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Abstract. We extend our 2003 paper on instrumental variables and generalized
method of moments estimation, and we test and describe enhanced routines that
address heteroskedasticity- and autocorrelation-consistent standard errors, weak
instruments, limited-information maximum likelihood and k-class estimation, tests
for endogeneity and Ramsey’s regression specification-error test, and autocorrela-
tion tests for instrumental variable estimates and panel-data instrumental variable
estimates.

Keywords: st0030_3, ivactest, ivendog, ivhettest, ivreg2, ivreset, overid, ranktest,
instrumental variables, weak instruments, GMM, endogeneity, heteroskedasticity,
serial correlation, HAC standard errors, LIML, CUE, overidentifying restrictions,
Frisch—Waugh—Lovell theorem, RESET, Cumby—-Huizinga test

1 Introduction

In Baum, Schaffer, and Stillman (2003), we discussed instrumental variables (IV) esti-
mators in the context of generalized method of moments (GMM) estimation and pre-
sented Stata routines for estimation and testing consisting of the ivreg2 suite. Since
that time, those routines have been considerably enhanced and more routines have
been added to the suite. This paper presents the analytical underpinnings of both basic
IV/GMM estimation and these enhancements and describes the enhanced routines. Some
of these features are now also available in Stata 10’s ivregress, whereas others are not.

The additions include the following:

e Estimation and testing that is robust to and efficient in the presence of arbitrary
serial correlation.

© 2007 StataCorp LP st0030_3
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Enhanced routines for IV/GMM estimation and testing

A range of test statistics that allow the user to address the problems of underiden-
tification or weak identification, including statistics that are robust in the presence
of heteroskedasticity, autocorrelation, or clustering.

Three additional IV/GMM estimators: the GMM continuously updated estimator
(CUE) of Hansen, Heaton, and Yaron (1996); limited-information maximum like-
lihood (LIML); and k-class estimators.

A more intuitive syntax for GMM estimation: the gmm2s option requests the two-
step feasible efficient GMM (EGMM) estimator, which reduces to standard 1v/2SLS
if no robust covariance matrix estimator is also requested. The cue option requests
the continuously updated GMM estimator, which reduces to standard LIML if no
robust covariance matrix estimator is also requested.

A more intuitive syntax for a “GMM distance” or C test of the endogeneity of
regressors.

An option that allows the user to “partial out” regressors: something that is partic-
ularly useful when the user has a rank-deficient estimate of the covariance matrix
of orthogonality conditions (common with the cluster() option and singleton
dummy variables).

Several advanced options, including options that will speed up estimation using
ivreg2 by suppressing the calculation of various checks and statistics.

A version of Ramsey’s regression specification-error test (RESET), ivreset, that
(unlike official Stata’s ovtest) is appropriate for use in an IV context.

A test for autocorrelation in time-series errors, ivactest, that (unlike official
Stata’s estat bgodfrey) is appropriate for use in an IV context.

We review the definitions of the method of IV and IV/GMM in the next section to
set the stage. The following sections of the paper discuss each of these enhancements
in turn. The last two sections provide a summary of ivreg2 estimation options and
syntax diagrams for all programs in the extended ivreg?2 suite.

2

IV and GMM estimation

GMM was introduced in Hansen (1982). It is now a mainstay of both econometric
practice and econometrics textbooks. We limit our exposition here to the linear case,
which is what ivreg2 handles. The exposition here draws on Hayashi (2000). For more
details and references, see also Baum, Schaffer, and Stillman (2003) and Baum (2006,
chap. 8).
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2.1 Setup

The equation to be estimated is, in matrix notation,

y=Xp+u (1)

with typical row

yi = XiB +u;

The matrix of regressors X is n x K, where n is the number of observations. Some
of the regressors are endogenous, so that E(X;u;) # 0.

We partition the set of regressors into [X; Xa|, with the K; regressors X; assumed
under the null to be endogenous and the K = (K — K;) remaining regressors Xs
assumed exogenous, giving us

y=[X1 Xo][B B +u

The set of 1V is Z and is n x L. This is the full set of variables that are assumed to be
exogenous, i.e., E(Z;u;) = 0. We partition the instruments into [Z; Z], where the L
instruments Z; are excluded instruments and the remaining Lo = (L — L;) instruments
Zy = X are the included instruments/exogenous regressors:

Regressors X = [X; Xs] = [X; Z3] = [Endogenous Exogenous]

Instruments Z = [Z; Z3] = [Excluded Included]

The order condition for identification of the equation is L > K implying there must
be at least as many excluded instruments (L;) as there are endogenous regressors (K1)
as Zs is common to both lists. If L = K, the equation is said to be exactly identified
by the order condition; if L > K, the equation is overidentified. The order condition is
necessary but not sufficient for identification; see section 7 for a full discussion.

2.2 GMM

The assumption that the instruments Z are exogenous can be expressed as F(Z;u;) = 0.
We are considering linear GMM only, and here the L instruments give us a set of L
moments

9i(8) = Zjui = Zi(y; — Xi0)
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where g; is L x 1. The exogeneity of the instruments means that there are L moment
conditions, or orthogonality conditions, that will be satisfied at the true value of 3:

Elg:(8)] =0

Each of the L moment equations corresponds to a sample moment. For some given
estimator 3, we can write these L sample moments as

1

1 n R 1 n R R
= ;gi(ﬂ) = E;Zz{(yi - XiB) = EZ/U

The intuition behind GMM is to choose an estimator for 8 that brings g(ﬁ) as close
to zero as possible. If the equation to be estimated is exactly identified, so that L = K,
then we have as many equations—the L moment conditions—as we do unknowns: the
K coefficients in 3. Here it is possible to find a J3 that solves g(ﬁ) = 0, and this GMM
estimator is in fact a special case of the IV estimator as we discuss below.

If the equation is overidentified, however, so that L > K, then we have more equa-
tions than we do unknowns. Generally, it will not be possible to find a § that will set all
L sample moment conditions exactly to zero. Here we take an L x L weighting matrix
W and use it to construct a quadratic form in the moment conditions. This gives us
the GMM objective function:

J(B) = ng(B)Wg(B)

A GMM estimator for 3 is the 3 that minimizes J(B):
Py = argmin J(B) = ng(B) W3 ()

Linearly, we are considering, deriving, and solving the K first-order conditions
{0J(B )}/(86) = 0 (treating W as a matrix of constants), which yields the GMM es-
timator:!

Bt = (X'ZWZ'X)"' X' ZW Z'y @)

The GMM estimator is consistent for any symmetric positive-definite weighting ma-
trix W, and thus there are as many GMM estimators as there are choices of weighting
matrix W. Efficiency is not guaranteed for an arbitrary W, so we refer to the estimator
defined in (2) as the possibly inefficient GMM estimator.

1. The results of the minimization, and hence the GMM estimator, will be the same for weighting
matrices that differ by a constant of proportionality.
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We are particularly interested in efficient GMM estimators with minimum asymptotic
variance. Moreover, for any GMM estimator to be useful, we must be able to conduct
inference, and for that we need estimates of the variance of the estimator. Both require
estimates of the covariance matrix of orthogonality conditions, a key concept in GMM
estimation.

2.3 Inference, efficiency, and the covariance matrix of orthogonality
conditions

Denoted by S, the asymptotic covariance matrix of the moment conditions g

1
S = AVar{g(B)} = lim —E(Z'uu'Z)
n—oo 1N
where S is an L x L matrix and g(8) = (1/n)Z’'u. That is, S is the variance of the
limiting distribution of v/n g (Hayashi 2000, 203).
The asymptotic distribution of the possibly inefficient GMM (IGMM) estimator can

be written as follows. Let Qxz = E(X!Z;). The asymptotic variance of the IGMM
estimator defined by an arbitrary weighting matrix W is given by

V(Banm) = (QxzWQx2) "M Q' zWSWQx2)(Qx z,WQxz) ™ (3)

Under standard assumptions (see Hayashi 2000, 202-203, 209) the IGMM estimator
is y/n-consistent; that is,

Vi (Banm — B) — N{0,V(Banm)}
where — denotes convergence in distribution.

Strictly speaking, therefore, we should perform hypothesis tests on v/n EGMM by us-
ing (3) for the variance—covariance matrix. Standard practice, however, is to transform
the variance—covariance matrix (3) rather than the coefficient vector (2). This is done
by normalizing V(BGMM) by 1/n, so that the variance—covariance matrix reported by
statistical packages such as Stata is in fact

1 -~ 1
|4 (\/ﬁ ﬁGMM) = E(QS{ZWQXZ)_l(Q;(ZWSWQXZ)(Q;{ZWQXZ)_l (4)

The EGMM estimator makes use of an estimator with an optimal weighting matrix W,

which minimizes the asymptotic variance of the estimator. This is achieved by choosing
W = S~1. If we substitute this into (2) and (4), we obtain the EGMM estimator

Beavmm = (X' 28712/ X)) ' X' 28 7'y (5)
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with asymptotic variance

V(BEGMM) = Qx5 'Qxz)™"

Similarly,

Vi (Braviv — B) — N{0,V (Branm) }
and we perform inference on /n EEGMM by using

V(s Prcnn ) = +(@kz5 ™ Qxa) ©)

as the variance—covariance matrix for Sgamm-

Obtaining an estimate of QQx z is straightforward: we simply use the sample analog
I 1
=N X[z =-X'Z
n = n

If we have an estimate of .S, therefore, we can conduct asymptotically correct infer-
ence for any GMM estimator, efficient or inefficient.

An estimate of S also makes the EGMM estimator a feasible estimator. In two-step
feasible EGMM estimation an estimate of S is obtained in the first step, and we calculate
the estimator and its asymptotic variance by using (5) and (6) in the second step.

2.4 Estimating the covariance matrix of orthogonality conditions

The first-step estimation of the matrix S requires the residuals of a consistent GMM
estimator (. Efficiency is not required in the first step of two-step GMM estimation,
which simplifies the task considerably. But to obtain an estimate of S, we must make
some further assumptions.

We illustrate this by using the case of independent but possibly heteroskedastic
disturbances. If the errors are independent, E(gig;») =0 for ¢ # j, and so

S = AVar(g) = E(gig;) = E(u; Z{Z;)
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This matrix can be consistently estimated by an Eicker—Huber—White robust covariance
estimator

s wzz - Lira
S—nZuiZZl—n(ZQZ) (7)

where € is the diagonal matrix of squared residuals %? from 57 the consistent but not
necessarily efficient first-step GMM estimator. In the ivreg2 implementation of two-step
ECMM, the first-step estimator is Oy, the IV estimator.

The resulting estimate S can be used to conduct consistent inference for the first-
step estimator using (3), or it can be used to obtain and conduct inference for the EGMM
estimator using (5) and (6).

In the next section, we discuss how the two-step GMM estimator can be applied when
the errors are serially correlated.

