Using Stata for data management and reproducible
research

Christopher F Baum

Boston College and DIW Berlin

IMF Institute, Spring 2011

Christopher F Baum (BC / DIW) Using Stata IMF Institute, Spring 2011 1/120

Overview of the Stata environment

Stata is a full-featured statistical programming language for Windows,
Mac OS X, Unix and Linux. It can be considered a “stat package,” like
SAS, SPSS, RATS, or eViews.

Stata is available in several versions: Stata/IC (the standard version),
Stata/SE (an extended version) and Stata/MP (for multiprocessing).
The major difference between the versions is the number of variables
allowed in memory, which is limited to 2,047 in standard Stata/IC, but
can be much larger in Stata/SE or Stata/MP. The number of
observations in any version is limited only by memory.

Christopher F Baum (BC / DIW) Using Stata IMF Institute, Spring 2011 2/120

Overview of the Stata environment

Stata/SE relaxes the Stata/IC constraint on the number of variables,
while Stata/MP is the multiprocessor version, capable of utilizing 2, 4,
8... processors available on a single computer. Stata/IC will meet most
users’ needs; if you have access to Stata/SE or Stata/MP, you can use
that program to create a subset of a large survey dataset with fewer
than 2,047 variables. Stata runs on all 64-bit operating systems, and
can access larger datasets on a 64-bit OS, which can address a larger
memory space.

All versions of Stata provide the full set of features and commands:
there are no special add-ons or ‘toolboxes’. Each copy of Stata 11
iIncludes a complete set of manuals (over 6,000 pages) in PDF format,
hyperlinked to the on-line help.

Christopher F Baum (BC / DIW) Using Stata IMF Institute, Spring 2011 3/120

Overview of the Stata environment

A Stata license may be used on any machine which supports Stata
(Mac OS X, Windows, Linux): there are no machine-specific licenses
for Stata 11. You may install Stata on a home and office machine, as
long as they are not used concurrently. Licenses can be either annual
or perpetual.

Stata works differently than some other packages in requiring that the
entire dataset to be analyzed must reside in memory. This brings a
considerable speed advantage, but implies that you may need more
RAM (memory) on your computer. There are 32-bit and 64-bit versions
of Stata, with the major difference being the amount of memory that
the operating system can allocate to Stata (or any other application).

Christopher F Baum (BC / DIW) Using Stata IMF Institute, Spring 2011 4/120

Overview of the Stata environment

In some cases, the memory requirement may be of little concern.
Stata is capable of holding data very efficiently, and even a quite
sizable dataset (e.g., more than one million observations on 20-30
variables) may only require 500 Mb or so. You should take advantage
of the compress command, which will check to see whether each
variable may be held in fewer bytes than its current allocation.

For instance, indicator (dummy) variables and categorical variables
with fewer than 100 levels can be held in a single byte, and integers
less than 32,000 can be held in two bytes: see help datatypes for
details. By default, floating-point numbers are held in four bytes,
providing about seven digits of accuracy. Some other statistical
programs routinely use eight bytes to store all numeric variables.

Christopher F Baum (BC / DIW) Using Stata IMF Institute, Spring 2011 5/120

Overview of the Stata environment

The memory available to Stata may be considerably less than the
amount of RAM installed on your computer. If you have a 32-bit
operating system, it does not matter that you might have 4 Gb or more
of RAM installed; Stata will only be able to access about 1 Gb,
depending on other processes’ demands.

To make most effective use of Stata with large datasets, use a
computer with a 64-bit operating system. Stata will automatically install
a 64-bit version of the program if it is supported by the operating
system. All Linux, Unix and Mac OS X computers today come with
64-bit operating systems.

Christopher F Baum (BC / DIW) Using Stata IMF Institute, Spring 2011 6/120

Overview of the Stata environment Portability

Stata is eminently portable, and its developers are committed to
cross-platform compatibility. Stata runs the same way on Windows,
Mac OS X, Unix, and Linux systems. The only platform-specific
aspects of using Stata are those related to native operating system
commands: e.g. is the file to be accessed

C:\Stata\StataData\myfile.dta
or
/users/baum/statadata/myfile.dta

Perhaps unigue among statistical packages, Stata’s binary data files
may be freely copied from one platform to any other, or even accessed
over the Internet from any machine that runs Stata. You may store
Stata’s binary datafiles on a webserver (HTTP server) and open them
on any machine with access to that server.

Christopher F Baum (BC / DIW) Using Stata IMF Institute, Spring 2011 7/120

Stata's user interface
Stata’s user interface

Stata has traditionally been a command-line-driven package that
operates in a graphical (windowed) environment. Stata version 11
(released June 2009) contains a graphical user interface (GUI) for
command entry via menus and dialogs. Stata may also be used in a
command-line environment on a shared system (e.g., a Unix server) if
you do not have a graphical interface to that system.

A major advantage of Stata’'s GUI system is that you always have the
option of reviewing the command that has been entered in Stata’s
Review window. Thus, you may examine the syntax, revise it in the
Command window and resubmit it. You may find that this is a more
efficient way of using the program than relying wholly on dialogs.

Christopher F Baum (BC / DIW) Using Stata IMF Institute, Spring 2011 8/120

Overview of the Stata environment Stata’s user interface

Stata’s default screen appearance:

® Stata/MP 11.0 File Edit Data Editor Graph Editor Tools Data Graphics Statistics User Window Help (= = 4) (=D (Chare

CEEeS lNEU EEEREE OO

/Users/baum/Documents/

OO0 Review) G (@) Results
Command _rc
- R
/_—_ / / 7/ /
-/ / /_— / /__/ 11,0 Copyright 2009 StataCorp LP
Statistics/Data Analysis StataCorp
4905 Lakeway Drive
MP - Parallel Edition College Station, Texas 77845 USA
800-STATA-PC http://www.stata.com
979-696-4600 stata@stata.com
979-696-4601 (fax)
} Single-user 2-core Stata perpetual license:
'1 Serial number: 50110511243
— - Licensed to: Kit Baum
Variables Boston College
Name Label Type

Notes: b
1. (-set memory-) 500.00 MB allocated to data
2. (-set maxvar-) 5000 maximum variables

running /Applications/Stata/profile.do ...
Checking http://wwv.stata.com for update... Stata is up to date.

Command

”

4

Chfistopher F Baum (BC /DIW) Using Stata IMF Institute, Spring 2011 9/120

Overview of the Stata environment Stata’s user interface

The Toolbar contains icons that allow you to Open and Save files, Print
results, control Logs, and manipulate windows. Some very important
tools allow you to open the Do-File Editor, the Data Editor and the Data
Browser.

The Data Editor and Data Browser present you with a spreadsheet-like
view of the data, no matter how large your dataset may be. The
Do-File editor, as we will discuss, allows you to construct a file of Stata
commands, or “do-file”, and execute it in whole or in part from the
editor.

Christopher F Baum (BC / DIW) Using Stata IMF Institute, Spring 2011 10/120

Overview of the Stata environment Stata’s user interface

The Toolbar also contains an important piece of information: the
Current Working Directory, or cwd. In the screenshot, it is listed as
/Users/Baum/Documents/ as | am working on a Mac OS X (Unix)
laptop. The cwd is the directory to which any files created in your Stata
session will be saved. Likewise, if you try to open a file and give its
name alone, it is assumed to reside in the cwd. If it is in another
location, you must change the cwd [File— >Change Working Directory]
or qualify its name with the directory in which it resides.

You generally will not want to locate or save files in the default cwd. A
common strategy is to set up a directory for each project or task in a
convenient location in the filesystem and change the cwd to that
directory when working on that task. This can be automated in a
do-file with the cd command.

Christopher F Baum (BC / DIW) Using Stata IMF Institute, Spring 2011 11/120

Overview of the Stata environment Stata’s user interface

There are four windows in the default interface: the Review, Results,
Command and Variables window. You may alter the appearance of any
window in the GUI using the Preferences— >General dialog, and make
those changes on a temporary or permanent basis.

As you might expect, you may type commands in the Command
window. You may only enter one command in that window, so you
should not try pasting a list of several commands. When a command is
executed—with or without error—it appears in the Review window, and
the results of the command (or an error message) appears in the
Results window. You may click on any command in the Review window
and it will reappear in the Command window, where it may be edited
and resubmitted.

Christopher F Baum (BC / DIW) Using Stata IMF Institute, Spring 2011 12/120

Overview of the Stata environment Stata’s user interface

Once you have loaded data into the program, the Variables window will
be populated with information on each variable. That information
iIncludes the variable name, its label (if any), its type and its format.
This is a subset of information available from the describe command.

