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Linear regression

A key tool in multivariate statistical inference is linear regression, in

which we specify the conditional mean of a response variable y as a
linear function of k independent variables

E[y‘X17X27"'7Xk] :61X1+62X2+°'°+6kxi,k (1)
The conditional mean of y is a function of X1, X», ..., X with fixed
parameters 51, 0o, ..., 0. Given values for these s the linear

regression model predicts the average value of y in the population for
different values of X1, Xs, ..., Xk.
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Linear regression methodology

This population regression function specifies that a set of k regressors
In X and the stochastic disturbance u are the determinants of the
response variable (or regressand) y. The model is usually assumed to
contain a constant term, so that x; is understood to equal one for each
observation. We may write the linear regression model in matrix form
as

y =XG4+u (2)

where X = {X1,Xo,..., Xk}, an N x k matrix of sample values.
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Linear regression methodology

The key assumption in the linear regression model involves the
relationship in the population between the regressors X and u. We
may rewrite Equation (2) as

u=y—Xp (3)

We assume that
E(u|X)=0 (4)

l.e., that the u process has a zero conditional mean. This assumption
states that the unobserved factors involved in the regression function
are not related in any systematic manner to the observed factors. This
approach to the regression model allows us to consider both
non-stochastic and stochastic regressors in X without distinction; all
that matters is that they satisfy the assumption of Equation (4).
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Linear regression methodology Regression as a method of moments estimator

We may use the zero conditional mean assumption (Equation (4)) to
define a method of moments estimator of the regression function.
Method of moments estimators are defined by moment conditions that
are assumed to hold on the population moments. When we replace
the unobservable population moments by their sample counterparts,
we derive feasible estimators of the model’'s parameters. The zero
conditional mean assumption gives rise to a set of k moment
conditions, one for each x. In the population, each regressor x is
assumed to be unrelated to u, or have zero covariance with u.We may
then substitute calculated moments from our sample of data into the
expression to derive a method of moments estimator for 3.

Xu = 0
X'y =XB3) = 0 (5)
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Linear regression methodology Regression as a method of moments estimator

Substituting calculated moments from our sample into the expression
and replacing the unknown coefficients § with estimated values b in
Equation (5) yields the ordinary least squares (OLS) estimator

X'y —X'Xb = 0
b = (X'X) X'y (6)

We may use b to calculate the regression residuals:

e=y—Xb (7)
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Linear regression methodology Regression as a method of moments estimator

Given the solution for the vector b, the additional parameter of the

regression problem o2, the population variance of the stochastic

disturbance, may be estimated as a function of the regression

residuals e;:

2 _ Z:\Izl ei2 _ e’e (8)
N — Kk N — Kk

where (N — k) are the residual degrees of freedom of the regression

problem. The positive square root of s is often termed the standard

error of regression, or standard error of estimate, or root mean square
error. Stata uses the last terminology and displays s as Root MSE.

S
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Linear regression methodology Regression as a method of moments estimator

To learn more about the sampling distribution of the OLS estimator, we
must make some additional assumptions about the distribution of the
stochastic disturbance u;. In classical statistics, the u; were assumed
to be independent draws from the same normal distribution. The
modern approach to econometrics drops the normality assumptions
and simply assumes that the u; are independent draws from an
identical distribution (i.i.d.).

The normality assumption was sufficient to derive the exact
finite-sample distribution of the OLS estimator. In contrast, under the
1.1.d. assumption, one must use large-sample theory to derive the
sampling distribution of the OLS estimator. The sampling distribution of
the OLS estimator can be shown to be approximately normal using
large-sample theory.
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Linear regression methodology Regression as a method of moments estimator

Specifically, when the u; are i.i.d. with finite variance o2, the OLS
estimator b has a large-sample normal distribution with mean 5 and
variance 02Q 1, where Q! is the variance-covariance matrix of X in
the population. We refer this variance-covariance matrix of the
estimator as a VCE.

Because it is unknown, we need a consistent estimator of the VCE.
While neither o2 nor Q1 is actually known, we can use consistent
estimators of them to construct a consistent estimator of c2Q 1. Given
that s2 consistently estimates o2 and 1/N(X’X) consistently estimates
Q, s?(X’X)~! is a VCE of the OLS estimator.
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Linear regression methodology The efficiency of the regression estimator

Under the assumption of i.i.d. errors, the celebrated Gauss—Markov
theorem holds. Within the class of linear, unbiased estimators the OLS
estimator has the smallest sampling variance, or the greatest
precision. In that sense, it is best, so that “ordinary least squares Is
BLUE” (the best linear unbiased estimator) for the parameters of the
regression model. If we restrict our consideration to unbiased
estimators which are linear in the parameters, we cannot find a more
efficient estimator.

The property of efficiency refers to the precision of the estimator. If
estimator A has a smaller sampling variance than estimator B,
estimator A is said to be relatively efficient. The Gauss—Markov
theorem states that OLS is relatively efficient versus all other linear,
unbiased estimators of the model. We must recall, though, that this
statement rests upon the maintained hypotheses of an appropriately
specified model and an i.i.d. disturbance process with a zero
conditional mean, as specified in Equation (4).
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Linear regression methodology A maceroeconomic example

As an illustration, we present regression estimates from a simple
macroeconomic model, constructed with US quarterly data from the
latest edition of International Financial Statistics. The model, of the log
of real investment expenditures, should not be taken seriously. Its
purpose is only to illustrate the workings of regression in Stata. In the
Initial form of the model, we include as regressors the log of real GDP,

the log of real wages, the 10-year Treasury yield and the S&P
Industrials stock index.
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Linear regression methodology A maceroeconomic example

We present the descriptive statistics with sunmar i ze, then proceed to
fit a regression equation.

use usmacrol, clear
t sset

time vari abl e:
del t a:

summari ze lrgrossinv Irgdp | rwage tr10yr S _Pindex, sep(0)

yq, 195991 to 201093
1 quarter

Vari abl e Cbs Mean Std. Dev. M n Max

| rgrossi nv 207 7.146933 . 4508421 6. 31017 7.874346
| rgdp 207 8. 794305 . 4707929 7.904815 9. 50028

| rwage 207 4. 476886 . 1054649 4.21887 4.619725
tr10yr 207 6. 680628 2.58984 2. 73667 14. 8467

S Pi ndex 207 37.81332 40. 04274 4. 25073 130. 258
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Linear regression methodology A maceroeconomic example

The r egr ess command, like other Stata estimation commands,
requires us to specify the response variable followed by a varlist of the
explanatory variables.

regress lrgrossinv Irgdp Irwage tr10yr S Pindex

Sour ce SS df WSS Nunmber of obs = 207
F( 4, 202) = 3989. 87

Model 41. 3479199 4 10. 33698 Prob > F = 0.0000
Resi dual . 523342927 202 .002590807 R- squar ed = 0.9875
Adj R-squared = 0.9873

Tot al 41.8712628 206 .203258557 Root IBSE = . 0509

| rgrossi nv Coef . Std. Err. t P>t | [ 95% Conf. Interval]
| rgdp . 6540464 . 0414524 15. 78 0. 000 . 5723115 . 7357813

| r wage . 7017158 . 1562383 4. 49 0. 000 . 3936485 1. 009783
tr10yr . 0131358 . 0022588 5.82 0. 000 . 008682 . 0175896

S _Pi ndex . 0020351 . 0002491 8.17 0. 000 . 001544 . 0025261
_cons -1.911161 . 399555 -4.78 0. 000 - 2. 698994 -1. 123327

The header of the regression output describes the overall model fit,
while the table presents the point estimates, their precision, and
Interval estimates.
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Linear regression methodology The ANOVA table, ANOVA F and R-squared

The regression output for this model includes the analysis of variance
(ANOVA) table in the upper left, where the two sources of variation are
displayed as Mbdel and Resi dual . The SS are the Sums of Squares,
with the Resi dual SS corresponding to e’e and the Total Tot al SS
to y'y in equation (10) below.

The next column of the table reports the df : the degrees of freedom
associated with each sum of squares. The degrees of freedom for total
SS are (N — 1), since the total SS has been computed making use of
one sample statistic, y. The degrees of freedom for the model are

(k — 1), equal to the number of slopes (or explanatory variables): one
fewer than the number of estimated coefficients due to the constant
term.
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Linear regression methodology The ANOVA table, ANOVA F and R-squared

As discussed above, the model SS refer to the ability of the four
regressors to jointly explain a fraction of the variation of y about its
mean (the total SS). The residual degrees of freedom are (N — k),
indicating that (N — k) residuals may be freely determined and still
satisfy the constraint posed by the first normal equation of least

squares that the regression surface passes through the multivariate
point of means (y, Xo, ..., Xg):

Y = by +boXo + baXz + - 4 b X (9)
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Linear regression methodology The ANOVA table, ANOVA F and R-squared

In the presence of the constant term b, the first normal equation
implies thate =y — > . X;b; must be identically zero. It must be
stressed that this is not an assumption. This is an algebraic implication
of the least squares technique which guarantees that the sum of least
squares residuals (and their mean) will be very close to zero.
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Linear regression methodology The ANOVA table, ANOVA F and R-squared

The last column of the ANOVA table reports the M5, the Mean Squares
due to regression and error, which are merely the SS divided by the

df . The ratio of the Model MsSto Resi dual MSis reported as the
ANOVA F -statistic, with numerator and denominator degrees of
freedom equal to the respective df values.

This ANOVA F statistic is a test of the null hypothesis that the slope
coefficients in the model are jointly zero: that is, the null model of

Yi = 1+ U; IS as successful in describing y as Is the regression
alternative. The Prob > F is the tail probability or p-value of the

F -statistic. In this example we may reject the null hypothesis at any
conventional level of significance.

We may also note that the Root NMSE for the regression of 0.05009,
which is in the units of the response variable y, is very small relative to
the mean of that variable, 7.14.
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Linear regression methodology The ANOVA table, ANOVA F and R-squared

The upper right section of r egr ess output contains several goodness
of fit statistics. These statistics measure the degree to which an
estimated model can explain the variation of the response variable y.

Other things equal, we should prefer a model with a better fit to the
data. With the principle of parsimony in mind, we also prefer a simpler
model. The mechanics of regression imply that a model with a very
large number of regressors can explain y arbitrarily well.
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Linear regression methodology The ANOVA table, ANOVA F and R-squared

Given the least squares residuals, the most common measure of
goodness of fit, regression R?, may be calculated (given a constant
term in the regression function) as

e’e
y'y

R*=1 (10)
wherey =y — y: the regressand with its sample mean removed. This
emphasizes that the object of regression is not the explanation of y'y,
the raw sum of squares of the response variable y. That would amount
to explaining why Ey # 0, which is often not a very interesting
guestion. Rather, the object is to explain the variations in the response
variable. That variable may be always positive—such as the level of
GDP—so that it is not sensible to investigate whether the average
price might be zero.
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Linear regression methodology The ANOVA table, ANOVA F and R-squared

With a constant term in the model, the least squares approach seeks
to explain the largest possible fraction of the sample variation of y
about its mean (and not the associated variance!) The null model to
which the estimated model is being contrasted isy = 1 + u where p is
the population mean of y.

In estimating a regression, we are trying to determine whether the
Information in the regressors X is useful. Is the conditional expectation
E (y|X) more informative than the unconditional expectation Ey = ;?
The null model above has an R? = 0, while virtually any set of
regressors will explain some fraction of the variation of y around y, the
sample estimate of . R? is that fraction in the unit interval: the
proportion of the variation in y abouty explained by X.
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Linear regression methodology The coefficient estimates and beta coefficients

Below the ANOVA table and summary statistics, Stata reports the
coefficient estimates for each of the b; values, along with their
estimated standard errors, t-statistics, and the associated p-values
labeled P>| t | : that is, the tail probability for a two-tailed test on b;
corresponding to the hypothesis Hg : b; = 0.

In the last two columns, a confidence interval for the coefficient
estimate is displayed, with limits defined by the current setting of

| evel . Thel evel () option onregr ess (or other estimation
commands) may be used to specify a particular level. After performing
the estimation (e.g., with the default 95% level) the regression results
may be redisplayed with, for instance, r egr ess, | evel (90). The
default | evel may be either changed for the session or changed
permanently with set | evel n[, permanently] .
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beta coefficients
beta coefficients

In other social science disciplines, linear regression results are often
reported in terms of estimated beta coefficients. This terminology is
somewhat confusing for economists given their common practice of
writing the regression model in terms of gs.

