
Panel data management, estimation and forecasting

Christopher F Baum

Boston College and DIW Berlin

IMF Institute, Spring 2011

Christopher F Baum (BC / DIW) Panel data models IMF Institute, Spring 2011 1 / 105



Panel data analysis Forms of panel data

Forms of panel data

To define the problems of panel data management, consider a dataset
in which each variable contains information on N panel units, each with
T time-series observations. The second dimension of panel data need
not be calendar time, but many estimation techniques assume that it
can be treated as such, so that operations such as first differencing
make sense.

These data may be commonly stored in either the long form or the
wide form, in Stata parlance. In the long form, each observation has
both an i and t subscript.
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Panel data analysis Forms of panel data

Long form data:

. list, noobs sepby(state)

state year pop

CT 1990 3291967
CT 1995 3324144
CT 2000 3411750

MA 1990 6022639
MA 1995 6141445
MA 2000 6362076

RI 1990 1005995
RI 1995 1017002
RI 2000 1050664
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Panel data analysis Forms of panel data

However, you often encounter data in the wide form, in which different
variables (or columns of the data matrix) refer to different time periods.

Wide form data:

. list, noobs

state pop1990 pop1995 pop2000

CT 3291967 3324144 3411750
MA 6022639 6141445 6362076
RI 1005995 1017002 1050664

In a variant on this theme, the wide form data could also index the
observations by the time period, and have the same measurement for
different units stored in different variables.
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Panel data analysis Forms of panel data

The former kind of wide-form data, where time periods are arrayed
across the columns, is often found in spreadsheets or on-line data
sources.

These examples illustrate a balanced panel, where each unit is
represented in each time period. That is often not available, as
different units may enter and leave the sample in different periods
(companies may start operations or liquidate, household members may
die, etc.) In those cases, we must deal with unbalanced panels. Stata’s
data transformation commands are uniquely handy in that context.
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The reshape command

The solution to this problem is Stata’s reshape command, an
immensely powerful tool for reformulating a dataset in memory without
recourse to external files. In statistical packages lacking a
data-reshape feature, common practice entails writing the data to one
or more external text files and reading it back in. With the proper use
of reshape, this is not necessary in Stata. But reshape requires, first
of all, that the data to be reshaped are labelled in such a way that they
can be handled by the mechanical rules that the command applies.

In situations beyond the simple application of reshape, it may require
some experimentation to construct the appropriate command syntax.
This is all the more reason for enshrining that code in a do-file as some
day you are likely to come upon a similar application for reshape.
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Panel data analysis The reshape command

The reshape command works with the notion of xi,j data. Its syntax
lists the variables to be stacked up, and specifies the i and j variables,
where the i variable indexes the rows and the j variable indexes the
columns in the existing form of the data. If we have a dataset in the
wide form, with time periods incorporated in the variable names, we
could use

. reshape long expp revpp avgsal math4score math7score, i(distid) j(year)
(note: j = 1992 1994 1996 1998)

Data wide -> long

Number of obs. 550 -> 2200
Number of variables 21 -> 7
j variable (4 values) -> year
xij variables:

expp1992 expp1994 ... expp1998 -> expp
revpp1992 revpp1994 ... revpp1998 -> revpp

avgsal1992 avgsal1994 ... avgsal1998 -> avgsal
math4score1992 math4score1994 ... math4score1998->math4score
math7score1992 math7score1994 ... math7score1998->math7score
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You use reshape long because the data are in the wide form and
we want to place them in the long form. You provide the variable
names to be stacked without their common suffixes: in this case, the
year embedded in their wide-form variable name. The i variable is
distid and the j variable is year: together, those variables uniquely
identify each measurement.

Stata’s description of reshape speaks of i defining a unique
observation and j defining a subobservation logically related to that
observation. Any additional variables that do not vary over j are not
specified in the reshape statement, as they will be automatically
replicated for each j .
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What if you wanted to reverse the process, and reshape the data from
the long to the wide form?

. reshape wide expp revpp avgsal math4score math7score, i(distid) j(year)
(note: j = 1992 1994 1996 1998)

Data long -> wide

Number of obs. 2200 -> 550
Number of variables 7 -> 21
j variable (4 values) year -> (dropped)
xij variables:

expp -> expp1992 expp1994 ... expp1998
revpp -> revpp1992 revpp1994 ... revpp199

> 8
avgsal -> avgsal1992 avgsal1994 ... avgsal

> 1998
math4score -> math4score1992 math4score1994 ..

> . math4score1998
math7score -> math7score1992 math7score1994 ..

> . math7score1998
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Panel data analysis The reshape command

This example highlights the importance of having appropriate variable
names for reshape. If our wide-form dataset contained the variables
expp1992, Expen94, xpend_96 and expstu1998 there would be
no way to specify the common stub labeling the choices. However, one
common case can be handled without the renaming of variables. Say
that we have the variables exp92pp, exp94pp, exp96pp,
exp98pp. The command

reshape long exp@pp, i(distid) j(year)

will deal with that case, with the @ as a placeholder for the location of
the j component of the variable name.
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Estimation for panel data

We first consider estimation of models that satisfy the zero conditional
mean assumption for OLS regression: that is, the conditional mean of
the error process, conditioned on the regressors, is zero. This does not
rule out non-i .i .d . errors, but it does rule out endogeneity of the
regressors and, generally, the presence of lagged dependent
variables. We will deal with these exceptions later.

The most commonly employed model for panel data, the fixed effects
estimator, addresses the issue that no matter how many
individual-specific factors you may include in the regressor list, there
may be unobserved heterogeneity in a pooled OLS model. This will
generally cause OLS estimates to be biased and inconsistent.
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Panel data analysis Estimation for panel data

Given longitudinal data {y X }, each element of which has two
subscripts: the unit identifier i and the time identifier t , we may define a
number of models that arise from the most general linear
representation:

yit =
K∑

k=1

Xkitβkit + εit , i = 1,N, t = 1,T (1)

Assume a balanced panel of N × T observations. Since this model
contains K × N × T regression coefficients, it cannot be estimated
from the data. We could ignore the nature of the panel data and apply
pooled ordinary least squares, which would assume that
βkit = βk ∀ k , i , t , but that model might be viewed as overly restrictive
and is likely to have a very complicated error process (e.g.,
heteroskedasticity across panel units, serial correlation within panel
units, and so forth). Thus the pooled OLS solution is not often
considered to be practical.
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Panel data analysis Estimation for panel data

One set of panel data estimators allow for heterogeneity across panel
units (and possibly across time), but confine that heterogeneity to the
intercept terms of the relationship. These techniques, the fixed effects
and random effects models, we consider below. They impose
restrictions on the model above of βkit = βk ∀i , t , k > 1, assuming that
β1 refers to the constant term in the relationship.
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The fixed effects estimator

The general structure above may be restricted to allow for
heterogeneity across units without the full generality (and infeasibility)
that this equation implies. In particular, we might restrict the slope
coefficients to be constant over both units and time, and allow for an
intercept coefficient that varies by unit or by time. For a given
observation, an intercept varying over units results in the structure:

yit =
K∑

k=2

Xkitβk + ui + εit (2)
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Panel data analysis The fixed effects estimator

There are two interpretations of ui in this context: as a parameter to be
estimated in the model (a so-called fixed effect) or alternatively, as a
component of the disturbance process, giving rise to a composite error
term [ui + εit ]: a so-called random effect. Under either interpretation, ui
is taken as a random variable.