2.5 Using ivreg2 for GMM estimation

The ivreg2 command is included in the electronic supplement to this issue. The latest
version of ivreg?2 can also be downloaded from the SSC archive with the command ssc
describe ivreg2. We summarize the command’s syntax and options in sections 11
and 12, respectively. The commands below illustrate how to use ivreg2 to obtain the
coefficient and variance—covariance estimators discussed above. The example uses the
dataset provided in Wooldridge (2003).

The first command requests a standard 1V/2SLS estimator and a variance—covariance
matrix, which assumes conditionally homoskedastic and independent errors. In this
case, IV/2SLS is the EGMM estimator. The second requests the 1v/2SLS estimator and a
variance—covariance estimator that is robust to heteroskedasticity based on an estimate
of S as in (7); here 1vV/2SLS is an IGMM estimator. The third command requests the
two-step feasible EGMM estimator and corresponding variance—covariance matrix. S is
again based on (7). The fourth command is equivalent to the first, illustrating that the
two-step EGMM estimator reduces to two-stage least squares when the disturbance is as-
sumed to be independently and identically distributed (i.i.d.) and S can be consistently
estimated by a classical nonrobust covariance matrix estimator.

1. ivreg2 lwage exper expersq (educ=age kidslt6 kidsge6)
2. ivreg2 lwage exper expersq (educ=age kidslt6 kidsge6), robust

3. ivreg2 lwage exper expersq (educ=age kidslt6 kidsge6), gmm2s robust

4. ivreg2 lwage exper expersq (educ=age kidslt6 kidsge6), gmm2s
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3 GMM and HAC standard errors

Equation (7) illustrates how the asymptotic covariance matrix of the GMM estimator
could be derived in the presence of conditional heteroskedasticity. We now further ex-
tend the estimator to handle the case of nonindependent errors in a time-series context.
We correspondingly change our notation so that observations are indexed by ¢ and s
rather than ¢. In the presence of serial correlation, E(g:g.) # 0,t # s. To derive con-
sistent estimates of .S, we define I'; = E(g;g;_;) as the autocovariance matrix for lag j.
We may then write the long-run covariance matrix

S =AVar(g) =To+ > _([; +T) (8)
j=1
which may be seen as a generalization of (7), with Ty = E(g;¢;) and

U= E(gig;_;), j = +1,%2,...

As g; is defined as the product of Z; and u;, the autocovariance matrices may be
expressed as

Fj = E(utut_th’Zt_j)

As usual, we replace the u;, u;—; by consistent residuals from first-stage estimation
to compute the sample autocovariance matrices I';, defined as

o~ o~

~ 1 1
o
r;=-— tJt—j = — ) Ly Ly
n n
=1 =1

We obviously do not have an infinite number of sample autocovariances to insert into
the infinite sum in (8). Less obviously, we also cannot simply insert all the autocovari-
ances from 1 to n, because this would imply that the number of sample orthogonality
conditions g; is going to infinity with the sample size, which precludes obtaining a con-
sistent estimate of S.2 The autocovariances must converge to zero asymptotically as n
increases.

The usual way this is handled in practice is for the summation to be truncated at a
specified lag ¢. Thus the S matrix can be estimated by

q .
S:F0+ZH (q]> (Fj +F;)
j=1 "

2. Although a consistent estimate cannot be obtained with bandwidth equal to sample size, Hall
(2005, 305-310) points out that it is possible to develop an asymptotic framework providing inference
about the parameters.
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where wu;,u;—; are replaced by consistent estimates from first-stage estimation. The
kernel function, k(j/q,), applies appropriate weights to the terms of the summation,
with ¢, defined as the bandwidth of the kernel (possibly as a function of n).? In many
kernels, consistency is obtained by having the weight fall to zero after a certain number
of lags.

The best-known approach to this problem in econometrics is that of Newey and West
(1987b), which generates S by using the Bartlett kernel function and a user-specified
value of ¢q. For the Bartlett kernel, x(-) = (1 — j/qn) if j < ¢, — 1, 0 otherwise. These
estimates are said to be heteroskedasticity- and autocorrelation-consistent (HAC), as
they incorporate the standard sandwich formula (7) in computing I'y.

HAC estimates can be calculated by using ivreg2 with the robust and bw() options
with the kernel function’s bandwidth (the bw() option) set to ¢.* The bandwidth may
also be chosen optimally by specifying bw(auto) by using the automatic bandwidth
selection criterion of Newey and West (1994).5:6 By default, ivreg2 uses the Bartlett
kernel function.” If the equation contains endogenous regressors, these options will cause
the 1V estimates to be HAC. If the equation is overidentified and the robust, gmm2s,
and bw () options are specified, the resulting GMM estimates will be both HAC and more
efficient than those produced by 1V.

The Newey—West (Bartlett kernel function) specification is only one of many feasible
HAC estimators of the covariance matrix. Andrews (1991) shows that in the class of
positive semidefinite kernels, the rate of convergence of S-S depends on the choice
of kernel and bandwidth. The Bartlett kernel’s performance is bettered by those in
a subset of this class, including the quadratic spectral kernel. Accordingly, ivreg2
provides a menu of kernel choices, including (abbreviations in parentheses): quadratic
spectral (qua or gs), truncated (tru), Parzen (par), Tukey—Hanning (thann), Tukey—
Hamming (thamm), Daniell (dan), and Tent (ten). For the Bartlett, Parzen, and Tukey—
Hanning/Hamming kernels, the number of lags used to construct the kernel estimate
equals the bandwidth (bw()) minus one.® If the kernels above are used with bw(1),
no lags are used and ivreg2 will report the usual Eicker—-Huber—White “sandwich”
heteroskedasticity-robust variance estimates. Most, but not all, of these kernels guaran-
tee that the estimated S is positive definite and therefore always invertible; the truncated
kernel, for example, was proposed in the early literature in this area but is now rarely
used because it can generate an noninvertible S. For a survey covering various ker-
nel estimators and their properties, see Cushing and McGarvey (1999) and Hall (2005,
75-86).

3. For more detail on this GMM estimator, see Hayashi (2000, 406-417).

4. For the special case of ordinary least squares (OLS), Newey—West standard errors are available
from [TS] newey with the maximum lag (¢ — 1) specified by newey’s lag() option.

5. This implementation is identical to that provided by Stata’s ivregress command; see
[R] ivregress.

6. Automatic bandwidth selection is only available for the Bartlett, Parzen, and quadratic spectral
kernels; see below.

7. A common choice of bandwidth for the Bartlett kernel function is T'*/3.

8. A common choice of bandwidth for these kernels is (¢ — 1) & T/4 (Greene 2008, 643). A value
related to the periodicity of the data (4 for quarterly, 12 for monthly, etc.) is often chosen.
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Under conditional homoskedasticity the expression for the autocovariance matrix
simplifies:

Uy = BElww-;Z;2—;) = E(uu—;)E(Z;Z,—;)

and the calculations of the corresponding kernel estimators also simplify; see Hayashi
(2000, 413-414). These estimators may perform better than their heteroskedasticity-
robust counterparts in finite samples. If the researcher is satisfied with the assump-
tion of homoskedasticity but wants to deal with autocorrelation of unknown form, the
researcher should use the AC correction without the H correction for arbitrary het-
eroskedasticity by omitting the robust option. ivreg2 allows selection of H, AC, or
HAC VCEs by combining the robust, bw(), and kernel() options. Thus both robust
and bw() must be specified to calculate a HAC VCE of the Newey—West type, using the
default Bartlett kernel. °

To illustrate the use of HAC standard errors, we fit a quarterly time-series model
relating the change in the U.S. inflation rate (D.inf) to the unemployment rate (UR)
for 196093-1999q4. As instruments, we use the second lag of quarterly GDP growth and
the lagged values of the Treasury bill rate, the trade-weighted exchange rate, and the
Treasury medium-term bond rate.'® We first estimate the equation with standard 1v
under the assumption of i.i.d. errors.

. use http://fmwww.bc.edu/ec-p/data/stockwatson/macrodat
. generate inf = 100 * log( CPI / L4.CPI )
(4 missing values generated)

. generate ggdp = 100 * log( GDP / L4.GDP )
(10 missing values generated)

9. Stata’s official newey command (see [T'S] newey) does not allow gaps in time-series data. As there
is no difficulty in computing HAC estimates with gaps in a regularly spaced time series, ivreg2 handles
this case properly.

10. These data accompany Stock and Watson (2003).
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ivreg2 D.inf (UR=L2.ggdp L.TBILL L.ER L.TBON)

IV (2SLS) estimation

Estimates efficient for homoskedasticity omnly
Statistics consistent for homoskedasticity only

Number of obs = 158
F( 1, 156) = 10.16
Prob > F = 0.0017
Total (centered) SS = 60.04747699 Centered R2 = 0.1914
Total (uncentered) SS = 60.05149156 Uncentered R2 = 0.1915
Residual SS 48.55290564 Root MSE .5543
D.inf Coef. Std. Err. z P>|z]| [95% Conf. Intervall]
UR -.155009 .0483252 -3.21 0.001 -.2497246 -.0602933
_cons .9380705 .2942031 3.19 0.001 .361443 1.514698
Underidentification test (Anderson canon. corr. LM statistic): 58.656
Chi-sq(4) P-val = 0.0000
Weak identification test (Cragg-Donald Wald F statistic): 22.584
Stock-Yogo weak ID test critical values: 5% maximal IV relative bias 16.85
10% maximal IV relative bias 10.27
20% maximal IV relative bias 6.71
30% maximal IV relative bias 5.34
10% maximal IV size 24.58
15% maximal IV size 13.96
20% maximal IV size 10.26
25% maximal IV size 8.31

Source: Stock-Yogo (2005). Reproduced by permission.
Sargan statistic (overidentification test of all instruments): 5.851
Chi-sq(3) P-val = 0.1191

Instrumented: UR

Excluded instruments: L2.ggdp L.TBILL L.ER L.TBON

475

In these estimates, the negative coefficient on the unemployment rate is consistent
with macroeconomic theories of the natural rate. In that context, lowering unemploy-
ment below the natural rate will cause an acceleration of price inflation. The Sargan
statistic implies that the test of overidentifying restrictions cannot reject its null hy-

pothesis.

