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Introduction

What are instrumental variables (IV) methods? Most widely known
as a solution to endogenous regressors: explanatory variables
correlated with the regression error term, IV methods provide a way to
nonetheless obtain consistent parameter estimates.

However, as Cameron and Trivedi point out in Microeconometrics
(2005), this method, “widely used in econometrics and rarely used
elsewhere, is conceptually difficult and easily misused.” (p.95)

My goal today is to present an overview of IV estimation and lay out
the benefits and pitfalls of the IV approach. I will discuss the latest
enhancements to IV methods available in Stata 9.2 and 10, including
the latest release of Baum, Schaffer, Stillman’s widely used ivreg2,
available for Stata 9.2 or better, and Stata 10’s ivregress.
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Introduction

The discussion that follows is presented in much greater detail in three
sources:

Enhanced routines for instrumental variables/GMM estimation and
testing. Baum, C.F., Schaffer, M.E., Stillman, S., Stata Journal
7:4, 2007. Boston College Economics working paper no. 667.

An Introduction to Modern Econometrics Using Stata, Baum, C.F.,
Stata Press, 2006 (particularly Chapter 8).

Instrumental variables and GMM: Estimation and testing. Baum,
C.F., Schaffer, M.E., Stillman, S., Stata Journal 3:1–31, 2003.
Boston College Economics working paper no. 545.
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Introduction

First let us consider a path diagram illustrating the problem addressed
by IV methods. We can use ordinary least squares (OLS) regression to
consistently estimate a model of the following sort.

Standard regression: y = xb + u
no association between x and u; OLS consistent

x - y

u
�

���
����*
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Introduction

However, OLS regression breaks down in the following circumstance:

Endogeneity: y = xb + u
correlation between x and u; OLS inconsistent

x - y

u
���

���
��*

6

The correlation between x and u (or the failure of the zero conditional
mean assumption E [u|x ] = 0) can be caused by any of several factors.
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Introduction Endogeneity

We have stated the problem as that of endogeneity: the notion that two
or more variables are jointly determined in the behavioral model. This
arises naturally in the context of a simultaneous equations model such
as a supply-demand system in economics, in which price and quantity
are jointly determined in the market for that good or service.

A shock or disturbance to either supply or demand will affect both the
equilibrium price and quantity in the market, so that by construction
both variables are correlated with any shock to the system. OLS
methods will yield inconsistent estimates of any regression including
both price and quantity, however specified.
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Introduction Endogeneity

As a different example, consider a cross-sectional regression of public
health outcomes (say, the proportion of the population in various cities
suffering from a particular childhood disease) on public health
expenditures per capita in each of those cities. We would hope to find
that spending is effective in reducing incidence of the disease, but we
also must consider the reverse causality in this relationship, where the
level of expenditure is likely to be partially determined by the historical
incidence of the disease in each jurisdiction.

In this context, OLS estimates of the relationship will be biased even if
additional controls are added to the specification. Although we may
have no interest in modeling public health expenditures, we must be
able to specify such an equation in order to identify the relationship of
interest, as we discuss henceforth.
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Introduction Measurement error in a regressor

Although IV methods were first developed to cope with the problem of
endogeneity in a simultaneous system, the correlation of regressor
and error may arise for other reasons.

The presence of measurement error in a regressor will, in general
terms, cause the same correlation of regressor and error in a model
where behavior depends upon the true value of x and the statistician
observes only a inaccurate measurement of x . Even if we assume that
the magnitude of the measurement error is independent of the true
value of x (often an inappropriate assumption) measurement error will
cause OLS to produce biased and inconsistent parameter estimates of
all parameters, not only that of the mismeasured regressor.
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Introduction Unobservable or latent factors

Another commonly encountered problem involves unobservable
factors. Both y and x may be affected by latent factors such as ability.
Consider a regression of (log) earnings (y ) on years of schooling (x).
The error term u embodies all other factors that affect earnings, such
as the individual’s innate ability or intelligence. But ability is surely
likely to be correlated with educational attainment, causing a
correlation between regressor and error. Mathematically, this is the
same problem as that caused by endogeneity or measurement error.

In a panel or longitudinal dataset, we could deal with this unobserved
heterogeneity with the first difference or individual fixed effects
transformations. But in a cross section dataset, we do not have that
luxury, and must resort to other methods such as IV estimation.
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Instrumental variables methods

The solution provided by IV methods may be viewed as:

Instrumental variables regression: y = xb + u
z uncorrelated with u, correlated with x

z - x - y

u
���

���
��*

6

The additional variable z is termed an instrument for x . In general, we
may have many variables in x , and more than one x correlated with u.
In that case, we shall need at least that many variables in z.
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Instrumental variables methods Choice of instruments

To deal with the problem of endogeneity in a supply-demand system, a
candidate z will affect (e.g.) the quantity supplied of the good, but not
directly impact the demand for the good. An example for an agricultural
commodity might be temperature or rainfall: clearly exogenous to the
market, but likely to be important in the production process.