The beta coefficient is defined as dy*/9X;" where the starred
guantities are z-transformed or standardized variables: for instance,
y* = (Y —Y)/sy wherey is the sample mean and sy is the sample
standard deviation of the response variable. Thus, the beta coefficient
for the j! regressor tells us how many standard deviations y would
change given a one standard deviation change in X;.
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Linear regression methodology beta coefficients

This is an attractive measure in disciplines where many empirical
guantities are indices lacking a natural scale. You may then rank
regressors by the magnitudes of their beta coefficients because the
absolute magnitude of the beta coefficient for X is indicative of the
strength of the effect of that variable. For the regression model above,
we can merely redisplay the regression using the bet a option:
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Linear regression methodology beta coefficients

regress, beta

Sour ce SS df VB Nunmber of obs = 207

F( 4, 202) = 3989. 87

Model 41. 3479199 4 10. 33698 Prob > F = 0.0000

Resi dual . 523342927 202 .002590807 R- squar ed = 0.9875

Adj R-squared = 0.9873

Tot al 41.8712628 206 .203258557 Root MSE = . 0509

| rgrossi nv Coef . Std. Err. t P>| t| Bet a

| rgdp . 6540464 . 0414524 15.78 0.000 . 6829896

| rwage . 7017158 . 1562383 4.49 0.000 . 1641515

tr10yr . 0131358 . 0022588 5.82 0.000 . 075458

S Pi ndex . 0020351 . 0002491 8.17 0.000 . 1807493
_cons -1.911161 . 399555 -4.78 0.000

The output indicates that | r wage has the largest beta coefficient, in
absolute terms, followed by | r gdp. In economic and financial
applications, where most regressors have a natural scale, it is more
common to compute marginal effects such as elasticities or
semi-elasticities. We will discuss the nar gi ns command, used for
those computations.
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Regression without a constant term
Regression without a constant term

Stata offers the option of estimating a regression eguation without a
constant term with the noconst ant option, although in general it is
recommended not to use this option. Such a model makes little sense
If the mean of the response variable is nonzero and all regressors’
coefficients are insignificant.

Estimating a constant term in a model that does not have one causes
a small loss in the efficiency of the parameter estimates. In contrast,
Incorrectly omitting a constant term produces inconsistent estimates.
The tradeoff should be clear: include a constant term, and let the data
Indicate whether its estimate can be distinguished from zero.
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Recovering estimation results
Recovering estimation results

The r egr ess command shares the features of all estimation (e-class)
commands. Saved results from r egr ess can be viewed by typing
ereturn |ist. All Stata estimation commands save an estimated
parameter vector as matrix e( b) and the estimated
variance-covariance matrix of the parameters as matrix e( V) .

One item listed inthe eret urn |1 st should be noted: e( sanpl e),
listed as af unct i on rather thana scal ar,macroormatri x. The
e( sanpl e) function returns 1 if an observation was included in the
estimation sample and O otherwise.
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Linear regression methodology Recovering estimation results

The r egr ess command honors any if and in qualifiers and then
practices case-wise deletion to remove any observations with missing
values across the set {y, X }. Thus, the observations actually used in
generating the regression estimates may be fewer than those specified
In the r egr ess command. A subsequent command such as

summari ze regressors if (or in) will not necessarily provide the
descriptive statistics of the observations on X that entered the
regression unless all regressors and the y variable are in the varlist.

This is particularly relevant when building models with time series
data, as the use of lags, leads and differences will cause observations
to be omitted from the estimation sample.
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Linear regression methodology Recovering estimation results

The set of observations actually used in estimation can easily be
determined with the qualifieri f e(sanpl e):

summari ze regressors if e(sanple)

will yield the appropriate summary statistics from the regression
sample. It may be retained for later use by placing it in a new variable:

generate byte reglsanple = e(sanple)

where we use the byt e data type to save memory since e( sanpl e)
IS an indicator {0,1} variable.
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Hypothesis testing in regression
Hypothesis testing in regression

The application of regression methods is often motivated by the need
to conduct tests of hypotheses which are implied by a specific
theoretical model. In this section we discuss hypothesis tests and
Interval estimates assuming that the model is properly specified and
that the errors are independently and identically distributed (i.i.d.).
Estimators are random variables, and their sampling distributions
depend on that of the error process.
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Linear regression methodology Hypothesis testing in regression

There are three types of tests commonly employed in econometrics:
Wald tests, Lagrange multiplier (LM) tests, and likelihood ratio (LR)
tests. These tests share the same large-sample distribution, so that
reliance on a particular form of test is usually a matter of convenience.
Any hypothesis involving the coefficients of a regression equation can
be expressed as one or more restrictions on the coefficient vector,
reducing the dimensionality of the estimation problem. The Wald test
Involves estimating the unrestricted equation and evaluating the
degree to which the restricted equation would differ in terms of its
explanatory power.

The LM (or score) test involves estimating the restricted equation and
evaluating the curvature of the objective function. These tests are
often used to judge whether i.i.d. assumptions are satisfied.

The LR test involves comparing the objective function values of the
unrestricted and restricted equations. It is often employed in maximum
likelihood estimation.
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Linear regression methodology Hypothesis testing in regression

Consider the general form of the Wald test statistic. Given the
regression eqguation

y =XB+uU (11)

Any set of linear restrictions on the coefficient vector may be
expressed as

RO =r (12)

where R Is a g x k matrix and r is a g-element column vector, with

g < k. The q restrictions on the coefficient vector g imply that (k — q)
parameters are to be estimated in the restricted model. Each row of R
Imposes one restriction on the coefficient vector; a single restriction
may involve multiple coefficients.
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Linear regression methodology Hypothesis testing in regression

For instance, given the regression eguation

Yy = B1X1 + BaXo + B3X3 + B4Xq + U (13)

We might want to test the hypothesis Hg : 5, = 0. This single
restriction on the coefficient vector implies R5 = r, where

R = (0100)
r = (0) (14)

A test of Hp : 82 = (33 would imply the single restriction

R = (01 -10)
r = (0) (15)
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Linear regression methodology Hypothesis testing in regression

Given a hypothesis expressed as Hp : R3 = r, we may construct the
Wald statistic as

W = S%(Rb —r)Y[R(X’X)RT(Rb —r) (16)

This quadratic form makes use of the vector of estimated coefficients,
b, and evaluates the degree to which the restrictions fail to hold: the
magnitude of the elements of the vector (Rb — r). The Wald statistic
evaluates the sums of squares of that vector, each weighted by a
measure of their precision. Its denominator is s?, the estimated
variance of the error process, replacing the unknown parameter o2.
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Linear regression methodology Hypothesis testing in regression

Stata contains a number of commands for the construction of
hypothesis tests and confidence intervals which may be applied
following an estimated regression. Some Stata commands report test
statistics in the normal and y? forms when the estimation commands
are justified by large-sample theory. More commonly, the finite-sample
t and F distributions are reported.

Stata’s tests do not deliver verdicts with respect to the specified
hypothesis, but rather present the p-value (or prob-value) of the test.
Intuitively, the p-value is the probability of observing the estimated
coefficient(s) if the null hypothesis is true.
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Linear regression methodology Hypothesis testing in regression

In r egr ess output, a number of test statistics and their p-values are
automatically generated: that of the ANOVA F and the t-statistics for
each coefficient, with the null hypothesis that the coefficients equal
zero in the population. If we want to test additional hypotheses after a
regression equation, three Stata commands are particularly useful:
test,testparmand| i ncom Thet est command may be specified

as

t est coeflist

where coeflist contains the names of one or more variables in the
regression model.
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Linear regression methodology Hypothesis testing in regression

A second syntax is

t est exp =exp

where exp is an algebraic expression in the names of the regressors.
The arguments of t est may be repeated in parentheses in conducting

joint tests. Additional syntaxes fort est are available for
multiple-equation models.
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Linear regression methodology Hypothesis testing in regression

The t est par mcommand provides similar functionality, but allows
wildcards in the coefficient list:

t est par mvarlist

where the varlist may contain * or a hyphenated expression such as
| nd1-1 nd9.

The | 1 ncomcommand evaluates linear combinations of coefficients:
| | ncomexp

where exp Is any linear combination of coefficients that is valid in the
second syntax of t est . For | i ncom the exp must not contain an
equal sign.
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Linear regression methodology Hypothesis testing in regression

If we want to test the hypothesis Hy : §; = 0, the ratio of the estimated
coefficient to its estimated standard error is distributed t under the null
hypothesis that the population coefficient equals zero. That ratio is
displayed by r egr ess as the t column of the coefficient table.
Returning to our investment equation, a test statistic for the
significance of a coefficient could be produced by using the
commands:
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Linear regression methodology Hypothesis testing in regression

regress lrgrossinv Irgdp | rwage tr10yr S Pi ndex

Sour ce SS df VB Nunber of obs = 207
F( 4, 202) = 3989. 87

Model 41. 3479199 4 10. 33698 Prob > F = 0.0000
Resi dual . 523342927 202 .002590807 R- squar ed = 0.9875
Adj R-squared = 0.9873

Tot al 41.8712628 206 .203258557 Root MSE = .0509

| rgrossi nv Coef . Std. Err. t P>| t | [ 95% Conf. Interval]
| rgdp . 6540464 . 0414524 15. 78 0. 000 . 5723115 . 7357813

| r wage . 7017158 .1562383 4.49 0.000 . 3936485 1.009783
tr10yr . 0131358 . 0022588 5.82 0.000 . 008682 . 0175896
S_Pi ndex . 0020351 . 0002491 8.17 0.000 . 001544 . 0025261
_cons -1.911161 . 399555 -4.78 0.000 -2.698994  -1.123327

test |rwage
(1) Irwage =0

F( 1, 202)
Prob > F

20. 17
0. 0000
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Linear regression methodology Hypothesis testing in regression

In Stata’s shorthand this is equivalent to the command

test Db[lrwage] = 0 (and much easier to type). If we use the
t est command, we note that the statistic is displayed as F(1,N-k)
rather than in the ty_y form of the coefficient table.

As many hypotheses to which t est may be applied involve more than
one restriction on the coefficient vector—and thus more than one
degree of freedom—Stata routinely displays an F -statistic.

If we cannot reject the hypothesis Hy : 5; = 0, and wish to restrict the
equation accordingly, we remove that variable from the list of
regressors.

Christopher F Baum (BC / DIW) Estimation and forecasting IMF Institute, Spring 2011 40/ 170



Linear regression methodology Hypothesis testing in regression

More generally, we may to test the hypothesis 5, = 61-0 = 0, where 6 Is

any constant value. If theory suggests that the coefficient on variable
| r gdp should be 0.75, then we may specify that hypothesisint est :

regress lrgrossinv Irgdp Irwage tr10yr S Pindex

Sour ce SS df WSS Nunmber of obs = 207
F( 4, 202) = 3989. 87

Model 41. 3479199 4 10. 33698 Prob > F = 0.0000
Resi dual . 523342927 202 .002590807 R- squar ed = 0.9875
Adj R-squared = 0.9873

Tot al 41.8712628 206 .203258557 Root IMBE = . 0509

| rgrossi nv Coef . Std. Err. t P>|t| [ 95% Conf. Interval]
| r gdp . 6540464 . 0414524 15. 78 0. 000 . 5723115 . 7357813

| rwage . 7017158 . 1562383 4. 49 0. 000 . 3936485 1. 009783
tr10yr . 0131358 . 0022588 5.82 0. 000 . 008682 . 0175896

S _Pi ndex . 0020351 . 0002491 8. 17 0. 000 . 001544 . 0025261
_cons -1.911161 . 399555 -4.78 0. 000 - 2. 698994 -1. 123327

. test lrgdp = 0.75
(1) Ilrgdp = .75
F( 1, 202)
Prob > F

5. 36
0. 0216

The estimated coefficient of 0.65 is distinguished from 0.75.
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Linear regression methodology Hypothesis testing in regression

We might want to compute a point and interval estimate for the sum of
several coefficients. We may do that with the | i ncom(linear
combination) command, which allows the specification of any linear
expression in the coefficients. In the context of our investment
equation, let us consider an arbitrary restriction: that the coefficients
onlrdgp, |rwageandtr 10yr sum to unity, so that we may write

Ho 6Irgdp - 6Irwage + 5tr10yr =1 (17)

It is important to note that although this hypothesis involves three
estimated coefficients, it only involves one restriction on the coefficient
vector. In this case, we have unitary coefficients on each term, but that
need not be so.
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Linear regression methodology Hypothesis testing in regression

lincomlrgdp + | rwage + tr10yr
(1) Ilrgdp + Irwage + tr10yr =0

| rgrossi nv Coef . Std. Err. t P>| t| [ 95% Conf. Interval]

(1) 1. 368898 . 1196203 11. 44 0. 000 1. 133033 1.604763

The sum of the three estimated coefficients is 1.369, with an interval
estimate excluding unity. The hypothesis would be rejected by at est
command.
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Linear regression methodology Hypothesis testing in regression

We may use t est to consider equality of two of the coefficients, or to

test that their ratio equals a particular value:

. test lrgdp = I rwage
(1) Irgdp - Irwage = 0

F( 1, 202) = 0. 06
Prob > F = 0. 8061

. test trl1l0yr = 10 = S Pindex

( 1) trl0yr - 10+*S Pindex =0
F( 1, 202) = 9. 24
Prob > F = 0. 0027

The hypothesis that the coefficients on | r gdp and | r wage are equal
cannot be rejected at the 95% level, while the test that the ratio of the
tr10yr and S_Pi ndex coefficients equals 10 may be rejected at the
99% level. Notice that Stata rewrites both expressions into a

normalized form.
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Joint hypothesis tests
Joint hypothesis tests

All of the tests illustrated above are presented as an F-statistic with
one numerator degree of freedom since they only involve one
restriction on the coefficient vector. In many cases, we wish to test an
hypothesis involving multiple restrictions on the coefficient vector.
Although the former test could be expressed as a t-test, the latter
cannot. Multiple restrictions on the coefficient vector imply a joint test,
the result of which is not simply a box score of individual tests.
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A joint test is usually constructed in Stata by listing each hypothesis to
be tested in parentheses on the t est command. As presented above,
the first syntax of the t est command, t est coeflist, perfoms the joint
test that two or more coefficients are jointly zero, suchas Hp : 3o =0
and g3 = 0.