An absence of autocorrelation in the error process is unusual in time-series analysis,
so we test the equation by using ivactest, as discussed in section 10. By using the
default value of one lag, we consider whether the error process exhibits AR(1) behavior.
The test statistic implies that the errors do not exhibit serial independence:

(Continued on next page)
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ivactest

Cumby-Huizinga test with HO: errors nonautocorrelated at order 1
Test statistic: 25.909524
Under HO, Chi-sq(1) with p-value: 3.578e-07

Given this strong rejection of the null of independence, we reestimate the equation
with HAC standard errors, choosing a bandwidth (bw()) of 5 (roughly 7'/3) and the
robust option. By default, the Bartlett kernel is used, so that these are Newey—West
two-step EGMM estimates.

ivreg2 D.inf (UR=L2.ggdp L.TBILL L.ER L.TBON), gmm2s robust bw(5)
2-Step GMM estimation

Estimates efficient for arbitrary heteroskedasticity and autocorrelation
Statistics robust to heteroskedasticity and autocorrelation
kernel=Bartlett; bandwidth=5
time variable (t): date

Number of obs = 158
FC 1, 156) = 2.46
Prob > F = 0.1185
Total (centered) SS = 60.04747699 Centered R2 = 0.1548
Total (uncentered) SS = 60.05149156 Uncentered R2 = 0.1548
Residual SS = 50.75430293 Root MSE = .5668
Robust
D.inf Coef. Std. Err. z P>zl [95% Conf. Intervall
UR -.1002374 .0634562 -1.58 0.114 -.2246092 .0241344
_cons .5850796 .372403 1.57 0.116 -.144817 1.314976
Underidentification test (Kleibergen-Paap rk LM statistic): 7.954
Chi-sq(4) P-val = 0.0933
Weak identification test (Kleibergen-Paap rk Wald F statistic): 7.362
Stock-Yogo weak ID test critical values: 5% maximal IV relative bias 16.85
10% maximal IV relative bias 10.27
20% maximal IV relative bias 6.71
30% maximal IV relative bias 5.34
10% maximal IV size 24.58
15% maximal IV size 13.96
20% maximal IV size 10.26
25% maximal IV size 8.31
Source: Stock-Yogo (2005). Reproduced by permission.

NB: Critical values are for Cragg-Donald F statistic and i.i.d. errors.
Hansen J statistic (overidentification test of all instruments): 3.569
Chi-sq(3) P-val = 0.3119

Instrumented: UR
Excluded instruments: L2.ggdp L.TBILL L.ER L.TBON

It appears that by generating HAC estimates of the covariance matrix, the statistical
significance of the unemployment rate in this equation is now questioned. One important
statistic is also altered: the test for overidentification, denoted as the Sargan test in
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the former estimates, is on the borderline of rejecting its null hypothesis at the 90%
level. When we reestimate the equation with HAC standard errors, various summary
statistics are “robustified” as well: here the test of overidentifying restrictions, now
denoted Hansen’s J. That statistic is now far from rejection of its null, giving us
greater confidence that our instrument set is appropriate.

4 CUE, LIML, and k-class estimation
4.1 CUE and LIML

Again consider the two-step feasible EGMM estimator. In the first step, a consistent
but IGMM estimator, (3, is used to estimate S, the covariance matrix of orthogonality
conditions. In the second step, the GMM objective function is maximized by using S -1
as the weighting matrix. If we write S as a function of the first-step estimator [, the
minimization problem in the second step of two-step EGMM estimation that defines the
estimator is

Pasmanu = arg min J(B) = ng(B)'{S(5)}"‘g(5)

As noted earlier, the second-step minimization treats the weighting matrix W =
{S(B)}~! as a constant matrix. Thus the residuals in the estimate of S are the first-
stage residuals defined by 3, whereas the residuals in the orthogonality conditions g are

the second-stage residuals defined by B

The minimization problem that defines the GMM/CUE of Hansen, Heaton, and Yaron
(1996) is, by contrast,

Bour = arg mﬁin J(B) = ng(B)Y{S(B)}"'g9(B)

Here the weighting matrix is a function of the § being estimated. The residuals in
S are the same residuals that are in g, and estimation of S is done simultaneously with
the estimation of 3. Generally, solving this minimization problem requires numerical
methods.

Both the two-step EGMM and CUE/GMM procedures reduce to familiar estimators
under linearity and conditional homoskedasticity. Here S = FE(g,g)) = E(u?Z!Z;) =
EW?)E(Z!Z;) = 0°Qzz. Qzz is estimated by its sample counterpart (1/n)Z'Z. In
two-step EGMM under homoskedasticity, the minimization becomes
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where 1(3) = (y—Xﬁ) and Py = Z(Z'Z)~1Z' is the projection matrix. In the minimiza-
tion, the error variance 52 is treated as a constant and hence does not require first-step
estimation, and the 3 that solves (9) is the IV estimator By = (X' Pz X) "1 X'Pyy.1!

With CUE/GMM under conditional homoskedasticity, the estimated error variance is
a function of the residuals

and the minimization becomes

s A(B)Pra(h)
s = et J0) = 2 By 1o

The 3 that solves (10) is defined as the LIML estimator.

Unlike CUE estimators in general, the LIML estimator can be derived analytically
and does not require numerical methods. This derivation is the solution to an eigen-
value problem (see Davidson and MacKinnon 1993, 644-649). The LIML estimator was
first derived by Anderson and Rubin (1949), who also provided the first test of overi-
dentifying restrictions for estimation of an equation with endogenous regressors. This
Anderson—Rubin statistic (not to be confused with the test discussed below under “weak
identification”) follows naturally from the solution to the eigenvalue problem. If we de-
note the minimum eigenvalue by A, the Anderson—Rubin likelihood-ratio test statistic
for the validity of the overidentifying restrictions (orthogonality conditions) is n log(\).
Since LIML is also an EGMM estimator, the value J of the minimized GMM objective
function also provides a test of overidentifying restrictions. The J test of the same
overidentifying restrictions is closely related to the Anderson—Rubin test; the mini-
mized value of the LIML GMM objective function is in fact J = n(1/1 — X). Of course,
n log(A) = n(1/1 = X\).

Although CUE and LIML provide no asymptotic efficiency gains over two-step GMM
and IV, recent research suggests that their finite-sample performance may be superior. In
particular, there is evidence suggesting that CUE and LIML perform better than 1v/GMM
in the presence of weak instruments (Hahn, Hausman, and Kuersteiner 2004). This is
reflected, for example, in the critical values for the Stock—Yogo weak instruments test
discussed in section 7.3.12 The disadvantage of CUE in general is that it requires numer-
ical optimization; LIML does not but does require the often rather strong assumption of
ii.d. disturbances. In ivreg2, the cue option combined with the robust, cluster(),
and/or bw() options generates coefficient estimates that are efficient in the presence of
the corresponding deviations from i.i.d. disturbances. Specifying cue with no other op-
tions is equivalent to the combination of the options 1iml and coviv (“covariance-1v”;
see below).

11. The error variance G2, required for inference, is calculated at the end using the IV residuals.
12. With one endogenous regressor and four excluded instruments, the critical value for the Cragg—
Donald statistic for 10% maximal size distortion is 24.58 in the case of IV but only 5.44 for LIML.
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The implementation of the CUE estimator in ivreg2 uses Stata’s ml routine to
minimize the objective function. The starting values are either IV or two-step EGMM
coefficient estimates. These can be overridden with the cueinit () option, which takes a
matrix of starting values of the coefficient vector ( as its argument. The cueoptions ()
option passes its contents to Stata’s ml command. Estimation with the cue option can
be slow and problematic when the number of parameters to be estimated is substantial,
and it should be used with caution.

4.2 k-class estimators

LIML, 1V, and OLS (but not CUE or two-step GMM) are examples of k-class estimators.
A E-class estimator can be written as (Davidson and MacKinnon 1993, 649)

Br ={X'(I - kMz)X} ' X'(I — kMy)y

where M denotes the annihilation matrix I — P. LIML is a k-class estimator with k=A\,
the LIML eigenvalue; 1V is a k-class estimator with k=1; and OLS is a k-class estimator
with £=0. Estimators based on other values of £ have been proposed. Fuller’s modified
LIML (available with the fuller(#) option) sets k = A\ — {a/(N — L)}, where X is
the LIML eigenvalue, L = number of instruments (included and excluded), and the
Fuller parameter « is a user-specified positive constant. The value of o = 1 has been
suggested as a good choice; see Fuller (1977) or Davidson and MacKinnon (1993, 649—
650). Nagar’s bias-adjusted 2SLS estimator can be obtained with the kclass (#) option
by setting k = 14+(L — K)/N, where (L—K) is the number of overidentifying restrictions
and N is the sample size; see Nagar (1959). Research suggests that both of these k-
class estimators have a better finite-sample performance than IV in the presence of weak
instruments, although neither estimator is robust to violations of the i.i.d. assumption.
ivreg2 also provides Stock—Yogo critical values for the Fuller version of LIML.

The default covariance matrix reported by ivreg?2 for the LIML and general k-class
estimators is (Davidson and MacKinnon 1993, 650):

GHX'(I —kMz)X} !
In fact, the usual IV-type covariance matrix
GHX'(I - Mz)X} 1 =56%(X'PzX)7 !

is also valid and can be obtained with the coviv option. With coviv, the covariance
matrix for LIML and the other general k-class estimators will differ from that for the 1v
estimator only because the estimate of the error variance 52 will differ.
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4.3 Example of CUE/LIML estimation

We illustrate the use of CUE/LIML estimation using the same equation we used in our
discussion of HAC standard errors.

ivreg2 D.inf (UR=L2.ggdp L.TBILL L.ER L.TBON ), cue robust bw(5)

initial: neg GMM obj function -J = -3.285175
rescale: neg GMM obj function -J = -2.8716146
Iteration O: neg GMM obj function -J = -2.8716146
Iteration 1: neg GMM obj function -J = -2.793201
Iteration 2: neg GMM obj function -J = -2.7931805
Iteration 3: neg GMM obj function -J = -2.7931798
Iteration 4: neg GMM obj function -J = -2.7931798

CUE estimation

Estimates efficient for arbitrary heteroskedasticity and autocorrelation
Statistics robust to heteroskedasticity and autocorrelation
kernel=Bartlett; bandwidth=5
time variable (t): date

Number of obs = 158
F( 1, 156) = 0.55
Prob > F = 0.4577
Total (centered) SS = 60.04747699 Centered R2 = 0.0901
Total (uncentered) SS = 60.05149156 Uncentered R2 =  0.0901
Residual SS = 54.6384785 Root MSE = .5881
Robust
D.inf Coef.  Std. Err. z P>|z| [95% Conf. Intervall
UR -.0483119 .0644743 -0.75 0.454 -.1746792 .0780555
_cons .2978451 .3804607 0.78 0.434 -.4478442 1.043534
Underidentification test (Kleibergen-Paap rk LM statistic): 7.954
Chi-sq(4) P-val = 0.0933
Weak identification test (Kleibergen-Paap rk Wald F statistic): 7.362
Stock-Yogo weak ID test critical values: 10% maximal LIML size 5.44
15% maximal LIML size 3.87
20% maximal LIML size 3.30
25% maximal LIML size 2.98
Source: Stock-Yogo (2005). Reproduced by permission.