If we treat it as a fixed effect, we assume that the ui may be correlated
with some of the regressors in the model. The fixed-effects estimator
removes the fixed-effects parameters from the estimator to cope with
this incidental parameter problem, which implies that all inference is
conditional on the fixed effects in the sample. Use of the random
effects model implies additional orthogonality conditions—that the ui
are not correlated with the regressors—and yields inference about the
underlying population that is not conditional on the fixed effects in our
sample.

Christopher F Baum (BC / DIW) Panel data models IMF Institute, Spring 2011 15 / 105



Panel data analysis The fixed effects estimator

We could treat a time-varying intercept term similarly: as either a fixed
effect (giving rise to an additional coefficient) or as a component of a
composite error term. We concentrate here on so-called one-way fixed
(random) effects models in which only the individual effect is
considered in the “large N, small T ” context most commonly found in
economic and financial research.

Stata’s set of xt commands include those which extend these panel
data models in a variety of ways. For more information, see help xt.
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One-way fixed effects: the within estimator

Rewrite the equation to express the individual effect ui as

yit = X ∗it β
∗ + Ziα + εit (3)

In this context, the X ∗ matrix does not contain a units vector. The
heterogeneity or individual effect is captured by Z , which contains a
constant term and possibly a number of other individual-specific
factors. Likewise, β∗ contains β2 . . . βK from the equation above,
constrained to be equal over i and t . If Z contains only a units vector,
then pooled OLS is a consistent and efficient estimator of [β∗ α].
However, it will often be the case that there are additional factors
specific to the individual unit that must be taken into account, and
omitting those variables from Z will cause the equation to be
misspecified.
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Panel data analysis The fixed effects estimator

The fixed effects model deals with this problem by relaxing the
assumption that the regression function is constant over time and
space in a very modest way. A one-way fixed effects model permits
each cross-sectional unit to have its own constant term while the slope
estimates (β∗) are constrained across units, as is the σ2

ε . This
estimator is often termed the LSDV (least-squares dummy variable)
model, since it is equivalent to including (N − 1) dummy variables in
the OLS regression of y on X (including a units vector). The LSDV
model may be written in matrix form as:

y = Xβ + Dα + ε (4)

where D is a NT × N matrix of dummy variables di (assuming a
balanced panel of N × T observations).
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Panel data analysis The fixed effects estimator

The model has (K − 1) + N parameters (recalling that the β∗

coefficients are all slopes) and when this number is too large to permit
estimation, we rewrite the least squares solution as

b = (X ′MDX )−1(X ′MDy) (5)

where
MD = I − D(D′D)−1D′ (6)

is an idempotent matrix which is block–diagonal in M0 = IT − T−1ιι′ (ι
a T –element units vector).

Premultiplying any data vector by M0 performs the demeaning
transformation: if we have a T –vector Zi , M0Zi = Zi − Z̄i ι. The
regression above estimates the slopes by the projection of demeaned
y on demeaned X without a constant term.
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Panel data analysis The fixed effects estimator

The estimates ai may be recovered from ai = ȳi − b′X̄i , since for each
unit, the regression surface passes through that unit’s multivariate
point of means. This is a generalization of the OLS result that in a
model with a constant term the regression surface passes through the
entire sample’s multivariate point of means.

The large-sample VCE of b is s2[X ′MDX ]−1, with s2 based on the least
squares residuals, but taking the proper degrees of freedom into
account: NT − N − (K − 1).
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Panel data analysis The fixed effects estimator

This model will have explanatory power if and only if the variation of
the individual’s y above or below the individual’s mean is significantly
correlated with the variation of the individual’s X values above or below
the individual’s vector of mean X values. For that reason, it is termed
the within estimator, since it depends on the variation within the unit.

It does not matter if some individuals have, e.g., very high y values
and very high X values, since it is only the within variation that will
show up as explanatory power. This is the panel analogue to the
notion that OLS on a cross-section does not seek to “explain” the
mean of y , but only the variation around that mean.
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Panel data analysis The fixed effects estimator

This has the clear implication that any characteristic which does not
vary over time for each unit cannot be included in the model: for
instance, an individual’s gender, or a firm’s three-digit SIC (industry)
code, or the nature of a country as landlocked. The unit-specific
intercept term absorbs all heterogeneity in y and X that is a function of
the identity of the unit, and any variable constant over time for each
unit will be perfectly collinear with the unit’s indicator variable.
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Panel data analysis The fixed effects estimator

The one-way individual fixed effects model may be estimated by the
Stata command xtreg using the fe (fixed effects) option. The
command has a syntax similar to regress:

xtreg depvar indepvars, fe [options]

As with standard regression, options include robust and cluster().
The command output displays estimates of σ2

u (labeled sigma_u), σ2
ε

(labeled sigma_e), and what Stata terms rho: the fraction of variance
due to ui . Stata estimates a model in which the ui of Equation (2) are
taken as deviations from a single constant term, displayed as _cons;
therefore testing that all ui are zero is equivalent in our notation to
testing that all αi are identical. The empirical correlation between ui
and the regressors in X ∗ is also displayed as corr(u_i, Xb).
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Panel data analysis The fixed effects estimator

The fixed effects estimator does not require a balanced panel. As long
as there are at least two observations per unit, it may be applied.
However, since the individual fixed effect is in essence estimated from
the observations of each unit, the precision of that effect (and the
resulting slope estimates) will depend on Ni .