Let’'s look at the interface after | have loaded one of the datasets
provided with Stata, us1ifeexp, with the sysuse command and
given the describe and summarize commands:

Christopher F Baum (BC / DIW) Using Stata IMF Institute, Spring 2011 13/120

Overview of the Stata environment Stata’s user interface

® Stata/MP 11.0 File

Edit

Data Editor Graph Editor Tools

(2]
' EE@® Bl RE

[N E’L E

0O

/Users/baum/Documents/

Data Graphics

Statistics

Window Help [O | = 4 (= (Charc

-

User

w
OO0 Review olele T | Results - uslifeexp.dta
Command _rc vars: 10 30 Mar 2009 04:31
1 sysuse uslifeexp size: 4,600 (99.9% of memory free) (_dta has notes)
2 describe .
3 summarize . storage display value .
variable name type format label variable label
year int %9.0g Year
le float %9.0g life expectancy
le_male float %9.0g Life expectancy, males
le_female float %9.0g Life expectancy, females
le_w float %9.0g Life expectancy, whites
1 le_wmale float %9.0g Life expectancy, white males
'3 le_wfemale float %9.0g Life expectancy, white females
— le_b float %9.0g Life expectancy, blacks
Variables le_bmale float %9.0g Life expectancy, black males
Name Label Type le_bfemale float %9.0g Life expectancy, black females
year Year int oy
le life ... float Sorted by: year
S le_male Life ... float . summarize
le_female Life ... float
le_w Life ... float Variable Obs Mean Std. Dev. Min Max
le_wmale Life ... float
le wfemale Life ... float year 100 1949.5 29.01149 1900 1999
le b Life float le 100 64.829 9.158628 39.1 76.7
= e le_male 100 62.302 8.436369 36.6 73.9
le_bmale Life ... float le_female 100 67.51 9.834987 42.2 79.5
le_bfemale Life ... float le_w 100 65.688 9.171269 39.8 77.3
le_wmale 100 63.143 8.503954 37.1 74.6
le_wfemale 100 68.434 9.797167 43.2 80
le_b 100 56.033 12.48937 30.8 71.4
le_bmale 100 53.589 11.4569 29.1 67.8
le_bfemale 100 58.567 13.5409 32.5 74.8 X
/
Command

Christopher F Baum (BC / DIW)

Using Stata

IMF Institute, Spring 2011 14 /120

Overview of the Stata environment Stata’s user interface

Notice that the three commands are listed in the Review window. If any
had failed, the _rc column would contain a nonzero number, In red,
indicating the error code. The Variables window contains the list of
variables and their labels. The Results window shows the effects of
summarize: for each variable, the number of observations, their
mean, standard deviation, minimum and maximum. If there were any
string variables in the dataset, they would be listed as having zero
observations.

Try it out: type the commands

sysuse uslilifeexp
describe
summarize

Take note of an important design feature of Stata. If you do not say
what to describe or summarize, Stata assumes you want to perform
those commands for every variable in memory, as shown here. As we
shall see, this design principle holds throughout the program.

Christopher F Baum (BC / DIW) Using Stata IMF Institute, Spring 2011 15/120

Overview of the Stata environment Using the Do-File Editor

We may also write a do-file in the do-file editor and execute it. The
Do-File Editor icon on the Toolbar brings up a window in which we may
type those same three commands, as well as a few more:

sysuse uslilifeexp

describe

summarize

notes

summarize le 1f year < 1950
summarize le 1f year >= 1950

After typing those commands into the window, the rightmost icon, with
tooltip Do, may be used to execute them.

Christopher F Baum (BC / DIW) Using Stata IMF Institute, Spring 2011 16/120

Overview of the Stata environment Using the Do-File Editor

.’ Stata/MP 11.0 File Edit Data Editor Graph Editor Tools

/Users/baum/Documents/

User = 4) (=T (Char

Statistics

Window Help

Data Graphics

B &
OO0 Review 1000 T | Results - uslifeexp.dta
Command _rc 4. For selected years, life table values shown are estimates.
1 sysuse uslifeexp .
2 describe - Summarize
3 summarize Variable Obs Mean Std. Dev. Min Max
4 do "/Users/baum/...
year 100 1949.5 29.01149 1900 1999
le 100 64.829 9.158628 39.1 76.7
le_male 100 62.302 8.436369 36.6 73.9
le_female 100 67.51 9.834987 42.2 79.5
_ le_w 100 65.688 9.171269 39.8 77.3
1 le_wmale 100 63.143 8.503954 37.1 74.6
~ le_wfemale 100 68.434 9.797167 43.2 80
Variables le_b 100 56.033 12.48937 30.8 71.4
Name Label le_bmale 100 53.589 11.4569 29.1 67.8
year Year int 1e_bfem01e 1% 58.567 13.54% 32.5

le life ... float
. . // average life expectancy, 1900-1949 _
:e_;nalel t!:e goat . summarize le if year < 1950 ® 006 T4S1.1.do &)
e_female ife ... float — 2=l =
le_w Life ... float Variable | Obs Mean Std. Dev. L] 4 = B @ 1= L@ En Al L’i;l L] L]
le_wmale Life ... float sysuse uslifeexp
le_wfemale Life ... float le | 50 57.22 6.650426 describe
i notes
le_b L!fe S . // average life expectancy, 1950-1999 .
le_bmale Life ... float . summarize le if year >= 1950 ELENROLES X
le_bfemale Life ... float // average life expectancy, 1900-1949
Variable | Obs Mean Std. Dev.summarize le if year < 1950
| // average life expectancy, 1950-1999
le 50 72.438 2.662276 symmarize le if year >= 1950

end of do-file

Christopher F Baum (BC / DIW) Using Stata IMF Institute, Spring 2011 17 /120

Overview of the Stata environment Using the Do-File Editor

In this do-file, | have included the notes command to display the notes
saved with the dataset, and included two comment lines. There are
several styles of comments available. In this style, anything on a line
following a double slash (//) is ignored.

You may use the other icons in the Do-File Editor window to save your
do-file (to the cwd or elsewhere), print it, or edit its contents. You may
also select a portion of the file with the mouse and execute only those
commands. Note that the tooltip changes to Do Selected Lines.

Christopher F Baum (BC / DIW) Using Stata IMF Institute, Spring 2011 18 /120

Overview of the Stata environment Using the Do-File Editor

® Stata/MP 11.0 File Edit Data Editor Graph Editor Tools

e@® R EUA ERERE OO

/Users/baum/Documents/

Data Graphics Statistics User Window Help = D = 4) (=D (Chare

~ N

Review olele, T Results - uslifeexp.dta
Command _rc I 4. For selected years, life table values shown are estimates.
1 sysuse uslifeexp)
2 describe - Slmmarize
3 |summarize Variable Obs Mean Std. Dev. Min Max
4 do "/Users/baum/...
year 100 1949.5 29.01149 1900 1999
le 100 64.829 9.158628 39.1 76.7
le_male 100 62.302 8.436369 36.6 73.9
le_female 100 67.51 9.834987 42.2 79.5
le_w 100 65.688 9.171269 39.8 77.3
-j le_wmale 100 63.143 8.503954 37.1 74.6
— le_wfemale 100 68.434 9.797167 43.2 80
Variables i le_b 100 56.033 12.48937 30.8 71.4
Name Label Type le_bmale 100 53.589 11.4569 29.1 67.8
year Year int le_bfemale 100 58.567 13,5409 32.5 74.8
le life ... float .
le_male Life ... float glmz:;‘:gelllﬁ ;:z:c:ar;;ysé 1900-1949 eno T4S1.1.do)
le_female Life ... float D -] - El “ ‘*7_ @ ® @ - @ @
le_w Life ... float Variable | Obs Mean Std. Dev. g - =N =l = = b_]
le_wmale Life ... float sysuse uslifeexp
le_wfemale Life ... float le | 50 57.22 6.650426 describe
le_b Lﬁe... oo . // average life expectancy, 1950-1999 notes ,
le_bmale Life ... float . summarize le if year >= 1950 B
le_bfemale Life ... float // average life expectancy, 1900-1949
Variable | Obs Mean Std. Dev.summarize le if year < 1950
// average life expectancy, 1950-1999
le | 50 72.438 2.662276 summarize le if year >= 1950

end of do-file

Christopher F Baum (BC / DIW) Using Stata IMF Institute, Spring 2011 19/120

Overview of the Stata environment Using the Do-File Editor

Iry it out: use the Do-File Editor to open the do-file s1.1.do, and run
the file.

Try selecting only those last four lines and run those commands.

Christopher F Baum (BC / DIW) Using Stata IMF Institute, Spring 2011 20/120

Overview of the Stata environment The help system

The rightmost menu on the menu bar is labeled Help. From that menu,
you can search for help on any command or feature. The Help
Browser, which opens in a Viewer window, provides hyperlinks, in blue,
to additional help pages. At the foot of each help screen, there are
hyperlinks to the full manuals, which are accessible in PDF format.
The links will take you directly to the appropriate page of the manual.

You may also search for help at the command line with help
command. But what if you don’t know the exact command name?
Then you may use search or its expanded version, findit, each of
which may be followed by one or several words.

Christopher F Baum (BC / DIW) Using Stata IMF Institute, Spring 2011 21/120

Overview of the Stata environment The help system

Results from search are presented in the Results window, while
findit results will appear in a Viewer window. Those commands will
present results from a keyword database and from the Internet: for
instance, FAQs from the Stata website, articles in the Stata Journal
and Stata Technical Bulletin, and downloadable routines from the SSC
Archive (about which more later) and user sites.

Try it out: when you are connected to the Internet, type the command
search baum, au
and then try

findit baum

Note the hyperlinks that appear on URLs for the books and journal
articles, and on the individual software packages (e.g., st0030_3,
archlm).

Christopher F Baum (BC / DIW) Using Stata IMF Institute, Spring 2011 22/120

Stata's updae facilty
Stata’s update facility

One of Stata’s great strengths is that it can be updated over the
Internet. Stata is actually a web browser, so it may contact Stata’s web
server and enquire whether there are more recent versions of either
Stata’s executable (the kernel) or the ado-files. This enables Stata’s
developers to distribute bug fixes, enhancements to existing
commands, and even entirely new commands during the lifetime of a
given major release (including ‘dot-releases’ such as Stata 11.1).

Updates during the life of the version you own are free. You need only
have a licensed copy of Stata and access to the Internet (which may
be by proxy server) to check for and, if desired, download the updates.

Christopher F Baum (BC / DIW) Using Stata IMF Institute, Spring 2011 23/120

Extensibilty
Extensibility of official Stata

Another advantage of the command-line driven environment involves
extensibility: the continual expansion of Stata’s capabilities. A
command, to Stata, is a verb instructing the program to perform some
action.

Commands may be “built in” commands—those elements so
frequently used that they have been coded into the “Stata kernel.” A
relatively small fraction of the total number of official Stata commands
are built in, but they are used very heavily.