NB: Critical values are for Cragg-Donald F statistic and i.i.d. errors.
Hansen J statistic (overidentification test of all instruments): 2.793
Chi-sq(3) P-val = 0.4246

Instrumented: UR
Excluded instruments: L2.ggdp L.TBILL L.ER L.TBON

When this estimator is used, the magnitude of the point estimate of the UR coefficient
falls yet farther, and it is no longer significantly different from zero at any reasonable
level of significance.
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5 GMM distance tests of endogeneity and exogeneity

The value J of the GMM objective function evaluated at the EGMM estimator BEGMM
is distributed as y? with (L — K) degrees of freedom under the null hypothesis that
the full set of orthogonality conditions are valid. This is variously known as the Sargan
statistic, Hansen J statistic, Sargan—Hansen J test, or simply a test of overidentifying
restrictions.!3

A C or GMM distance test can be used to test the validity of a subset of orthogonality
conditions. Say that the investigator wants to test the validity of Lp orthogonality
conditions. Denote J as the value of the GMM objective function for the EGMM estimator
that uses the full set of orthogonality conditions and J4 as the value of the EGMM
estimator that uses only the L 4 = L — L orthogonality conditions that the investigator
is not questioning. Then under the null that the Lp suspect orthogonality conditions
are actually satisfied, the test statistic (J — Ja) ~ x? with Lp degrees of freedom. If
the S matrix from the estimation using the full set of orthogonality conditions is used
to calculate both GMM estimators, the test statistic is guaranteed to be nonnegative in
finite samples.

Baum, Schaffer, and Stillman (2003) discuss how ivreg2’s orthog() option can be
used to conduct a C' test of the exogeneity of one or more regressors or instruments. To
recapitulate, the orthog() option takes as its argument the list of exogenous variables
Zp whose exogeneity is called into question. If the exogenous variable being tested is
an instrument, the EGMM estimator that does not use the corresponding orthogonality
condition simply drops the instrument. This is illustrated in the following pair of esti-
mations where the second regression is the estimation implied by the orthog() option
in the first:

. ivreg2 y x1 x2 (x3
. ivreg2 y x1 x2 (x3

z1 z2 z3 z4), orthog(z4)
z1 z2 z3)

If the exogenous variable that is being tested is a regressor, the efficient GMM esti-
mator that does not use the corresponding orthogonality condition treats the regressor
as endogenous, as below; again, the second estimation is implied by the use of orthog()
in the former equation:

. ivreg2 y x1 x2 (x3
. ivreg2 y x1 (x2 x3

z1 z2 z3 z4), orthog(x2)
z1 z2 z3)

Sometimes the researcher wants to test whether an endogenous regressor can be
treated as exogenous. This is commonly termed an “endogeneity test”, but as we dis-
cussed in our earlier paper (Baum, Schaffer, and Stillman 2003, 24-27), it is equivalent
to estimating the same regression but treating the regressor as exogenous, and then test-
ing the corresponding orthogonality condition using the orthog() option. Although the

13. If the test statistic is required for an IGMM estimator (e.g., an overidentifying restrictions test
for the IV estimator that is robust to heteroskedasticity), ivreg2 reports the J statistic for the corre-
sponding EGMM estimator; see Baum, Schaffer, and Stillman (2003). This J statistic is identical to
that produced by estat overid following official Stata’s ivregress gmm command.
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procedure described there is appropriate, it is not intuitive. To address this, we have
added a new endogtest() option to ivreg2 to conduct endogeneity tests of one or
more endogenous regressors. Under the null hypothesis that the specified endogenous
regressors can actually be treated as exogenous, the test statistic is distributed as x?2
with degrees of freedom equal to the number of regressors tested. Thus, in the following
estimation,

. ivreg2 y x1 x2 (x3 = z1 z2 z3 z4), endogtest(x3)

the test statistic reported for the endogeneity of x3 is numerically equal to the test
statistic reported for the orthog() option in

. ivreg2 y x1 x2 x3 ( = z1 z2 z3 z4), orthog(x3)

The endogtest () option is both easier to understand and more convenient to use.

Under conditional homoskedasticity, this endogeneity test statistic is numerically
equal to a Hausman test statistic; see Hayashi (2000, 233-234) and Baum, Schaffer,
and Stillman (2003, 19-22). The endogeneity test statistic can also be calculated after
ivregress or ivreg2 by the command ivendog. Unlike the Durbin—Wu-Hausman ver-
sions of the endogeneity test reported by ivendog, the endogtest () option of ivreg2
can report test statistics that are robust to various violations of conditional homoskedas-
ticity. The ivendog option unavailable in ivreg2 is the Wu-Hausman F-test version
of the endogeneity test.

To illustrate this option, we use a dataset provided in Wooldridge (2003). We es-
timate the log of females’ wages as a function of the worker’s experience, experience-
squared, and years of education. If the education variable is considered endogenous, it is
instrumented with the worker’s age and counts of the number of preschool children and
older children in the household. We test whether the educ variable need be considered
endogenous in this equation with the endogtest () option:
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. use http://fmwww.bc.edu/ec-p/data/wooldridge/mroz.dta

ivreg2 lwage exper expersq (educ=age kidslt6 kidsge6), endogtest(educ)

IV (2SLS) estimation

Estimates efficient for homoskedasticity only
Statistics consistent for homoskedasticity only

Number of obs = 428
FC 3, 424) = 7.49
Prob > F = 0.0001
Total (centered) SS = 223.3274513 Centered R2 = 0.1556
Total (uncentered) SS =  829.594813 Uncentered R2 = 0.7727
Residual SS = 188.5780571 Root MSE = .6638
lwage Coef.  Std. Err. z P>|z| [95% Conf. Intervall
educ .0964002 .0814278 1.18 0.236 -.0631952 .2559957
exper .042193 .0138831 3.04 0.002 .0149827 .0694033
expersq -.0008323 .0004204 -1.98 0.048 -.0016563 -8.33e-06
_cons -.3848718 1.011551 -0.38 0.704 -2.367476 1.597732
Underidentification test (Anderson canon. corr. LM statistic): 12.816
Chi-sq(3) P-val = 0.0051
Weak identification test (Cragg-Donald Wald F statistic): 4.342
Stock-Yogo weak ID test critical values: 5% maximal IV relative bias 13.91
10% maximal IV relative bias 9.08
20% maximal IV relative bias 6.46
30% maximal IV relative bias 5.39
10% maximal IV size 22.30
15% maximal IV size 12.83
20% maximal IV size 9.54
25% maximal IV size 7.80
Source: Stock-Yogo (2005). Reproduced by permission.
Sargan statistic (overidentification test of all instruments): 0.702
Chi-sq(2) P-val = 0.7042
-endog- option:
Endogeneity test of endogenous regressors: 0.019
Chi-sq(1) P-val = 0.8899
Regressors tested: educ
Instrumented: educ

Included instruments: exper expersq
Excluded instruments: age kidslt6 kidsge6
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In this context, we estimate the equation treating educ as endogenous, and merely
name it in the endogtest () varlist to perform the C' (GMM distance) test. The test

cannot reject its null that educ may be treated as exogenous.

calculate this same test statistic with the earlier orthog() option:

ivreg2 lwage exper expersq educ (=age kidslt6 kidsge6), orthog(educ)

In contrast, we may

By using orthog(), we again list educ in the option’s varlist, but we must estimate
the equation with that variable treated as exogenous: an equivalent but perhaps a less

intuitive way to perform the test.
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6 The FWL theorem and a rank-deficient S matrix

According to the Frisch—Waugh—Lovell (FWL) theorem (Frisch and Waugh 1933, Lovell
1963), the coefficients estimated for a regression in which some exogenous regressors,
say, Xo4, are partialled out from the dependent variable y; the endogenous regressors
X71; the other exogenous regressors Xop; and the excluded instruments Z; will be the
same as the coefficients estimated for the original model for certain estimators. That
is, if we denote a partialled-out variable with a tilde so that ¥ = Ms 4y, the coefficients
estimated for the partialled-out version of the model

7=[X1 XopB, Bop) +a

with instruments Zl and )?2 B will be the same as the shared coefficients fitted for the
original model

y=[X1 Xol[B Bl +u

with instruments Z; and Xs. It is even possible to partial-out the full set of included
exogenous variables X5, so that the partialled-out version of the model becomes

J=X\5+1

with no exogenous regressors and only excluded instruments Zl, and the estimated Bl
will be the same as that obtained when estimating the full set of regressors.

The FWL theorem is implemented in ivreg2 by the new partial(wvarlist) option,
which requests that the exogenous regressors in the varlist should be partialled out from
all the other variables (other regressors and excluded instruments) in the estimation. If
the equation includes a constant, it is automatically partialled out as well.

The partial() option is most useful when the covariance matrix of orthogonality
conditions S is not of full rank. When this is the case, EGMM and overidentification tests
are infeasible as the optimal GMM weighting matrix W = S~! cannot be calculated.
Sometimes partialling-out enough exogenous regressors can make the covariance matrix
of the remaining orthogonality conditions full rank, and EGMM becomes feasible.

The invariance of the estimation results to partialling-out applies to one- and two-
step estimators such as OLS, IV, LIML, and two-step GMM, but not to CUE or to GMM
iterated more than two steps. The reason is that the latter estimators update the
estimated S matrix. An updated S implies different estimates of the coefficients on
the partialled-out variables, which imply different residuals, which in turn produce a
different estimated S. Intuitively, partialling-out uses OLS estimates of the coefficients
on the partialled-out variables to generate the S matrix, whereas CUE would use more
efficient heteroskedastic OLS (HOLS) estimates.'* Partialling-out exogenous regressors
that are not of interest may still be desirable with CUE estimation, however, because
reducing the number of parameters estimated makes the CUE numerical optimization
faster and more reliable.

14. We are grateful to Manuel Arellano for helpful discussions on this point. For information on HOLS,
see Baum, Schaffer, and Stillman (2003).
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One common case calling for partialling-out arises when using cluster() and the
number of clusters is less than L, the number of (exogenous regressors + excluded instru-
ments). This causes the matrix S to be rank deficient (Baum, Schaffer, and Stillman
2003, 9-10). The problem can be addressed by using partial() to remove enough
exogenous regressors for S to have full rank. A similar problem arises if a robust co-
variance matrix is requested when the regressors include a variable that is a singleton
dummy, i.e., a variable with one value of 1 and (N — 1) values of zero or vice versa.
The singleton dummy causes the robust covariance matrix estimator to be less than full
rank. Here partialling-out the variable with the singleton dummy solves the problem.

The partial() option has two limitations: it cannot be used with time-series oper-
ators, and postestimation command predict can be used only to generate residuals.

7 Underidentification, weak identification, and
instrument relevance

7.1 Ildentification and the rank condition

For (1) to be estimable, it must be identified. The order condition L > K is necessary
but not sufficient; the rank condition must also be satisfied. The rank condition states
that the matrix Qxz = FE(X[Z;) is of full column rank, i.e., Qxz must have rank
K. Since Xo = Zs, we can simplify by partialling them out from X; and Z;, and the
rank condition becomes p(Q % Zl) = K;. There are several ways of interpreting this
condition.