We wish to test whether the individual-specific heterogeneity of αi is
necessary: are there distinguishable intercept terms across units?
xtreg,fe provides an F -test of the null hypothesis that the constant
terms are equal across units. If this null is rejected, pooled OLS would
represent a misspecified model. The one-way fixed effects model also
assumes that the errors are not contemporaneously correlated across
units of the panel. This hypothesis can be tested (provided T > N) by
the Lagrange multiplier test of Breusch and Pagan, available as the
author’s xttest2 routine (findit xttest2).
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Panel data analysis The fixed effects estimator

In this example, we have 1982–1988 state-level data for 48 U.S. states
on traffic fatality rates (deaths per 100,000). We model the highway
fatality rates as a function of several common factors: beertax, the
tax on a case of beer, spircons, a measure of spirits consumption
and two economic factors: the state unemployment rate (unrate) and
state per capita personal income, $000 (perincK). We present
descriptive statistics for these variables of the traffic.dta dataset.
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Panel data analysis The fixed effects estimator

. use traffic, clear

. summarize fatal beertax spircons unrate perincK

Variable Obs Mean Std. Dev. Min Max

fatal 336 2.040444 .5701938 .82121 4.21784
beertax 336 .513256 .4778442 .0433109 2.720764

spircons 336 1.75369 .6835745 .79 4.9
unrate 336 7.346726 2.533405 2.4 18
perincK 336 13.88018 2.253046 9.513762 22.19345
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Panel data analysis The fixed effects estimator

Results of the one-way fixed effects model:
. xtreg fatal beertax spircons unrate perincK, fe

Fixed-effects (within) regression Number of obs = 336
Group variable (i): state Number of groups = 48

R-sq: within = 0.3526 Obs per group: min = 7
between = 0.1146 avg = 7.0
overall = 0.0863 max = 7

F(4,284) = 38.68
corr(u_i, Xb) = -0.8804 Prob > F = 0.0000

fatal Coef. Std. Err. t P>|t| [95% Conf. Interval]

beertax -.4840728 .1625106 -2.98 0.003 -.8039508 -.1641948
spircons .8169652 .0792118 10.31 0.000 .6610484 .9728819

unrate -.0290499 .0090274 -3.22 0.001 -.0468191 -.0112808
perincK .1047103 .0205986 5.08 0.000 .064165 .1452555
_cons -.383783 .4201781 -0.91 0.362 -1.210841 .4432754

sigma_u 1.1181913
sigma_e .15678965

rho .98071823 (fraction of variance due to u_i)

F test that all u_i=0: F(47, 284) = 59.77 Prob > F = 0.0000
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Panel data analysis The fixed effects estimator

All explanatory factors are highly significant, with the unemployment
rate having a negative effect on the fatality rate (perhaps since those
who are unemployed are income-constrained and drive fewer miles),
and income a positive effect (as expected because driving is a normal
good).

Note the empirical correlation labeled corr(u_i, Xb) of −0.8804.
This correlation indicates that the unobserved heterogeneity term,
proxied by the estimated fixed effect, is strongly correlated with a linear
combination of the included regressors. That is not a problem for the
fixed effects model, but as we shall see it is an important magnitude.

Christopher F Baum (BC / DIW) Panel data models IMF Institute, Spring 2011 28 / 105



Panel data analysis The fixed effects estimator

We have considered one-way fixed effects models, where the effect is
attached to the individual. We may also define a two-way fixed effect
model, where effects are attached to each unit and time period. Stata
lacks a command to estimate two-way fixed effects models. If the
number of time periods is reasonably small, you may estimate a
two-way FE model by creating a set of time indicator variables and
including all but one in the regression.

In Stata 11, that is very easy to do using factor variables (e.g.,
i.year). Previously, it could be achieved with the xi command. The
joint significance of those variables may be assessed with testparm.
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The joint test that all of the coefficients on those indicator variables are
zero will be a test of the significance of time fixed effects. Just as the
individual fixed effects (LSDV) model requires regressors’ variation
over time within each unit, a time fixed effect (implemented with a time
indicator variable) requires regressors’ variation over units within each
time period.

If we are estimating an equation from individual or firm microdata, this
implies that we cannot include a “macro factor” such as the rate of
GDP growth or price inflation in a model with time fixed effects, since
those factors do not vary across individuals.
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We consider the two-way fixed effects model by adding time effects to
the model of the previous example. Rather than using factor variables,
these time effects are generated by tabulate’s generate option,
and then transformed into “centered indicators” by subtracting the
indicator for the excluded class from each of the other indicator
variables. This expresses the time effects as variations from the
conditional mean of the sample rather than deviations from the
excluded class (the year 1988).
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. qui tabulate year, generate(yr)

. local j 0

. forvalues i=82/87 {
2. local ++j
3. rename yr`j´ yr`i´
4. qui replace yr`i´ = yr`i´ - yr7
5. }

. drop yr7
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. xtreg fatal beertax spircons unrate perincK yr*, fe

Fixed-effects (within) regression Number of obs = 336
Group variable (i): state Number of groups = 48

R-sq: within = 0.4528 Obs per group: min = 7
between = 0.1090 avg = 7.0
overall = 0.0770 max = 7

F(10,278) = 23.00
corr(u_i, Xb) = -0.8728 Prob > F = 0.0000

fatal Coef. Std. Err. t P>|t| [95% Conf. Interval]

beertax -.4347195 .1539564 -2.82 0.005 -.7377878 -.1316511
spircons .805857 .1126425 7.15 0.000 .5841163 1.027598

unrate -.0549084 .0103418 -5.31 0.000 -.0752666 -.0345502
perincK .0882636 .0199988 4.41 0.000 .0488953 .1276319

yr82 .1004321 .0355629 2.82 0.005 .0304253 .170439
yr83 .0470609 .0321574 1.46 0.144 -.0162421 .1103638
yr84 -.0645507 .0224667 -2.87 0.004 -.1087771 -.0203243
yr85 -.0993055 .0198667 -5.00 0.000 -.1384139 -.0601971
yr86 .0496288 .0232525 2.13 0.034 .0038554 .0954021
yr87 .0003593 .0289315 0.01 0.990 -.0565933 .0573119

_cons .0286246 .4183346 0.07 0.945 -.7948812 .8521305

sigma_u 1.0987683
sigma_e .14570531

rho .98271904 (fraction of variance due to u_i)

F test that all u_i=0: F(47, 278) = 64.52 Prob > F = 0.0000
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. test yr82 yr83 yr84 yr85 yr86 yr87

( 1) yr82 = 0
( 2) yr83 = 0
( 3) yr84 = 0
( 4) yr85 = 0
( 5) yr86 = 0
( 6) yr87 = 0

F( 6, 278) = 8.48
Prob > F = 0.0000

The four quantitative factors included in the one-way fixed effects
model retain their sign and significance in the two-way fixed effects
model. The time effects are jointly significant, suggesting that they
should be included in a properly specified model. Otherwise, the
model is qualitatively similar to the earlier model, with a sizable amount
of variation explained by the individual (state) fixed effect.
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The between estimator

Another estimator that may be defined for a panel data set is the
between estimator, in which the group means of y are regressed on
the group means of X in a regression of N observations. This
estimator ignores all of the individual-specific variation in y and X that
is considered by the within estimator, replacing each observation for an
individual with their mean behavior.