For the public health example, we might use per capita income in each
city as an instrument or z variable. It is likely to influence public health
expenditure, as cities with a larger tax base might be expected to
spend more on all services, and will not be directly affected by the
unobserved factors in the primary relationship.
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Instrumental variables methods Choice of instruments

For the problem of measurement error in a regressor, a common
choice of instrument (z) is the rank of the mismeasured variable.
Although the mismeasured variable contains an element of
measurement error, if that error is relatively small, it will not alter the
rank of the observation in the distribution.

In the case of latent factors, such as a regression of log earnings on
years of schooling, we might be able to find an instrument (z) in the
form of the mother’s or father’s years of schooling. More educated
parents are more likely to produce more educated children; at the
same time, the unobserved factors influencing the individual’s
educational attainment cannot affect prior events, such as their
parent’s schooling.
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Instrumental variables methods Choice of instruments

What if we do not have data on parents’ educational attainment? In a
seminal (and highly criticized) 1991 paper in the Quarterly Journal of
Economics, Angrist and Krueger (AK) used quarter of birth as an
instrument for educational attainment, defining an indicator variable for
those born in the first calendar quarter. Although arguably
independent of innate ability, how could this factor be correlated with
educational attainment?

AK argue that compulsory school attendance laws in the U.S. (and
varying laws across states) cause some individuals to attend school
longer than others depending on when they enter primary school,
which is in turn dependent on their birth date. We can test whether this
relationship holds by regressing years of schooling on the indicator
variable.

Example: OLS vs IV
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Instrumental variables methods The first use of IV methods?

An interesting example is provided by Paul Grootendorst in his
research paper “A review of instrumental variables estimation in the
applied health sciences." He suggests that IV methods were developed
in 1855 by John Snow in On the Mode of Communication of Cholera.
[http://www.ph.ucla.edu/EPI/snow/snowbook.html]. I
excerpt from his paper below.

Snow hypothesized that cholera was waterborne. But he could not
merely examine water purity and its correlation with the incidence of
cholera, for those who drank impure water were more likely to be poor,
to live in crowded tenements and to live in an environment
contaminated in many ways. What could serve as an instrument?
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Instrumental variables methods The first use of IV methods?
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Instrumental variables methods The first use of IV methods?

The instrument Snow proposed: the identity of the water company
supplying households with drinking water. Londoners received water
directly from the Thames. The Lambeth water company drew water
from the river upstream of the main sewage discharge; the Southwark
and Vauxhall company drew water just below the main discharge.

Snow mentions that “The pipes of each Company go down all the
streets, and into nearly all the courts and alleys. ... No fewer than
300,000 people ... of every rank and station, from gentlefolks down to
the very poor, were divided into two groups without their choice and, in
most cases, without their knowledge; one group supplied with water
containing the sewage of London...the other group having water quite
free from such impurity."
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Instrumental variables methods The first use of IV methods?

Demonstrably, the identity of the water suppliers (and the lack of public
perception of their relative quality) is correlated with water purity and
through that mechanism influences the incidence of waterborne
disease. It is likely to be uncorrelated with other factors influencing
cholera (such as the health status of those living in certain
neighborhoods) given that the suppliers competed throughout the city.

Although econometricians may believe that IV methods were the
product of Sewall Wright’s analysis of agricultural supply and demand
in the 1920s, or the work of the Cowles Commission in the 1950s, they
may have far predated that era!
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Instrumental variables methods But why should we not always use IV?

But why should we not always use IV?

It may be difficult to find variables that can serve as valid instruments.
Many variables that have an effect on included endogenous variables
also have a direct effect on the dependent variable.

IV estimators are innately biased, and their finite-sample properties
are often problematic. Thus, most of the justification for the use of IV is
asymptotic. Performance in small samples may be poor.

The precision of IV estimates is lower than that of OLS estimates (least
squares is just that). In the presence of weak instruments (excluded
instruments only weakly correlated with included endogenous
regressors) the loss of precision will be severe, and IV estimates may
be no improvement over OLS. This suggests we need a method to
determine whether a particular regressor must be treated as
endogenous.
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Instrumental variables methods But why should we not always use IV?

Instruments may be weak: satisfactorily exogenous, but only weakly
correlated with the endogenous regressors. As Bound, Jaeger, Baker
(NBER TWP 1993, JASA 1995) argue “the cure can be worse than the
disease.”

Staiger and Stock (Econometrica, 1997) formalized the definition of
weak instruments. Many researchers conclude from their work that if
the first-stage F statistic exceeds 10, their instruments are sufficiently
strong. This criterion does not necessarily establish the absence of a
weak instruments problem.