One interpretation is in terms of correlations: the excluded instruments must be
correlated with the endogenous regressors. In the simplest possible case of an endoge-
nous regressor, an excluded instrument, and partialling-out any exogenous regressors
including the constant, L; = K7 = 1 and QEZ is a scalar. As the constant has been
partialled-out, E(X;) = E(Z;) = 0 and Qg 7 is a covariance. The rank condition
in this simple case requires that the correlation or covariance between )~(1 and 21 is
nonzero.

This interpretation can be extended to the general case of L1, K; > 1 by using
canonical correlations (Anderson 1984, ch. 12; Hall, Rudebusch, and Wilcox 1996, 287;
[MV] canon). The canonical correlations r; between X; and Zy, i =1,...,K; repre-
sent the correlations between linear combinations of the K; columns of )~(1 and linear
combinations of the L; columns of Z;.'> In the special case of L1 = K; = 1 (and
partialling-out the constant), the canonical correlation between X 1 and Zl is the usual
Pearson correlation coefficient. In the slightly more general case of L; > 1 and K =1,
the canonical correlation between X; and Z; is simply R: the square root of R? in a
regression of X on Z. In the general case of Ly, K7 > 1, the squared canonical corre-

15. As X9 = Zs, these variables are perfectly correlated with each other. The canonical correlations
between X and Z before partialling out would also include the Lo = Ko correlations that are equal to
unity.
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lations may be calculated as the eigenvalues of (X]X;)1(X|Z,)(Z|Z,)" (Z,X1). The
rank condition can then be interpreted as the requirement that all K of the canonical
correlations must be significantly different from zero. If one or more of the canonical
correlations is zero, the model is underidentified or unidentified.

An alternative and useful interpretation of the rank condition is to use the reduced
form. Write the set of reduced-form (first stage) equations for the regressors X as

X=ZI1+v

By using our partitioning of X and Z, we can rewrite this as

X1 =121 Zo] [I1}; Ui,) + vy (11)

Xo = 1[Z1 Zs] 1Ty bs] + v2

The equation for X5 is not interesting because X5 = Z5 follows that IIy; = 0
and Ilyo = I. The rank condition for identification comes from the equation for the
endogenous regressors X;. The L x K7 matrix IT1; must be of full column rank (p(Il11) =
Ky). If p(IT11) < K4, the model is again unidentified.

The consequence of utilizing excluded instruments that are uncorrelated with the
endogenous regressors is increased bias in the estimated 1V coefficients (Hahn and Haus-
man 2002) and worsening of the large-sample approximations to the finite-sample dis-
tributions. Here the bias of the IV estimator is the same as that of the OLS estimator
and IV becomes inconsistent (ibid.). Here instrumenting only aggravates the problem,
as IV and OLS share the same bias but IV has a larger mean squared error (MSE) by
virtue of its larger variance. Serious problems also arise if the correlations between the
excluded instruments and endogenous regressors are nonzero but “weak”. Standard
IV/GMM methods of estimating (3, suffer from serious finite sample bias problems and
alternative methods should be considered.

In the rest of this section, we show how to use ivreg2 to conduct tests for underi-
dentification and weak identification and how ivreg?2 provides a procedure for inference
that is robust to weak identification.

7.2 Testing for underidentification and instrument redundancy

Of course, we do not observe the true (Qxz or II;; matrices; these matrices must be
estimated. Testing whether or not the rank condition is satisfied therefore amounts to
testing the rank of a matrix. Do the data enable the researcher to reject the null hypoth-
esis that the equation is underidentified, i.e., that p(Il;;) = (K7 — 1), or, equivalently,
p( 0 $7) = (K1 —1)? Rejection of the null implies full rank and identification; failure to
reject the null implies the matrix is rank-deficient and the equation is underidentified.
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If the reduced-form errors v are i.i.d., two approaches are available for testing the
rank of @gz: Anderson’s (1951) canonical correlations test and the related test of
Cragg and Donald (1993). In Anderson’s approach, Hy: p(@)}z) = (K7 — 1) is equiva-
lent to the null hypothesis that the smallest canonical correlation rg, is zero. A large
sample test statistic for this is simply nr%ﬁ. Under the null, the test statistic is dis-
tributed x? with (L — K + 1) degrees of freedom, so that it may be calculated even
for an exactly identified equation. A failure to reject the null hypothesis suggests that
the model is unidentified. Not surprisingly given its “N x R?” form this test can be
interpreted as an LM test.'6

The Cragg—Donald (1993) statistic is an alternative and closely related test for the
rank of a matrix that can also be used to test for underidentification. Whereas the
Anderson test is an LM test, the Cragg—Donald test is a Wald test, also derived from
an eigenvalue problem. Poskitt and Skeels (2002) show that in fact the Cragg—Donald
test statistic can be stated in terms of canonical correlations as nri. /(1 — 1%, ) (see

Poskitt and Skeels 2002, 17). It is also distributed as x*(L — K + 1).

Both these tests require the assumption of i.i.d. errors and hence are reported if
ivreg2 is invoked without the robust, cluster(), or bw() options. The Anderson
LM y? statistic is reported by ivreg?2 in the main regression output whereas both the
Anderson LM and Cragg—Donald Wald 2 statistics are reported when the first option
is specified.

If the errors are heteroskedastic or serially correlated, the Anderson and Cragg—
Donald statistics are not valid. This is an important shortcoming, because these viola-
tions of the i.i.d. assumption would typically be expected to cause the null of underi-
dentification to be rejected too often. Researchers would face the danger of interpreting
a rejection of the null as evidence of a well-specified model that is adequately identified,
when in fact it was both underidentified and misspecified.

Recently, several robust statistics for testing the rank of a matrix have been proposed.
Kleibergen and Paap (2006) have proposed the rk statistic for this purpose. Their rk
test statistic is reported by ivreg?2 if the user requests any sort of robust covariance
estimator. The LM version of the Kleibergen—Paap rk statistic can be considered as
a generalization of the Anderson canonical correlation rank statistic to the non-i.i.d.
case. Similarly, the Wald version of the rk statistic reduces to the Cragg—Donald
statistic when the errors are i.i.d. The rk test is implemented in Stata by the ranktest
command of Kleibergen and Schaffer (2007), which ivreg2 uses to calculate the rk
statistic. If ivreg2 is invoked with the robust, bw(), or cluster() options, the tests
of underidentification reported by ivreg2 are based on the rk statistic and will be
correspondingly robust to heteroskedasticity, autocorrelation, or clustering. For a full
discussion of the rk statistic, see Kleibergen and Paap (2006).

16. Earlier versions of ivreg2 reported an LR version of this test, where the test statistic is —nlog(1 —
T?q)' This LR test has the same asymptotic distribution as the LM form. See Anderson (1984,

497-498).
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In the special case of one endogenous regressor, the Anderson, Cragg—Donald, and
Kleibergen—Paap statistics reduce to familiar statistics available from OLS estimation
of the single reduced-form equation with an appropriate choice of VCE estimator. Thus
the Cragg—Donald Wald statistic can be calculated by estimating (11) and testing the
joint significance of the coefficients II;; on the excluded instruments Z; by using a
standard Wald test and a traditional nonrobust covariance estimator. The Anderson
LM statistic can be obtained by calculating an LM test of the same joint hypothesis.!”
The Kleibergen—Paap rk statistics can be obtained by performing the same tests with
the desired robust covariance estimator. For example, estimating (11) using OLS and
testing the joint significance of Z; using a heteroskedasticity-robust covariance estimator
yields the heteroskedastic-robust Kleibergen—Paap rk Wald statistic.'®

The same framework may also be used to test a set of instruments for redundancy
as shown by Breusch et al. (1999). In an overidentified context with L > K, if some of
the instruments are redundant then the large-sample efficiency of the estimation is not
improved by including them. It is well known, moreover, that using several instruments
or moment conditions can cause the estimator to have poor finite-sample performance.
Dropping redundant instruments may therefore lead to more reliable estimation.

The intuition behind a test for instrument redundancy is straightforward. As above,
assume that we have partialled-out any exogenous regressors Xs. Partition the excluded
instruments Z; into [ Z14 Z1p |, where Z; g is the set of possibly redundant instruments
after X5 has been partialled-out. Breusch et al. (1999, 106) show that the redundancy of
Z1p can be stated in several ways: (a) plim(l/n)Z{BMgmf(l = 0; (b) the correlations

between Z;5 and X (given 21,4) are zero; (c¢) in a regression of X, on the full set of
excluded instruments Zl, the coefficients on Zl p are zero. It is easy to see that the FWL
theorem can be used to restate this last condition without the partialling-out of Xs:
(d) in a regression of X7 on the full set of included and excluded instruments Z, i.e.,
the reduced form (11), the coefficients on Z; 5 are zero. As Hall and Peixe (2003) point
out, redundancy is a conditional concept. Z;p either is or is not redundant conditional

on ZlA-

The above suggests a straightforward test of redundancy: simply estimate (11) using
OLS and test the significance of Z;p by using a large-sample LM, Wald, or LR test. For
example, the redundancy test proposed by Hall and Peixe (2003) is the LR version of
this test. These test statistics are all distributed as x? with degrees of freedom equal
to the number of endogenous regressors times the number of instruments tested. As
usual, implementing this test is easy for the case of an endogenous variable, as only

17. This can be done simply in Stata using ivreg2 by estimating (11) with only Z> as regressors, Z1
as excluded instruments, and an empty list of endogenous regressors. The Sargan statistic reported
by ivreg2 will be the Anderson LM statistic. See Baum, Schaffer, and Stillman (2003) for further
discussion.

18. See the online help for ranktest for examples. These test statistics are large-sample x? tests and can
be obtained from OLS regression using ivreg2. Stata’s regress command reports finite-sample ¢ tests.
Also the robust rk LM statistic can be obtained as described in the preceding footnote. Invoke ivreg2
with X; as the dependent variable, Z as regressors, Z;1 as excluded instruments and no endogenous
regressors. With the robust option, the reported Hansen J statistic is the robust rk statistic.
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an OLS estimation is necessary. The tests of the coefficients can be made robust to
various violations of i.i.d. errors in the usual way. However, this procedure is more
laborious (though still straightforward) if K; > 1 as it is then necessary to jointly
estimate multiple reduced-form equations.

Fortunately, a simpler procedure is available that will generate numerically equiv-
alent test statistics for redundancy. Define a matrix X as X with both X5 and Z;4
partialled-out. Then condition (a) can be restated as () plim(1/n)Z} ;X1 = 0 or (f) that
the correlations between Zl B and X 1 (given Z1 4 and Zs) are zero. The redundancy of
Z1p can be evaluated by using the ranktest command to test the null hypothesis that
the rank of @ is zero. Rejection of the null indicates that the instruments are not
redundant. The LM version of the Anderson canonical correlations test is reported if
the user indicates that the errors are i.i.d. Here the LM test statistic is n times the sum
of the squared canonical correlations between Zl B and X 1. If the user estimates the
equation with robust, bw(), or cluster(), an LM version of the Kleibergen—Paap 7k
statistic is reported that is correspondingly robust to heteroskedasticity, autocorrelation,
or clustering.