This estimator is not widely used, but has sometimes been applied in
cross-country studies where the time series data for each individual
are thought to be somewhat inaccurate, or when they are assumed to
contain random deviations from long-run means. If you assume that
the inaccuracy has mean zero over time, a solution to this
measurement error problem can be found by averaging the data over
time and retaining only one observation per unit.
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This could be done explicitly with Stata’s collapse command.
However, you need not form that data set to employ the between
estimator, since the command xtreg with the be (between) option will
invoke it. Use of the between estimator requires that N > K . Any
macro factor that is constant over individuals cannot be included in the
between estimator, since its average will not differ by individual.

We can show that the pooled OLS estimator is a matrix weighted
average of the within and between estimators, with the weights defined
by the relative precision of the two estimators. We might ask, in the
context of panel data: where are the interesting sources of variation?
In individuals’ variation around their means, or in those means
themselves? The within estimator takes account of only the former,
whereas the between estimator considers only the latter.
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We illustrate with the traffic fatality dataset:

. xtreg fatal beertax spircons unrate perincK, be

Between regression (regression on group means) Number of obs = 336
Group variable (i): state Number of groups = 48

R-sq: within = 0.0479 Obs per group: min = 7
between = 0.4565 avg = 7.0
overall = 0.2583 max = 7

F(4,43) = 9.03
sd(u_i + avg(e_i.))= .4209489 Prob > F = 0.0000

fatal Coef. Std. Err. t P>|t| [95% Conf. Interval]

beertax .0740362 .1456333 0.51 0.614 -.2196614 .3677338
spircons .2997517 .1128135 2.66 0.011 .0722417 .5272618

unrate .0322333 .038005 0.85 0.401 -.0444111 .1088776
perincK -.1841747 .0422241 -4.36 0.000 -.2693277 -.0990218
_cons 3.796343 .7502025 5.06 0.000 2.283415 5.309271

Note that cross-sectional (interstate) variation in beertax and
unrate has no explanatory power in this specification, whereas they
are highly significant when the within estimator is employed.
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The random effects estimator

As an alternative to considering the individual-specific intercept as a
“fixed effect” of that unit, we might consider that the individual effect
may be viewed as a random draw from a distribution:

yit = X ∗it β
∗ + [ui + εit ] (7)

where the bracketed expression is a composite error term, with the ui
being a single draw per unit. This model could be consistently
estimated by OLS or by the between estimator, but that would be
inefficient in not taking the nature of the composite disturbance
process into account.
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A crucial assumption of this model is that ui is independent of X ∗:
individual i receives a random draw that gives her a higher wage. That
ui must be independent of individual i ’s measurable characteristics
included among the regressors X ∗. If this assumption is not sustained,
the random effects estimator will yield inconsistent estimates since the
regressors will be correlated with the composite disturbance term.

If the individual effects can be considered to be strictly independent of
the regressors, then we can model the individual-specific constant
terms (reflecting the unmodeled heterogeneity across units) as draws
from an independent distribution. This greatly reduces the number of
parameters to be estimated, and conditional on that independence,
allows for inference to be made to the population from which the
survey was constructed.
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In a large survey, with thousands of individuals, a random effects
model will estimate K parameters, whereas a fixed effects model will
estimate (K − 1) + N parameters, with the sizable loss of (N − 1)
degrees of freedom.

In contrast to fixed effects, the random effects estimator can identify
the parameters on time-invariant regressors such as race or gender at
the individual level.

Therefore, where its use can be warranted, the random effects model
is more efficient and allows a broader range of statistical inference.
The assumption of the individual effects’ independence is testable, and
should always be tested.
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To implement the one-way random effects formulation of Equation (7),
we assume that both u and ε are meanzero processes, distributed
independent of X ∗; that they are each homoskedastic; that they are
distributed independently of each other; and that each process
represents independent realizations from its respective distribution,
without correlation over individuals (nor time, for ε). For the T
observations belonging to the i th unit of the panel, we have the
composite error process

ηit = ui + εit (8)

This is known as the error components model with conditional variance

E [η2
it |X ∗] = σ2

u + σ2
ε (9)

and conditional covariance within a unit of

E [ηitηis|X ∗] = σ2
u, t 6= s. (10)
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The covariance matrix of these T errors may then be written as

Σ = σ2
ε IT + σ2

uιT ι
′
T . (11)

Since observations i and j are independent, the full covariance matrix
of η across the sample is block-diagonal in Σ: Ω = In ⊗ Σ where ⊗ is
the Kronecker product of the matrices.
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Generalized least squares (GLS) is the estimator for the slope
parameters of this model:

bRE = (X ∗
′
Ω−1X ∗)−1(X ∗

′
Ω−1y)

=

(∑
i

X ∗
′

i Σ−1X ∗i

)−1(∑
i

X ∗
′

i Σ−1yi

)
(12)

To compute this estimator, we require Ω−1/2 = [In ⊗ Σ]−1/2, which
involves

Σ−1/2 = σ−1
ε [I − T−1θιT ι

′
T ] (13)

where

θ = 1− σ2
ε√

σ2
ε + Tσ2

u

(14)
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The quasi-demeaning transformation defined by Σ−1/2 is then
σ−1
ε (yit − θȳi): that is, rather than subtracting the individual mean of y

from each value, we should subtract some fraction of that mean, as
defined by θ. Compare this to the LSDV model in which we define the
within estimator by setting θ = 1. Like pooled OLS, the GLS random
effects estimator is a matrix weighted average of the within and
between estimators, but in this case applying optimal weights, as
based on

λ =
σ2
ε

σ2
ε + Tσ2

u
= (1− θ)2 (15)

where λ is the weight attached to the covariance matrix of the between
estimator. To the extent that λ differs from unity, pooled OLS will be
inefficient, as it will attach too much weight on the between-units
variation, attributing it all to the variation in X rather than apportioning
some of the variation to the differences in εi across units.
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Setting λ = 1 (θ = 0) is appropriate if σ2
u = 0, that is, if there are no

random effects; then a pooled OLS model is optimal. If θ = 1, λ = 0
and the appropriate estimator is the LSDV model of individual fixed
effects. To the extent that λ differs from zero, the within (LSDV)
estimator will be inefficient, in that it applies zero weight to the between
estimator.