It is important to understand that this joint hypothesis is not at all the
same as Hg : 32 + B3 = 0. The latter hypothesis will be satisfied by a
locus of {3>, 3} values: all pairs that sum to zero. The former
hypothesis will only be satisfied at the point where each coefficient

equals zero. The joint hypothesis may be tested for our investment
equation:
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regress lIrgrossinv Irgdp | rwage tr10yr S Pi ndex

Sour ce SS df VB Nunber of obs = 207
F( 4, 202) = 3989. 87

Model 41. 3479199 4 10. 33698 Prob > F = 0.0000
Resi dual . 523342927 202 .002590807 R- squar ed = 0.9875
Adj R-squared = 0.9873

Tot al 41.8712628 206 .203258557 Root MSE = .0509

| rgrossi nv Coef . Std. Err. t P>| t | [ 95% Conf. Interval]
| rgdp . 6540464 . 0414524 15. 78 0. 000 . 5723115 . 7357813

| r wage . 7017158 .1562383 4.49  0.000 . 3936485 1.009783
tr10yr . 0131358 . 0022588 5.82 0.000 . 008682 . 0175896
S_Pi ndex . 0020351 . 0002491 8.17 0.000 . 001544 . 0025261
_cons -1.911161 . 399555 -4.78 0.000 -2.698994  -1.123327

test trl10yr S Pindex
( 1) trl0yr =0
( 2) S Pindex =0
F( 2, 202)
Prob > F

35. 31
0. 0000

The data overwhelmingly reject the joint hypothesis that the model
excluding t r 10yr and S_Pi ndex is correctly specified relative to the
full model.
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Tests of nonlinear hypotheses

What if the hypothesis tests to be conducted cannot be written in the
linear form

Ho: RSB =1 (18)

for example, if theory predicts a certain value for the product of two
coefficients in the model, or for an expression such as (3, /63 + 34)?
Two Stata commands are analogues to those we have used above:
testnl andnl com

The former allows specification of nonlinear hypotheses on the 3
values, but unlike t est , the syntax _b[ varname] must be used to
refer to each coefficient value. If a joint test is to be conducted, the
equations defining each nonlinear restriction must be written In
parentheses, as illustrated below.
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The nl comcommand permits us to compute nonlinear combinations
of the estimated coefficients in point and interval form, similar to

| | ncom Both commands employ the delta method, an approximation
to the distribution of a nonlinear combination of random variables
appropriate for large samples which constructs Wald-type tests. Unlike
tests of linear hypotheses, nonlinear Wald-type tests based on the
delta method are sensitive to the scale of the y and X data.
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regress lrgrossinv Irgdp Irwage tr10yr S Pindex

Sour ce SS df WSS Nunmber of obs = 207
F( 4, 202) = 3989. 87
Model 41. 3479199 4 10. 33698 Prob > F = 0. 0000
Resi dual . 523342927 202 .002590807 R- squar ed = 0.9875
Adj R-squared = 0.9873
Tot al 41.8712628 206 .203258557 Root MSE = . 0509
| rgrossi nv Coef . Std. Err. t P>|t| [ 95% Conf. Interval]
| r gdp . 6540464 . 0414524 15. 78 0. 000 . 5723115 . 7357813
| r wage . 7017158 . 1562383 4. 49 0. 000 . 3936485 1. 009783
tr10yr . 0131358 . 0022588 5.82 0. 000 . 008682 . 0175896
S Pi ndex . 0020351 . 0002491 8. 17 0. 000 . 001544 . 0025261
_cons -1.911161 . 399555 -4.78 0. 000 - 2. 698994 -1. 123327
testnl _b[lrgdp] * _b[lrwage] = 0.33
(1) _b[lrgdp] * _b[lrwage] = 0.33
F(1, 202) = 2. 77
Prob > F = 0. 0978

In this example, we consider a restriction on the product of the
coefficients of | r gdp and | r wage. The product of these coefficients
cannot be distinguished from 0.33 at the 95% level.
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We may also test a joint nonlinear hypothesis:

. testnl (_b[lrgdp] * b[lrwage] = 0.33) ///

> (_b[lrwage] / _b[tr10yr] = 100 * Db[lrgdp])
(1) _b[lrgdp] * _b[lrwage] = 0.33
(2) _b[lrwage] / _b[tr10yr] = 100 * _b[Il rgdp]

F(2, 202) = 29. 83
Prob > F = 0. 0000

The joint hypothesis may be rejected at the 99% level.
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Computing residuals and predicted values
Computing residuals and predicted values

After estimating a linear regression model with r egr ess we may
compute the regression residuals or the predicted values.

Computation of the residuals for each observation allows us to assess
how well the model has done in explaining the value of the response
variable for that observation. Is the in-sample prediction y; much larger
or smaller than the actual value y;?
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Linear regression methodology Computing residuals and predicted values

Computation of predicted values allows us to generate in-sample
predictions: the values of the response variable generated by the
estimated model. We may also want to generate out-of-sample
predictions: that is, apply the estimated regression function to
observations that were not used to generate the estimates. This may
Involve hypothetical values of the regressors or actual values. In the
latter case, we may want to apply the estimated regression function to
a separate sample (e.g., to a different time period than that used for
estimation) to evaluate its applicability beyond the regression sample.

If a regression model is well specified, it should generate reasonable
predictions for any sample from the population. If out-of-sample
predictions are poor, the model’s specification may be too specific to
the original sample.
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Linear regression methodology Computing residuals and predicted values

Neither the residuals nor predicted values are calculated by Stata’s
r egr ess command, but either may be computed immediately
thereafter with the pr edi ct command. This command is given as

predict [ type] newvar [if] [in] [, choice]
where choice specifies the guantity to be computed for each
observation.

For linear regression, pr edi ct’s default action is the computation of
predicted values. These are known as the point predictions, and are
specified by the choice xb. If the residuals are required, the command

predi ct double | priceeps, residual

should be used.
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Linear regression methodology Computing residuals and predicted values

The regression estimates are only available to pr edi ct until another
estimation command (e.g., r egr ess) is issued. If these series are
needed, they should be computed at the earliest opportunity. The use
of doubl e as the optional type in these commands ensures that the
series will be generated with full numerical precision, and is strongly
recommended.

We often would like to evaluate the quality of the regression fit in
graphical terms. With a single regressor, a plot of actual and predicted
values of y; versus x; will suffice. In multiple regression, the natural
analogue is a plot of actual y; versus the predicted y; values.
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Actual vs. predicted log real investment:
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Christopher F Baum (BC / DIW) Estimation and forecasting IMF Institute, Spring 2011 56 /170



Linear regression methodology Computing residuals and predicted values

The aspect ratio has been constrained to unity so that points on the
45° line represent perfect predictions. Note that the model
systematically overpredicts the log of relatively high levels of
Investment.

When using time series data, we may also want to examine the
model’s performance on a time series plot, using the t sl | ne
command. By using the graphics option schene( s2nono) rather than
the default s2col or, we can get a graph which will reproduce well in
black and white. If a graph is to be included in a document, use

graph export graphnane. eps, repl ace, which will be usable
In high quality on any operating system. On Mac OS X systems (only),
you can also export as PDF.
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Actual vs. predicted log real investment:
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You might want to graph the predicted values versus NBER recession
dates, using my nber cycl es command from SSC.:

/'l nbercycles from SSC
nbercycl es | rinvhat,

file(invhatrecess. do)

Code to graph NBER recession dates witten to i nvhatrecess. do

VVVVVVVVYVYVYVYVYVYVYVYV:"

* append your graph command to this file:
x|l abel (,format (% q))
twoway function y=7.91930087899802, range(1 4)

* tsline tineseriesvar,

. 217729068487222) || 1/

function y=7.91930087899802, range( 39 43)

29068487222) || /11

function y=7.91930087899802, range(55 60)

29068487222) || /11

function y=7.91930087899802, range( 80 82)

29068487222) || ///

function y=7.91930087899802, range(86 91)

29068487222) || /11

function y=7.91930087899802, range( 122 124)

7729068487222) || /11

function y=7.91930087899802, range(164 167)

7729068487222) || /11

function y=7.91930087899802, range( 191 197)

7729068487222) ||
tsline Irinvhat |,

I

end of do-file

Christopher F Baum (BC / DIW)

x| abel (, format (% q))

e.g.

recast (area)
recast (area)

recast (area)

Estimation and forecasting

| egend(order(9 1

| egend(order(9 1 "Recession"))
recast (area) color(gsl2) base(6

recast (area) color(gsl2) base(6.2177
recast (area) color(gsl2) base(6.2177
recast (area) color(gsl2) base(6.2177

recast (area) color(gsl2) base(6.2177

color(gsl2) base(6.21
col or(gsl2) base(6.21
col or(gsl2) base(6.21

"Recession"))
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Linear regression methodology Computing residuals and predicted values

Predicted log real investment and NBER recession dates:
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Linear regression methodology Computing residuals and predicted values

Like other Stata commands, pr edi ct will generate predictions for the
entire sample. We may want to estimate a model over a subsample,
and produce out-of-sample predictions, or ex ante forecasts. We may
also want to produce interval estimates for forecasts, in- or
out-of-sample. The latter may be done, after a regression, by
specifying choice st dp for the standard error of prediction around the
expected value of y | X.

We illustrate by reestimating the investment model through 2007Q3,
the calendar quarter preceding the most recent recession, and
producing ex ant e point and interval forecasts for the remaining
periods. We juxtapose these point and interval estimates against the
actual series during the recession and aftermath.
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Linear regression methodology Computing residuals and predicted values

regress lrgrossinv Irgdp I rwage tr10yr S Pindex if tin(,200793)

Sour ce SS df %S Nunber of obs = 195
F( 4, 190) = 5512. 25

Model 37.640714 4 9.4101785 Prob > F = 0. 0000
Resi dual . 324356548 190 . 00170714 R- squar ed = 0.9915
Adj R-squared = 0.9913

Tot al 37.9650706 194 . 19569624 Root ISE = .04132

| rgrossi nv Coef . Std. Err. t P>| t | [ 95% Conf. Interval]
| rgdp . 6360608 . 033894 18.77  0.000 . 569204 . 7029176

| r wage . 9161446 . 1286431 7.12 0.000 . 6623926 1.169897
trl10yr . 0074467 . 0019506 3.82 0.000 . 0035992 . 0112942
S_Pi ndex . 0019152 . 0002094 9.15 0.000 . 0015021 . 0023282
_cons -2.663739 . 3344459 -7.96  0.000 -3.323443  -2.004035
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Linear regression methodology Computing residuals and predicted values

predict double IrinvXAif tin(200794,), xb
(195 m ssing val ues generat ed)

predi ct double IrinvSTDP if tin(200794,), stdp
(195 m ssing val ues gener at ed)

scalar tval = invttail (e(df_r), 0.025)

generate double uplim=1lrinvXA + tval *= |rinvSTDP
(195 m ssing val ues generat ed)

generate double lowim=IlrinvXA - tval * |rinvSTDP

(195 m ssing val ues gener at ed)
| ab var uplim"95% prediction interval"”
| ab var lowim"95% prediction interval"
| ab var IrinvXA "Ex ante prediction”
twoway (tsline Irgrossinv IrinvXAif tin(2007q94,)) //1/

> (rline uplimlowimyq if tin(2007q94,), ///
> schene(s2nono) | egend(col s(3) size(vsmall)) ///
> ti("Ex ante predicted vs. actual log real investnent"))
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Ex ante predicted vs. actual log real investment
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Regression with non-i.i.d. errors
Regression with non-1.1.d. errors

If the regression errors are independently and identically distributed
(i.1.d.), OLS produces consistent point and interval estimates. Their
sampling distribution in large samples is normal with a mean at the
true coefficient values and their VCE Is consistently estimated by the
standard formula.

If the zero conditional mean assumption holds but the errors are not
1.1.d., OLS produces consistent estimates whose sampling distribution
In large samples is still normal with a mean at the true coefficient
values, but whose VCE cannot be consistently estimated by the
standard formula.
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Linear regression methodology Regression with non-i.i.d. errors

We have two options when the errors are not i.i.d. First, we can use
the consistent OLS point estimates with a different estimator of the
VCE that accounts for non-i.i.d. errors. Alternatively, if we can specify
how the errors deviate from i.i.d. in our regression model, we can
model that process, using a different estimator that produces
consistent and more efficient point estimates.

The tradeoff between these two methods is that of robustness versus
efficiency. In a robust approach we place fewer restrictions on the
estimator: the idea being that the consistent point estimates are good
enough, although we must correct our estimator of their VCE to
account for non-i.i.d. errors. In the efficient approach we incorporate
an explicit specification of the non-i.i.d. distribution into the model. If
this specification is appropriate, the additional restrictions which it
Implies will produce a more efficient estimator than that of the robust
approach.
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Robust standard errors
Robust standard errors

We will only illustrate the robust approach. If the errors are
conditionally heteroskedastic and we want to apply the robust
approach, we use the Huber—White—sandwich estimator of the
variance of the linear regression estimator, available in most Stata
estimation commands as the r obust option.

