ers, this is not necessary. Assuming an interior solution, sufficient equilibrium
conditions are the following

.

S = E1 + E2 − δS, S(0) = S0 (19)
.

θi = δθi + ϕi, θi(T ) = 0 (20)
.

Ki = Ii − µiKi, Ki(0) = K0
i , i = 1, 2 (21)

.

λi = µiλi − βi, λi(T ) = 0, i = 1, 2 (22)

Ei = − 1
θi

(23)

Ii =
λi
ci

(24)

We identify Nash equilibrium by the superscript N . As one can notice, the
equilibrium investment strategy and the multiplier of the abatement capacity
are the same as the one obtained in the cooperative solution. The implication
is that open-loop Nash equilibrium investment strategies are Pareto-optimal.
This is due to the structure of our model where there is no interaction between
players’ investment decisions. Therefore,

INi =
βi
ciµi

(
1− e−δ(T−t)

)
, i = 1, 2 (25)

The interpretation of investment strategy is identical to the one provided in
the cooperative case. Solving the differential equation (20), gives

.

θNi = −ϕi
δ

(
1− e−δ(T−t)

)
, θi(T ) = 0 (26)

Inserting in (23) leads to the following equilibrium emission strategy

ENi =
δ

ϕi
(
1− e−δ(T−t)

) , i = 1, 2 (27)

The difference between cooperative and noncooperative emission lies in the fact
that in the latter case, a player takes into account only his marginal damage cost,
while in the former one a player takes into account both players marginal damage
costs. Since the ϕ’s are positive, emission levels are lower under cooperation,
for all t. So is the pollution stock. Indeed, it is easy to verify that the difference
in pollution stocks is given by

SN − Sc =
(

ϕ2
1 + ϕ2

2

ϕ1ϕ2(ϕ1 + ϕ2)

)
eδ(T−t)Log

(
1− e−δT

1− e−δ(T−t)

)
> 0 (28)

Denote by WN
i , the Nash equilibrium outcome of player i.
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4 Incentive equilibrium

Assume that the players agree before starting the game that the cooperative
outcome is the desired one, that is they wish to achieve a collectively social
outcome. In the absence of a binding agreement, each player wishes to be
assured that when he implements his cooperative strategy, his neighbor will
implement also his. Both players wishes will be automatically fulfilled if the
desired cooperative outcome is an equilibrium. If one assumes that each player
knows his neighbor’s current decision when making his own, one may resort
to so-called incentive strategies to achieve the cooperative outcome as an (in-
centive) equilibrium (see Ehtamo and Hämäläinen (1986, 1989, 1993)). An
incentive equilibrium has the property that when player i implements his in-
centive strategy, the best choice for player j is to implement his own incentive
strategy.

Since we have obtained that cooperative and noncooperative investment (and
hence abatement capacity) decisions coincide, and hence are not incentive con-
trollable, the incentive issue concerns only the emission levels. Formally, an in-
centive equilibrium is defined as follows. Let (Ec1, E

c
2) ∈ R+×R+ denote the de-

sired (cooperative) emission levels. Denote by Ψ1 = {ψ1 | ψ1 : R+ → R+} ,Ψ2 =
{ψ2 | ψ2 : R+ → R+} the sets of admissible incentive strategies defined below.

Definition 2 Definition 3 Strategy pair ψ1 ∈ Ψ1, ψ2 ∈ Ψ2 is an incentive
equilibrium at (Ec1, E

c
2) if

W1(Ec1, E
c
2) ≥ W1(E1, ψ2(E1)), ∀E1 ∈ R+ (29)

W2(Ec1, E
c
2) ≥ W1(ψ1(E2), E2), ∀E2 ∈ R+ (30)
Ec1 = ψ1(Ec2), Ec2 = ψ2(Ec1) (31)

Admissible incentive strategies are assumed to be linear

ψ1(E2) = Ec1 + υ1(t)(E2 − Ec2), ψ2(E1) = Ec2 + υ2(t)(E1 − Ec1) (32)

To identify an incentive equilibrium, one needs to solve a pair of optimal control
problems and then finds the optimal values for υ1(t) and υ2(t). The optimal
control problem for player 1 is defined as follows:

max
E1≥0

W1 (33)

subject to (1)-(2)
and E2 = ψ2(E1)

The Hamiltonian for this problem is the following

H1 = LogE1 + β1K1 −
1
2
c1I

2
1 − ϕ1S + λ1(I1 − µ1K1) (34)

+θ1 (E1 + Ec2 + υ2(t)(E1 − Ec1)− δS)
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Optimality conditions for emission and adjoint multiplier for pollution stock are
as follows (all others are the same as before and we omit printing them)

.

θ1 = δθ1 + ϕ1, θ1(T ) = 0 (35)

E1 = − 1
θ1(1 + υ2(t))

(36)

Identify the incentive strategy by the superscript I. Solving for θ1 and substi-
tuting in the above equation leads to the incentive emission strategy for player
1

EI1 =
δ

ϕ1(1 + ν2(t))
(
1− e−δ(T−t)

) (37)

Following a similar approach for player 2, leads to the following incentive emis-
sion strategy

EI2 =
δ

ϕ2(1 + ν1(t))
(
1− e−δ(T−t)

) (38)

To determine the values for υ1(t) and υ2(t), it suffices to let EIi = Eci , i = 1, 2.
It is easy to verify that

υ1(t) = υ1 =
ϕ1

ϕ2
, υ2(t) = υ2 =

ϕ2

ϕ1
(39)

Notice that these values are positive and constant over time and that υi = υ−1
j .