Christopher F Baum (BC / DIW) Using Stata IMF Institute, Spring 2011 24/120

Overview of the Stata environment Extensibility

The vast majority of Stata commands are written in Stata’s own
programming language—the “ado-file” language. If a command is not
built in to the Stata kernel, Stata searches for it along the adopath.
Like the PATH in Unix, Linux or DOS, the adopath indicates the
several directories in which an ado-file might be located. This implies
that the “official” Stata commands are not limited to those coded into
the kernel. Try it out. give the adopath command in Stata.

If Stata’s developers tomorrow wrote a new command named “foobar”,
they would make two files available on their web site: foobar.ado
(the ado-file code) and foobar.sthlp (the associated help file). Both
are ordinary, readable ASCII text files. These files should be produced
In a text editor, not a word processing program.

Christopher F Baum (BC / DIW) Using Stata IMF Institute, Spring 2011 25/120

Overview of the Stata environment Extensibility

The importance of this program design goes far beyond the limits of
official Stata. Since the adopath includes both Stata directories and
other directories on your hard disk (or on a server’s filesystem), you
may acquire new Stata commands from a number of web sites. The
Stata Journal (SJ), a quarterly refereed journal, is the primary method
for distributing user contributions. Between 1991 and 2001, the Stata
Technical Bulletin played this role, and a complete set of issues of the
STB are available on line at the Stata website.

The SJis a subscription publication (articles more than three years old
freely downloadable), but the ado- and sthlp-files may be freely
downloaded from Stata’s web site. The Stata help command
accesses help on all installed commands; the Stata command findit
will locate commands that have been documented in the STB and the
SJ, and with one click you may install them in your version of Stata.
Help for these commands will then be available in your own copy.

Christopher F Baum (BC / DIW) Using Stata IMF Institute, Spring 2011 26 /120

Extensibily
User extensibility: the SSC archive

But this is only the beginning. Stata users worldwide participate in the
StataList listserv, and when a user has written and documented a new
general-purpose command to extend Stata functionality, they
announce it on the Statalist listserv (to which you may freely
subscribe: see Stata’s web site).

Since September 1997, all items posted to StataList (over 1,300)
have been placed in the Boston College Statistical Software
Components (SSC) Archive in RePEc (Research Papers in
Economics), available from IDEAS (http://ideas.repec.org) and
EconPapers (http://econpapers.repec.org).

Christopher F Baum (BC / DIW) Using Stata IMF Institute, Spring 2011 27 /120

Overview of the Stata environment Extensibility

Any component in the SSC archive may be readily inspected with a
web browser, using IDEAS’ or EconPapers’ search functions, and if
desired you may install it with one command from the archive from
within Stata. For instance, if you know there is a module in the archive
named mvsumm, you could use ssc describe mvsumm to learn
more about it, and ssc install mvsumm to install it if you wish.
Anything in the archive can be accessed via Stata’s ssc command:
thus ssc describe mvsumm will locate this module, and make it
possible to install it with one click.

Windows users should not attempt to download the materials from a
web browser; it won'’t work.

Iry it out: when you are connected to the Internet, type
ssc describe mvsumm
ssc 1nstall mvsumm

help mvsumm

Christopher F Baum (BC / DIW) Using Stata IMF Institute, Spring 2011 28/120

Overview of the Stata environment Extensibility

The command ssc neuw lists, in the Stata Viewer, all SSC packages
that have been added or modified in the last month. You may click on
their names for full details. The command ssc hot reports on the
most popular packages on the SSC Archive.

The Stata command adoupdate checks to see whether all packages
you have downloaded and installed from the SSC archive, the Stata
Journal, or other user-maintained net from. .. sites are up to date.
adoupdate alone will provide a list of packages that have been
updated. You may then use adoupdate, update to refresh your
copies of those packages, or specify which packages are to be
updated.

Christopher F Baum (BC / DIW) Using Stata IMF Institute, Spring 2011 29/120

Overview of the Stata environment Extensibility

The importance of all this is that Stata is infinitely extensible. Any
ado-file on your adopath is a full-fledged Stata command. Stata’s
capabilities thus extend far beyond the official, supported features
described in the Stata manual to a vast array of additional tools.

Since the current directory is on the adopath, if you create an ado-file
hello.ado:

program define hello
display "Stata says hello!"
end

exit

Stata will now respond to the command hello. It's that easy. Try it out!

Christopher F Baum (BC / DIW) Using Stata IMF Institute, Spring 2011 30/ 120

Stata command syntax
Stata command syntax

Let us consider the form of Stata commands. One of Stata’s great
strengths, compared with many statistical packages, is that its
command syntax follows strict rules: in grammatical terms, there are
no irregular verbs. This implies that when you have learned the way a
few key commands work, you will be able to use many more without
extensive study of the manual or even on-line help.

The fundamental syntax of all Stata commands follows a femplate. Not
all elements of the template are used by all commands, and some
elements are only valid for certain commands. But where an element
appears, it will appear in the same place, following the same grammar.

Like Unix or Linux, Stata is case sensitive. Commands must be given
In lower case. For best results, keep all variable names in lower case
to avoid confusion.

Christopher F Baum (BC / DIW) Using Stata IMF Institute, Spring 2011 31/120

Working with the command line Command template

The general syntax of a Stata command is:
[prefix_cmd:] cmdname [varlist] [=exp]
[1f exp] [1n range]

[weight] [using...] [,options]

where elements in square brackets are optional for some commands.

Christopher F Baum (BC / DIW) Using Stata IMF Institute, Spring 2011 32/120

Programmabilty of tasks
Programmability of tasks

Stata may be used in an interactive mode, and those learning the
package may wish to make use of the menu system. But when you
execute a command from a pull-down menu, it records the command
that you could have typed in the Review window, and thus you may
learn that with experience you could type that command (or modity it
and resubmit it) more quickly than by use of the menus.

Stata makes reproducibility very easy through a log facility, the ability
to generate a command log (containing only the commands you have
entered), and the do-file editor which allows you to easily enter,
execute and save sequences of commands, or program fragments.

Christopher F Baum (BC / DIW) Using Stata IMF Institute, Spring 2011 33/120

Working with the command line Programmability of tasks

Going one step further, if you use the do-file editor to create a
sequence of commands, you may save that do-file and reuse it
tomorrow, or use it as the starting point for a similar set of data
management or statistical operations. Working in this way promotes
reproducibility, which makes it very easy to perform an alternate
analysis of a particular model. Even if many steps have been taken
since the basic model was specified, it is easy to go back and produce
a variation on the analysis if all the work is represented by a series of
programs.

One of the implications of the concern for reproducible work: avoid
altering data in a non-auditable environment such as a spreadsheet.
Rather, you should transfer external data into the Stata environment as
early as possible in the process of analysis, and only make permanent
changes to the data with do-files that can give you an audit trail of
every change made to the data.

Christopher F Baum (BC / DIW) Using Stata IMF Institute, Spring 2011 34/120

Working with the command line Programmability of tasks

Programmable tasks are supported by prefix commands, as we will
soon discuss, that provide implicit loops, as well as explicit looping
constructs such as the forvalues and foreach commands.

To use these commands you must understand Stata’s concepts of
local and global macros. Note that the term macro in Stata bears no
resemblance to the concept of an Excel macro. A macro, in Stata, is
an alias to an object, which may be a number or string.

Christopher F Baum (BC / DIW) Using Stata IMF Institute, Spring 2011 35/ 120

Local macros and scalars
Local macros and scalars

In programming terms, local macros and scalars are the “variables” of
Stata programs (not to be confused with the variables of the data set).
The distinction: a local macro can contain a string, while a scalar can
contain a single number (at maximum precision). You should use these
constructs whenever possible to avoid creating variables with constant
values merely for the storage of those constants. This is particularly
important when working with large data sets.

When you want to work with a scalar object—such as a counter in a
foreach or forvalues command—it will involve defining and
accessing a local macro. As we will see, all Stata commands that
compute results or estimates generate one or more objects to hold
those items, which are saved as numeric scalars, local macros (strings
or numbers) or numeric matrices.

Christopher F Baum (BC / DIW) Using Stata IMF Institute, Spring 2011 36/120

Local macros and scalars
The local macro

The local macro is an invaluable tool for do-file authors. A local macro
IS created with the 1ocal statement, which serves to name the macro
and provide its content. When you next refer to the macro, you extract
its value by dereferencing it, using the backtick (‘) and apostrophe (')
on its left and right:

local george 2
local paul = ‘george’ + 2

In this case, | use an equals sign in the second local statement as |
want to evaluate the right-hand side, as an arithmetic expression, and
store it in the macro paul. If | did not use the equals sign in this
context, the macro paul would contain the string 2 + 2.

Christopher F Baum (BC / DIW) Using Stata IMF Institute, Spring 2011 37/120

forvalues and foreach
forvalues and foreach

In other cases, you want to redefine the macro, not evaluate it, and you
should not use an equals sign. You merely want to take the contents of
the macro (a character string) and alter that string. The two key
programming constructs for repetition, forvalues and foreach,
make use of local macros as their “counter”. For instance:

forvalues 1i=1/10 {

summarize PRweek Y1’/

}

Note that the value of the local macro i is used within the body of the
loop when that counter is to be referenced. Any Stata numlist may
appear in the forvalues statement. Note also the curly braces,
which must appear at the end of their lines.

Christopher F Baum (BC / DIW) Using Stata IMF Institute, Spring 2011 38/120

Working with the command line forvalues and foreach

In many cases, the forvalues command will allow you to substitute
explicit statements with a single loop construct. By modifying the range
and body of the loop, you can easily rewrite your do-file to handle a
different case.