If the assumption of homoskedasticity is valid, the non-robust standard
errors are more efficient than the robust standard errors. If we are
working with a sample of modest size and the assumption of
homoskedasticity is tenable, we should rely on non-robust standard
errors. But since robust standard errors are very easily calculated in
Stata, it is simple to estimate both sets of standard errors for a
particular equation and consider whether inference based on the
non-robust standard errors is fragile. In large data sets, it has become
Increasingly common practice to report robust (or
Huber—-White—sandwich) standard errors.
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The alternate approach, generalized least squares (GLS), can be
Implemented for a model with heteroskedastic errors by specifying the
form of the heteroskedasticity using Stata’s weights. For this reason,
GLS of this sort is often referred to as weighted least squares (WLS).
To implement GLS (WLS), you must provide estimates of the error
variance for each observation derived from some model of the
heteroskedasticity process.
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The Newey—West estimator of the VCE
The Newey—West estimator of the VCE

In an extension to Huber—White—sandwich robust standard errors, we
may employ the Newey—West estimator that is appropriate in the
presence of arbitrary heteroskedasticity and autocorrelation, thus
known as the HAC estimator. Its use requires us to specify an
additional parameter: the maximum order of any significant
autocorrelation in the disturbance process, or the maximum lag L. One
rule of thumb that has been used is to choose L = v/N. This estimator
IS available as the Stata command newey, which may be used as an
alternative to r egr ess for estimation of a regression with HAC
standard errors.

Like the r obust option, application of the HAC estimator does not
modify the point estimates; it only affects the VCE. Test statistics
based on the HAC VCE are robust to arbitrary heteroskedasticity and
autocorrelation as well.
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Linear regression methodology The Newey—West estimator of the VCE

Similar to the case of pure heteroskedasticity, the GLS alternative to
utilizing HAC standard errors is to explicitly model the nature of the
serial correlation process. A common assumption is that the process is
adequately represented by a first-order autoregression (AR(1)). A
regression model with AR (1) errors can be estimated by the Stata
command pr ai s, which implements the Prais—Winsten,
Cochrane—Orcutt, Hildreth—Lu and maximum likelihood estimators. For
higher-order autoregressive processes, the ar i na command may be
used.
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Testing for heteroskedasticity
Testing for heteroskedasticity

After estimating a regression model we may base a test for
heteroskedasticity on the regression residuals. If the assumption of
homoskedasticity conditional on the regressors holds, it can be
expressed as:

Ho : Var (u|Xs, X3, ..., Xy ) = o2 (19)

A test of this null hypothesis can evaluate whether the variance of the
error process appears to be independent of the explanatory variables.
We cannot observe the variances of each element of the disturbance
process from samples of size one, but we can rely on the squared
residual, e?, to be a consistent estimator of 2. The logic behind any
such test Is that although the squared residuals will differ in magnitude
across the sample, they should not be systematically related to
anything, and a regression of squared residuals on any candidate Z;
should have no meaningful explanatory power.

Christopher F Baum (BC / DIW) Estimation and forecasting IMF Institute, Spring 2011 71/170



Linear regression methodology Testing for heteroskedasticity

One of the most common tests for heteroskedasticity is derived from
this line of reasoning: the Breusch—Pagan test. The BP test, a
Lagrange Multiplier (LM) test, involves regressing the squares of the
regression residuals on a set of variables in an auxiliary regression

eiz = d; +dyZj» + d3Ziz + ...dyZjy + Vi (20)

The Breusch—Pagan (Cook—Weisberg) test may be executed with

est at hettest afterregress. If noregressor list (of Zs) Is
provided, het t est employs the fitted values from the previous
regression (the y; values). As mentioned above, the variables specified
In the set of Zs could be chosen as measures which did not appear in
the original regressor list.
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Linear regression methodology Testing for heteroskedasticity

We consider the potential scale-related heteroskedasticity in a
cross-sectional model of median housing prices from the hpri ce2a
dataset. The scale factor can be thought of as the average size of
houses in each community, roughly measured by its number of rooms.

After estimating the model, we calculate three test statistics: that
computed by est at het t est without arguments, which is the
Breusch—Pagan test based on fitted values; est at hett est with a
variable list, which uses those variables in the auxiliary regression; and
White’s general test statistic from whi t et st , available from SSC.
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Linear regression methodology Testing for heteroskedasticity

qui regress lprice roons crine |dist
het t est

Breusch- Pagan / Cook- Wi sberg test for heteroskedasticity
Ho: Constant vari ance
Variables: fitted values of Ilprice
chi 2(1) = 140.84
Prob > chi2 = 0. 0000

hettest roons crine |dist

Br eusch- Pagan / Cook- Wi sberg test for heteroskedasticity
Ho: Constant vari ance
Variabl es: roons crine |dist

chi 2( 3) = 252. 60
Prob > chi2 = 0. 0000
whi t et st

Wite s general test statistic : 144.0052 Chi-sq( 9) P-value = 1.5e-26

Each of these tests indicates that there is a significant degree of
heteroskedasticity related to scale in this model.
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Linear regression methodology Testing for heteroskedasticity

We illustrate the estimation of the model with OLS and robust standard

errors.

esti mates tabl e nonRobust Robust, b(9%9.4f) se(%.3f) t(%b.2f) ///
> title(Estimates of | og housing price wwth OLS and Robust standard errors)

Estimates of |1 og housing price wwth COLS and Robust standard errors

Vari abl e nonRobust Robust

roons 0. 3072 0. 3072
0.018 0. 026

17. 24 11. 80

crime -0.0174 -0.0174
0. 002 0. 003

-10. 97 -6.42

| di st 0. 0749 0. 0749
0. 026 0. 030

2.93 2.52

_cons 7.9844 7.9844
0.113 0.174

70.78 45. 76

| egend: b/ se/t

Note that the OLS standard errors are considerably smaller, biased
downward, relative to the robust estimates.
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Testing for serial correlation in the error distribution
Testing for serial correlation

How might we test for the presence of serially correlated errors? Just
as in the case of pure heteroskedasticity, we base tests of serial
correlation on the regression residuals. In the simplest case,
autocorrelated errors follow the so-called AR(1) model: an
autoregressive process of order one, also known as a first-order

Markov process:
Ut = pUi—1 + Vi, |p| <1 (21)

where the v; are uncorrelated random variables with mean zero and
constant variance.
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Linear regression methodology Testing for serial correlation in the error distribution

If we suspect that there might be autocorrelation in the disturbance
process of our regression model, we could use the estimated residuals
to diagnose it. The empirical counterpart to u; in Equation (21) will be
the e; series produced by pr edi ct . We estimate the auxiliary
regression of e; on e;_; without a constant term, as the residuals have
mean zero.

The resulting slope estimate is a consistent estimator of the first-order
autocorrelation coefficient p of the u process from Equation (21).
Under the null hypothesis, p = 0, so that a rejection of this null
hypothesis by this Lagrange Multiplier (LM) test indicates that the
disturbance process exhibits AR (1) behavior.
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Linear regression methodology Testing for serial correlation in the error distribution

A generalization of this procedure which supports testing for
higher-order autoregressive disturbances is the Lagrange Multiplier
(LM) test of Breusch and Godfrey. In this test, the regression residuals
are regressed on the original X matrix augmented with p lagged
residual series. The null hypothesis is that the errors are serially
Independent up to order p.

We illustrate the diagnosis of autocorrelation using a time series
dataset ukr at es of monthly short-term and long-term interest rates
on UK government securities (Treasury bills and gilts),
1952m3-1995m12.
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Linear regression methodology Testing for serial correlation in the error distribution

The model expresses the monthly change in the short rate r s, the

Bank of England’s monetary policy instrument as a function of the prior

month’s change in the long-term rate r 20. The regressor and
regressand are created on the fly by Stata’s time series operators D.
and L. The model represents a monetary policy reaction function.

. regress D.rs LD. r20

Sour ce SS Nunber of obs = 524
F( 1, 522) = 52. 88
Model 13. 8769739 1 13.8769739 Prob > F = 0.0000
Resi dual 136. 988471 . 262430021 R- squar ed = 0.0920
Adj R-squared = 0.0902
Tot al 150. 865445 . 288461654 Root NMSE = .51228
D.rs Coef . Std. Err. P>| t| [ 95% Conf. Interval]

r 20
LD. . 4882883 . 0671484 0. 000 . 356374 . 6202027
_cons . 0040183 . 022384 0. 858 -. 0399555 . 0479921

predi ct doubl e eps, residual
(2 m ssing val ues gener at ed)
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Linear regression methodology Testing for serial correlation in the error distribution

The Breusch—Godfrey test performed here considers the null of serial
Independence up to sixth order in the disturbance process, and that
null is soundly rejected. We also present an unconditional test—the
Ljung—Box Q test, available as command wnt est (.

. estat bgodfrey, |ags(6)
Breusch-Godfrey LMtest for autocorrelation

| ags( p) chi 2 df Prob > chi2

6 17. 237 6 0. 0084

HO: no serial correlation
. wntestq eps
Port manteau test for white noi se

Portmanteau (Q statistic = 82. 3882
Prob > chi 2(40) = 0. 0001

Both tests decisively reject the null of no serial correlation.
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Linear regression methodology Testing for serial correlation in the error distribution

Given this finding, we can generate heteroskedasticity- and
autocorrelation-consistent (HAC) standard errors using the newey
command, specifying 6 lags:

newey D.rs LD.r20, |ag(6)

Regression with Newey-Wst standard errors Nunmber of obs = 524
maxi mum | ag: 6 F( 1, 522) = 35.74
Prob > F = 0. 0000

Newey- W\est
D.rs Coef . Std. Err. t P>| t| [ 95% Conf. Interval]

r 20

LD. . 4882883 . 0816725 5.98 0. 000 . 3278412 . 6487354
_cons . 0040183 . 0256542 0. 16 0. 876 -. 0463799 . 0544166

esti mates store NeweyWest
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Linear regression methodology Testing for serial correlation in the error distribution

. estimates tabl e nonHAC NeweyWest, b(9%.4f) se(%b. 3f) t(%.2f) ///
> title(Estimates of D.rs wwth OLS and Newey-\West standard errors)

Estimates of D.rs with OLS and Newey-West standard errors

Vari abl e nonHAC NeweyWest
r 20

LD. 0. 4883 0. 4883

0. 067 0. 082

7.27 5.98

_cons 0. 0040 0. 0040

0. 022 0. 026

0.18 0. 16

| egend: b/selt

Note that the Newey—West standard errors are considerably larger
than the OLS standard errors. OLS standard errors are biased
downward in the presence of positive autocorrelation (p > 0).
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Regression with indicator variables

Data come in three flavors: quantitative (or cardinal), ordinal (or
ordered) and qualitative. Regression analysis handles quantitative
data where both regressor and regressand may take on any real value.
We also may work with ordinal or ordered data. They are distinguished
from cardinal measurements in that an ordinal measure can only
express inequality of two items, and not the magnitude of their
difference.

We frequently encounter data that are purely qualitative, lacking any

obvious ordering. If these data are coded as string variables, such as
Mand F for survey respondents’ genders, we are not likely to mistake
them for quantitative values. But in other cases, where a quality may

be coded numerically, there is the potential to misuse this qualitative

factor as quantitative.
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Regression with indicator variables One-way ANOVA

In order to test the hypothesis that a qualitative factor has an effect on
a response variable, we must convert the gqualitative factor into a set of
Indicator variables, or dummy variables. We then conduct a joint test
on their coefficients. If the hypothesis to be tested includes a single
gualitative factor, the estimation problem may be described as a
one-way analysis of variance, or one-way ANOVA. ANOVA models
may be expressed as linear regressions on an appropriate set of
Indicator variables.

This notion of the equivalence of one-way ANOVA and linear
regression on a set of indicator variables that correspond to a single
gualitative factor generalizes to multiple qualitative factors.

If there are two qualitative factors (e.g., race and sex) that are
hypothesized to affect income, a researcher would regress income on
two appropriate sets of indicator variables, each representing one of
the qualitative factors. This is then an example of two-way ANOVA.

Christopher F Baum (BC / DIW) Estimation and forecasting IMF Institute, Spring 2011 84 /170



Using factor variables

One of the biggest innovations in Stata version 11 is the introduction of
factor variables. Just as Stata’s time series operators allow you to refer
to lagged variables (L. or differenced variables (D. ), the i . operator
allows you to specify factor variables for any non-negative
Integer-valued variable in your dataset.

In the standard aut o dataset, where r ep78 takes on values 1...5,
youcouldlist rep78 1.rep78,orsunmari ze i.rep78,or
regress nmpg i .rep78. Each one of those commands produces the
appropriate indicator variables ‘on-the-fly’: not as permanent variables
In your dataset, but available for the command.
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Using factor variables

For the | I st command, the variables will be named 1b. r ep78,
2.rep78 ...5.rep78. The b. Isthe base level indicator, by default
assigned to the smallest value. You can specify other base levels, such
as the largest value, the most frequent value, or a particular value.