Stock and Yogo (Camb. U. Press festschrift, 2005) further explore the
issue and provide useful rules of thumb for evaluating the weakness of
instruments. ivreg2 and Stata 10’s ivregress now present
Stock–Yogo tabulations based on the Cragg–Donald statistic.
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The IV-GMM estimator

IV estimation as a GMM problem

Before discussing further the motivation for various weak instrument
diagnostics, we define the setting for IV estimation as a Generalized
Method of Moments (GMM) optimization problem. Economists
consider GMM to be the invention of Lars Hansen in his 1982
Econometrica paper, but as Alistair Hall points out in his 2005 book,
the method has its antecedents in Karl Pearson’s Method of Moments
[MM] (1895) and Neyman and Egon Pearson’s minimum Chi-squared
estimator [MCE] (1928). Their MCE approach overcomes the difficulty
with MM estimators when there are more moment conditions than
parameters to be estimated. This was recognized by Ferguson (Ann.
Math. Stat. 1958) for the case of i .i .d . errors, but his work had no
impact on the econometric literature.
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The IV-GMM estimator

We consider the model

y = Xβ + u, u ∼ (0,Ω)

with X (N × k) and define a matrix Z (N × `) where ` ≥ k . This is the
Generalized Method of Moments IV (IV-GMM) estimator. The `
instruments give rise to a set of ` moments:

gi(β) = Z ′i ui = Z ′i (yi − xiβ), i = 1, N

where each gi is an `-vector. The method of moments approach
considers each of the ` moment equations as a sample moment, which
we may estimate by averaging over N:

ḡ(β) =
1
N

N∑
i=1

zi(yi − xiβ) =
1
N

Z ′u

The GMM approach chooses an estimate that solves ḡ(β̂GMM) = 0.
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The IV-GMM estimator Exact identification and 2SLS

If ` = k , the equation to be estimated is said to be exactly identified by
the order condition for identification: that is, there are as many
excluded instruments as included right-hand endogenous variables.
The method of moments problem is then k equations in k unknowns,
and a unique solution exists, equivalent to the standard IV estimator:

β̂IV = (Z ′X )−1Z ′y

In the case of overidentification (` > k ) we may define a set of k
instruments:

X̂ = Z ′(Z ′Z )−1Z ′X = PZ X

which gives rise to the two-stage least squares (2SLS) estimator

β̂2SLS = (X̂ ′X )−1X̂ ′y = (X ′PZ X )−1X ′PZ y

which despite its name is computed by this single matrix equation.
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excluded instruments as included right-hand endogenous variables.
The method of moments problem is then k equations in k unknowns,
and a unique solution exists, equivalent to the standard IV estimator:

β̂IV = (Z ′X )−1Z ′y
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The IV-GMM estimator The IV-GMM approach

In the 2SLS method with overidentification, the ` available instruments
are “boiled down" to the k needed by defining the PZ matrix. In the
IV-GMM approach, that reduction is not necessary. All ` instruments
are used in the estimator. Furthermore, a weighting matrix is employed
so that we may choose β̂GMM so that the elements of ḡ(β̂GMM) are as
close to zero as possible. With ` > k , not all ` moment conditions can
be exactly satisfied, so a criterion function that weights them
appropriately is used to improve the efficiency of the estimator.

The GMM estimator minimizes the criterion

J(β̂GMM) = N ḡ(β̂GMM)′W ḡ(β̂GMM)

where W is a `× ` symmetric weighting matrix.
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The IV-GMM estimator The GMM weighting matrix

Solving the set of FOCs, we derive the IV-GMM estimator of an
overidentified equation:

β̂GMM = (X ′ZWZ ′X )−1X ′ZWZ ′y

which will be identical for all W matrices which differ by a factor of
proportionality. The optimal weighting matrix, as shown by Hansen
(1982), chooses W = S−1 where S is the covariance matrix of the
moment conditions to produce the most efficient estimator:

S = E [Z ′uu′Z ] = limN→∞ N−1[Z ′ΩZ ]

With a consistent estimator of S derived from 2SLS residuals, we
define the feasible IV-GMM estimator as

β̂FEGMM = (X ′Z Ŝ−1Z ′X )−1X ′Z Ŝ−1Z ′y

where FEGMM refers to the feasible efficient GMM estimator.
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The IV-GMM estimator IV-GMM and the distribution of u

The derivation makes no mention of the form of Ω, the
variance-covariance matrix (vce) of the error process u. If the errors
satisfy all classical assumptions are i .i .d ., S = σ2

uIN and the optimal
weighting matrix is proportional to the identity matrix. The IV-GMM
estimator is merely the standard IV (or 2SLS) estimator.