The foreach command is even more useful. It defines an iteration
over any one of a number of lists:

@ the contents of a varlist (list of existing variables)
@ the contents of a newlist (list of new variables)

@ the contents of a numlist (list of integers)

@ the separate words of a macro

@ the elements of an arbitrary list

Christopher F Baum (BC / DIW) Using Stata IMF Institute, Spring 2011 39/ 120

Working with the command line forvalues and foreach

For example, we might want to summarize each of these variables’
detailed statistics from this World Bank data set:

sysuse lifeexp

foreach v of varlist popgrowth lexp gnppc {
summarize ‘v’, detail

Or, run a regression on variables for each region, and graph the data
and fitted line:

levelsof region, local (regid)
foreach ¢ of local regid {
local rr : label region ‘c’
regress lexp gnppc 1f region ==‘c’
twoway (scatter lexp gnppc i1f region ==‘c¢’) ///
(1fit lexp gnppc 1if region ==‘c’, ///
ti(Region: ‘rr’) name(fig‘'c’, replace))

}

Christopher F Baum (BC / DIW)

Using Stata IMF Institute, Spring 2011 40/120

Working with the command line forvalues and foreach

A local macro can be built up by redefinition:

local alleps

foreach ¢ of local regid {

regress lexp gnppc 1f region ==‘c’

predict double eps‘'c’ 1f e(sample), residual
local alleps " ‘alleps’ eps‘'c’”

}

Within the loop we redefine the macro alleps (as a double-quoted
string) to contain itself and the name of the residuals from that region’s
regression. We could then use the macro alleps to generate a graph
of all three regions’ residuals:

gen cty = _n

scatter “alleps’ cty, yline(0) scheme (s2mono) legend(rows (1)) ///
ti("Residuals from model of life expectancy vs per capita GDP") ///
t2 ("Fit separately for each region")

Christopher F Baum (BC / DIW) Using Stata IMF Institute, Spring 2011 41/120

Working with the command line forvalues and foreach

Residuals from model of life expectancy vs per capita GDP
Fit separately for each region

5 O
e ° e
® @)
o o ® o ® P
%eoo ® o O O
o © ® o
O o
° o ..
o ® o ® o
L{I) -
o —
L() —
! | | | | |
0 20 40 60 80
cty
® Eur & C.Asia N.A. S.A.

Christopher F Baum (BC / DIW) Using Stata IMF Institute, Spring 2011 42 /120

forvalues and foreach
Global macros

Stata also supports global macros, which are referenced by a different
syntax (Scountry rather than *country’). Global macros are useful
when particular definitions (e.g., the default working directory for a
particular project) are to be referenced in several do-files that are to be
executed. However, the creation of persistent objects of global scope
can be dangerous, as global macro definitions are retained for the
entire Stata session. One of the advantages of local macros is that
they disappear when the do-file or ado-file in which they are defined
finishes execution.

Christopher F Baum (BC / DIW) Using Stata IMF Institute, Spring 2011 43 /120

Prefix commands
Prefix commands

A number of Stata commands can be used as prefix commands,
preceding a Stata command and modifying its behavior. The most
commonly employed is the by prefix, which repeats a command over a
set of categories. The statsby: prefix repeats the command, but
collects statistics from each category. The rolling: prefix runs the
command on moving subsets of the data (usually time series).

Several other command prefixes: simulate:, which simulates a
statistical model; bootstrap:, allowing the computation of bootstrap
statistics from resampled data; and jackknife:, which runs a command
over jackknife subsets of the data. The svy: prefix can be used with
many statistical commands to allow for survey sample design.

Christopher F Baum (BC / DIW) Using Stata IMF Institute, Spring 2011 44 /120

Data management: principles of organization and transformation Missing values

Missing values

Missing value codes in Stata appear as the dot (.) in printed output
(and a string missing value code as well: “, the null string). It takes on
the largest possible positive value, so in the presence of missing data
you do not want to say

generate hiprice = (price > 10000) but rather
generate hiprice = (price > 10000) 1f price <.

which then generates an indicator (dummy) variable equal to 1 for
high-priced cars. The indicator will be zero for low-priced cars and
missing for cars with missing prices.

Stata allows for multiple missing value codes (.a, .b, .c, ...,

.z). The standard missing value code (.) is the smallest among
them, so testing for < . will always work. You may also use the missing
function: mi (varname) will return 1 if the observation is a missing
value, O otherwise.

Christopher F Baum (BC / DIW) Using Stata IMF Institute, Spring 2011 45/120

Data management: principles of organization and transformation Missing data handling

Missing data handling

An issue that often arises when importing data from external sources
is the proper handling of missing data codes. Spreadsheet files often
use NA to denote missing values, while in some datasets codes such
as -9, -999,or-0.001 are used. The latter instances are
particularly worrisome as they may not be detected unless the
variables’ values are carefully scrutinized.

Note also that there is a missing value for string variables—the null, or
zero-length string—which looks identical to a string of one or more
space characters.

Christopher F Baum (BC / DIW) Using Stata IMF Institute, Spring 2011 46 /120

Data management: principles of organization and transformation Missing data handling

To properly handle missing values so that they are understood as such
In Stata, use the mvdecode command. This command allows you to
map various numeric values into numeric missing, or into one of the
extended missing value codes .a, .b, ..., .z.

The mvencode command provides the inverse operation: particularly
useful if you must transfer data to another package that uses some
other convention for missing values.

Christopher F Baum (BC / DIW) Using Stata IMF Institute, Spring 2011 47 /120

Data management: principles of organization and transformation Missing data handling

No matter what methods you have used to input external data to the
Stata workspace, you should immediately save the file in Stata format
and perform the describe and summarize commands. It is much
more efficient to read a Stata-format . dta file with use than to
repeatedly input a text file with any of the commands discussed above.
If the file is large, you may want to use the compress command to
optimise Stata’s memory usage before saving it. compress is
non-destructive; it never reduces the stored precision of a variable.

Before any further use is made of this datafile, examine the results of
the describe and summarize commands and ensure that each
variable has been input properly, and that numeric variables have
sensible values for their minima and maxima.

Christopher F Baum (BC / DIW) Using Stata IMF Institute, Spring 2011 48 /120

Data management: principles of organization and transformation Display formats

Display formats

Each variable may have its own default display format. This does not
alter the contents of the variable, but only affects how it is displayed.
For instance, $9.2f would display a two-decimal-place real number.
The command

format varname %9.2f
will save that format as the default format of the variable, and
format date Stm

will format a Stata date variable into a monthly format (e.g., 1998m10).

Christopher F Baum (BC / DIW) Using Stata IMF Institute, Spring 2011 49/120

Data management: principles of organization and transformation Variable labels

Variable labels

Each variable may have its own variable label. The variable label is a
character string (maximum 80 characters) which describes the
variable, associated with the variable via

label wvariable varname "text"

Variable labels, where defined, will be used to identify the variable in
printed output, space permitting.

Christopher F Baum (BC / DIW) Using Stata IMF Institute, Spring 2011 50/120

Data management: principles of organization and transformation Value labels

Value labels

Value labels associate numeric values with character strings. They
exist separately from variables, so that the same mapping of numerics
to their definitions can be defined once and applied to a set of
variables (e.g. 1=very satisfied...5=not satisfied may be applied to all
responses to questions about consumer satisfaction). Value labels are
saved in the dataset. For example:

label define sexlbl 0 male 1 female
label values sex sexlbl

The latter command associates the label sex1bl with the variable
sex. Unlike other packages, Stata’s value labels are independent of
variables, and the same label may be attached to any number of
variables. If value labels are defined, they will be displayed in printed
output instead of the numeric values.

Christopher F Baum (BC / DIW) Using Stata IMF Institute, Spring 2011 51/120

Data management: principles of organization and transformation The by prefix

The by prefix

You can often save time and effort by using the by prefix. When a
command is prefixed with a bylist, it is performed repeatedly for each
element of the variable or variables in that list, each of which must be
categorical. You may try it out:

Sysuse Ccensus

by region: summ pop medage

will provide descriptive statistics for each of four US Census regions. If
the data are not already sorted by the bylist variables, the prefix
bysort should be used. The option , total will add the overall
summary.

Christopher F Baum (BC / DIW) Using Stata IMF Institute, Spring 2011 52/120

Data management: principles of organization and transformation The by prefix

This can be extended to include more than one by-variable:

generate large = (pop > 5000000) & !mi (pop)
bysort region large: summ popurban death

This is a very handy tool, which often replaces explicit loops that must
be used in other programs to achieve the same end.

The by-group logic will work properly even when some of the defined
groups have no observations. However, its limitation is that it can only
execute a single command for each category. If you want to estimate a
regression for each group and save the residuals or predicted values,
you must use an explicit loop.

Christopher F Baum (BC / DIW) Using Stata IMF Institute, Spring 2011 53/120

Data management: principles of organization and transformation The by prefix

The by prefix should not be confused with the by option available on
some commands, which allows for specification of a grouping variable:
for instance

ttest price, by (foreign)

will run a t-test for the difference of sample means across domestic
and foreign cars.

Another useful aspect of by is the way in which it modifies the
meanings of the observation number symbol. Usually _n refers to the
current observation number, which varies from 1 to _ N, the maximum
defined observation. Under a bylist, n refers to the observation within
the bylist, and _ N to the total number of observations for that category.
This is often useful in creating new variables.

Christopher F Baum (BC / DIW) Using Stata IMF Institute, Spring 2011 54 /120

Data management: principles of organization and transformation The by prefix

For instance, if you have individual data with a family identifier, these
commands might be useful:

sort famid age
by famid: generate famsize = _N
by famid: generate birthorder = _N - _n +1

Here the famsize variable is set to N, the total number of records for
that family, while the birthorder variable is generated by sorting the
family members’ ages within each family.