The GLS random effects estimator applies the optimal λ in the unit
interval to the between estimator, whereas the fixed effects estimator
arbitrarily imposes λ = 0. This would only be appropriate if the
variation in ε was trivial in comparison with the variation in u, since
then the indicator variables that identify each unit would, taken
together, explain almost all of the variation in the composite error term.
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To implement the feasible GLS estimator of the model all we need are
consistent estimates of σ2

ε and σ2
u. Because the fixed effects model is

consistent its residuals can be used to estimate σ2
ε . Likewise, the

residuals from the pooled OLS model can be used to generate a
consistent estimate of (σ2

ε + σ2
u). These two estimators may be used to

define θ and transform the data for the GLS model.

Because the GLS model uses quasi-demeaning, it is capable of
including variables that do not vary at the individual level (such as
gender or race). Since such variables cannot be included in the LSDV
model, an alternative estimator must be defined based on the between
estimator’s consistent estimate of (σ2

u + T−1σ2
ε ).
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The feasible GLS estimator may be executed in Stata using the
command xtreg with the re (random effects) option. The command
will display estimates of σ2

u, σ2
ε and what Stata labels rho: the fraction

of variance due to εi . Breusch and Pagan have developed a Lagrange
multiplier test for σ2

u = 0 which may be computed following a
random-effects estimation via the official command xttest0.

You can also estimate the parameters of the random effects model with
full maximum likelihood. The mle option on the xtreg, re command
requests that estimator. The application of MLE continues to assume
that X ∗ and u are independently distributed, adding the assumption
that the distributions of u and ε are Normal. This estimator will produce
a likelihood ratio test of σ2

u = 0 corresponding to the Breusch–Pagan
test available for the GLS estimator.
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To illustrate the one-way random effects estimator and implement a
test of the assumption of independence under which random effects
would be appropriate and preferred, we estimate the same model in a
random effects context.
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. xtreg fatal beertax spircons unrate perincK, re

Random-effects GLS regression Number of obs = 336
Group variable (i): state Number of groups = 48

R-sq: within = 0.2263 Obs per group: min = 7
between = 0.0123 avg = 7.0
overall = 0.0042 max = 7

Random effects u_i ~ Gaussian Wald chi2(4) = 49.90
corr(u_i, X) = 0 (assumed) Prob > chi2 = 0.0000

fatal Coef. Std. Err. z P>|z| [95% Conf. Interval]

beertax .0442768 .1204613 0.37 0.713 -.191823 .2803765
spircons .3024711 .0642954 4.70 0.000 .1764546 .4284877

unrate -.0491381 .0098197 -5.00 0.000 -.0683843 -.0298919
perincK -.0110727 .0194746 -0.57 0.570 -.0492423 .0270968
_cons 2.001973 .3811247 5.25 0.000 1.254983 2.748964

sigma_u .41675665
sigma_e .15678965

rho .87601197 (fraction of variance due to u_i)
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In comparison to the fixed effects model, where all four regressors
were significant, we see that the beertax and perincK variables do
not have significant effects on the fatality rate. The latter variable’s
coefficient switched sign.

The corr(u_i, Xb) in this context is assumed to be zero: a
necessary condition for the random effects estimator to yield
consistent estimates. Recall that when the fixed effect estimator was
used, this correlation was reported as −0.8804.
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A Hausman test may be used to test the null hypothesis that the extra
orthogonality conditions imposed by the random effects estimator are
valid. The fixed effects estimator, which does not impose those
conditions, is consistent regardless of the independence of the
individual effects. The fixed effects estimates are inefficient if that
assumption of independence is warranted. The random effects
estimator is efficient under the assumption of independence, but
inconsistent otherwise.
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Therefore, we may consider these two alternatives in the Hausman
test framework, estimating both models and comparing their common
coefficient estimates in a probabilistic sense. If both fixed and random
effects models generate consistent point estimates of the slope
parameters, they will not differ meaningfully. If the assumption of
independence is violated, the inconsistent random effects estimates
will differ from their fixed effects counterparts.
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To implement the Hausman test, you estimate each form of the model,
using the commands estimates store set after each estimation,
with set defining that set of estimates: for instance, set might be fix
for the fixed effects model.

The command hausman setconsist seteff will then invoke the
Hausman test, where setconsist refers to the name of the fixed effects
estimates (which are consistent under the null and alternative) and
seteff referring to the name of the random effects estimates, which are
only efficient under the null hypothesis of independence. This test is
based on the difference of the two estimated covariance matrices
(which is not guaranteed to be positive definite) and the difference
between the fixed effects and random effects vectors of slope
coefficients.
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We illustrate the Hausman test with the two forms of the motor vehicle
fatality equation:
. qui xtreg fatal beertax spircons unrate perincK, fe

. estimates store fix

. qui xtreg fatal beertax spircons unrate perincK, re

. hausman fix .

Coefficients
(b) (B) (b-B) sqrt(diag(V_b-V_B))
fix . Difference S.E.

beertax -.4840728 .0442768 -.5283495 .1090815
spircons .8169652 .3024711 .514494 .0462668

unrate -.0290499 -.0491381 .0200882 .
perincK .1047103 -.0110727 .115783 .0067112

b = consistent under Ho and Ha; obtained from xtreg
B = inconsistent under Ha, efficient under Ho; obtained from xtreg

Test: Ho: difference in coefficients not systematic

chi2(4) = (b-B)´[(V_b-V_B)^(-1)](b-B)
= 130.93

Prob>chi2 = 0.0000
(V_b-V_B is not positive definite)
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As we might expect from the quite different point estimates generated
by the random effects estimator, the Hausman test’s null—that the
random effects estimator is consistent—is soundly rejected. The
sizable estimated correlation reported in the fixed effects estimator
also supports this rejection.

The state-level individual effects cannot be considered independent of
the regressors: hardly surprising, given the wide variation in some of
the regressors over states.
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The first difference estimator

The within transformation used by fixed effects models removes
unobserved heterogeneity at the unit level. The same can be achieved
by first differencing the original equation (which removes the constant
term). In fact, if T = 2, the fixed effects and first difference estimates
are identical. For T > 2, the effects will not be identical, but they are
both consistent estimators of the original model. Stata’s xtreg does
not provide the first difference estimator, but Mark Schaffer’s
xtivreg2 from SSC provides this option as the fd model.