If there is heteroskedasticity of unknown form, we usually compute
robust standard errors in any Stata estimation command to derive a
consistent estimate of the vce. In this context,

Ŝ =
1
N

N∑
i=1

û2
i Z ′i Zi

where û is the vector of residuals from any consistent estimator of β
(e.g., the 2SLS residuals). For an overidentified equation, the IV-GMM
estimates computed from this estimate of S will be more efficient than
2SLS estimates.
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The IV-GMM estimator IV-GMM and the distribution of u

We must distinguish the concept of IV/2SLS estimation with robust
standard errors from the concept of estimating the same equation with
IV-GMM, allowing for arbitrary heteroskedasticity. Compare an
overidentified regression model estimated (a) with IV and classical
standard errors and (b) with robust standard errors. Model (b) will
produce the same point estimates, but different standard errors in the
presence of heteroskedastic errors.

However, if we reestimate that overidentified model using the GMM
two-step estimator, we will get different point estimates because we
are solving a different optimization problem: one in the `-space of the
instruments (and moment conditions) rather than the k -space of the
regressors, and ` > k . We will also get different standard errors, and in
general smaller standard errors as the IV-GMM estimator is more
efficient. This does not imply, however, that summary measures of fit
will improve.

Example: IV and IV(robust) vs IV-GMM
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The IV-GMM estimator IV-GMM cluster-robust estimates

If errors are considered to exhibit arbitrary intra-cluster correlation in a
dataset with M clusters, we may derive a cluster-robust IV-GMM
estimator using

Ŝ =
M∑

j=1

û′j ûj

where
ûj = (yj − xj β̂)X ′Z (Z ′Z )−1zj

The IV-GMM estimates employing this estimate of S will be both robust
to arbitrary heteroskedasticity and intra-cluster correlation, equivalent
to estimates generated by Stata’s cluster(varname) option. For an
overidentified equation, IV-GMM cluster-robust estimates will be more
efficient than 2SLS estimates.
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The IV-GMM estimator IV-GMM HAC estimates

The IV-GMM approach may also be used to generate HAC standard
errors: those robust to arbitrary heteroskedasticity and autocorrelation.
Although the best-known HAC approach in econometrics is that of
Newey and West, using the Bartlett kernel (per Stata’s newey), that is
only one choice of a HAC estimator that may be applied to an IV-GMM
problem. ivreg2 and Stata 10’s ivregress provide several choices
for kernels. For some kernels, the kernel bandwidth (roughly, number
of lags employed) may be chosen automatically in both commands.

In ivreg2 (but not in ivregress) you may also specify a vce that is
robust to autocorrelation while maintaining the assumption of
conditional homoskedasticity: that is, AC without the H.
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The IV-GMM estimator Implementation in Stata

The estimators we have discussed are available from Baum, Schaffer
and Stillman’s ivreg2 package (ssc describe ivreg2). The
ivreg2 command has the same basic syntax as Stata’s older ivreg
command:

ivreg2 depvar [varlist1] (varlist2=instlist) ///
[if] [in] [, options]

The ` variables in varlist1 and instlist comprise Z , the matrix of
instruments. The k variables in varlist1 and varlist2 comprise
X . Both matrices by default include a units vector.
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The IV-GMM estimator ivreg2 options

By default ivreg2 estimates the IV estimator, or 2SLS estimator if
` > k . If the gmm2s option is specified in conjunction with robust,
cluster() or bw(), it estimates the IV-GMM estimator.

With the robust option, the vce is heteroskedasticity-robust.

With the cluster(varname) option, the vce is cluster-robust.

With the robust and bw( ) options, the vce is HAC with the default
Bartlett kernel, or “Newey–West”. Other kernel( ) choices lead to
alternative HAC estimators. In ivreg2, both robust and bw( )
options must be specified for HAC. Estimates produced with bw( )
alone are robust to arbitrary autocorrelation but assume
homoskedasticity.
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Tests of overidentifying restrictions

If and only if an equation is overidentified, we may test whether the
excluded instruments are appropriately independent of the error
process. That test should always be performed when it is possible to
do so, as it allows us to evaluate the validity of the instruments.

A test of overidentifying restrictions regresses the residuals from an IV
or 2SLS regression on all instruments in Z . Under the null hypothesis
that all instruments are uncorrelated with u, the test has a
large-sample χ2(r) distribution where r is the number of overidentifying
restrictions.

Under the assumption of i .i .d . errors, this is known as a Sargan test,
and is routinely produced by ivreg2 for IV and 2SLS estimates. It can
also be calculated after ivreg estimation with the overid command,
which is part of the ivreg2 suite. After ivregress, the command
estat overid provides the test.
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Tests of overidentifying restrictions

If we have used IV-GMM estimation in ivreg2, the test of
overidentifying restrictions becomes J: the GMM criterion function.
Although J will be identically zero for any exactly-identified equation, it
will be positive for an overidentified equation. If it is “too large”, doubt is
cast on the satisfaction of the moment conditions underlying GMM.