For the summar i ze command, only levels 2...5 will be shown; the
base level is excluded from the list. Likewise, in a regression on

| . rep78, the base level is the variable excluded from the regressor
list to prevent perfect collinearity. The conditional mean of the excluded
variable appears in the constant term.
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Interaction effects
Interaction effects

If this was the only feature of factor variables (being instantiated when
called for) they would not be very useful. The real advantage of these
variables is the ability to define interaction effects for both
Integer-valued and continuous variables. For instance, consider the
Indicator f or el gn in the aut o dataset. We may use a new operator,
#, to define an interaction:

regress npg i.rep78 i.foreign i.rep78#i.foreign

All combinations of the two categorical variables will be defined, and
Included in the regression as appropriate (omitting base levels and
cells with no observations).
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Using factor variables Interaction effects

In fact, we can specify this model more simply: rather than

regress npg i.rep78 i.foreign i.rep78#i.foreign
we can use the factorial interaction operator, ##:

regress npg i.rep78##i .foreign

which will provide exactly the same regression, producing all first-level
and second-level interactions. Interactions are not limited to pairs of
variables; up to eight factor variables may be included.
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Using factor variables Interaction effects

Furthermore, factor variables may be interacted with continuous
variables to produce analysis of covariance models. The continuous

variables are signalled by the new c. operator:

regress npg i.foreign i.foreign#c.di spl acenent

which essentially estimates two regression lines: one for domestic
cars, one for foreign cars. Again, the factorial operator could be used

to estimate the same model:

regress npg i.forei gn##c. di spl acenent
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Using factor variables Interaction effects

As we will see In discussing marginal effects, it is very advantageous
to use this syntax to describe interactions, both among categorical
variables and between categorical variables and continuous variables.
Indeed, it is likewise useful to use the same syntax to describe
squared (and cubed...) terms:

regress npg i.foreign c.displacenent c.displacenent#c. di spl acenent

In this model, we allow for an intercept shift for f or el gn, but constrain
the slopes to be equal across foreign and domestic cars. However, by
using this syntax, we may ask Stata to calculate the marginal effect
ompg /odisplacement, taking account of the squared term as well, as
Stata understands the mathematics of the specification in this explicit
form.
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Computing marginal effects

With the introduction of factor variables in Stata 11, a powerful new
command has been added: mar gi ns, which supersedes earlier
versions’ nf x and adj ust commands. Those commands remain
available, but the new command has many advantages. Like those
commands, nar gi ns is used after an estimation command.

In the simplest case, mar gi ns applied after a simple one-way ANOVA
estimated withregress i .rep/78,withmargi ns i .rep78, merely
displays the conditional means for each category of r ep78.
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Computing marginal effects

regress npg i.rep78

Sour ce SS df WS Nunber of obs = 69

F( 4, 64) = 4.91

Model 549. 415777 4 137.353944 Prob > F = 0.0016

Resi dual 1790. 78712 64 27.9810488 R- squar ed = 0.2348

Adj R-squared = 0.1869

Tot al 2340. 2029 68 34.4147485 Root MSE = 5.2897

npg Coef . Std. Err. t P>|t| [ 95% Conf. Interval]
rep78

2 -1.875 4.181884 -0. 45 0. 655 - 10. 22927 6.479274

3 -1. 566667 3. 863059 -0.41 0. 686 -9. 284014 6. 150681

4 . 6666667 3.942718 0.17 0. 866 -7.209818 8. 543152

5 6. 363636 4. 066234 1.56 0.123 -1. 759599 14. 48687

_cons 21 3. 740391 5.61 0. 000 13.52771 28. 47229
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Computing marginal effects

margins i.rep78

Adj ust ed predictions Nunmber of obs = 69
Model VCE . QLS
Expr essi on Li near prediction, predict()
Del t a- met hod
Mar gi n Std. Err. z P>| z| [ 95% Conf. Interval]
rep78
1 21 3. 740391 5.61 0. 000 13. 66897 28. 33103
2 19. 125 1.870195 10. 23 0. 000 15. 45948 22. 79052
3 19. 43333 . 9657648 20.12 0. 000 17. 54047 21. 3262
4 21. 66667 1.246797 17. 38 0. 000 19. 22299 24.11034
5 27.36364 1.594908 17. 16 0. 000 24. 23767 30. 4896
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Computing marginal effects

We now estimate a model including both displacement and its square:

regress npg i.foreign c.displacenent c.displacenent#c.di spl acenent

Sour ce SS df VS Nunber of obs = 74

F( 3, 70) = 32.16

Model 1416. 01205 3 472.004018 Prob > F = 0. 0000

Resi dual 1027. 44741 70 14.6778201 R- squar ed = 0.5795

Adj R-squared = 0.5615

Tot al 2443. 45946 73 33.4720474 Root MSE = 3.8312

npg Coef . Std. Err. t P>| t| [ 95% Conf. Interval]

1.foreign - 2. 88953 1.361911 -2.12 0. 037 -5. 605776 -.1732833

di spl acenent -. 1482539 . 0286111 -5.18 0. 000 -. 2053169 -.0911908
C.

di spl acenent #

C.

di spl acenent . 0002116 . 0000583 3.63 0. 001 . 0000953 . 0003279

_cons 41. 40935 3.307231 12. 52 0. 000 34.81328 48. 00541
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Computing marginal effects

mar gi ns can then properly evaluate the regression function for
domestic and foreign cars at selected levels of di spl acenent :

margins i.foreign, at(displacenent=(100 300))

Adj ust ed predictions Nunmber of obs = 74
Model VCE . QLS
Expr essi on . Linear prediction, predict()
1. at di spl acenent = 100
2. at di spl acenent = 300
Del t a- net hod
Mar gi n Std. Err. z P>| z| [ 95% Conf. Interval]
_at#foreign
10 28. 69991 1.216418 23.59 0.000 26. 31578 31. 08405
11 25. 81038 . 8317634 31.03 0.000 24.18016 27. 44061
20 15. 97674 . 7014015 22.78 0.000 14. 60201 17. 35146
2 1 13. 08721 1.624284 8.06 0.000 9. 903668 16. 27074
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Computing marginal effects

In earlier versions of Stata, calculation of marginal effects in this model
required some programming due to the nonlinear term

di spl acenent . Using nar gi ns, dydx, that is now simple.
Furthermore, and most importantly, the default behavior of mar gi ns is
to calculate average marginal effects (AMES) rather than marginal
effects at the average (MAE) or at some other point in the space of the
regressors. In Stata 10, the user-written command mar gef f (Tamas
Bartus, on the SSC Archive) was required to compute AMES.

Current econometric practice favors the use of AMEs: the computation
of each observation’s marginal effect with respect to an explanatory
factor, averaged over the estimation sample, to the computation of
MAESs (which reflect an average individual: e.g. a family with 2.3
children).
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Computing marginal effects

We illustrate by computing average marginal effects (AMES) for the

prior regression:

mar gi ns, dydx(foreign displacenent)
Average margi nal effects Nunmber of obs = 74
Model VCE QLS
Expr essi on Li near prediction, predict()
dy/dx w.r.t. 1.foreign displacenent
Del t a- et hod
dy/ dx Std. Err. z P>| z| [ 95% Conf. Interval]
1.foreign - 2. 88953 1.361911 -2.12 0. 034 - 5. 558827 -. 2202327
di spl acenent -. 0647596 . 007902 -8.20 0.000 -.0802473 -. 049272
Note: dy/dx for factor levels is the discrete change fromthe base | evel.
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Computing marginal effects

Alternatively, we may compute elasticities or semi-elasticities:

mar gi ns, eyex(di spl acenent) at (displacenent=(100(100)400))
Average margi nal effects Nunmber of obs = 74
Model VCE QLS
Expr essi on Li near prediction, predict()
ey/ex w.r.t. di spl acenent
1. at di spl acenent = 100
2. at di spl acenent = 200
3. _at di spl acenent = 300
4. at di spl acenent = 400
Del t a- et hod
ey/ ex Std. Err. z P>| z| [ 95% Conf. Interval]
di spl acenent
_at
1 -. 3813974 . 0537804 -7.09 0. 000 -. 486805 -. 2759898
2 -. 6603459 . 0952119 -6.94 0.000 -. 8469578 -. 473734
3 -. 4261477 . 193751 -2.20 0.028 -. 8058926 -. 0464028
4 . 5613844 . 4817784 1.17 0. 244 -. 3828839 1. 505653
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Computing marginal effects

Consider a model where we specify a factorial interaction between
categorical and continuous covariates:

regress npg i.foreign i.rep78##c. di spl acenent

In this specification, each level of r ep78 has its own intercept and
slope, whereas f or ei gn only shifts the intercept term.

We may compute elasticities or semi-elasticities with the over option
of mar gi ns for all combinations of f or el gn and r ep78:
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Computing marginal effects

mar gi ns, eyex(di spl acenent) over(foreign rep78)
Average nmargi nal effects Nunmber of obs = 69
Model VCE QLS
Expr essi on Li near prediction, predict()
ey/ex w.r.t. di spl acenent
over foreign rep78
Del t a- et hod
eyl ex Std. Err. z P>| z| [ 95% Conf. Interval]
di spl acenent
forei gn#
rep78
01 -. 7171875 . 5342 -1.34 0.179 -1.7642 . 3298253
0 2 -. 5953046 . 219885 -2.71  0.007 -1. 026271 -. 1643379
0 3 -. 4620597 . 0999242 -4.62 0.000 -. 6579077 -.2662118
04 -. 6327362 . 1647866 -3.84 0.000 -. 955712 -. 3097604
05 -. 8726071 . 0983042 -8.88 0.000 -1. 06528 -.6799345
13 -.128192 . 0228214 -5.62 0.000 -.1729213  -.0834628
14 -.1851193 . 0380458 -4.87 0.000 -. 2596876 -. 110551
15 -1. 689962 . 3125979 -5.41  0.000 -2. 302642 -1. 077281
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Computing marginal effects

The mar gi ns command has many other capabilities which we will not
discuss here. The lengthy reference manual article on mar gi ns is a
useful reference.
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Regression with instrumental variables

What are instrumental variables (IV) methods? Most widely known as

a solution to endogenous regressors. explanatory variables correlated
with the regression error term, IV methods provide a way to
nonetheless obtain consistent parameter estimates.
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Instrumental variables estimators

First let us consider a path diagram illustrating the problem addressed
by IV methods. We can use ordinary least squares (OLS) regression to
consistently estimate a model of the following sort.

Standard regression: y =xb +u
no association between x and u; OLS consistent

X -y

u
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Instrumental variables estimators

However, OLS regression breaks down in the following circumstance:

Endogeneity: y =xb +u
correlation between x and u: OLS inconsistent

X -~y

A

u

The correlation between x and u (or the failure of the zero conditional
mean assumption E[u|x] = 0) can be caused by any of several factors.
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Instrumental variables estimators Endogeneity

We have stated the problem as that of endogeneity: the notion that two
or more variables are jointly determined in the behavioral model. This
arises naturally in the context of a simultaneous equations model such
as a supply-demand system in economics, in which price and quantity
are jointly determined in the market for that good or service.

A shock or disturbance to either supply or demand will affect both the
equilibrium price and quantity in the market, so that by construction
both variables are correlated with any shock to the system. OLS
methods will yield inconsistent estimates of any regression including
both price and guantity, however specified.
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Instrumental variables estimators Endogeneity

In a macroeconomic context, many of the behavioral equations that we
might specify for consumption, investment, money demand, and so on
are likely to contain endogenous regressors. In a consumption
function, a shock to consumption or saving will also affect the level of
GDP, and thus disposable income.

In this context, the zero conditional mean assumption cannot hold,
even in terms of weak exogeneity of the regressors. OLS is no longer
an appropriate estimation method, and we must rely upon other
estimators to produce consistent estimates.
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Instrumental variables estimators Endogeneity

The solution provided by IV methods may be viewed as:

Instrumental variables regression: y =xb +u
Z uncorrelated with u, correlated with x

Z > > y

A

The additional variable z is termed an instrument for x. In general, we
may have many variables in X, and more than one x correlated with u.
In that case, we shall need at least that many variables in z.
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Instrumental variables estimators Choice of instruments

To deal with the problem of endogeneity in a supply-demand system, a
candidate z will affect (e.g.) the quantity supplied of the good, but not
directly impact the demand for the good. An example for an agricultural
commodity might be temperature or rainfall: clearly exogenous to the
market, but likely to be important in the production process.

For the model of macro consumption, we might use autonomous
government expenditure or the level of exports as an instrument.
Those components of GDP are clearly related to the level of GDP and
disposable income, but they are not directly affected by consumption
shocks.
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Weaknesses of IV
But why should we not always use IV?

First, It may be difficult to find variables that can serve as valid
Instruments. Many variables that have an effect on included
endogenous variables also have a direct effect on the dependent
variable. Chris Sims’ critique of macro modelers employing ‘incredible
Identifying restrictions’ should be taken seriously, as identification
requires that certain variables not appear in the equation to be
estimated.

Second, IV estimators are innately biased, and their finite-sample
properties are often problematic. Thus, most of the justification for the
use of IV is asymptotic. Performance in small samples may be poor.
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Instrumental variables estimators Weaknesses of IV

Third, the precision of IV estimates is lower than that of OLS estimates
(least squares is just that). In the presence of weak instruments
(excluded instruments only weakly correlated with included
endogenous regressors) the loss of precision will be severe, and IV
estimates may be no improvement over OLS. This suggests we need a
test to determine whether a particular regressor must be treated as
endogenous in order to produce consistent estimates.
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IV-GMM
The IV-GMM estimator

To discuss the implementation of IV estimators and test statistics, we
consider a more general framework: an instrumental variables
estimator implemented using the Generalized Method of Moments
(GMM). As we will see, conventional IV estimators such as two-stage
least squares (2SLS) are special cases of this IV-GMM estimator.