7.3 Testing for weak identification

The weak-instruments problem arises when the correlations between the endogenous
regressors and the excluded instruments are nonzero but small. In the past 10-15 years,
much attention in the econometrics literature has been devoted to this topic. What is
surprising is that, as Bound, Jaeger, and Baker (1995), Staiger and Stock (1997), and
others have shown, the weak-instruments problem can arise even when the correlations
between X and Z are significant at conventional levels (5% or 1%) and the researcher
is using a large sample. For more detailed discussion of the weak-instruments problem,
see Staiger and Stock (1997), Stock, Wright, and Yogo (2002), or Dufour (2003). Thus
rejecting the null of underidentification using the tests in the previous section and
conventional significance levels is not enough; you must call for other methods.

One approach that has been advanced by Stock and Yogo (2005) is to test for the
presence of weak instruments. The difference between this approach and the aforemen-
tioned underidentification tests is not in the basic statistic used, but in the finite-sample
adjustments and critical values and in the null hypothesis being tested. Moreover, the
critical values for a weak-instruments test are different for different estimators because
the estimators are not affected to the same degree by weak instruments. Specifically,
the LIML and CUE estimators are more robust to the presence of weak instruments than
are IV and two-step GMM.

The test statistic proposed by Stock and Yogo (2005) is the F-statistic form of the
Cragg and Donald (1993) statistic, {(N — L)/La}{r%, /(1 —r%, )}. ivreg2 will report
this statistic for an estimation that assumes i.i.d. disturbances. The null hypothesis
being tested is that the estimator is weakly identified in the sense that it is subject to
bias that the investigator finds unacceptably large. The Stock—Yogo weak-instruments
tests come in two types: maximal relative bias and maximal size, where the null is that
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the instruments do not suffer from the specified bias. Rejection of their null hypothesis
represents the absence of a weak-instruments problem. The first type is based on the
ratio of the bias of the estimator to the bias of OLS. The null is that instruments are
weak, where weak instruments are defined as instruments that can lead to an asymp-
totic relative bias greater than some value b. Because this test uses the finite-sample
distribution of the IV estimator, it cannot be calculated in certain cases. This is because
the m'" moment of the 1V estimator exists if and only if m < (L — K +1).2°

The second type of the Stock—Yogo tests is based on the performance of the Wald
test statistic for 8;. Under weak identification, the Wald test rejects too often. The test
statistic is based on the rejection rate r (10%, 20%, etc.) that the researcher is willing
to tolerate if the true rejection rate should be the standard 5%. Weak instruments are
defined as instruments that will lead to a rejection rate of » when the true rejection rate
is 5%.

Stock and Yogo (2005) have tabulated critical values for their two weak-identification
tests for the IV estimator, the LIML estimator, and Fuller’s modified LIML estimator.
The weak-instruments bias in the IV estimator is larger than that of the LIML estimators,
and hence the critical values for the null that instruments are weak are also larger. The
Stock—Yogo critical values are available for a range of possible circumstances (up to 3
endogenous regressors and 100 excluded instruments).

The weak-identification test that uses the Cragg—Donald F' statistic, like the cor-
responding underidentification test, requires an assumption of i.i.d. errors. This is a
potentially serious problem, for the same reason as given earlier: if the test statistic is
large simply because the disturbances are not i.i.d., the researcher will commit a type-I
error and incorrectly conclude that the model is adequately identified.

If the user specifies the robust, cluster (), or bw() options in ivreg2, the reported
weak-instruments test statistic is a Wald F statistic based on the Kleibergen—Paap rk
statistic. We are not aware of any studies on testing for weak instruments in the presence
of non-i.i.d. errors. In our view, however, the use of the rk Wald statistic, as the robust
analog of the Cragg—Donald statistic, is a sensible choice and clearly superior to the
use of the latter in the presence of heteroskedasticity, autocorrelation, or clustering. We
suggest, however, that when using the rk statistic to test for weak identification, users
either apply with caution the critical values compiled by Stock and Yogo (2005) for the
i.i.d. case or refer to the older “rule of thumb” of Staiger and Stock (1997), which says
that the F' statistic should be at least 10 for weak identification not to be considered a
problem.

ivreg2 will report in the main regression output the relevant Stock and Yogo (2005)
critical values for 1V, LIML, and Fuller-LIML estimates if they are available. The reported
test statistic will be the Cragg—Donald statistic if the traditional covariance estimator
is used or the rk statistic if a robust covariance estimator is requested. If the user
requests two-step GMM estimation, ivreg2 will report an rk statistic and the IV critical
values. If the user requests the CUE estimator, ivreg2 will report an rk statistic and

19. See Davidson and MacKinnon (1993, 221-222).
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the LIML critical values. The justification for this is that IV and LIML are special cases of
two-step GMM and CUE, respectively. The similarities carry over to weak instruments:
the literature suggests that Iv and two-step GMM are less robust to weak instruments
than LIML and CUE. However, users of ivreg2 may again wish to exercise some caution
in applying the Stock—Yogo critical values in these cases.

7.4 Inference robust to weak identification: the Anderson—Rubin
test

The first-stage ivreg2 output also includes the Anderson and Rubin (1949) test of the
significance of the endogenous regressors in the structural equation being estimated
(not to be confused with the Anderson and Rubin (1949) overidentification test dis-
cussed earlier). In the form reported by ivreg2, the null hypothesis tested is that the
coefficients (31 of the endogenous regressors X; in the structural equation are jointly
equal to zero. It is easily extended to testing the equality of the coefficients of X7 to
other values, but this is not supported explicitly by ivreg2; see the next section for
further discussion.

The development of this Anderson and Rubin (1949) test is straightforward. Sub-
stitute the reduced-form expression (11) for the endogenous regressors X into the main
equation of the model

y=XB+u=X101+ Zof +u=([Z1 Zo] I}y )" +v1)B1 + Zof2 +u
and rearrange to obtain

y = Z11111 51 + Zo(I1261 + B2) + (151 + w)

Now consider estimating a reduced-form equation for y with the full set of instru-
ments as regressors:
y=2im+Zav2+n

If the null Hy : 81 = 0 is correct, 113167 = 0, and therefore 43 = 0. Thus the
Anderson and Rubin (1949) test of the null Hy: 31 = 0 is obtained by estimating the
reduced form for y and testing that the coefficients ~; of the excluded instruments 2
are jointly equal to zero. If we fail to reject v; = 0, then we also fail to reject §; = 0.

The Anderson—Rubin statistic is robust to the presence of weak instruments. As
instruments become weak, the elements of II;; become smaller and hence so does 1111 3;:
the null Hy: 1 = 0 is less likely to be rejected. That is, as instruments become weak, the
power of the test declines, an intuitively appealing feature: weak instruments come at a
price. ivreg2 reports both the x? version of the Anderson—Rubin statistic (distributed
with Ly degrees of freedom) and the F' statistic version of the test. ivreg?2 also reports
the closely related Stock and Wright (2000) S statistic. The S statistic tests the same
null hypothesis as the Anderson—Rubin statistic and has the same distribution under
the null. Tt is given by the value of the CUE objective function (with the exogenous




492 Enhanced routines for IV/GMM estimation and testing

regressors partialled out). Whereas the Anderson—Rubin statistic provides a Wald test,
the S statistic provides an LM or GMM distance test of the same hypothesis.

More importantly, if the model is fitted with a robust covariance matrix estimator,
both the Anderson—Rubin statistic and the S statistic reported by ivreg2 are corre-
spondingly robust. See Dufour (2003) and Chernozhukov and Hansen (2005) for further
discussion of the Anderson—Rubin approach. For related alternative test statistics that
are also robust to weak instruments (but not violations of the i.i.d. assumption), see
the condivreg and condtest commands available from Moreira and Poi (2003) and
Mikusheva and Poi (2006).

7.5 An example of estimation with weak instruments using ivreg2

We illustrate the weak-instruments problem with a variation on a log wage equation
illustrated in Hayashi (2000). The explanatory variables are s (completed years of
schooling), expr (years of work experience), tenure in the current job in years, rns (a
dummy for residency in the southern U.S.), smsa (a dummy for urban workers), the
worker’s iq score, and a set of year dummies. Instruments include the worker’s age and
mrt (marital status: 1 = married) as instruments.

. use http://www.stata-press.com/data/imeus/griliches, clear
(Wages of Very Young Men, Zvi Griliches, J.Pol.Ec. 1976)

ivreg2 lw s expr tenure rns smsa _I* (iq = age mrt), ffirst robust
> redundant (mrt)

Summary results for first-stage regressions

Variable | Shea Partial R2 | Partial R2 | FC 2, 744) P-value
iq | 0.0073 | 0.0073 | 2.93 0.0539

NB: first-stage F-stat heteroskedasticity-robust

Underidentification tests

Ho: matrix of reduced form coefficients has rank=K1-1 (underidentified)

Ha: matrix has rank=K1 (identified)

Kleibergen-Paap rk LM statistic Chi-sq(2)=5.90 P-val=0.0524
Kleibergen-Paap rk Wald statistic Chi-sq(2)=5.98 P-val=0.0504

Weak identification test

Ho: equation is weakly identified

Kleibergen-Paap Wald rk F statistic 2.93

See main output for Cragg-Donald weak id test critical values

Weak-instrument-robust inference
Tests of joint significance of endogenous regressors Bl in main equation
Ho: B1=0 and overidentifying restrictions are valid

Anderson-Rubin Wald test F(2,744)= 46.95 P-val=0.0000
Anderson-Rubin Wald test Chi-sq(2)=95.66 P-val=0.0000
Stock-Wright LM S statistic Chi-sq(2)=69.37 P-val=0.0000

NB: Underidentification, weak identification and weak-identification-robust
test statistics heteroskedasticity-robust

Number of observations N = 758
Number of regressors K = 13
Number of instruments L = 14

Number of excluded instruments L1 = 2
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IV (2SLS) estimation

Estimates efficient for homoskedasticity only
Statistics robust to heteroskedasticity