We illustrate the first difference estimator with the traffic data set.
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. xtivreg2 fatal beertax spircons unrate perincK, fd nocons small

FIRST DIFFERENCES ESTIMATION

Number of groups = 48 Obs per group: min = 6
avg = 6.0
max = 6

OLS estimation

Estimates efficient for homoskedasticity only
Statistics consistent for homoskedasticity only

Number of obs = 288
F( 4, 284) = 6.29
Prob > F = 0.0001

Total (centered) SS = 11.21286023 Centered R2 = 0.0812
Total (uncentered) SS = 11.21590589 Uncentered R2 = 0.0814
Residual SS = 10.30276586 Root MSE = .1905

D.fatal Coef. Std. Err. t P>|t| [95% Conf. Interval]

beertax
D1. .1187701 .2728036 0.44 0.664 -.4182035 .6557438

spircons
D1. .523584 .1408249 3.72 0.000 .2463911 .800777

unrate
D1. .003399 .0117009 0.29 0.772 -.0196325 .0264304

perincK
D1. .1417981 .0372814 3.80 0.000 .0684152 .215181

Included instruments: D.beertax D.spircons D.unrate D.perincK
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We may note that, as in the between estimation results, the beertax
and unrate variables have lost their significance. The larger Root
MSE for the fd equation, compared to that for fe, illustrates the
relative inefficiency of the first difference estimator when there are
more than two time periods.
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The seemingly unrelated regression estimator

An alternative technique which may be applied to “small N, large T ”
panels is the method of seemingly unrelated regressions or SURE.
The “small N, large T ” setting refers to the notion that we have a
relatively small number of panel units, each with a lengthy time series:
for instance, financial variables of the ten largest U.S. manufacturing
firms, observed over the last 40 calendar quarters, or annual data on
the G7 countries for the last 30 years.

The SURE technique (implemented in Stata as sureg) requires that
the number of time periods exceeds the number of cross-sectional
units.
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The concept of ‘seemingly unrelated’ regressions is that we have
several panel units, for which we could separately estimate proper
OLS equations: that is, there is no simultaneity linking the units’
equations. The units might be firms operating in the same industry, or
industries in a particular economy, or countries in the same region.

We might be interested in estimating these equations jointly in order to
take account of the likely correlation, across equations, of their error
terms. These correlations represent common shocks. Incorporating
those correlations in the estimation can provide gains in efficiency.
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The SURE model is considerably more flexible than the fixed-effect
model for panel data, as it allows for coefficients that may differ across
units (but may be tested, or constrained to be identical) as well as
separate estimates of the error variance for each equation. In fact, the
regressor list for each equation may differ: for a particular country, for
example, the price of an important export commodity might appear, but
only in that country’s equation. To use sureg, your data must be
stored in the ‘wide’ format: the same variable for different units must be
named for that unit.

Its limitation, as mentioned above, is that it cannot be applied to
models in which N > T , as that will imply that the residual covariance
matrix is singular. SURE is a generalized least squares (GLS)
technique which makes use of the inverse of that covariance matrix.
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A limitation of official Stata’s sureg command is that it can only deal
with balanced panels. This may be problematic in the case of firm-level
or country-level data where firms are formed, or merged, or liquidated
during the sample period, or when new countries emerge, as in
Eastern Europe.

I wrote an extended version of sureg, named suregub, which will
handle SURE in the case of unbalanced panels as long as the degree
of imbalance is not too severe: that is, there must be some time
periods in common across panel units. A copy of suregub has been
provided in your materials.
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One special case of note: if the equations contain exactly the same
regressors (that is, numerically identical), SURE results will exactly
reproduce equation-by-equation OLS results. This situation is likely to
arise when you are working with a set of demand equations (for goods
or factors) or a set of portfolio shares, wherein the explanatory
variables should be the same for each equation.

Although SURE will provide no efficiency gain in this setting, you may
still want to employ the technique on such a set of equations, as by
estimating them as a system you gain the ability to perform hypothesis
tests across equations, or estimate them subject to a set of linear
constraints. The sureg command supports linear constraints, defined
in the same manner as single-equation cnsreg.
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We illustrate sureg with a macro example using the Penn World
Tables (v6.3) dataset, pwt6_3. For simplicity, we choose three
countries from that dataset: Spain, Italy, and Greece for 1960–2007.
Our ‘model’ considers the consumption share of real GDP per capita
(kc) as a function of openness (openc) and the lagged ratio of GNP to
GDP (cgnp).
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. // keep three countries for 1960-, reshape to wide for sureg

. use pwt6_3, clear
(Penn World Tables 6.3, August 2009)

. keep if inlist(isocode, "ITA", "ESP", "GRC")
(10846 observations deleted)

. keep isocode year kc openc cgnp

. keep if year >= 1960
(30 observations deleted)

. levelsof isocode, local(ctylist)
`"ESP"´ `"GRC"´ `"ITA"´

. reshape wide kc openc cgnp, i(year) j(isocode) string
(note: j = ESP GRC ITA)

Data long -> wide

Number of obs. 144 -> 48
Number of variables 5 -> 10
j variable (3 values) isocode -> (dropped)
xij variables:

kc -> kcESP kcGRC kcITA
openc -> opencESP opencGRC opencITA
cgnp -> cgnpESP cgnpGRC cgnpITA

. tsset year, yearly
time variable: year, 1960 to 2007

delta: 1 year
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We build up a list of equations for sureg using the list of country
codes created by levelsof:
. // build up list of equations for sureg
. loc eqns

. foreach c of local ctylist {
2. loc eqns "`eqns´ (kc`c´ openc`c´ L.cgnp`c´)"
3. }

. display "`eqns´"
(kcESP opencESP L.cgnpESP) (kcGRC opencGRC L.cgnpGRC) (kcITA opencITA L.cgnpIT
> A)
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. sureg "`eqns´", corr

Seemingly unrelated regression

Equation Obs Parms RMSE "R-sq" chi2 P

kcESP 47 2 .9379665 0.6934 104.50 0.0000
kcGRC 47 2 4.910707 0.3676 40.29 0.0000
kcITA 47 2 1.521322 0.4051 45.56 0.0000

Coef. Std. Err. z P>|z| [95% Conf. Interval]

kcESP
opencESP -.1205816 .012307 -9.80 0.000 -.1447028 -.0964603

cgnpESP
L1. -.97201 .373548 -2.60 0.009 -1.704151 -.2398694

_cons 157.6905 37.225 4.24 0.000 84.73086 230.6502

kcGRC
opencGRC .4215421 .0670958 6.28 0.000 .2900367 .5530476

cgnpGRC
L1. .5918787 .5900844 1.00 0.316 -.5646655 1.748423

_cons -16.48375 60.74346 -0.27 0.786 -135.5387 102.5712
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(continued)

kcITA
opencITA .0684288 .0269877 2.54 0.011 .0155339 .1213237

cgnpITA
L1. -1.594811 .3426602 -4.65 0.000 -2.266412 -.923209

_cons 211.6658 34.58681 6.12 0.000 143.8769 279.4547

Correlation matrix of residuals:

kcESP kcGRC kcITA
kcESP 1.0000
kcGRC -0.2367 1.0000
kcITA -0.0786 -0.2618 1.0000

Breusch-Pagan test of independence: chi2(3) = 6.145, Pr = 0.1048
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Note from the displayed correlation matrix of residuals and the
Breusch–Pagan test of independence that there is weak evidence of
cross-equation correlation of the residuals.