Christopher F Baum (BC / DIW) Using Stata IMF Institute, Spring 2011 55/ 120

Data management: principles of organization and transformation Generating new variables

Generating new variables

The command generate is used to produce new variables in the
dataset, whereas replace must be used to revise an existing
variable—and the command replace must always be spelled out.

A full set of functions are available for use in the generate command,
including the standard mathematical functions, recode functions, string
functions, date and time functions, and specialized functions (help
functions for details). Note that generate’s sum () functionis a
running or cumulative sum.

Christopher F Baum (BC / DIW) Using Stata IMF Institute, Spring 2011 56 /120

Data management: principles of organization and transformation Generating new variables

As mentioned earlier, generate operates on all observations in the
current data set, producing a result or a missing value for each. You
need not write explicit loops over the observations. You can, but it is
usually bad programming practice to do so. You may restrict
generate Or replace to operate on a subset of the observations
with the i f exp or in range qualifiers.

The if exp qualifier is usually more useful, but the in range qualifier
may be used to list a few observations of the data to examine their
validity. To list observations at the end of the current data set,

use if -5//to see the last five.

Christopher F Baum (BC / DIW) Using Stata IMF Institute, Spring 2011 57 /120

Data management: principles of organization and transformation Generating new variables

You can take advantage of the fact that the exp specified in generate
may be a logical condition rather than a numeric or string value. This
allows producing both the Os and 1s of an indicator (dummy, or
Boolean) variable in one command. For instance:

generate large = (pop > 5000000) & !mi (pop)

The condition & !mi (pop) mMakes use of two logical operators: &,
AND, and !, NOT to add the qualifier that the result variable should be
missing if pop Is missing, using the mi () function. Although numeric
functions of missing values are usually missing, creation of an
indicator variable requires this additional step for safety.

The third logical operator is the Boolean OR, written as |. Note also
that a test for equality is specified with the == operator (as in C). The
single = is used only for assignment.

Christopher F Baum (BC / DIW) Using Stata IMF Institute, Spring 2011 58/120

Data management: principles of organization and transformation Generating new variables

Keep in mind the important difference between the i £ exp qualifier
and the if (or ‘programmer’s if) command. Users of some alternative
software may be tempted to use a construct such as

1f (race == "Black") {

raceid = 2

which is perfectly valid syntactically. It is also useless, in that it will
define the entire raceid variable based on the value of race of the
first observation in the data set! This is properly written in Stata as

generate raceid = 2 1f race == "Black"

Christopher F Baum (BC / DIW) Using Stata IMF Institute, Spring 2011 59/ 120

Data management: principles of organization and transformation Functions for generate, replace

Functions for generate and replace

A number of lesser-known functions may be helpful in performing data
transformations. For instance, the inlist () and inrange ()
functions return an indicator of whether each observation meets a
certain condition: matching a value from a list or lying in a particular
range.

generate byte newengland = ///
inlist(state, "CT"’ HME", HMA", HNH", "RI", "VT")

generate byte middleage = inrange (age, 35, 49)

The generated variables will take a value of 1 if the condition is met
and 0 if it is not. To guard against definition of missing values of state
or age, add the clause if 'missing (varname):

generate byte middleage = inrange(age, 35, 49) if !mi (age)

Christopher F Baum (BC / DIW) Using Stata IMF Institute, Spring 2011 60/120

Data management: principles of organization and transformation Functions for generate, replace

Another common data manipulation task involves extracting a part of
an integer variable. For instance, firms in the US are classified by
four-digit Standard Industrial Classification (SIC) codes. The first two
digits represent an industrial sector. To define an industry variable
from the firm’s SIC,

generate ind2d = int (SIC/100)

To extract the third and fourth digits, you could use

generate code34 = mod(SIC, 100)

using the modulo function to produce the remainder.

Christopher F Baum (BC / DIW) Using Stata IMF Institute, Spring 2011 61/120

Data management: principles of organization and transformation Functions for generate, replace

The cond () function may often be used to avoid more complicated
coding. It evaluates its first argument, and returns the second
argument if true, the third argument if false:

generate endgtr = cond(mod(month, 3) == 0, ///
"Filing month", "Non-filing month")

Notice that in this example the endgt r variable need not be defined
as string in the generate statement.

Christopher F Baum (BC / DIW) Using Stata IMF Institute, Spring 2011 62 /120

Data management: principles of organization and transformation Functions for generate, replace

Stata contains both a recode command and a recode () function.
These facilities may be used in lieu of a number of generate and
replace statements. There is also a i recode function to create a
numeric code for values of a continuous variable falling in particular
brackets. For example, using a dataset containing population and
median age for a number of US states:

Christopher F Baum (BC / DIW) Using Stata IMF Institute, Spring 2011 63/ 120

Data management: principles of organization and transformation

generate size=irecode (pop,

label define popsize 0

label values size popsize

tabstat pop,

Summary for variables: pop
by categories of: size

1000, 4000, 8000,

"<lm" l "1_4m" 2 "4_8m" 3 ">8m"

stat (mean min max) by (size)

size mean min max

<Ilm 744,541 511.4506 947.154

1-4m 2215.91 1124.66 3107.576

4—-8m 5381.751 4075.97 7364.823

>8m 12181.64 9262.078 17558.07

Total 5142.903 511.456 17558.07
Christopher F Baum (BC / DIW) Using Stata

Functions for generate, replace

20000)

IMF Institute, Spring 2011

64 /120

Data management: principles of organization and transformation Functions for generate, replace

Rather than categorizing a continuous variable using threshold values,
we may want to group observations based on quantiles: quartiles,
quintiles, deciles, or any other percentiles of their empirical distribution.
We can readily create groupings of that sort with xtile:

. xtile medagequart = medage, ng(4)

. tabstat medage, stat(n mean min max) by (medagequart)

Summary for variables: medage

by categories of: medagequart (4 quantiles of medage)

medagequart N mean min max
1 7 29.02857 28.3 29.4

2 4 29.875 29.7 30

3 5 30.54 30.1 31.2

4 5 32 31.8 32.2

Total 21 30.25714 28.3 32.2

Christopher F Baum (BC / DIW) Using Stata

IMF Institute, Spring 2011 65 /120

Data management: principles of organization and transformation String-to-numeric conversion and vice versa

String-to-numeric conversion

A problem that commonly arises with data transferred from
spreadsheets is the automatic classification of a variable as string
rather than numeric. This often happens if the first value of such a
variable is N&, denoting a missing value. If Stata’s convention for
numeric missings—the dot, or full stop (.) is used, this will not occur. If

one or more variables are misclassified as string, how can they be
modified?

First, a warning. Do not try to maintain long numeric codes (such as
US Social Security numbers, with nine digits) in numeric form, as they

will generally be rounded off. Treat them as string variables, which may
contain up to 244 bytes.

Christopher F Baum (BC / DIW) Using Stata IMF Institute, Spring 2011 66 /120

Data management: principles of organization and transformation String-to-numeric conversion and vice versa

If a variable has merely been misclassified as string, the brute-force
approach can be used:

generate patid = real(patientid)

Any values of patientid that cannot be interpreted as numeric will
be missing in patid. Note that this will also occur if numbers are
stored with commas separating thousands.

Christopher F Baum (BC / DIW) Using Stata IMF Institute, Spring 2011 67 /120

Data management: principles of organization and transformation String-to-numeric conversion and vice versa

A more subtle approach is given by the destring command, which
can transform variables in place (with the replace option) and can be
used with a varlist to apply the same transformation to a set of
variables. Like the real () function, destring should only be used
on variables misclassified as strings.

If the variable truly has string content and you need a numeric
equivalent, for statistical analysis, you may use encode on the
variable. To illustrate, let us read in some tab-delimited data with

insheet.

Christopher F Baum (BC / DIW) Using Stata IMF Institute, Spring 2011 68/ 120

Data management: principles of organization and transformation String-to-numeric conversion and vice versa

. insheet using insheetdata.txt
(4 vars, 7 obs)

. format pop2008 %7.3f

. list, sep(@)

state abbrev vyearjo~d pop2008
1. | Massachusetts MA 1788 6.498
2. | New Hampshire NH 1788 1.316
3. Vermont vT 1791 0.621
4, New Jersey NJ 1787 8.683
5. Michigan MI 1837 10.003
6. Arizona AZ 1912 6.500
7. Alaska AK 1959 0.686

As the data are tab-delimited, | can read a file with embedded spaces
in the state variable.

Christopher F Baum (BC / DIW) Using Stata IMF Institute, Spring 2011 69 /120

Data management: principles of organization and transformation String-to-numeric conversion and vice versa

| want to create a categorical variable identifying each state with an
(arbitrary) numeric code. This can be achieved with encode:

. encode state, generate(stid)

. list state stid, sep(0)

state stid
1. Massachusetts Massachusetts
2. | New Hampshire New Hampshire
3. Vermont Vermont
4. New Jersey New Jersey
5. Michigan Michigan
6. Arizona Arizona
7. Alaska Alaska

. summarize stid

Variable Obs Mean Std. Dev. Min Max

stid 7 4 2.160247 1 7

Christopher F Baum (BC / DIW) Using Stata IMF Institute, Spring 2011 70/120

Data management: principles of organization and transformation String-to-numeric conversion and vice versa

Although st id is a numeric variable (as summarize shows) it is
automatically assigned a value label consisting of the contents of
state. The variable stid may now be used in analyses requiring
numeric variables.

You may also want to make a variable into a string (for instance, to
reinstate leading zeros in an id code variable). You may use the
string () function, the tostring command or the decode
command to perform this operation.