The model:
y =XG+u, u~(0,Q)

with X (N x k) and define a matrix Z (N x ¢) where ¢ > k. This is the
Generalized Method of Moments IV (IV-GMM) estimator.
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Instrumental variables estimators IV-GMM

The /¢ instruments give rise to a set of / moments:

0i(3) =Z/uy =Z{(yi —x6), i = 1,N

where each g; is an ¢-vector. The method of moments approach
considers each of the / moment equations as a sample moment, which
we may estimate by averaging over N:

_ 1« 1_,
g(s8) = szi(Yi —XiB) = NZ u
=1

The GMM approach chooses an estimate that solves Q(BGMM) = 0.
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Instrumental variables estimators Exact identification and 2SLS

If ¢ = Kk, the equation to be estimated is said to be exactly identified by
the order condition for identification: that is, there are as many
excluded instruments as included right-hand endogenous variables.
The method of moments problem is then k equations in k unknowns,
and a unique solution exists, equivalent to the standard IV estimator:

By = (Z'X)1Z'y

In the case of overidentification (¢ > k) we may define a set of k

Instruments:
X =2"(2'2)"'2'X =P;X

which gives rise to the two-stage least squares (2SLS) estimator
Basts = (X'X) 71Xy = (X'PzX)"IX'P2y

which despite its name is computed by this single matrix equation.
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Instrumental variables estimators The IV-GMM approach

In the 2SLS method with overidentification, the ¢ available instruments
are “boiled down" to the k needed by defining the P> matrix. In the
IV-GMM approach, that reduction is not necessary. All £ instruments
are used in the estimator. Furthermore, a weighting matrix is employed
so that we may choose Sgym SO that the elements of Q(BGMM) are as
close to zero as possible. With ¢ > k, not all # moment conditions can
be exactly satisfied, so a criterion function that weights them
appropriately is used to improve the efficiency of the estimator.

The GMM estimator minimizes the criterion

J(Bomm) = N G(Bomm)'W §(Bomm)

where W is a ¢/ x £ symmetric weighting matrix.
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Instrumental variables estimators The GMM weighting matrix

Solving the set of FOCs, we derive the IV-GMM estimator of an
overidentified equation:

Bomm = (X'ZWZ'X)"1X'zZWZ'y

which will be identical for all W matrices which differ by a factor of
proportionality. The optimal weighting matrix, as shown by Hansen
(1982), chooses W = S—! where S is the covariance matrix of the
moment conditions to produce the most efficient estimator:

S =E[Z'uu'Z] = limy_ . N71[Z2'QZ]

With a consistent estimator of S derived from 2SLS residuals, we
define the feasible IV-GMM estimator as

Breaum = (X'Z S71z/X)"1X'z S 17y
where FEGMM refers to the feasible efficient GMM estimator.
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IV-GMM and the distribution of u
IV-GMM and the distribution of u

The derivation makes no mention of the form of €2, the
variance-covariance matrix (vce) of the error process u. If the errors
satisfy all classical assumptions are i.i.d., S = o2ly and the optimal
weighting matrix is proportional to the identity matrix. The IV-GMM
estimator is merely the standard IV (or 2SLS) estimator.
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IV-GMM and the distribution of u
IV-GMM robust estimates

If there is heteroskedasticity of unknown form, we usually compute
robust standard errors in any Stata estimation command to derive a
consistent estimate of the vce. In this context,

1 N

where U is the vector of residuals from any consistent estimator of 5
(e.g., the 2SLS residuals). For an overidentified equation, the IV-GMM
estimates computed from this estimate of S will be more efficient than
2SLS estimates.
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IV-GMM cluster-robust estimates
IV-GMM cluster-robust estimates

If errors are considered to exhibit arbitrary intra-cluster correlation in a
dataset with M clusters, we may derive a cluster-robust IV-GMM
estimator using

M

/\ L /\,/\-

S — Z GG
j=1

where
G = (y; —x8)X'Z2(2'2) 1z

The IV-GMM estimates employing this estimate of S will be both robust
to arbitrary heteroskedasticity and intra-cluster correlation, equivalent
to estimates generated by Stata’s cl ust er ( varname) option. For an
overidentified equation, IV-GMM cluster-robust estimates will be more
efficient than 2SLS estimates.
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IV-GMM HAC estimates
IV-GMM HAC estimates

The IV-GMM approach may also be used to generate HAC standard
errors: those robust to arbitrary heteroskedasticity and autocorrelation.
Although the best-known HAC approach in econometrics is that of
Newey and West, using the Bartlett kernel (per Stata’s newey), that is
only one choice of a HAC estimator that may be applied to an IV-GMM
problem.

Baum-Schaffer—Stillman’s i vr eg2 (from the SSC Archive) and Stata
10’s 1 vr egr ess provide several choices for kernels. For some
kernels, the kernel bandwidth (roughly, number of lags employed) may
be chosen automatically in either command.
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Example of IV and IV-GMM estimation
Example of IV and IV-GMM estimation

We illustrate various forms of the IV estimator with a Phillips curve
equation fit to quarterly US data from the usnmacr ol dataset. The
model should not be taken seriously, as its specification is for
pedagogical purposes. We first fit the relationship with the standard
2SLS estimator, using Baum-Schaffer-Stillman’s 1 vr eg2 command.
You could fit the same equation with i vr egress 2sl s.

We model the year-over-year rate of inflation in a wage measure
(average hourly earnings in manufacturing) as a function of the current
unemployment rate. To deal with potential endogeneity of the
unemployment rate, we use lags 2—4 of the unemployment rate as
Instruments. We first fit the equation through 197394, prior to the first
oll shock. Some of the standard | vr eg2 output, relating to weak
Instruments, has been edited on the following slides.
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Instrumental variables estimators Example of IV and IV-GMM estimation

I vreg2 wagei nfl (unenp = L(2/4).unenp) if tin(,197394)
|V (2SLS) estimation

Esti mates efficient for honbskedasticity only
Statistics consistent for honpbskedasticity only

Nunber of obs = 56
F( 1, 54) = 4. 95
Prob > F = 0.0303
Total (centered) SS = 158. 1339335 Centered R2 = 0. 0978
Total (uncentered) SS = 1362.450328 Uncentered R2 = 0. 8953
Resi dual SS = 142. 674146 Root MSE = 1. 596
wagei nf | Coef . Std. Err. z P>| z| [ 95% Conf. Interval]
unenp -.6012813 . 265382 -2.27 0.023 -1.121421 -. 0811421
_cons 7.610898 1. 329598 5.72 0.000 5.004934 10. 21686
Underidentification test (Anderson canon. corr. LMstatistic): 32. 622
Chi -sq(3) P-val = 0. 0000
Sargan statistic (overidentification test of all instrunents): 0. 046
Chi -sq(2) P-val = 0.9771

| nst runent ed: unenp

Excl uded i nstrunents: L2.unenp L3.unenp L4.unenp
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Instrumental variables estimators Example of IV and IV-GMM estimation

We may fit this equation with different assumptions about the error
process. The estimates above assume i.i.d. errors. We may also
compute robust standard errors in the 2SLS context.

We then apply IV-GMM with robust standard errors. As the equation is
overidentified, the IV-GMM estimates will differ, and will be more
efficient than the robust 2SLS estimates.

Last, we may estimate the equation with IV-GMM and HAC standard
errors, using the default Bartlett kernel (as employed by Newey—West)

and a bandwidth of 5 quarters. This corresponds to four lags in the
newey command.

Christopher F Baum (BC / DIW) Estimation and forecasting IMF Institute, Spring 2011 122/170



Instrumental variables estimators Example of IV and IV-GMM estimation

. estimates table |11 D Robust | VGW | VGW HAC, b(9%9. 4f) se(%b. 3f) t(%.2f) ///

> title(Alternative |V estimates of pre-1974 Phillips curve) stat(rnse)
Alternative IV estimates of pre-1974 Phillips curve
Vari abl e 11 D Robust | VGV | VGV HAC
unenp -0.6013 -0.6013 -0. 6071 - 0. 6266
0. 265 0. 219 0. 217 0. 295
-2. 27 -2.75 -2.80 -2.13
_cons 7.6109 7.6109 7.6320 7.7145
1. 330 1.018 1. 007 1. 363
5.72 7.48 7.58 5. 66
rnse 1.5962 1.5962 1. 5966 1.5982

| egend: b/se/t

Note that the coefficients’ point estimates change when IV-GMM is
employed, and that their t-statistics are larger than those of robust IV.
The point estimates are also altered when IV-GMM with HAC VCE is
computed. As expected, 2SLS yields the smallest RMS error.
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Tests of overidentifying restrictions

If and only if an equation is overidentified, with more excluded
Instruments than included endogenous variables, we may test whether
the excluded instruments are appropriately independent of the error
process. That test should always be performed when it is possible to
do so, as it allows us to evaluate the validity of the instruments.

A test of overidentifying restrictions regresses the residuals from an IV
or 2SLS regression on all instruments in Z. Under the null hypothesis
that all instruments are uncorrelated with u, the test has a
large-sample x?(r) distribution where r is the number of overidentifying
restrictions.

Under the assumption of i.i.d. errors, this is known as a Sargan test,
and is routinely produced by i vr eg2 for IV and 2SLS estimates. After
| VI egr ess, the command est at overi d provides the test.
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Tests of overidentifying restrictions

If we have used IV-GMM estimation in | vr eg2, the test of
overidentifying restrictions becomes the Hansen J statistic: the GMM
criterion function. Although J will be identically zero for any
exactly-identified equation, it will be positive for an overidentified
equation. If it is “too large”, doubt is cast on the satisfaction of the
moment conditions underlying GMM.

The test In this context iIs known as the Hansen test or J test, and Is
calculated by i vr eg2 when the gnmm®s option is employed.

The Sargan—Hansen test of overidentifying restrictions should be
performed routinely in any overidentified model estimated with
Instrumental variables techniques. Instrumental variables technigues
are powerful, but if a strong rejection of the null hypothesis of the
Sargan—Hansen test is encountered, you should strongly doubt the
validity of the estimates.
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Tests of overidentifying restrictions

For instance, consider a variation of the IV-GMM model estimated
above (with robust standard errors) and focus on the test of
overidentifying restrictions provided by the Hansen J statistic.

In this form of the model, estimated through 197994, we also include
the growth rate of the monetary base, basegr o, as an excluded
Instrument. The model is overidentified by three degrees of freedom,
as there is one endogenous regressor and four excluded instruments.
We see that the J statistic clearly rejects its null, casting doubt on our
choice of instruments.
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Tests of overidentifying restrictions

I vreg2 wagei nfl (unenp = L(2/4).unenp basegro) if tin(,1979g4), robust gm®s
2-Step GV estimation

Estimates efficient for arbitrary heteroskedasticity
Statistics robust to heteroskedasticity

Nunber of obs = 80
F( 1, 78) = 22. 46
Prob > F = 0.0000
Total (centered) SS = 414. 4647455 Centered R2 = 0. 0883
Total (uncentered) SS = 3075.230877 Uncentered R2 = 0.8771
Resi dual SS = 377.8689419 Root IMSE = 2.173
Robust

wagei nf | Coef . Std. Err. 4 P>| z| [ 95% Conf. Interval]
unenp . 7228864 . 1506083 4.80 0.000 . 4276996 1.018073
_cons 2.229875 . 8310032 2.68 0. 007 . 6011386 3.858611
Underidentification test (Kleibergen-Paap rk LM statistic): 27.693
Chi -sq(4) P-val = 0. 0000
Hansen J statistic (overidentification test of all instrunents): 30. 913
Chi -sq(3) P-val = 0. 0000

| nst r unent ed: unenp

Excl uded instrunents: L2.unenp L3.unenp L4.unenp basegro
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Tests of overidentifying restrictions

We reestimate the model, retaining money base growth as an
exogenous variable, but including it in the estimated equation rather
than applying an exclusion restriction. The resulting J statistic now
fails to reject its null.
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Tests of overidentifying restrictions

I vreg2 wagei nfl (unenmp = L(2/4).unenp) basegro if tin(,1979g4), robust gm®s
2-Step GV estimation

Estimates efficient for arbitrary heteroskedasticity
Statistics robust to heteroskedasticity

Nunmber of obs = 80
F( 2, 77) = 122. 14
Prob > F = 0.0000
Total (centered) SS = 414. 4647455 Centered R2 = 0. 7570
Total (uncentered) SS = 3075.230877 Uncentered R2 = 0.9672
Resi dual SS = 100. 724328 Root IMSE = 1.122
Robust

wagei nf | Coef . Std. Err. 4 P>| z| [ 95% Conf. Interval]
unenp . 3350836 . 0796765 4. 21 0. 000 . 1789206 . 4912466
basegro . 7582774 . 0592661 12.79 0. 000 . 6421181 . 8744368
_cons -. 346625 . 5022148 -0. 69 0. 490 -1. 330948 . 6376979
Underidentification test (Kleibergen-Paap rk LM statistic): 29. 279
Chi-sq(3) P-val = 0. 0000
Hansen J statistic (overidentification test of all instrunents): 1.147
Chi -sq(2) P-val = 0. 5635

| nst r unent ed: unenp

| ncl uded i nstrunments: basegro
Excl uded i nstrunments: L2.unenp L3.unenp L4.unenp
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Tests of overidentifying restrictions

It is iImportant to understand that the Sargan—Hansen test of
overidentifying restrictions is a joint test of the hypotheses that the
Instruments, excluded and included, are independently distributed of
the error process and that they are properly excluded from the model.