Given our systems estimates, we may test hypotheses on coefficients
in different equations: for instance, that the coefficients on openc are
equal across equations. Note that in the test command we must
specify in which equation each coefficient appears.

. // test cross-equation hypothesis of coefficient equality

. test [kcESP]opencESP = [kcGRC]opencGRC = [kcITA]opencITA

( 1) [kcESP]opencESP - [kcGRC]opencGRC = 0
( 2) [kcESP]opencESP - [kcITA]opencITA = 0

chi2( 2) = 100.55
Prob > chi2 = 0.0000
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We can produce ex post or ex ante forecasts from sureg with
predict, specifying a different variable name for each equation’s
predictions:
. sureg "`eqns´" if year <= 2000, notable

Seemingly unrelated regression

Equation Obs Parms RMSE "R-sq" chi2 P

kcESP 40 2 .985171 0.5472 48.72 0.0000
kcGRC 40 2 5.274077 0.3076 27.49 0.0000
kcITA 40 2 1.590656 0.4364 42.14 0.0000

. foreach c of local ctylist {
2. predict double `c´hat if year > 2000, xb equation(kc`c´)
3. label var `c´hat "`c´"
4. }

(41 missing values generated)
(41 missing values generated)
(41 missing values generated)

. su *hat if year > 2000

Variable Obs Mean Std. Dev. Min Max

ESPhat 7 55.31007 .4318259 54.43892 55.7324
GRChat 7 66.24322 .932017 65.35107 68.15631
ITAhat 7 57.37146 .1436187 57.18819 57.60937

. tsline *hat if year>2000, scheme(s2mono) legend(rows(1)) ///
> ti("Predicted consumption share, real GDP per capita") t2("ex ante prediction
> s")
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Instrumental variables estimators for panel data

Linear instrumental variables (IV) models for panel data may be
estimated with Stata’s xtivreg, a panel-capable analog to
ivregress. This command only fits standard two-stage least squares
models, and does not support IV-GMM nor LIML. By specifying
options, you may choose among the random effects (re), fixed effects
(fe), between effects (be) and first-differenced (fd) estimators.

If you want to use IV-GMM or LIML in a panel setting, you may use
Mark Schaffer’s xtivreg2 routine, which is a ‘wrapper’ for
Baum–Schaffer–Stillman’s ivreg2, providing all of its capabilities in a
panel setting. However, xtivreg2 only implements the fixed-effects
and first-difference estimators.
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We spoke in an earlier lecture about the use of cluster-robust standard
errors: a specification of the error term’s VCE in which we allow for
arbitrary correlation within M clusters of observations. Most Stata
commands, including regress, ivregress and xtreg, support the
option of vce(cluster varname) to produce the cluster-robust VCE.

In fact, if you use xtreg, fe with the robust option, the VCE
estimates are generated as cluster-robust, as Stock and Watson
demonstrated (Econometrica, 2008) that it is necessary to allow for
clustering to generate a consistent robust VCE when T > 2.

However, Stata’s xtivreg does not implement the cluster option,
although the construction of a cluster-robust VCE in an IV setting is
appropriate analytically.
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To circumvent this limitation, you may use xtivreg2 to estimate
fixed-effects or first-difference IV models with cluster-robust standard
errors. In a panel context, you may also want to consider two-way
clustering: the notion that dependence between observations’ errors
may not only appear within the time series observations of a given
panel unit, but could also appear across units at each point in time.

The extension of cluster-robust VCE estimates to two- and multi-way
clustering is an area of active econometric research. Please see the
Baum–Nichols–Schaffer slides (UKSUG10) in your materials for an
overview.
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Computation of the two-way cluster-robust VCE is straightforward, as
Thompson (SSRN WP, 2006) illustrates. The VCE may be calculated
from

VCE(β̂) = VCE1(β̂) + VCE2(β̂)− VCE12(β̂)

where the three VCE estimates are derived from one-way clustering on
the first dimension, the second dimension and their intersection,
respectively. As these one-way cluster-robust VCE estimates are
available from most Stata estimation commands, computing the
two-way cluster-robust VCE involves only a few matrix manipulations.
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One concern that arises with two-way (and multi-way) clustering is the
number of clusters in each dimension. With one-way clustering, we
should be concerned if the number of clusters G is too small to
produce unbiased estimates. The theory underlying two-way clustering
relies on asymptotics in the smaller number of clusters: that is, the
dimension containing fewer clusters. The two-way clustering approach
is thus most sensible if there are a sizable number of clusters in each
dimension.
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We illustrate with a fixed-effect IV model of kc from the Penn World
Tables data set, in which regressors are again specified as openc and
cgnp, each instrumented with two lags. The model is estimated for an
unbalanced panel of 99 countries for 38–46 years per country. We fit
the model with classical standard errors (IID), cluster-robust by country
(clCty) and cluster-robust by country and year (clCtyYr).
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Table: Panel IV estimates of kc, 1960-2007

(1) (2) (3)
IID clCty clCtyYr

openc -0.036∗∗∗ -0.036∗ -0.036∗

(0.007) (0.018) (0.018)

cgnp 0.800∗∗∗ 0.800∗∗∗ 0.800∗∗∗

(0.033) (0.146) (0.146)
N 4508 4508 4508
Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

The two-way cluster-robust standard errors are very similar to those
produced by the one-way cluster-robust VCE. Both sets are
considerably larger than those produced by the i .i .d . error assumption,
suggesting that classical standard errors are severely biased in this
setting.
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Dynamic panel data estimators

The ability of first differencing to remove unobserved heterogeneity
also underlies the family of estimators that have been developed for
dynamic panel data (DPD) models. These models contain one or more
lagged dependent variables, allowing for the modeling of a partial
adjustment mechanism.
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A serious difficulty arises with the one-way fixed effects model in the
context of a dynamic panel data (DPD) model particularly in the “small
T , large N" context. As Nickell (Econometrica, 1981) shows, this
arises because the demeaning process which subtracts the
individual’s mean value of y and each X from the respective variable
creates a correlation between regressor and error.