The test in this context is known as the Hansen test or J test, and is
routinely calculated by ivreg2 when the gmm option is employed.

The Sargan–Hansen test of overidentifying restrictions should be
performed routinely in any overidentified model estimated with
instrumental variables techniques. Instrumental variables techniques
are powerful, but if a strong rejection of the null hypothesis of the
Sargan–Hansen test is encountered, you should strongly doubt the
validity of the estimates.
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Tests of overidentifying restrictions

For instance, let’s rerun the last IV-GMM model we estimated and
focus on the test of overidentifying restrictions provided by the Hansen
J statistic. The model is overidentified by two degrees of freedom, as
there is one endogenous regressor and three excluded instruments.
We see that the J statistic strongly rejects its null, casting doubts on
the quality of these estimates.

Let’s reestimate the model excluding age from the instrument list and
see what happens. We will see that the sign and significance of the key
endogenous regressor changes as we respecify the instrument list.

Example: Tests of overidentifying restrictions
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Tests of overidentifying restrictions Testing a subset of overidentifying restrictions

We may be quite confident of some instruments’ independence from u
but concerned about others. In that case a GMM distance or C test
may be used. The orthog( ) option of ivreg2 tests whether a
subset of the model’s overidentifying restrictions appear to be satisfied.

This is carried out by calculating two Sargan–Hansen statistics: one for
the full model and a second for the model in which the listed variables
are (a) considered endogenous, if included regressors, or (b) dropped,
if excluded regressors. In case (a), the model must still satisfy the
order condition for identification. The difference of the two
Sargan–Hansen statistics, often termed the GMM distance or C
statistic, will be distributed χ2 under the null hypothesis that the
specified orthogonality conditions are satisfied, with d.f. equal to the
number of those conditions.

Example: C (GMM distance) test of a subset of overidentifying
restrictions
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Tests of overidentifying restrictions Testing a subset of overidentifying restrictions

A variant on this strategy is implemented by the endog( ) option of
ivreg2, in which one or more variables considered endogenous can
be tested for exogeneity. The C test in this case will consider whether
the null hypothesis of their exogeneity is supported by the data.

If all endogenous regressors are included in the endog( ) option, the
test is essentially a test of whether IV methods are required to
estimate the equation. If OLS estimates of the equation are consistent,
they should be preferred. In this context, the test is equivalent to a
Hausman test comparing IV and OLS estimates, as implemented by
Stata’s hausman command with the sigmaless option. Using
ivreg2, you need not estimate and store both models to generate the
test’s verdict.
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Testing for weak instruments

The weak instruments problem

Instrumental variables methods rely on two assumptions: the excluded
instruments are distributed independently of the error process, and
they are sufficiently correlated with the included endogenous
regressors. Tests of overidentifying restrictions address the first
assumption, although we should note that a rejection of their null may
be indicative that the exclusion restrictions for these instruments may
be inappropriate. That is, some of the instruments have been
improperly excluded from the regression model’s specification.
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Testing for weak instruments

The specification of an instrumental variables model asserts that the
excluded instruments affect the dependent variable only indirectly,
through their correlations with the included endogenous variables. If
an excluded instrument exerts both direct and indirect influences on
the dependent variable, the exclusion restriction should be rejected.
This can be readily tested by including the variable as a regressor.

In our earlier example we saw that including age in the excluded
instruments list caused a rejection of the J test. We had assumed that
age could be treated as excluded from the model. Is that assumption
warranted?

Example: Test of exclusion of an instrument
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Testing for weak instruments

To test the second assumption—that the excluded instruments are
sufficiently correlated with the included endogenous regressors—we
should consider the goodness-of-fit of the “first stage” regressions
relating each endogenous regressor to the entire set of instruments.

It is important to understand that the theory of single-equation (“limited
information”) IV estimation requires that all columns of X are
conceptually regressed on all columns of Z in the calculation of the
estimates. We cannot meaningfully speak of “this variable is an
instrument for that regressor” or somehow restrict which instruments
enter which first-stage regressions. Stata’s ivregress or ivreg2 will
not let you do that because such restrictions only make sense in the
context of estimating an entire system of equations by full-information
methods (for instance, with reg3).
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Testing for weak instruments

The first and ffirst options of ivreg2 present several useful
diagnostics that assess the first-stage regressions. If there is a single
endogenous regressor, these issues are simplified, as the instruments
either explain a reasonable fraction of that regressor’s variability or not.
With multiple endogenous regressors, diagnostics are more
complicated, as each instrument is being called upon to play a role in
each first-stage regression.