Number of obs = 758
F( 12, 745) = 4.42
Prob > F = 0.0000
Total (centered) SS = 139.2861498 Centered R2 = -6.4195
Total (uncentered) SS = 24652.24662 Uncentered R2 =  0.9581
Residual SS = 1033.432656 Root MSE = 1.168
Robust
1w Coef. Std. Err. z P>|z| [95% Conf. Intervall
iq -.0948902 .0418904 -2.27 0.024 -.1769939 -.0127865
s .3397121 .1183267 2.87 0.004 .1077959 .5716282
expr -.006604 .0292551 -0.23 0.821 -.0639429 .050735
tenure .0848854 .0306682 2.77 0.006 .0247768 .144994
rns -.3769393 .1559971 -2.42 0.016 -.682688 -.0711906
smsa .2181191 .1031119 2.12 0.034 .0160236 .4202146
_Iyear_67 .0077748 .1663252 0.05 0.963 -.3182166 .3337662
_Iyear_68 .0377993 .1523585 0.25 0.804 -.2608179 .3364165
_Iyear_69 .3347027 .1637992 2.04 0.041 .0136622 .6557432
_Iyear_70 .6286425 .2468458 2.55 0.011 .1448336 1.112451
_Iyear_71 . 4446099 .1861877 2.39 0.017 .0796887 .809531
_Iyear_73 .439027 .1668657 2.63 0.009 .1119763 .7660778
_cons 10.55096 2.781762 3.79 0.000 5.098812 16.00312
Underidentification test (Kleibergen-Paap rk LM statistic): 5.897
Chi-sq(2) P-val 0.0524
-redundant- option:
IV redundancy test (LM test of redundancy of specified instruments): 0.002
Chi-sq(1) P-val 0.9665
Instruments tested: mrt
Weak identification test (Kleibergen-Paap rk Wald F statistic): 2.932
Stock-Yogo weak ID test critical values: 10% maximal IV size 19.93
15% maximal IV size 11.59
20% maximal IV size 8.75
25% maximal IV size 7.25
Source: Stock-Yogo (2005). Reproduced by permission.
NB: Critical values are for Cragg-Donald F statistic and i.i.d. errors.
Hansen J statistic (overidentification test of all instruments): 1.564
Chi-sq(1) P-val =  0.2111

Instrumented: iq

Included instruments: s expr tenure rns smsa _Iyear_67 _Iyear_68 _Iyear_69
_Iyear_70 _Iyear_71 _Iyear_73

Excluded instruments: age mrt

493

In the first-stage regression results, the Kleibergen—Paap underidentification LM

and Wald tests fail to reject their null hypotheses at the 95% level, suggesting that
even for overidentification with the order condition, the instruments may be inadequate
to identify the equation. The Anderson—Rubin Wald test and Stock—Wright LM test
readily reject their null hypothesis and indicate that the endogenous regressors are
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relevant. However, given that those null hypotheses are joint tests of irrelevant regressors
and appropriate overidentifying restrictions, the evidence is not so promising. In the
main equation output, the redundant (mrt) option indicates that mrt provides no useful
information to identify the equation. This equation may be exactly identified at best.

7.6 The relationship between inference robust to weak identification
and overidentification tests

The Anderson—Rubin test that is robust to weak identification (and its related alter-
natives) relies heavily on the orthogonality of the excluded instruments Z;. If the
orthogonality conditions are violated, the Anderson—Rubin test will tend to reject the
null Hy: 81 = 0 even if the true $; = 0. The reason is easy to see: if Z; is correlated
with the disturbance u, it will therefore also be correlated with the reduced-form error
7, and so the estimated 7; will be biased away from zero even if in reality 5, = 0.

Generally, in a test of overidentification, the maintained hypothesis is that the model
is identified, so that a rejection means rejecting the orthogonality conditions. In the
(1 test that is robust to weak identification, the maintained hypothesis is that the
instruments are valid, so that a rejection means rejecting the null that 5, equals the
hypothesized value.

This relationship between weak identification and overidentification tests can be
stated precisely in the case of CUE or LIML estimation. We have been careful in the
above to state that the two Anderson—Rubin tests should not be confused, but they
are, in a sense, based on the same statistic. Assume that the exogenous regressors Xo,
if any, have been partialled-out so that 8; = 8. The value of the CUE/GMM objective
function at ECU g provides a test of the orthogonality conditions; the LIML LR version
of this test is the Anderson-Rubin overidentifying restrictions test. The value of the
CUE/GMM objective function at some other, hypothesized [ provides a test Hy: 8 = .
This is the Stock and Wright (2000) S statistic, which is a Lagrange multiplier (LM)
version of the Anderson—Rubin weak-instruments-robust test.

This can be illustrated using the Hayashi—Griliches example below. We assume
conditional homoskedasticity and estimate using LIML. The Anderson—Rubin LR overi-
dentification statistic (distributed with one degree of freedom) is small, as is the Sargan—
Hansen J statistic, suggesting that the orthogonality conditions are valid:

. use http://www.stata-press.com/data/imeus/griliches, clear
(Wages of Very Young Men, Zvi Griliches, J.Pol.Ec. 1976)

. qui ivreg2 lw s expr tenure rns smsa _I* (iq = age mrt),
> partial(s expr tenure rns smsa _I*) liml

. di e(arubin)
1.1263807
. di e(d)
1.1255442
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The Anderson-Rubin test of Hy: 1o = 0 is calculated automatically by ivreg2
with the ffirst option and is equivalent to estimating the reduced form for 1w and
testing the joint significance of the excluded instruments age and mrt:

. qui ivreg2 lw s expr tenure rns smsa _I* (iq = age mrt), liml ffirst

. di e(archi2)
89.313862

. qui ivreg2 lw s expr tenure rns smsa _I* age mrt

. test age mrt

(1) age=0
(2) mrt =0
chi2( 2) = 89.31
Prob > chi2 = 0.0000

The Stock—Wright S statistic is an LM or GMM distance test of the same hypoth-
esis. This LM version of the Anderson—Rubin Wald test of age and mrt using the
reduced-form estimation above is asymptotically equivalent to an LM test of the same
hypothesis, available by using ivreg2 and specifying these as excluded instruments (see
Baum, Schaffer, and Stillman 2003 for further discussion). It is this LM version of the
Anderson—Rubin weak-instruments-robust test that is numerically identical to the value
of the GMM objective function at the hypothesized value 8;q = 0:

. qui ivreg2 lw s expr tenure rns smsa _I* (=age mrt)
. di e(j)

79.899445

. mat b[1,1]=0

. qui ivreg2 lw s expr tenure rns smsa _Ix (iq = age mrt),
> partial(s expr tenure rns smsa _I*) b0O(b)

. di e(jd)
79.899445

For J(fy) to be the appropriate test statistic, it is necessary for the exogenous regressors
to be partialled out with the partial() option.

7.7 More first-stage options

To aid in the diagnosis of weak instruments, the savefirst option requests that the
individual first-stage regressions be saved for later access by using the estimates com-
mand; see [R] estimates. If saved, they can also be displayed using first or ffirst
and the ivreg?2 replay syntax. The regressions are saved with the prefix _ivreg2_ un-
less the user specifies an alternative prefix with the savefprefix(prefiz) option. The
saved estimation results may be made the active set with estimates restore, allowing
commands such as test, lincom, and testparm to be used.

The rf option requests that the reduced-form estimation of the equation be dis-
played. The saverf option requests that the reduced-form estimation is saved for later
access by using the estimates command. If saved, it can also be displayed by using the
rf and ivreg?2 replay syntax. The regression is saved with the prefix _ivreg2_ unless
the user specifies an alternative prefix with the saverfprefix(prefiz) option.
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8 Advanced ivreg2 options

Two options are available for speeding ivreg2 execution. nocollin specifies that the
collinearity checks not be performed. This option should be used with caution. noid
suspends calculating and reporting of the underidentification and weak identification
statistics in the main output.

The b0 (matriz) option allows the user to specify that the GMM objective function,
J, should be calculated for an arbitrary parameter vector. The parameter vector must
be given as a matrix with appropriate row and column labels. The b0() option is most
useful if the user wishes to conduct a weak-instruments-robust test of Hy: 31 = by, where
bo is specified by the user. For example, in the illustration given in section 7.6, the null
hypothesis that the coefficient on iq is 0.05 can be tested simply by replacing the line
mat b=J(1,1,0) with mat b=J(1,1,0.05). A heteroskedastic-robust S statistic can
be obtained by specifying robust along with b0(b). To construct a weak-instruments-
robust confidence interval, the user can simply conduct a grid search over the relevant
range for 3;.2°

Two options have been added to ivreg?2 for special handling of the GMM estimation
process. The wmatrix(matriz) option allows the user to specify a weighting matrix
rather than computing the optimal weighting matrix. Estimation with the wmatrix ()
option yields a possibly inefficient GMM estimator. ivreg2 will use this inefficient
estimator as the first-step GMM estimator in two-step EGMM when combined with the
gmm2s option; otherwise, ivreg2 reports this IGMM estimator.

The smatrix(matriz) option allows the user to directly specify the matrix S, the
covariance matrix of orthogonality conditions. ivreg2 will use this matrix in the cal-
culation of the variance—covariance matrix of the estimator, the .J statistic, and if the
gmm?2s option is specified, the two-step EGMM coefficients. The smatrix () option can
be useful for guaranteeing a positive test statistic in user-specified GMM-distance tests
as described in section 5.

As Ahn (1997) shows, Hansen’s J test has an LM interpretation but can also be
calculated as the result of a Wald test. This is an application of the Newey and West
(1987a) results on the equivalence of LM, Wald, and GMM distance tests. In the context
of an overidentified model, the .J statistic will be identical to a Wald x? test statistic
from an exactly identified model in which more instruments are included as regressors
as long as the same estimate of S is used in both estimated equations. As an example:

. use http://www.stata-press.com/data/imeus/griliches, clear
(Wages of Very Young Men, Zvi Griliches, J.Pol.Ec. 1976)

. qui ivreg2 lw (ig=med kww age), gmm2s

. di e(sargan)
102.10909

20. It is important to note that an Anderson—Rubin confidence region need not be finite nor connected.
The test provided in condivreg (Moreira and Poi 2003, Mikusheva and Poi 2006) is uniformly most
powerful in the situation where there is one endogenous regressor and i.i.d. errors. The Anderson—
Rubin test provided by ivreg?2 is a simple and preferable alternative when errors are not i.i.d. or there
is more than one endogenous regressor.
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. mat SO = e(S)
. qui ivreg2 lw med age (ig=kww), gmm2s smatrix(S0)

. test med age

(1) med =0
(2) age=0
chi2( 2) = 102.11
Prob > chi2 = 0.0000

. qui ivreg2 lw kww age (ig=med), gmm2s smatrix(S0)

. test kww age

(1) kww =0
(2) age=0
chi2( 2) = 102.11
Prob > chi2 = 0.0000

. qui ivreg2 lw med kww (ig=age), gmm2s smatrix(S0)
. test med kww
(1) med =0
(2 kww =0
chi2( 2)
Prob > chi2

102.11
0.0000

9 RESET in the IV context

The ivreset command performs various flavors of RESET as adapted by Pesaran and
Taylor (1999) and Pagan and Hall (1983) for IV estimation. RESET is sometimes called
an omitted-variables test (as in official Stata’s ovtest) but probably is best interpreted
as a test of neglected nonlinearities in the choice of functional form (Wooldridge 2002,
124-125). Under the null hypothesis that there are no neglected nonlinearities, the
residuals should be uncorrelated with low-order polynomials in 7, where the y’s are
predicted values of the dependent variable. In the ivreset implementation of the test,
an equation of the form y = X3 + Y~ + v is estimated by 1V, where the Y's are powers
of y, the fitted value of the dependent variable y. Under the null hypothesis that there
are no neglected nonlinearities and the equation is otherwise well specified, v should
not be significantly different from zero.