Christopher F Baum (BC / DIW) Using Stata IMF Institute, Spring 2011 71/120

Data management: principles of organization and transformation The egen command

The egen command

Stata is not limited to using the set of defined generate functions.
The egen (extended generate) command makes use of functions
written in the Stata ado-file language, so that _gzap.ado would define
the extended generate function zap () . This would then be invoked as

egen newvar = zap (oldvar)

which would do whatever zap does on the contents of oldvar,
creating the new variable newvar.

A number of egen functions provide row-wise operations similar to
those available in a spreadsheet: row sum, row average, row standard
deviation, and so on. Users may write their own egen functions. In
particular, findit egenmore for a very useful collection.

Christopher F Baum (BC / DIW) Using Stata IMF Institute, Spring 2011 72 /120

Data management: principles of organization and transformation The egen command

Although the syntax of an egen statement is very similar to that of
generate, several differences should be noted. As only a subset of
egen functions allow a by varlist: prefix or by (varlist) option, the
documentation should be consulted to determine whether a particular
function is byable, in Stata parlance. Similarly, the explicit use of _n
and _N, often useful in generate and replace commands is not
compatible with egen.

Christopher F Baum (BC / DIW) Using Stata IMF Institute, Spring 2011 73/120

Data management: principles of organization and transformation The egen command

Wildcards may be used in row-wise functions. If you have state-level
U.S. Census variables pop1890, popl900, ..., pop2000 you
may use egen nrCensus = rowmean (pop=) to compute the
average population of each state over those decennial censuses. The
row-wise functions operate in the presence of missing values. The
mean will be computed for all 50 states, although several were not part
of the US in 1890.

Christopher F Baum (BC / DIW) Using Stata IMF Institute, Spring 2011 74 /120

Data management: principles of organization and transformation The egen command

The number of non-missing elements in the row-wise varlist may be
computed with rownonmiss (), with rowmiss () as the
complementary value. Other official row-wise functions include
rowmax (), rowmin (), rowtotal () and rowsd () (row standard
deviation). The functions rowfirst ()and rowlast () give the first
(last) non-missing values in the varlist. You may find this useful if the
variables refer to sequential items: for instance, wages earned per
year over several years, with missing values when unemployed.
rowfirst () would return the earliest wage observation, and
rowlast () the most recent.

Christopher F Baum (BC / DIW) Using Stata IMF Institute, Spring 2011 75/120

Data management: principles of organization and transformation The egen command

Official egen also provides a number of statistical functions which
compute a statistic for specified observations of a variable and place
that constant value in each observation of the new variable. Since
these functions generally allow the use of by varlist:, they may be
used to compute statistics for each by-group of the data. This facilitates
computing statistics for each household for individual-level data or
each industry for firm-level data. The count (), mean (), min (),

max () and total () functions are especially useful in this context.

As an illustration using our state-level data, we egen the average
population in each of the size groups defined above, and express
each state’s population as a percentage of the average population in
that size group. Size category 0 includes the smallest states in our
sample.

Christopher F Baum (BC / DIW) Using Stata IMF Institute, Spring 2011 76 /120

Data management: principles of organization and transformation The egen command

bysort size: egen avgpop = mean (pop)
generate popratio = 100 = pop / avgpop
format popratio %7.2f

list state pop avgpop popratio 1f size == 0, sep(0)
state pop avgpop popratio

1. Rhode Island 947 .2 744.541 127.21

2. Vermont 511.5 744 .541 68.69

3. N. Dakota 652.7 744.541 87.67

4. S. Dakota 690.8 744 .541 92.78

5. New Hampshire 920.6 744.541 123.65

Christopher F Baum (BC / DIW) Using Stata IMF Institute, Spring 2011 777120

Data management: principles of organization and transformation The egen command

Other egen functions in this statistical category include igr ()
(inter-quartile range), kurt () (kurtosis), mad () (median absolute
deviation), mdev () (mean absolute deviation), median (), mode (),
pc () (percent or proportion of total), pctile (), p (n) (N
percentile), rank (), sd () (standard deviation), skew () (Sskewness)
and std () (z-score).

Many other egen functions are available; see help egen for details.

Christopher F Baum (BC / DIW) Using Stata IMF Institute, Spring 2011 78 /120

Data management: principles of organization and transformation Time series calendar

Time series calendar

Stata supports date (and time) variables and the creation of a time
series calendar variable. Dates are expressed, as they are in Excel, as
the number of days from a base date. In Stata’s case, that date is

1 Jan 1960 (like Unix/Linux). You may set up data on an annual,
half-yearly, quarterly, monthly, weekly or daily calendar, as well as a
calendar that merely uses the observation number.

You may also set the delta of the calendar variable to be other than
1: for instance, if you have data at five-year intervals, you may define
the data as annual with delta=5. This ensures that the lagged value
of the 2005 observation is that of 2000.

Christopher F Baum (BC / DIW) Using Stata IMF Institute, Spring 2011 79/120

Data management: principles of organization and transformation Time series calendar

An observation-number calendar is generally necessary for
business-daily data where you want to avoid gaps for weekends,
holidays etc. which will cause lagged values and differences to contain
missing values. However, you may want to create two calendar
variables for the same time series data: one for statistical purposes
and one for graphical purposes, which will allow the series to be
graphed with calendar-date labels. This procedure is illustrated in
“Stata Tip 40: Taking care of business...”, Baum, CF. Stata Journal,
2007, 7:1, 137-139, included in your materials.

Christopher F Baum (BC / DIW) Using Stata IMF Institute, Spring 2011 80/120

Data management: principles of organization and transformation Time series calendar

A useful utility for setting the appropriate time series calendar is

t smktim, available from the SSC Archive (ssc describe tsmktim
and described in “Utility for time series data”, Baum, CF and Wiggins,
VL. Stata Technical Bulletin, 2000, 57, 2-4. It will set the calendar,
Issuing the appropriate t sset command and the display format of the
resulting calendar variable, and can be used in a panel data context
where each time series starts in the same calendar period.

Christopher F Baum (BC / DIW) Using Stata IMF Institute, Spring 2011 81/120

Data management: principles of organization and transformation Time series operators

Time series operators

TheD., L.,andF. operators may be used under a time series
calendar (including in the context of panel data) to specify first
differences, lags, and leads, respectively. These operators understand
missing data, and numlists: e.g. L (1/4) . x is the first through fourth
lags of x, while L2D. x is the second lag of the first difference of the x
variable.

It is important to use the time series operators to refer to lagged or led
values, rather than referring to the observation number (e.g., _n-1).
The time series operators respect the time series calendar, and will not
mistakenly compute a lag or difference from a prior period if it is
missing. This is particularly important when working with panel data to
ensure that references to one individual do not reach back into the
prior individual’s data.

Christopher F Baum (BC / DIW) Using Stata IMF Institute, Spring 2011 82/120

Data management: principles of organization and transformation Time series operators

Using time series operators, you may not only consistently generate
differences, lags, and leads, but may refer to them ‘on the fly’ in
statistical and estimation commands. That is, to estimate an AR(4)
model, you need not create the lagged variables:

regress v L(1/4) .y
or, to test Granger causality,
regress y (-4/4) .x

which would regress y; on four leads, four lags and the current value of
Xt.

For a “Dickey—Fuller” style regression,

regress D.y L.y

Christopher F Baum (BC / DIW) Using Stata IMF Institute, Spring 2011 83/ 120

Data management: principles of organization and transformation Factor variables

Factor variables

A valuable new feature in Stata version 11 is the factor variable. Stata
has only one kind of numeric variable (although it supports several
different data types, which define the amount of storage needed and
possible range of values). However, if a variable is categorical, taking
on non-negative integer values, it may be used as a factor variable with
the i. prefix.

The use of factor variables not only avoids explicit generation of
indicator (dummy) variables for each level of the categorical variable,
but it means that the needed indicator variables are generated ‘on the
fly’, as needed. Thus, to include the variable region, a categorical
variable in census.dta which takes on values 1-4, we need only
refer to 1. region in an estimation command.

Christopher F Baum (BC / DIW) Using Stata IMF Institute, Spring 2011 84/120

Data management: principles of organization and transformation Factor variables

This in itself merely mimics a preexisting feature of Stata: the xi :
prefix. But factor variables are much more powerful, in that they can be
used to define interactions, both with other factor variables and with
continuous variables. Traditionally, you would define interactions by
creating new variables representing the product of two indicators, or
the product of an indicator with a continuous variable.

There is a great advantage in using factor variables rather than
creating new interaction variables. if you define interactions with the
factor variable syntax, Stata can then interpret the expression in
postestimation commands such as margins. For instance, you can
say i.race#i.sex,Or i.sex#c.bmi, Or c.bmi#c.bmi, where c.
denotes a continuous variable, and # specifies an interaction.

Christopher F Baum (BC / DIW) Using Stata IMF Institute, Spring 2011 85/120

Data management: principles of organization and transformation Factor variables

With interactions between indicator and continuous variables specified
In this syntax, we can evaluate the total effect of a change without
further programming. For instance,

regress healthscore i.sex#c.bmi c.bmi#c.bmi
margins, dydx(bmi) at(sex = (0 1))

which will perform the calculation of 0healthscore/0bmi for each level
of categorical variable sex, taking into account the squared term in
bmi. We will discuss margins more fully in later talks in this series.

Christopher F Baum (BC / DIW) Using Stata IMF Institute, Spring 2011 86/ 120

Data management: principles of organization and transformation File handling

File handling

File extensions usually employed (but not required) include:

.ado automatic do—-file (defines a Stata command)
.dct data dictionary, optionally used with 1infile
.do do—file (user program)

.dta Stata binary dataset

.gph graphics output file (binary)

. 1log text log file

.smcl SMCL (markup) log file, for use with Viewer
.raw ASCII data f1ile

.sthlp Stata help file

These extensions need not be given (except for . ado). If you use
other extensions, they must be explicitly specified.