5 Welfare allocation over time

We have yet obtained the optimal joint welfare W c(= W c
1 + W c

2 ). Although it
is obvious by virtue of joint maximization that W c = W c

1 + W c
2 > WN = WN

1 +
WN

2 , nothing insures that each player is better off under cooperation. One
requirement for cooperation to take place is that the agreement satisfies a global
individual rationality condition. To achieve this, one can adopt the egalitarian
principle (see, e.g. Moulin (1988)) which gives an equal division of the surplus
of cooperation. To achieve this, one defines a total side payment SP such that

SP =
1
2
(
W c

1 −W c
2 +WN

2 −WN
1

)
(40)

After this side payment has been made, the countries will end up with the
following net welfares

NW1 = W c
1 − SP = WN

1 +
W c −

(
WN

1 +WN
2

)
2

(41)

NW2 = W c
2 + SP = WN

2 +
W c −

(
WN

1 +WN
2

)
2

(42)
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Obviously each player gets a higher total payoff under cooperation (after side
payment) than under a noncooperative regime. Recall that each player objec-
tive functional was defined as

Wi =
∫ T

0

(
LogEi + βiKi −

1
2
ciI

2
i − ϕiS

)
dt (43)

Since for each player the investment cost and abatement capacities are equal
under cooperation and noncooperation, the side payment becomes

SP =
1
2

∫ T

0

[LogEc1 − ϕ1S
c − LogEc2 + ϕ2S

c (44)

+LogEN2 − ϕ2S
N − LogEN1 + ϕ1S

N ]dt

which reduces, after substitution for the E’s from (16) and (27), to

SP =
1
2

∫ T

0

(
Log

ϕ1

ϕ2
+ (ϕ1 − ϕ2)(SN − Sc)

)
dt (45)

Since the pollution stock is higher under noncooperation than under co-
operation for all t, it is easy to see that the total side payment is positive if
ϕ1 > ϕ2 and negative if ϕ1 < ϕ2. If both players marginal damage costs were
equal then the side payment would be zero and the cooperative game would be
inessential, i.e. there is no incentive for cooperation since there is no surplus of
cooperation.

After side-payments have been made, the total welfares are

NW1 =
∫ T

0

[LogEc1 + β1K1 −
c1
2
I2
1 (46)

−ϕ1

2
(SN + Sc) +

ϕ2

2
(SN − Sc)]dt

NW2 =
∫ T

0

[LogEc2 + β2K2 −
c2
2
I2
2 (47)

−ϕ2
2

(SN + Sc) +
ϕ1

2
(SN − Sc)]dt

Of course, NW1 +NW2 = W c, and NWi ≥WN
i .

We now provide a decomposition over time of these net welfares such that
instantaneous dynamic individual rationality is assured. This means that the
net instantaneous welfare obtained by each player dominates his net instanta-
neous non cooperative welfare. The following allocation over time guarantees
this requirement

ωi(t) =
1
T

(
NWi −WN

i

)
+WN

i (t) (48)

where WN
i (t) is the instantaneous welfare under non cooperation, that is

WN
i (t) = LogENi + βiK

N
i −

1
2
ci

(
I
N

i

)2

− ϕiSN (49)
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and ωi(t) is the instantaneous amount allocated to player i.
To be admissible, this allocation must satisfy∫ T

0

ωi(t)dt = NWi (50)

which is very easy to verify. Further, to satisfy the instantaneous dynamic
individual rationality, we must have

ωi(t) ≥WN
i (t), ∀t (51)

which is obvious since 1
T

(
NWi −WN

i

)
≥ 0.

The economic interpretation of this allocation mechanism is straightforward.
Indeed, it recommends to allocate at each instant of time to player i his in-
stantaneous equilibrium welfare plus the average of his dividend of cooperation
defined as the difference between his total net cooperative welfare (that is after
side payment) and his total non cooperative welfare.

6 Conclusion

To conclude, we would like to stress some of the results obtained and the lim-
its of our approach. Although we have adopted a simple ecological economics
model, still the model captures one of the main ingredients of the debate re-
garding pollution reduction, namely that emissions by one player damages the
environment of all. The fact that we needed to resort to simple special func-
tional forms is clearly a drawback. However, it is worth noticing that this has
been done for the only purpose of illustrating the construction of an incentive
equilibrium. All other results would remain unaltered, including the instanta-
neous dynamic rationality one, if we had refrained from resorting to functional
forms. Finally, it is clearly of interest to investigate the impact of discounting
on the results, especially if the game to be considered were of infinite horizon.
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[3] Ehtamo, H. and R.P. Hämäläinen (1989). ”Incentive Strategies and Equi-
libria for Dynamic Games with Delayed Information”, Journal of Optimiza-
tion Theory and Applications, 63, 3, 355-370.

10
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