With sufficiently weak instruments, the asymptotic identification status
of the equation is called into question. An equation identified by the
order and rank conditions in a finite sample may still be effectively
unidentified.
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Testing for weak instruments

As Staiger and Stock (Econometrica, 1997) show, the weak
instruments problem can arise even when the first-stage t- and F -tests
are significant at conventional levels in a large sample. In the worst
case, the bias of the IV estimator is the same as that of OLS, IV
becomes inconsistent, and instrumenting only aggravates the problem.
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Testing for weak instruments

Beyond the informal “rule-of-thumb” diagnostics such as F > 10,
ivreg2 computes several statistics that can be used to critically
evaluate the strength of instruments. We can write the first-stage
regressions as

X = ZΠ + v

With X1 as the endogenous regressors, Z1 the excluded instruments
and Z2 as the included instruments, this can be partitioned as

X1 = [Z1Z2] [Π′11Π
′
12]
′ + v1

The rank condition for identification states that the L× K1 matrix Π11
must be of full column rank.
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Testing for weak instruments The Anderson canonical correlation statistic

We do not observe the true Π11, so we must replace it with an
estimate. Anderson’s (John Wiley, 1984) approach to testing the rank
of this matrix (or that of the full Π matrix) considers the canonical
correlations of the X and Z matrices. If the equation is to be identified,
all K of the canonical correlations will be significantly different from
zero.

The squared canonical correlations can be expressed as eigenvalues
of a matrix. Anderson’s CC test considers the null hypothesis that the
minimum canonical correlation is zero. Under the null, the test statistic
is distributed χ2 with (L− K + 1) d.f., so it may be calculated even for
an exactly-identified equation. Failure to reject the null suggests the
equation is unidentified. ivreg2 routinely reports this Lagrange
Multiplier (LM) statistic.

Example: Analysis of first stage regressions
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Testing for weak instruments The Cragg–Donald statistic

The C–D statistic is a closely related test of the rank of a matrix. While
the Anderson CC test is a LR test, the C–D test is a Wald statistic, with
the same asymptotic distribution. The C–D statistic plays an important
role in Stock and Yogo’s work (see below). Both the Anderson and
C–D tests are reported by ivreg2 with the first option.

Recent research by Kleibergen and Paap (KP) (J. Econometrics, 2006)
has developed a robust version of a test for the rank of a matrix: e.g.
testing for underidentification. The statistic has been implemented by
Kleibergen and Schaffer as command ranktest. If non-i .i .d . errors
are assumed, the ivreg2 output contains the K–P rk statistic in place
of the Anderson canonical correlation statistic as a test of
underidentification.
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Testing for weak instruments The Cragg–Donald statistic

The canonical correlations may also be used to test a set of
instruments for redundancy by considering their statistical significance
in the first stage regressions. This can be calculated, in robust form, as
a K–P LM test. The redundant( ) option of ivreg2 allows a set of
excluded instruments to be tested for relevance, with the null
hypothesis that they do not contribute to the asymptotic efficiency of
the equation.

In this example, we add mrt (marital status) to the equation, and test it
for redundancy. It barely rejects the null hypothesis.

Example: Test of redundancy of instruments
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Testing for weak instruments The Stock and Yogo approach

Stock and Yogo (Camb. U. Press festschrift, 2005) propose testing for
weak instruments by using the F -statistic form of the C–D statistic.
Their null hypothesis is that the estimator is weakly identified in the
sense that it is subject to bias that the investigator finds unacceptably
large.

Their test comes in two flavors: maximal relative bias (relative to the
bias of OLS) and maximal size. The former test has the null that
instruments are weak, where weak instruments are those that can lead
to an asymptotic relative bias greater than some level b. This test uses
the finite sample distribution of the IV estimator, and can only be
calculated where the appropriate moments exist (when the equation is
suitably overidentified: the mth moment exists iff m < (L−K + 1)). The
test is routinely reported in ivreg2 and ivregress output when it
can be calculated, with the relevant critical values calculated by Stock
and Yogo.
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Testing for weak instruments The Stock and Yogo approach

The second test proposed by Stock and Yogo is based on the
performance of the Wald test statistic for the endogenous regressors.
Under weak identification, the test rejects too often. The test statistic is
based on the rejection rate r tolerable to the researcher if the true
rejection rate is 5%. Their tabulated values consider various values for
r . To be able to reject the null that the size of the test is unacceptably
large (versus 5%), the Cragg–Donald F statistic must exceed the
tabulated critical value.

The Stock–Yogo test statistics, like others discussed above, assume
i .i .d . errors. The Cragg–Donald F can be robustified in the absence of
i .i .d . errors by using the Kleibergen–Paap rk statistic, which ivreg2
reports in that circumstance.