Christopher F Baum (BC / DIW) Using Stata IMF Institute, Spring 2011 87 /120

nsheet
Reading external data with insheet

Comma-separated (CSV) files or tab-delimited data files may be read
very easily with the insheet command—which despite its name does
not read spreadsheet files. If your file has variable names in the first
row that are valid for Stata, they will be automatically used (rather than
default variable names). You usually need not specify whether the data
are tab- or comma-delimited. Note that insheet cannot read
space-delimited data (or character strings with embedded spaces,
unless they are quoted).

Christopher F Baum (BC / DIW) Using Stata IMF Institute, Spring 2011 88/120

Reading external data insheet

If the file extension is . raw, you may just use
insheet using fillename
to read it. If other file extensions are used, they must be given:

insheet using filename.csv
insheet using filename.txt

Christopher F Baum (BC / DIW) Using Stata IMF Institute, Spring 2011 89/ 120

nfile
Reading external data with infile

A free-format ASCII text file with space-, tab-, or comma-delimited data
may be read with the infile command. The missing-data indicator
(.) may be used to specify that values are missing.

The command must specify the variable names. Assuming auto.raw
contains numeric data,

infile price mpg displacement using auto

will read it. If a file contains a combination of string and numeric values
In a variable, it should be read as string, and encode used to convert it
to numeric with string value labels.

Christopher F Baum (BC / DIW) Using Stata IMF Institute, Spring 2011 90/120

Reading external data infile

If some of the data are string variables without embedded spaces, they
must be specified in the command:

infile str3 country price mpg displacement using auto?Z

would read a three-letter country of origin code, followed by the
numeric variables. The number of observations will be determined

from the available data.

Christopher F Baum (BC / DIW) Using Stata IMF Institute, Spring 2011 91/120

Reading external data infile

The infile command may also be used with fixed-format data,
iIncluding data containing undelimited string variables, by creating a
dictionary file which describes the format of each variable and
specifies where the data are to be found. The dictionary may also
specify that more than one record in the input file corresponds to a
single observation in the data set.

Sometimes data fields are not delimited—for instance, the sequence
‘102" might actually represent three integer variables. A dictionary
must then be used to define the variables’ locations.

The byvariable () option allows a variable-wise dataset to be read,
where one specifies the number of observations available for each
series.

Christopher F Baum (BC / DIW) Using Stata IMF Institute, Spring 2011 92/120

nfi
Reading external data with infix

An alternative to infile with a dictionary is the infix command, which
presents a syntax similar to that used by SAS for the definition of
variables’ data types and locations in a fixed-format ASCII| data set:
that is, a data file in which certain columns contain certain variables.

The column () directive allow contents of a fixed-format data file to
be retrieved selectively.

infix may also be used for more complex record layouts where one
individual’s data are contained on several records in an ASCI| file.

Christopher F Baum (BC / DIW) Using Stata IMF Institute, Spring 2011 93/120

Reading external data infix

A logical condition may be used on the infile or infix commands
to read only those records for which certain conditions are satisfied:
l.e.

infix using employee 1f sex=="M"
infile price mpg using auto in 1/20

where the latter will read only the first 20 observations from the
external file. This might be very useful when reading a large data set,
where one can check to see that the formats are being properly
specified on a subset of the file.

Christopher F Baum (BC / DIW) Using Stata IMF Institute, Spring 2011 94 /120

Stat/Transier
Reading external data with Stat/Transfer

If your data are already in the internal format of SAS, SPSS, Excel,
GAUSS, MATLAB, or a number of other packages, the best way to get
it into Stata is by using the third-party product Stat/Transfer.

Stat/Transfer will preserve variable labels, value labels, and other
aspects of the data, and can be used to convert a Stata binary file into
other packages’ formats. It can also produce subsets of the data
(selecting variables, cases or both) so as to generate an extract file
that is more manageable. This is particularly important when the
2,047-variable limit on standard Stata data sets is encountered.
Stat/Transfer is well documented, with on-line help available in both
Windows, Mac OS X and Unix versions, and an extensive manual. It is
remarketed by StataCorp.

Christopher F Baum (BC / DIW) Using Stata IMF Institute, Spring 2011 95/120

outile, outsheet and fie
Writing external data: outfile, outsheet and file

If you want to transfer data to another package, Stat/Transfer is very
useful. But if you just want to create an ASCII file from Stata, the
out £ile command may be used. It takes a varlist, and the if or in
clauses may be used to control the observations to be exported.
Applying sort prior to outfile will control the order of observations in
the external file. You may specify that the data are to be written in
comma-separated format.

The out sheet command can write a comma-delimited or
tab-delimited ASCII file, optionally placing the variable names in the
first row. Such a file can be easily read by a spreadsheet program
such as Excel. Note that out sheet does not write spreadsheet files.

For customized output, the £ile command can write out information
(including scalars, matrices and macros, text strings, etc.) in any ASCI|
or binary format of your choosing.

Christopher F Baum (BC / DIW) Using Stata IMF Institute, Spring 2011 96 /120

posiile and post
Writing external data: postfile and post

A very useful capability is provided by the postfile and post
commands, which permit a Stata data set to be created in the course
of a program. For instance, you may be simulating the distribution of a
statistic, fitting a model over separate samples, or bootstrapping
standard errors. Within the looping structure, you may post certain
numeric values to the post file. This will create a separate Stata
binary data set, which may then be opened in a later Stata run and
analysed. Note, however, that only numeric expressions may be
written to the post file, and the parens () given in the
documentation, surrounding each exp, are required.

Christopher F Baum (BC / DIW) Using Stata IMF Institute, Spring 2011 97 /120

append
Combining data sets

In many empirical research projects, the raw data to be utilized are
stored in a number of separate files: separate “waves” of panel data,
timeseries data extracted from different databases, and the like. Stata
only permits a single data set to be accessed at one time. How, then,
do you work with multiple data sets? Several commands are available,
iIncluding append, merge, and joinby.

How, then, do you combine datasets in Stata? First of all, it is
important to understand that at least one of the datasets to be
combined must already have been saved in Stata format. Second, you
should realize that each of Stata’s commands for combining datasets
provides a certain functionality, which should not confused with that of
other commands.

Christopher F Baum (BC / DIW) Using Stata IMF Institute, Spring 2011 98/120

append
The append command

The append command combines two Stata-format data sets that
possess variables in common, adding observations to the existing
variables. The same variables need not be present in both files, as
long as a subset of the variables are common to the “master” and
“using” data sets. It is important to note that “PRICE" and “price” are
different variables, and one will not be appended to the other.

Christopher F Baum (BC / DIW) Using Stata IMF Institute, Spring 2011 99/120

Combining data sets append

You might have a dataset on the demographic characteristics in 2007
of the largest municipalities in China, cityCN. If you were given a
second dataset containing the same variables for the largest
municipalities in Japan in 2007, cityJP, you might want to combine
those datasets with append. With the cityCN dataset in memory, you
would append using cityJP, which would add those records as
additional observations. You could then save the combined file under a
different name. append can be used to combine multiple datasets, so
If you had the additional files cityPH and cityMyY, you could list those
filenames in the using clause as well.

Prior to using append, it is a good idea to create an identifier variable
In each dataset that takes on a constant value: e.g., gen country =
1 in the CN dataset, gen country = 2 inthe JP dataset, etc.

Christopher F Baum (BC / DIW) Using Stata IMF Institute, Spring 2011 100/120

Combining data sets append

For instance, consider the append command with two stylized
datasets:

(id vari var2\
112 : :

dataset] :
216

\ 449 ; ;)

(id varl var2 \
126
dataset2 : | 309
421

\ 604 ; ;)

Christopher F Baum (BC / DIW) Using Stata IMF Institute, Spring 2011 101 /120

Combining data sets append

These two datasets contain the same variables, as they must for
append to sensibly combine them. If dataset2 contained idcode,
Varl, Var2 the two datasets could not sensibly be appended without
renaming the variables (recall that in Stata, var1l and var1 are two
separate variables). Appending these two datasets with common
variable names creates a single dataset containing all of the
observations:

Christopher F Baum (BC / DIW) Using Stata IMF Institute, Spring 2011 102 /120

Combining data sets append

(id vari var2\
112
216
449
126
309
421

\ 604 ; ; J

The rule for append, then, is that if datasets are to be combined, they
should share the same variable names and datatypes (string vs.
numeric). In the above example, if varl in datasetl was a float
while that variable in dataset2 was a string variable, they

could not be appended.

combined :

Christopher F Baum (BC / DIW) Using Stata IMF Institute, Spring 2011 103/120

Combining data sets append

It is permissible to append two datasets with differing variable names in
the sense that dataset2 could also contain an additional variable or

variables (for example, var3, wvar4). The values of those variables in
the observations coming from dataset1 would then be set to missing.

Some care must be taken when appending datasets in which the same
variable may exist with different data types (string in one, numeric in
another). For details, see “Stata tip 73: append with care!”, Baum CF,
Stata Journal, 2008, 9:1, 166-168, included in your materials.

Christopher F Baum (BC / DIW) Using Stata IMF Institute, Spring 2011 104 /120

merge
The merge command

We now describe the merge command, which is Stata’s basic tool for
working with more than one dataset. lts syntax has changed
considerably in Stata version 11.

The merge command takes a first argument indicating whether you are
performing a one-to-one, many-to-one, one-to-many or many-to-many
merge using specified key variables. It can also perform a one-to-one
merge by observation.

Christopher F Baum (BC / DIW) Using Stata IMF Institute, Spring 2011 105/120

Combining data sets merge

Like the append command, the merge works on a “master”
dataset—the current contents of memory—and a single “using”
dataset (prior to Stata 11, you could specify multiple using datasets).
One or more key variables are specified, and in Stata 11 you need not
sort either dataset prior to merging.