Note as well that all exogenous variables in the equation—excluded
and included—appear in the set of instruments Z. In the context of
single-equation IV estimation, they must. You cannot pick and choose
which instruments appear in which ‘first-stage’ regressions.
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Testing a subset of overidentifying restrictions
Testing a subset of overidentifying restrictions

We may be quite confident of some instruments’ independence from u
but concerned about others. In that case a GMM distance or C test
may be used. The ort hog( ) option of i vr eg2 tests whether a
subset of the model’s overidentifying restrictions appear to be satisfied.

This Is carried out by calculating two Sargan—Hansen statistics: one for
the full model and a second for the model in which the listed variables
are (a) considered endogenous, if included regressors, or (b) dropped,
If excluded regressors. In case (a), the model must still satisfy the
order condition for identification. The difference of the two
Sargan—Hansen statistics, often termed the GMM distance or Hayashi
C statistic, will be distributed y? under the null hypothesis that the
specified orthogonality conditions are satisfied, with d.f. equal to the
number of those conditions.
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Tests of overidentifying restrictions Testing a subset of overidentifying restrictions

We perform the C test on the estimated equation by challenging the
exogeneity of basegr o. Is it properly considered exogenous? The
ort hog() option reestimates the equation, treating it as endogenous,
and evaluates the difference in the J statistics from the two models.

Considering basegr o as exogenous is essentially imposing one more
orthogonality condition on the GMM estimation problem.
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Tests of overidentifying restrictions Testing a subset of overidentifying restrictions

I vreg2 wagei nfl (unenp = L(2/4).unenp) basegro if tin(,1979q4), ///
robust gmm®2s ort hog(basegro)

2-Step GV estimation

Estimates efficient for arbitrary heteroskedasticity
Statistics robust to heteroskedasticity

Nunber of obs = 80
F( 2, 77) = 122. 14
Prob > F = 0.0000
Total (centered) SS = 414. 4647455 Centered R2 = 0. 7570
Total (uncentered) SS = 3075.230877 Uncentered R2 = 0. 9672
Resi dual SS = 100. 724328 Root IMSE = 1.122
Robust
wagei nf | Coef . Std. Err. z P>| z| [ 95% Conf. Interval]
unenp . 3350836 . 0796765 4. 21 0. 000 . 1789206 . 4912466
basegro . 7582774 . 0592661 12. 79 0. 000 . 6421181 . 8744368
_cons -. 346625 . 5022148 -0. 69 0. 490 - 1. 330948 . 6376979
Hansen J statistic (overidentification test of all instrunments): 1. 147
Chi -sq(2) P-val = 0. 5635
-orthog- option:

Hansen J statistic (egn. excluding suspect orthog. conditions): 0. 620
Chi -sq(1) P-val = 0. 4312
C statistic (exogeneity/orthogonality of suspect instrunments): 0. 528
Chi -sq(1l) P-val = 0. 4676

| nstrunents tested: basegro
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Tests of overidentifying restrictions Testing a subset of overidentifying restrictions

It appears that basegr o may be considered exogenous in this
specification.

A variant on this strategy is implemented by the endog( ) option of

| vi eg2, in which one or more variables considered endogenous can
be tested for exogeneity. The C test in this case will consider whether
the null hypothesis of their exogeneity Is supported by the data.

If all endogenous regressors are included in the endog( ) option, the
test is essentially a test of whether IV methods are required to
estimate the equation. If OLS estimates of the equation are consistent,
they should be preferred. In this context, the test is equivalent to a
(Durbin—Wu-)Hausman test comparing IV and OLS estimates, as
Implemented by Stata’s hausman command with the si gnal ess
option. Using i vr eg2, you need not estimate and store both models
to generate the test’s verdict.
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Tests of overidentifying restrictions Testing a subset of overidentifying restrictions

For instance, with the model above, we might question whether IV
technigues are needed. We can conduct the C test via:

i vreg2 wagei nfl (unenp = L(2/4).unenp) basegro if tin(,1979q94), ///
robust gmm2s endog(unenp)

where the endog( unenp) option tests the null hypothesis that the
variable can be treated as exogenous in this model, rather than as an

endogenous variable.
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Tests of overidentifying restrictions Testing a subset of overidentifying restrictions

. 1vreg2 wagei nfl (unenp = L(2/4).unenp) basegro if tin(,197994), robust gm®s
> endog( unenp)

2-Step GV estimation

Estimates efficient for arbitrary heteroskedasticity
Statistics robust to heteroskedasticity

Nunber of obs = 80
F( 2, 77) = 122. 14
Prob > F = 0.0000
Total (centered) SS = 414. 4647455 Centered R2 = 0. 7570
Total (uncentered) SS = 3075.230877 Uncentered R2 = 0. 9672
Resi dual SS = 100. 724328 Root IMSE = 1.122
Robust

wagei nf | Coef . Std. Err. z P>| z| [ 95% Conf. Interval]
unenp . 3350836 . 0796765 4.21 0. 000 . 1789206 . 4912466
basegro . 7582774 . 0592661 12. 79 0. 000 . 6421181 . 8744368
_cons -. 346625 . 5022148 -0. 69 0. 490 - 1. 330948 . 6376979
Hansen J statistic (overidentification test of all instrunents): 1.147
Chi -sq(2) P-val = 0. 5635

- endog- option:
Endogeneity test of endogenous regressors: 1. 505
Chi-sq(1l) P-val = 0. 2200

Regressors tested: unenp
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Tests of overidentifying restrictions Testing a subset of overidentifying restrictions

In this context, it appears that we could safely estimate this equation
with OLS techniques, as the P-value for the C test of endogenous
regressors of 0.2200 does not reject the null hypothesis.

There are a number of other diagnostic tools that may be employed in
Instrumental variables estimation. Although time constraints prevents
their thorough discussion, full details can be found in the
Baum-Schaffer—Stillman Stata Journal articles.
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Testing for weak instruments

The weak instruments problem

Instrumental variables methods rely on two assumptions: the excluded
Instruments are distributed independently of the error process, and
they are sufficiently correlated with the included endogenous
regressors. Tests of overidentifying restrictions address the first
assumption, although we should note that a rejection of their null may
be indicative that the exclusion restrictions for these instruments may
be inappropriate. That is, some of the instruments have been
Improperly excluded from the regression model’s specification.
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Testing for weak instruments

The specification of an instrumental variables model asserts that the
excluded instruments affect the dependent variable only indirectly,
through their correlations with the included endogenous variables. If
an excluded instrument exerts both direct and indirect influences on
the dependent variable, the exclusion restriction should be rejected.
This can be readily tested by including the variable as a regressor, as
we did above with basegr o.
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Testing for weak instruments

To test the second assumption—that the excluded instruments are
sufficiently correlated with the included endogenous regressors—we
should consider the goodness-of-fit of the “first stage” regressions
relating each endogenous regressor to the entire set of instruments.

It is Important to understand that the theory of single-equation (“limited
Information”) IV estimation requires that all columns of X are
conceptually regressed on all columns of Z in the calculation of the
estimates. We cannot meaningfully speak of “this variable is an
Instrument for that regressor” or somehow restrict which instruments
enter which first-stage regressions. Stata’'si vregress ori vreg2 will
not let you do that because such restrictions only make sense in the
context of estimating an entire system of equations by full-information
methods (for instance, with r eg3).
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Testing for weak instruments

Thefirst andffirst optionsofi vreg2 (orthefirst option of
| VI egr ess) present several useful diagnostics that assess the
first-stage regressions. If there is a single endogenous regressor,
these issues are simplified, as the instruments either explain a
reasonable fraction of that regressor’s variability or not. With multiple
endogenous regressors, diagnostics are more complicated, as each
Instrument is being called upon to play a role in each first-stage
regression.

With sufficiently weak instruments, the asymptotic identification status
of the equation is called into question. An equation identified by the
order and rank conditions in a finite sample may still be effectively
unidentified or it numerically unidentified.
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Testing for weak instruments

As Staiger and Stock (Econometrica, 1997) show, the weak
Instruments problem can arise even when the first-stage t- and F-tests
are significant at conventional levels in a large sample. In the worst
case, the bias of the IV estimator is the same as that of OLS, IV
becomes inconsistent, and instrumenting only aggravates the problem.
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Testing for weak instruments

Beyond the informal “rule-of-thumb” diagnostics such as F > 10,
| VI eg2 computes several statistics that can be used to critically
evaluate the strength of instruments. We can write the first-stage

regressions as
X =ZI[1+vV

With X; as the endogenous regressors, Z; the excluded instruments
and Z, as the included instruments, this can be partitioned as

X1 = [21Z5] M1 M35]" +va

The rank condition for identification states that the L x K; matrix 141
must be of full column rank.
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Testing for weak instruments The Anderson canonical correlation statistic

We do not observe the true I'1y;, so we must replace it with an
estimate. Anderson’s (John Wiley, 1984) approach to testing the rank
of this matrix (or that of the full I'1 matrix) considers the canonical
correlations of the X and Z matrices. If the equation is to be identified,
all K of the canonical correlations will be significantly different from
Zero.

The squared canonical correlations can be expressed as eigenvalues
of a matrix. Anderson’s CC test considers the null hypothesis that the
minimum canonical correlation is zero. Under the null, the test statistic
is distributed y? with (L — K + 1) d.f., so it may be calculated even for
an exactly-identified equation. Failure to reject the null suggests the
equation is unidentified. i vr eg2 routinely reports this Lagrange
Multiplier (LM) statistic. In the first example of 2SLS shown above, you
see the Anderson canonical correlation statistic as a test for
underidentification.
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Testing for weak instruments The Cragg—Donald statistic

The C-D statistic is a closely related test of the rank of a matrix. While
the Anderson CC test is a LR test, the C-D test is a Wald statistic, with
the same asymptotic distribution. The C-D statistic plays an important
role in Stock and Yogo’s work (see below). Both the Anderson and
C-D tests are reported by i vr eg2 with the f | r st option.

Research by Kleibergen and Paap (KP) (J. Econometrics, 2006) has
developed a robust version of a test for the rank of a matrix: e.g.
testing for underidentification. The statistic has been implemented by
Kleibergen and Schaffer as command r ankt est , which is part of the
| VI eg2 package. If non-i.i.d. errors are assumed, the | vr eg2 output
contains the K—P r k statistic in place of the Anderson canonical
correlation statistic as a test of underidentification, as you can see in
the first IV-GMM example above.

Christopher F Baum (BC / DIW) Estimation and forecasting IMF Institute, Spring 2011 145/170



Testing for weak instruments The Cragg—Donald statistic

The canonical correlations may also be used to test a set of
Instruments for redundancy by considering their statistical significance
In the first stage regressions. This can be calculated, in robust form, as
a K—P LM test. The r edundant ( ) option of i vr eg2 allows a set of
excluded instruments to be tested for relevance, with the null

hypothesis that they do not contribute to the asymptotic efficiency of
the equation.

Christopher F Baum (BC / DIW) Estimation and forecasting IMF Institute, Spring 2011 146 /170



Testing for weak instruments The Stock and Yogo approach

Stock and Yogo (Camb. U. Press festschrift, 2005) propose testing for
weak instruments by using the F-statistic form of the C-D statistic.
Their null hypothesis is that the estimator is weakly identified in the
sense that it is subject to bias that the investigator finds unacceptably
large.

Thelir test comes in two flavors: maximal relative bias (relative to the
bias of OLS) and maximal size. The former test has the null that
Instruments are weak, where weak instruments are those that can lead
to an asymptotic relative bias greater than some level b. This test uses
the finite sample distribution of the IV estimator, and can only be
calculated where the appropriate moments exist (when the equation is
suitably overidentified: the m™ moment of an IV estimator exists iff

m < (L — K 4+ 1)). The test is routinely reported ini vr eg2 and

| VI egr ess output when it can be calculated, with the relevant critical
values calculated by Stock and Yogo.
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Testing for weak instruments The Stock and Yogo approach

The second test proposed by Stock and Yogo is based on the
performance of the Wald test statistic for the endogenous regressors.
Under weak identification, the test rejects too often. The test statistic is
based on the rejection rate r tolerable to the researcher if the true
rejection rate is 5%. Their tabulated values consider various values for
r. To be able to reject the null that the size of the test is unacceptably
large (versus 5%), the Cragg—Donald F statistic must exceed the
tabulated critical value.

The Stock—-Yogo test statistics, like others discussed above, assume
1.1.d. errors. The Cragg—Donald F can be robustified in the absence of
1.1.d. errors by using the Kleibergen—Paap r k statistic, which i vr eg2
reports in that circumstance.
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LIML and GMM-CUE

OLS and IV estimators are special cases of k-class estimators: OLS
with kK = 0 and IV with k = 1. Limited-information maximum likelihood
(LIML) is another member of this class, with k chosen optimally in the
estimation process. Like any ML estimator, LIML is invariant to
normalization. In an equation with two endogenous variables, it does
not matter whether you specify y; or y, as the left-hand variable.