Example: Stock–Yogo critical values for C–D or K–P test
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Testing for weak instruments The Anderson–Rubin test for endogenous regressors

The Anderson–Rubin (Ann. Math. Stat., 1949) test for the significance
of endogenous regressors in the structural equation is robust to the
presence of weak instruments, and may be “robustified” for non-i .i .d .
errors if an alternative VCE is estimated. The test essentially
substitutes the reduced-form equations into the structural equation and
tests for the joint significance of the excluded instruments in Z1.

If a single endogenous regressor appears in the equation, alternative
test statistics robust to weak instruments (under the assumption of
i .i .d . errors) are provided by Moreira and Poi (Stata J., 2003) and
Mikusheva and Poi (Stata J., 2006) as the condivreg and condtest
commands.
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LIML and GMM-CUE estimation

LIML and GMM-CUE

OLS and IV estimators are special cases of k-class estimators: OLS
with k = 0 and IV with k = 1. Limited-information maximum likelihood
(LIML) is another member of this class, with k chosen optimally in the
estimation process. Like any ML estimator, LIML is invariant to
normalization. In an equation with two endogenous variables, it does
not matter whether you specify y1 or y2 as the left-hand variable. One
of the other virtues of the LIML estimator is that it has been found to be
more resistant to weak instruments problems than the IV estimator. On
the down side, it makes the distributional assumption of normally
distributed (and i .i .d .) errors. ivreg2 produces LIML estimates with
the liml option, and liml is a subcommand for Stata 10’s
ivregress.
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LIML and GMM-CUE estimation

If the i .i .d . assumption of LIML is not reasonable, you may use the
GMM equivalent: the continuously updated GMM estimator, or CUE
estimator. In ivreg2, the cue option combined with robust,
cluster and/or bw( ) options specifies that non-i .i .d . errors are to
be modeled. GMM-CUE requires numerical optimization via Stata’s ml
command, and may require many iterations to converge.

ivregress provides an iterated GMM estimator, which is not the
same estimator as GMM-CUE.

Example: LIML and GMM-CUE
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When you may (and may not!) use IV

When you may (and may not!) use IV

You now know that you may only use IV methods when you can
plausibly specify the necessary instruments. Beyond that important
concern, two cases come to mind that are FAQs on Statalist.

A common inquiry: what if I have an endogenous regressor that is a
dummy variable? Should I, for instance, fit a probit model to generate
the “hat values”, estimate the model with OLS including those “hat
values” instead of the 0/1 values, and puzzle over what to do about the
standard errors?

(An aside: you really do not want to do two-stage least squares “by
hand”, for one of the things that you must then deal with is getting the
correct VCE estimate. The VCE and RMSE computed by the
second-stage regression are not correct, as they are generated from
the “hat values”, not the original regressors. But back to our question).
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When you may (and may not!) use IV Dummy variable as endogenous regressor

Should I fit a probit model to generate the “hat values”, estimate the
model with OLS including those “hat values” instead of the 0/1 values,
and puzzle over what to do about the standard errors?

No, you should just estimate the model with ivreg2 or ivregress,
treating the dummy endogenous regressor like any other endogenous
regressor. This yields consistent point and interval estimates of its
coefficient. There are other estimators (notably in the field of selection
models or treatment regression) that explicitly deal with this problem,
but they impose additional conditions on the problem. If you can use
those methods, fine. Otherwise, just run IV. This solution is also
appropriate for count data.
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When you may (and may not!) use IV Dummy variable as endogenous regressor

Another solution to the problem of an endogenous dummy (or count
variable), as discussed by Cameron and Trivedi, is due to Basmann
(Econometrica, 1957). Obtain fitted values for the endogenous
regressor with appropriate nonlinear regression (logit or probit for a
dummy, Poisson regression for a count variable) using all the
instruments (included and excluded). Then do regular linear IV using
the fitted value as an instrument, but the original dummy (or count
variable) as the regressor. This is also a consistent estimator, although
it has a different asymptotic distribution than does that of straight IV.

Example: Regression on an endogenous dummy
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When you may (and may not!) use IV Equation nonlinear in endogenous variables

A second FAQ: what if my equation includes a nonlinear function of an
endogenous regressor? For instance, from Wooldridge, Econometric
Analysis of Cross Section and Panel Data (2002), p. 231, we might
write the supply and demand equations for a good as

log qs = γ12 log(p) + γ13[log(p)]2 + δ11z1 + u1

log qd = γ22 log(p) + δ22z2 + u2

where we have suppressed intercepts for convenience. The
exogenous factor z1 shifts supply but not demand. The exogenous
factor z2 shifts demand but not supply. There are thus two exogenous
variables available for identification.