As Pesaran and Taylor (1999) and Pagan and Hall (1983) point out, however, RE-
SET for an IV regression cannot use the standard IV predicted values §y = X B\ because
X includes endogenous regressors that are correlated with u. Instead, RESET must be
implemented using “forecast values” of y that are functions of the instruments (exoge-
nous variables) only. In the Pagan—Hall version of the test, the forecast values § are
the reduced-form predicted values of y, i.e., the predicted values from a regression of
y on the instruments Z. In the Pesaran—Taylor version of the test, the forecast values
y are the “optimal forecast” values. The optimal forecast (predictor) ¥ is defined as
)A(B, where B is the IV estimate of the coefficients and X = [Zﬁ Zs], i.e., the reduced-
form predicted values of the endogenous regressors plus the exogenous regressors. If the
equation is exactly identified, the optimal forecasts and reduced-form forecasts coincide,
and the Pesaran—Taylor and Pagan—Hall tests are identical.
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The ivreset test types vary according to the polynomial terms (square, cube, fourth
power of ), the choice of forecast values (Pesaran—Taylor optimal forecasts or Pagan—
Hall reduced-form forecasts), test statistic (Wald or GMM-distance), and large- versus
small-sample statistic (x? or F statistic). The test statistic is distributed with degrees
of freedom equal to the number of polynomial terms. The default is the Pesaran—Taylor
version using the square of the optimal forecast of y and a x? Wald statistic with one

degree of freedom.

If the original ivreg?2 estimation was heteroskedasticity-robust, cluster—robust, AC,
or HAC, the reported RESET will be as well. The ivreset command can also be used
after OLS regression with regress (see [R] regress) or ivreg2 when there are no en-
dogenous regressors. Then either a standard RESET using fitted values of y or a robust
test corresponding to the specification of the original regression is reported.

We illustrate use of ivreset using a model fitted to the Griliches data:

. use http://fmwww.bc.edu/ec-p/data/hayashi/griliches76.dta
(Wages of Very Young Men, Zvi Griliches, J.Pol.Ec. 1976)

. quietly ivreg2 lw s expr tenure rns smsa (ig=med kww), robust

. ivreset

Ramsey/Pesaran-Taylor RESET test

Test uses square of fitted value of y (X-hat*beta-hat)

Ho: E(ylX) is linear in X

Wald test statistic: Chi-sq(1) = 4.53 P-value = 0.0332
Test is heteroskedastic-robust

. ivreset, poly(4) rf small

Ramsey/Pagan-Hall RESET test

Test uses square, cube and 4th power of reduced form prediction of y
Ho: E(ylX) is linear in X

Wald test statistic: F(3,748) = 1.72 P-value = 0.1616
Test is heteroskedastic-robust

The first ivreset takes all the defaults and corresponds to a second-order polynomial
in 7 with the Pesaran—Smith optimal forecast and a Wald x? test statistic that rejects
the null at better than 95%. The second uses a fourth-order polynomial and requests
the Pagan—Hall reduced-form forecast with a Wald F' statistic, falling short of the 90%
level of significance.

10 A test for autocorrelated errors in the IV context

The ivactest command performs the Cumby and Huizinga (1992) generalization of a
test proposed by Sargan (1988) for serial independence of the regression errors, which in
turn generalizes the test proposed by Breusch and Godfrey (estat bgodfrey) applicable
to OLS regressions. Sargan’s extension of the Breusch—Godfrey test to the IV context,
the serial correlation (SC) test, is described as a “general misspecification chi-squared
statistic” by Pesaran and Taylor (1999, 260). The SC test statistic is based on the
residuals of the IV regression and its conventional VCE. Cumby and Huizinga extend
Sargan’s test to cases in which the IV VCE was estimated as heteroskedasticity-robust,
autocorrelation-robust, or HAC.
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Cumby and Huizinga (1992) state that the null hypothesis of the test is “that the
regression error is a moving average of known order ¢ > 0 against the general alternative
that autocorrelations of the regression error are nonzero at lags greater than q. The
test ...is thus general enough to test the hypothesis that the regression error has no
serial correlation (¢ = 0) or the null hypothesis that serial correlation in the regression
error exists, but dies out at a known finite lag (¢ > 0)” (p. 185).

The Cumby—-Huizinga test is especially attractive because it can be used in three
frequently encountered cases where alternatives such as the Box—Pierce test ([TS] wn-
testq), Durbin’s h test (estat durbinalt), and the Breusch—Godfrey test (estat
bgodfrey) are not applicable. One of these cases is the presence of endogenous re-
gressors, which renders each of these tests invalid. A second case involves the over-
lapping data commonly encountered in financial markets where the observation inter-
val is shorter than the holding period, which requires the estimation of the induced
moving-average (MA) process. The Cumby—Huizinga test avoids estimation of the MA
process by using only the sample autocorrelations of the residuals and a consistent
estimate of their asymptotic covariance matrix. The third case involves conditional
heteroskedasticity of the regression error term, which is also handled without difficulty
by the Cumby—Huizinga test.

If the prior estimation command estimated a VCE under the assumption of i.i.d.
errors, the Cumby—Huizinga statistic becomes the Breusch—Godfrey statistic for the
same number of autocorrelations and will return the same result as estat bgodfrey.
That special case of the test was that proposed by Sargan in an unpublished working
paper in 1976 (reprinted in Sargan 1988).

Two parameters may be specified in ivactest: s(), the number of lag orders to be
tested, and q(), the lowest lag order to be tested.?! By default, ivactest takes s=1 and
q=0 and produces a test for AR(1). A test for AR(p) may be produced with s=p. Under
the null hypothesis of serial independence for lags ¢ — (¢ + s), the Cumby—Huizinga test
statistic is distributed x? with s degrees of freedom.

We illustrated the use of ivactest in section 3.

11 Syntax

These syntax diagrams describe all the programs in the ivreg?2 suite, including those
that have not been substantially modified since their documentation in Baum, Schaffer,
and Stillman (2003).

21. If the previous command estimated a VCE under the assumption of i.i.d. errors, q() must be 0.
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ivreg2 depvar [Uarlz'stl] (varlist2=varlist_iv) [zf] [m} [wez’ght] [, gmm gmm2s
bw(# |auto) kernel(string) liml fuller(#) kclass(#) coviv cue

cueinit (matriz) cueoptions(string) bO(matriz) robust cluster (varname)

orthog(varlist_ex) endogtest (varlist_en) redundant (varlist_ex)

partial (varlist_exr) small noconstant smatrix(matriz) wmatrix(matric)
first ffirst savefirst savefprefix(string) rf saverf
saverfprefix(string) nocollin noid level(#) noheader nofooter

eform(string) depname(varname) plus]
overid [, chi2 dfr f all depvar(varname)]
ivhettest [varlist] [ , ivlev ivsq fitlev fitsq ph phnorm nr2 bpg all}
ivendog [varlist]

ivreset [, polynomial (#) rform cstat small]

ivactest [, s(#) q(#)]

12 A summary of ivreg2 estimation options

The version of ivreg2 accompanying this paper uses a different syntax for specifying
the type of estimator to be employed. In previous versions of the software (Baum,
Schaffer, and Stillman 2003; 2004; 2005), the gmm option implied a heteroskedasticity-
robust estimator. When the gmm option was combined with the bw() option, estimates
were autocorrelation-robust but not heteroskedasticity-robust. This version of ivreg2
uses a new taxonomy of estimation options, summarized below. The gmm2s option by
itself produces the 1V/2SLS estimator, as described in section 2.5. One of the options—
robust, cluster(), or bw()—must be added to generate two-step EGMM estimates.

Table 1 summarizes the estimator and the properties of its point and interval esti-
mates for each combination of estimation options.
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Table 1: Summary of ivreg2 estimation options

Estimator Covariance matrix option(s)
option (none) robust, cluster(),
bw(), kernel()
(none) IV/2SLS IV/2SLS with
SEs consistent under homoskedasticity robust SEs
liml LIML LIML with
SEs consistent under homoskedasticity robust SEs
gmm2s IV/2SLS Two-step GMM with
SEs consistent under homoskedasticity robust SEs
cue LIML CUE/GMM with
SEs consistent under homoskedasticity robust SEs
kclass() k-class estimator k-class estimator with
SEs consistent under homoskedasticity robust SEs
wmatrix() possibly IGMM IGMM with
SEs consistent under homoskedasticity robust SEs
gmm2s + Two-step GMM Two-step GMM with
wmatrix () with user-specified first step robust SEs
SEs consistent under homoskedasticity
12.1 ivreg2 versus ivregress

Stata’s official ivregress command, available in Stata 10 and later, provides an LIML
and GMM estimator in addition to two-stage least squares. The GMM estimator can
produce HAC estimates, as discussed in section 3 but cannot produce AC estimates. The
ivregress command does not support the general k-class estimator nor GMM/CUE but
provides an “iterative GMM” estimator. Overidentification tests and first-stage statistics
are available as estat subcommands. ivreg2’s ability to partial-out regressors with the
partial () option is not available in ivregress.

Several tests performed by ivreg2 are also not available with ivregress. These
include the GMM distance tests of endogeneity/exogeneity discussed in section 5, the
general underidentification/weak-identification test of Kleibergen and Paap (2006) dis-
cussed in section 7, and tests that permit inference robust to weak instruments. In
diagnosing potentially weak instruments, ivreg2’s ability to save the first-stage regres-
sions is also unique.
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The default behavior of ivregress gmm with the vce (robust) option produces coef-
ficients that match those of ivreg2, gmm2s robust but with different standard errors.
Whereas ivreg2 uses the expression for the VCE of the efficient GMM estimator (6),
ivregress gmm calculates the VCE as if the estimator was not efficient using (4) from
a new estimate of the asymptotic covariance matrix S based on the second-step GMM
residuals. To replicate this behavior of ivregress gmm and generate identical standard
errors, the wmatrix () option of ivreg2 can be used

. webuse abdata, clear

. qui ivreg2 n (w = k ys), gmm2s robust

. mat W_GMM2S = e(W)

. ivregress gmm n (w =k ys), vce(robust)

. ivreg2 n (w = k ys), wmatrix(W_GMM2S) robust

Both programs’ methodology for calculation of the variance—covariance matrix yield
consistent estimates.
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