One of the other virtues of the LIML estimator is that it has been found
to be more resistant to weak instruments problems than the IV
estimator. On the down side, it makes the distributional assumption of
normally distributed (and i.i.d.) errors. i vr eg2 produces LIML
estimates with the | i m option, and | I M s a subcommand for official
Stata’s | vr egr ess.
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LIML and GMM-CUE estimation

If the 1.1.d. assumption of LIML is not reasonable, you may use the
GMM equivalent: the continuously updated GMM estimator, or CUE
estimator. Ini vr eg2, the cue option combined with r obust ,

cl ust er and/or bw( ) options specifies that non-i.i.d. errors are to
be modeled. GMM-CUE requires numerical optimization, and may
require many iterations to converge.

| VI egr ess provides an iterated GMM estimator, which is not the
same estimator as GMM-CUE.
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Testing for 1.1.d. errors in IV

In the context of an equation estimated with instrumental variables, the
standard diagnostic tests for heteroskedasticity and autocorrelation are
generally not valid.

In the case of heteroskedasticity, Pagan and Hall (Econometric
Reviews, 1983) showed that the Breusch—Pagan or Cook—Weisberg
tests (est at hett est) are generally not usable in an IV setting.
They propose a test that will be appropriate in IV estimation where
heteroskedasticity may be present in more than one structural
equation. Mark Schaffer'si vhet t est , part of the | vr eg2 suite,
performs the Pagan—Hall test under a variety of assumptions on the
Indicator variables. It will also reproduce the Breusch—Pagan test if
applied in an OLS context.
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Testing fori.i.d. errors in an IV context

In the same token, the Breusch—Godfrey statistic used in the OLS
context (est at bgodf r ey) will generally not be appropriate in the
presence of endogenous regressors, overlapping data or conditional
heteroskedasticity of the error process. Cumby and Huizinga
(Econometrica, 1992) proposed a generalization of the BG statistic
which handles each of these cases.

Their test is actually more general in another way. Its null hypothesis of
the test is that the regression error is a moving average of known order
g > 0 against the general alternative that autocorrelations of the
regression error are nonzero at lags greater than g. In that context, it
can be used to test that autocorrelations beyond any g are zero. Like
the BG test, it can test multiple lag orders. The C—H test is available as
Baum and Schaffer's i vact est routine, part of the i vr eg2 suite.
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Testing fori.i.d. errors in an IV context

For more details on IV and IV-GMM, please see

@ Enhanced routines for instrumental variables/GMM estimation and
testing. Baum, C.F., Schaffer, M.E., Stillman, S., Stata Journal
7:4, 2007.

@ An Introduction to Modern Econometrics Using Stata, Baum, C.F.,
Stata Press, 2006 (particularly Chapter 8).

@ Instrumental variables and GMM: Estimation and testing. Baum,
C.F, Schaffer, M.E., Stillman, S., Stata Journal 3:1-31, 2003.

Both of the Stata Journal papers are freely downloadable from
http://stata-journal.com
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Nonlinear least squares estimators

Nonlinear least squares estimation

Besides the capabillities for maximum likelihood estimation of one or
several equations via the nl suite of commands, Stata provides
facilities for single-equation nonlinear least squares estimation with nl
and the estimation of nonlinear systems of equations with nl sur .

The nl and nl sur commands may be invoked in three ways:
Interactively, using a “programmed substitutable expression”, and
using a “function evaluator program”. We discuss the first and third
methods here. The function evaluator program is quite similar to
likelihood function evaluators for m (maximum likelihood estimation).
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Nonlinear least squares estimators Interactive use of nl

In the interactive mode, you specify the nonlinear least squares
expression, including starting values If necessary, on the command
line. For example, consider the two-factor CES production function:

1 _ _
INQi = fo — = In (6K + (1= )L, ”) +u
P
with the parameters 5, p, 0.

This could be estimated with:

nl (1 nQ={b0}-1/{rho=1}+1 n({delta=0.5}+*K*(-1x{rho}) +
(1-{delta}*L*(-1*{rho})))

Note that the parameters are enclosed in { }, with initial values given if
needed. The entire equation must be enclosed by (). You may use
options such as r obust and cl ust er ( varname) with nl .
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Nonlinear least squares estimators Interactive use of nl

The standard apparatus for any estimation command is available after
iInvoking nl . For instance, we might want to calculate the elasticity of
substitution for the CES function, definedas ¢ = 1/(1+ p). The nl com
command can provide point and interval estimates of this expression
via the delta method:

nfcom(sigma: 1/ ( 1 + [rho] _b[ _cons] ))

where we refer to the “constant” in the r ho equation, and label the
resulting expression si gna Iin the output.

After nl , all of the standard results from any estimation command are
avallable for further use; eret urn |1 st for detalls.
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Nonlinear least squares estimators nl function evaluator program

If you want to use nl extensively for a particular problem, it makes
sense to develop a function evaluator program. That program is guite
similar to any Stata ado-file or 1 program. It must be named

nl func. ado, where func is a name of your choice: e.g., nl ces. ado
for a CES function evaluator.

The stylized function evaluator program contains:

program nl func

version 11

syntax varlist(m n=n nax=n) If, at(nane)
/] extract vars fromvarli st
[/ extract parans as scalars fromat matrix
[/ fill 1 n dependent variable wth repl ace
end
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Nonlinear least squares estimators nl function evaluator program

To use the program nl ces, call it with the nl command, but only
Include the unique part of its name, followed by @

nl ces @l nQ cap | ab, paraneters(bO rho delta) ///
initial (b0 O rho 1 delta 0.5)

You could restrict analysis to a subsample with the if exp qualifier:

nl ces @InQcap lab if 1 ndustry==33,
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Nonlinear least squares estimators nl function evaluator program

Note that the nl sur command estimates systems of seemingly
unrelated nonlinear equations, just as sur eg estimates systems of
seemingly unrelated linear equations. In that context, nl sur cannot
be used to estimate a system of simultaneous nonlinear equations.
The gmmcommand, as we now discuss, could be used for that
purpose, as could Stata’s maximum likelihood commands (m ).
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Programs for GMM estimation

There are various Stata commands, official and user-written, that
make use of Generalized Method of Moments (GMM) estimation. In
Stata version 11, there is a general-purpose GMM command, gnm
that can be used to solve GMM estimation problems of any type. Like
the nl (nonlinear-least squares) command, gnmcan be used
Interactively, but it is likely to be used in its function evaluator program
form. In that form, just as with m or the programmed version of nl ,
you write a program specifying the estimation problem.
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Ad hoc GMM estimation

The function evaluator program, or moment-evaluator program, Is
passed a varlist containing the moments to be evaluated for each
observation. Your program replaces the elements of the varlist with the
‘error part’ of the moment conditions. For instance, if we were to solve
an OLS regression problem with GMM we might write a
moment-evaluator program as:
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Ad hoc GMM estimation

. program gnm reg

1. version 11

2. syntax varlist if, at(nane)

3. qui {

4. t enpvar xb

5. gen double "xb” = xl1+x"at"[1,1] + x2* at"[1,2] + ///
> x3*x at"[1,3] + "at"[1,4] "if’

6. replace "varlist™ =y - "xb” " if”’

7. }

8. end

where we have specified that the regression has three explanatory
variables and a constant term, with variable y as the dependent
variable. The row vector at () contains the current values of the
estimated parameters. The contents of varlist are replaced with the
discrepancies, y — X3, defined by those parameters. A varlist is used
as gnmcan handle multiple-equation problems.

Christopher F Baum (BC / DIW) Estimation and forecasting IMF Institute, Spring 2011 162/170



Ad hoc GMM estimation

To perform the estimation (using the standard aut o dataset), we
specify the parameters and instruments to be used in the gnm
command:

gen y = price
gen x1 = wei ght
gen x2 = length
gen x3 = turn

. gnm gmm reg, nequations(1l) paraneters(bl b2 b3 b0) ///
> I nstrunment s(wei ght |l ength turn) onestep nol og

Final GW criterion Qb) = 2.43e-16
GWM esti mati on
Nunmber of paraneters = 4

Nunmber of nonents 4
Initial weight matrix: Unadj usted Nunmber of obs = 74
Robust
Coef . Std. Err. z P>| z| [ 95% Conf. Interval]
/bl 5.382135 1.719276 3.13 0. 002 2.012415 8. 751854
/ b2 -66. 17856 57.56738 -1.15 0. 250 -179. 0086 46. 65143
/ b3 - 318. 2055 171. 6618 -1.85 0. 064 - 654. 6564 18. 24543
/ bO 14967. 64 6012. 23 2.49 0. 013 3183. 881 26751. 39
| nstrunments for equation 1. weight length turn _cons
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Ad hoc GMM estimation

This may seem unusual syntax, but we are just stating that we want to
use the regressors as instruments for themselves in solving the GMM
problem, as under the hypothesis of E [u|X]| = 0, the appropriate
moment conditions can be written as EX'u = 0.

Inspection of the parameters and their standard errors shows that
these estimates match those from r egr ess, robust for the same
model. It Is quite unnecessary to use GMM in this context, of course,
but it illustrates the way in which you may set up a GMM problem.
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Ad hoc GMM estimation

To perform linear instrumental variables, we can use the same
moment-evaluator program and merely alter the instrument list:

. webuse hsng2, clear
(1980 Census housi ng dat a)

gen y = rent

gen x1 = hsngval
gen x2 = pcturban
gen x3 = popden

. gnmm gmm reg, nequations(1l) paraneters(bl b2 b3 b0) ///
> Il nstrunent s(pcturban popden fam nc reg2-reg4) onestep nol og

Final GWi criterion Qb) =
GW estimation

Nunmber of paraneters
Nunmber of nonents

4
7

150. 8821

Initial weight matrix: Unadj usted Nunmber of obs = 50
Robust

Coef . Std. Err. z P>| z| [ 95% Conf. Interval]

/ bl . 0022538 . 0006785 3.32 0. 001 . 000924 . 0035836

/ b2 . 0281637 . 5017214 0. 06 0. 955 -. 9551922 1.01152

/ b3 . 0006083 . 0012742 0. 48 0. 633 -. 0018891 . 0031057

/ b0 122. 6632 17.26189 7.11 0. 000 88. 83052 156. 4959

| nstrunents for equation 1:
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Ad hoc GMM estimation

These estimates match those produced by i vr egress 2sl s,
r obust .

Let us consider solving a nonlinear estimation problem: a binomial
probit model, using GMM rather than the usual ML estimator. The
moment-evaluator program:

. program gnm probit

1. version 11

2. syntax varlist if, at(nane)

3. qui {

4. t enpvar xb

5. gen double "xb” = xl1+x at"[1,1] + x2«~ at"[1,2] + //]
> x3* at"[1,3] + "at"[1,4] "if’

6. replace "varlist™ =y - normal (" xb")

7. }

8. end
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Ad hoc GMM estimation

To perform the estimation, we specify the parameters and instruments

to be used in the gnmcommand:

webuse hsng2,

cl ear

(1980 Census housi ng dat a)
gen y = (region >= 3)
gen x1 = hsngval
gen x2 = pcturban
gen x3 = popden

. ghm gnm _pr obi t,
> | nstrunent s(pcturban hsngval

Final GW criterion Q b)

GW estimati on

Nunmber of paraneters
Nunmber of nonents

4
4

3.18e-21

nequati ons(1l) paraneters(bl b2 b3 b0) ///
popden) onestep nol og

Initial weight matrix: Unadj usted Nunmber of obs = 50
Robust

Coef . Std. Err. z P>| z| [ 95% Conf. Interval]

/ bl . 0000198 . 0000146 1.35 0.177 - 8. 92e-06 . 0000484

/ b2 . 0139055 . 0177526 0.78 0. 433 -. 020889 . 0487001

/ b3 -. 0003561 . 0001142 -3.12 0. 002 -. 0005799 -. 0001323

/ bO -1.136154 . 9463889 -1. 20 0. 230 -2.991042 . 7187345

| nstrunents for
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Ad hoc GMM estimation

Inspection of the parameters shows that these estimates are quite
similar to those from pr obi t for the same model. However, whereas
pr obi t requires the assumption of i.i.d. errors, GMM does not; the
standard errors produced by gnmare robust to arbitrary
heteroskedasticity.

As In the case of our linear regression estimation example, we can use
the same moment-evaluator program to estimate an
Instrumental-variables probit model, similar to that estimated by

| vpr obi t . Unlike that ML command, though, we need not make any
distributional assumptions about the error process in order to use
GMM.
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Ad hoc GMM estimation

gnm gmm probi t, nequations(l) paraneters(bl b2 b3 b0) ///
> I nstrunment s(pct urban popden rent hsnggrow) onestep nol og

Final GW criterion Qb) = .0470836
GW esti mati on

Nunber of paraneters = 4
Nunmber of nonents = 5

Initial weight matrix: Unadj usted Nunmber of obs = 50
Robust

Coef . Std. Err. z P>| z| [ 95% Conf. Interval]

/bl -6. 25e-06 . 0000203 -0.31 0. 758 -. 000046 . 0000335

/ b2 . 0370542 . 0333466 1.11 0. 266 -.028304 . 1024124

/ b3 -.0014897 . 0013724 -1.09 0. 278 -. 0041795 . 0012001

/ bO - . 538059 1.278787 -0. 42 0.674 - 3. 044435 1.968317

| nstrunents for equation 1: pcturban popden rent hsnggrow _cons
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Ad hoc GMM estimation

Although the examples of gnmmoment-evaluator programs we have
shown here largely duplicate the functionality of existing Stata
commands, they should illustrate that the general-purpose gnm
command may be used to solve estimation problems not amenable to
any existing commands, or indeed to a maximum-likelihood approach.
In that sense, familiarity with gmmecapabilities is likely to be quite
helpful if you face challenging estimation problems in your research.
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