The distinction between “master” and “using” is important. When the
same variable is present in each of the files, Stata’s default behavior is
to hold the master data inviolate and discard the using dataset’s copy
of that variable. This may be modified by the update option, which
specifies that non-missing values in the using dataset should replace
missing values in the master, and the even stronger update
replace, which specifies that non-missing values in the using dataset
should take precedence.

Christopher F Baum (BC / DIW) Using Stata IMF Institute, Spring 2011 106 /120

Combining data sets merge

A “one-to-one’ merge (written merge 1 :1) specifies that each record
In the using data set is to be combined with one record in the master
data set. This would be appropriate if you acquired additional variables
for the same observations.

In any use of merge, a new variable, _merge, takes on integer values
iIndicating whether an observation appears in the master only, the
using only, or appears in both. This may be used to determine whether
the merge has been successful, or to remove those observations
which remain unmatched (e.g. merging a set of households from
different cities with a comprehensive list of postal codes; one would
then discard all the unused postal code records). The _merge variable
must be dropped before another merge is performed on this data set.

Christopher F Baum (BC / DIW) Using Stata IMF Institute, Spring 2011 107 /120

Combining data sets merge

Consider these two stylized datasets:

(id var1 var2\
112 :
216

\ 449 ; ;)

dataset] :

(id var22 vardd vard6 \
112 : : :
216

\ 449 ; ; ;)

dataset3 :

Christopher F Baum (BC / DIW) Using Stata IMF Institute, Spring 2011 108 /120

Combining data sets merge

We may merge these datasets on the common merge key: in this

case, the id variable:

combined :

(id
112
216

\ 449

Christopher F Baum (BC / DIW)

varl var2 var22 var44 vard6 \

Using Stata

IMF Institute, Spring 2011

109 /120

Combining data sets merge

The rule for merge, then, is that if datasets are to be combined on one
or more merge keys, they each must have one or more variables with a
common name and datatype (string vs. numeric). In the example
above, each dataset must have a variable named id. That variable can
be numeric or string, but that characteristic of the merge key variables
must match across the datasets to be merged. Of course, we need not
have exactly the same observations in each dataset: if dataset3
contained observations with additional id values, those observations
would be merged with missing values for varl and var?2.

This is the simplest kind of merge: the one-fo-one merge. Stata
supports several other types of merges. But the key concept should be
clear: the merge command combines datasets “horizontally”, adding
variables’ values to existing observations.

Christopher F Baum (BC / DIW) Using Stata IMF Institute, Spring 2011 110/120

Combining data sets Match merge

The merge command can also do a “many-to-one™ or “one-to-many”
merge. For instance, you might have a dataset named hospitals
and a dataset named discharges, both of which contain a hospital
ID variable hospid. If you had the hospitals dataset in memory,
you could merge 1:m hospid using discharges to match each
hospital with its prior patients. If you had the discharges dataset in
memory, you could merge m:1 hospid using hospitals to add
the hospital characteristics to each discharge record. This is a very
useful technique to combine aggregate data with disaggregate data
without dealing with the details.

Although “many-to-one™ or “one-to-many” merges are commonplace
and very useful, you should rarely want to do a “many-to-many” (m:m)
merge, which will yield seemingly random results.

Christopher F Baum (BC / DIW) Using Stata IMF Institute, Spring 2011 111/120

Combining data sets Match merge

The long-form dataset is very useful if you want to add aggregate-level
information to individual records. For instance, we may have panel
data for a number of companies for several years. We may want to
attach various macro indicators (interest rate, GDP growth rate, etc.)
that vary by year but not by company. We would place those macro
variables into a dataset, indexed by year, and sort it by year.

We could then use the firm-level panel dataset and sort it by year. A
merge command can then add the appropriate macro variables to
each instance of year. This use of merge is known as a one-to-many
match merge, where the year variable is the merge key.

Note that the merge key may contain several variables: we might have
iInformation specific to industry and year that should be merged onto
each firm’s observations.

Christopher F Baum (BC / DIW) Using Stata IMF Institute, Spring 2011 112/120

Reconfiguring data sets

Data are often provided in a different orientation than that required for
statistical analysis. The most common example of this occurs with
panel, or longitudinal, data, in which each observation conceptually
has both cross-section (i) and time-series (t) subscripts. Often one will
want to work with a “pure” cross-section or “pure” time-series. If the
microdata themselves are the objects of analysis, this can be handled
with sorting and a loop structure. If you have data for N firms for T
periods per firm, and want to fit the same model to each firm, one
could use the stat sby command, or if more complex processing of
each model’s results was required, a foreach block could be used. If
analysis of a cross-section was desired, a bysort would do the job.

Christopher F Baum (BC / DIW) Using Stata IMF Institute, Spring 2011 113/120

Reconfiguring data sets collapse

But what if you want to use average values for each time period,
averaged over firms? The resulting dataset of T observations can be
easily created by the collapse command, which permits you to
generate a new data set comprised of summary statistics of specified
variables. More than one summary statistic can be generated per input
variable, so that both the number of firms per period and the average
return on assets could be generated. collapse can produce counts,
means, medians, percentiles, extrema, and standard deviations.

Christopher F Baum (BC / DIW) Using Stata IMF Institute, Spring 2011 114 /120

Reconfiguring data sets reshape

Different models applied to longitudinal data require different
orientations of those data. For instance, seemingly unrelated
regressions (sureg) require the data to have T observations (“wide”),
with separate variables for each cross—sectional unit. Fixed—effects or
random-effects regression models xt reg, on the other hand, require
that the data be stacked or “vec”d in the “long” format. It is usually
much easier to generate transformations of the data in stacked format,
where a single variable is involved.

The reshape command allows you to transfer the data from the
former (“wide”) format to the latter (“long”) format or vice versa. It is a
complicated command, because of the many variations on this
process one might encounter, but it is very powerful.

Christopher F Baum (BC / DIW) Using Stata IMF Institute, Spring 2011 115/120

Reconfiguring data sets reshape

When data have more than one identifier per record, they may be
organized in different ways. For instance, it is common to find on-line
displays or downloadable spreadsheets of data for individual units—for
instance, U.S. states—with the unit’s name labeling the row and the
year labeling the column. If these data were brought into Stata in this
form, they would be in the wide form, wide form with the same
measurement (population) for different years denoted as separate

Stata variables:

. 1list, noobs

state propl990 popl995 prop2000
CT 3291967 3324144 3411750
MA 6022639 6141445 6362076
RI 1005995 1017002 1050664
Christopher F Baum (BC / DIW) Using Stata

IMF Institute, Spring 2011 116 /120

Reconfiguring data sets reshape

There are a number of Stata commands—such as egen row-wise
functions—which work effectively on data stored in the wide form. It
may also be a useful form of data organization for producing graphs.

Alternatively, we can imagine stacking each year’s population figures
from this display into one variable, pop. In this format, known in Stata
as the long form, each datum is identified by two variables: the state
name and the year to which it pertains.

Christopher F Baum (BC / DIW) Using Stata IMF Institute, Spring 2011 117 /120

Reconfiguring data sets reshape

We use reshape to transform the data, indicating that state should
be the main row identifier (i) with year as the secondary identifier (7):

reshape long pop, 1i(state) 7J(year)

list, noobs sepby(state)

state year pop

CT 1990 3291967
CT 1995 3324144
CT 2000 3411750

MA 1990 6022639
MA 1995 6141445
MA 2000 6362076

RI 1990 1005995
RI 1995 1017002
RI 2000 1050664

Christopher F Baum (BC / DIW) Using Stata IMF Institute, Spring 2011 118 /120

Reconfiguring data sets reshape

This data structure is required for many of Stata’s statistical
commands, such as the xt suite of panel data commands. The long
form is also very useful for data management using by-groups and the
computation of statistics at the individual level, often implemented with
the collapse command.

Inevitably, you will acquire data (either raw data or Stata datasets) that
are stored in either the wide or the long form and will find that
translation to the other format is necessary to carry out your analysis.
In statistical packages lacking a data-reshape feature, common
practice entails writing the data to one or more external text files and
reading it back in.

Christopher F Baum (BC / DIW) Using Stata IMF Institute, Spring 2011 119/120

Reconfiguring data sets reshape

With the proper use of reshape, writing data out and reading them
back in is not necessary in Stata. But reshape requires, first of all,
that the data to be reshaped are labelled in such a way that they can
be handled by the mechanical rules that the command applies. In
situations beyond the simple application of reshape, it may require
some experimentation to construct the appropriate command syntax.
This is all the more reason for enshrining that code in a do-file as some
day you are likely to come upon a similar application for reshape.

An illustration of advanced use of reshape on data from International
Financial Statistics is provided in Baum CF, Cox NJ, “Stata tip 45:
Getting those data into shape,” Stata Journal, 2007, 7, 268271,
included in your materials.

Christopher F Baum (BC / DIW) Using Stata IMF Institute, Spring 2011 120/120

	Overview of the Stata environment
	Portability
	Stata's user interface
	Using the Do-File Editor
	The help system
	Stata's update facility
	Extensibility

	Working with the command line
	Stata command syntax
	Command template
	Programmability of tasks
	Local macros and scalars
	forvalues and foreach
	Prefix commands

	Data management: principles of organization and transformation
	Missing values
	Missing data handling
	Display formats
	Variable labels
	Value labels
	The by prefix
	Generating new variables
	Functions for generate, replace
	String-to-numeric conversion and vice versa
	The egen command
	Time series calendar
	Time series operators
	Factor variables
	File handling

	Reading external data
	 insheet
	infile
	infix
	Stat/Transfer

	 Writing external data
	outfile, outsheet and file
	postfile and post

	Combining data sets
	append
	merge
	Match merge

	Reconfiguring data sets
	 collapse
	reshape