This system is still linear in parameters, and we can ignore the log
transformations on p, q. But it is, in Wooldridge’s terms, nonlinear in
endogenous variables, and identification must be treated differently.
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When you may (and may not!) use IV Equation nonlinear in endogenous variables

If we used these equations to obtain log(p) = y2 as a function of
exogenous variables and errors (the reduced form equation), the result
would not be linear. E [y2|z] would not be linear unless γ13 = 0,
assuming away the problem, and E [y2

2 |z] will not be linear in any case.
We might imagine that y2

2 could just be treated as an additional
endogenous variable, but then we need at least one more instrument.
Where do we find it?

Given the nonlinearity, other functions of z1 and z2 will appear in a
linear projection with y2

2 as the dependent variable. Under linearity, the
reduced form for y2 involves z1, z2 and combinations of the errors.
Square that reduced form, and E [y2

2 |z] is a function of z2
1 , z2

2 and z1z2
(and the expectation of the squared composite error). Given that this
relation has been derived under assumptions of linearity and
homoskedasticity, we should also include the levels of z1, z2 in the
projection (first stage regression).
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When you may (and may not!) use IV Equation nonlinear in endogenous variables

The supply equation may then be estimated with instrumental
variables using z1, z2, z2

1 , z2
2 and z1z2 as instruments. You could also

use higher powers of the exogenous variables.

The mistake that may be made in this context involves what Hausman
dubbed the forbidden regression: trying to mimic 2SLS by
substituting fitted values for some of the endogenous variables inside
the nonlinear functions. Nether the conditional expectation of the linear
projection nor the linear projection operator passes through nonlinear
functions, and such attempts “...rarely produce consistent estimators in
nonlinear systems.” (Wooldridge, p. 235)
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When you may (and may not!) use IV Equation nonlinear in endogenous variables

In our example above, imagine regressing y2 on exogenous variables,
saving the predicted values, and squaring them. The “second stage”
regression would then regress log(q) on ŷ , ŷ2, z1.

This two-step procedure does not yield the same results as estimating
the equation by 2SLS, and it generally cannot produce consistent
estimates of the structural parameters. The linear projection of the
square is not the square of the linear projection, and the “by hand”
approach assumes they are identical.
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When you may (and may not!) use IV Equation nonlinear in endogenous variables

We illustrate the forbidden regression with a variation on the log wage
model estimated in earlier examples. Although the second-stage OLS
regression will yield the wrong standard errors (as any 2SLS “by hand"
estimates will) we find that the forbidden regression appears to
produce significant coefficients for the nonlinear relationship.
Unfortunately, those estimates are inconsistent, and as you can see
quite far from the NL-IV estimates generated by the proper
instrumenting procedure.

Example: The forbidden regression
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Testing for i.i.d. errors in an IV context

Testing for i .i .d . errors in IV

In the context of an equation estimated with instrumental variables, the
standard diagnostic tests for heteroskedasticity and autocorrelation are
generally not valid.

In the case of heteroskedasticity, Pagan and Hall (Econometric
Reviews, 1983) showed that the Breusch–Pagan or Cook–Weisberg
tests (estat hettest) are generally not usable in an IV setting.
They propose a test that will be appropriate in IV estimation where
heteroskedasticity may be present in more than one structural
equation. Mark Schaffer’s ivhettest, part of the ivreg2 suite,
performs the Pagan–Hall test under a variety of assumptions on the
indicator variables. It will also reproduce the Breusch–Pagan test if
applied in an OLS context.
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Testing for i.i.d. errors in an IV context

In the same token, the Breusch–Godfrey statistic used in the OLS
context (estat bgodfrey) will generally not be appropriate in the
presence of endogenous regressors, overlapping data or conditional
heteroskedasticity of the error process. Cumby and Huizinga
(Econometrica, 1992) proposed a generalization of the BG statistic
which handles each of these cases.

Their test is actually more general in another way. Its null hypothesis of
the test is that the regression error is a moving average of known order
q ≥ 0 against the general alternative that autocorrelations of the
regression error are nonzero at lags greater than q. In that context, it
can be used to test that autocorrelations beyond any q are zero. Like
the BG test, it can test multiple lag orders. The C–H test is available as
Baum and Schaffer’s ivactest routine, part of the ivreg2 suite.
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Panel data IV estimation

Panel data IV estimation

The features of ivreg2 are also available in the routine xtivreg2,
which is a “wrapper” for ivreg2. This routine of Mark Schaffer’s
extends Stata’s xtivreg’s support for the fixed effect (fe) and first
difference (fd) estimators. The xtivreg2 routine is available from
ssc.

Just as ivreg2 may be used to conduct a Hausman test of IV vs.
OLS, Schaffer and Stillman’s xtoverid routine may be used to
conduct a Hausman test of random effects vs. fixed effects after
xtreg, re and xtivreg, re. This routine can also calculate tests
of overidentifying restrictions after those two commands as well as
xthtaylor. The xtoverid routine is also available from ssc.
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