The mean of the lagged dependent variable contains observations 0
through (T − 1) on y , and the mean error—which is being conceptually
subtracted from each εit—contains contemporaneous values of ε for
t = 1 . . .T . The resulting correlation creates a bias in the estimate of
the coefficient of the lagged dependent variable which is not mitigated
by increasing N, the number of individual units.
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The demeaning operation creates a regressor which cannot be
distributed independently of the error term. Nickell demonstrates that
the inconsistency of ρ̂ as N →∞ is of order 1/T , which may be quite
sizable in a “small T " context. If ρ > 0, the bias is invariably negative,
so that the persistence of y will be underestimated.

For reasonably large values of T , the limit of (ρ̂− ρ) as N →∞ will be
approximately −(1 + ρ)/(T − 1): a sizable value, even if T = 10. With
ρ = 0.5, the bias will be -0.167, or about 1/3 of the true value. The
inclusion of additional regressors does not remove this bias. Indeed, if
the regressors are correlated with the lagged dependent variable to
some degree, their coefficients may be seriously biased as well.
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Note also that this bias is not caused by an autocorrelated error
process ε. The bias arises even if the error process is i .i .d . If the error
process is autocorrelated, the problem is even more severe given the
difficulty of deriving a consistent estimate of the AR parameters in that
context.

The same problem affects the one-way random effects model. The ui
error component enters every value of yit by assumption, so that the
lagged dependent variable cannot be independent of the composite
error process.
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One solution to this problem involves taking first differences of the
original model. Consider a model containing a lagged dependent
variable and a single regressor X :

yit = β1 + ρyi,t−1 + Xitβ2 + ui + εit (16)

The first difference transformation removes both the constant term and
the individual effect:

∆yit = ρ∆yi,t−1 + ∆Xitβ2 + ∆εit (17)

There is still correlation between the differenced lagged dependent
variable and the disturbance process (which is now a first-order
moving average process, or MA(1)): the former contains yi,t−1 and the
latter contains εi,t−1.
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But with the individual fixed effects swept out, a straightforward
instrumental variables estimator is available. We may construct
instruments for the lagged dependent variable from the second and
third lags of y , either in the form of differences or lagged levels. If ε is
i .i .d ., those lags of y will be highly correlated with the lagged
dependent variable (and its difference) but uncorrelated with the
composite error process.

Even if we had reason to believe that ε might be following an AR(1)
process, we could still follow this strategy, “backing off” one period and
using the third and fourth lags of y (presuming that the timeseries for
each unit is long enough to do so).
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Dynamic panel data estimators

The DPD (Dynamic Panel Data) approach of Arellano and Bond (1991)
is based on the notion that the instrumental variables approach noted
above does not exploit all of the information available in the sample. By
doing so in a Generalized Method of Moments (GMM) context, we may
construct more efficient estimates of the dynamic panel data model.
The Arellano–Bond estimator can be thought of as an extension of the
Anderson–Hsiao estimator implemented by xtivreg, fd.
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Arellano and Bond argue that the Anderson–Hsiao estimator, while
consistent, fails to take all of the potential orthogonality conditions into
account. Consider the equations

yit = Xitβ1 + Witβ2 + vit

vit = ui + εit (18)

where Xit includes strictly exogenous regressors, Wit are
predetermined regressors (which may include lags of y ) and
endogenous regressors, all of which may be correlated with ui , the
unobserved individual effect. First-differencing the equation removes
the ui and its associated omitted-variable bias. The Arellano–Bond
estimator sets up a generalized method of moments (GMM) problem
in which the model is specified as a system of equations, one per time
period, where the instruments applicable to each equation differ (for
instance, in later time periods, additional lagged values of the
instruments are available).
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The instruments include suitable lags of the levels of the endogenous
variables (which enter the equation in differenced form) as well as the
strictly exogenous regressors and any others that may be specified.
This estimator can easily generate an immense number of
instruments, since by period τ all lags prior to, say, (τ − 2) might be
individually considered as instruments. If T is nontrivial, it is often
necessary to employ the option which limits the maximum lag of an
instrument to prevent the number of instruments from becoming too
large. This estimator is available in Stata as xtabond. A more general
version, allowing for autocorrelated errors, is available as xtdpd.
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A potential weakness in the Arellano–Bond DPD estimator was
revealed in later work by Arellano and Bover (1995) and Blundell and
Bond (1998). The lagged levels are often rather poor instruments for
first differenced variables, especially if the variables are close to a
random walk. Their modification of the estimator includes lagged levels
as well as lagged differences.

The original estimator is often entitled difference GMM, while the
expanded estimator is commonly termed System GMM. The cost of
the System GMM estimator involves a set of additional restrictions on
the initial conditions of the process generating y . This estimator is
available in Stata as xtdpdsys.
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An excellent alternative to Stata’s built-in commands is David
Roodman’s xtabond2, available from SSC (findit xtabond2). It is
very well documented in his paper, included in your materials. The
xtabond2 routine handles both the difference and system GMM
estimators and provides several additional features—such as the
orthogonal deviations transformation—not available in official Stata’s
commands.

As the DPD estimators are instrumental variables methods, it is
particularly important to evaluate the Sargan–Hansen test results
when they are applied. Roodman’s xtabond2 provides C tests (as
discussed in re ivreg2) for groups of instruments. In his routine,
instruments can be either “GMM-style" or “IV-style". The former are
constructed per the Arellano–Bond logic, making use of multiple lags;
the latter are included as is in the instrument matrix. For the system
GMM estimator (the default in xtabond2) instruments may be
specified as applying to the differenced equations, the level equations
or both.
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Another important diagnostic in DPD estimation is the AR test for
autocorrelation of the residuals. By construction, the residuals of the
differenced equation should possess serial correlation, but if the
assumption of serial independence in the original errors is warranted,
the differenced residuals should not exhibit significant AR(2) behavior.
These statistics are produced in the xtabond and xtabond2 output.
If a significant AR(2) statistic is encountered, the second lags of
endogenous variables will not be appropriate instruments for their
current values.

A useful feature of xtabond2 is the ability to specify, for GMM-style
instruments, the limits on how many lags are to be included. If T is
fairly large (more than 7–8) an unrestricted set of lags will introduce a
huge number of instruments, with a possible loss of efficiency. By
using the lag limits options, you may specify, for instance, that only
lags 2–5 are to be used in constructing the GMM instruments.
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To illustrate the use of the DPD estimators using the traffic data,
we first specify a model of fatal as depending on the prior year’s
value (L.fatal), the state’s spircons and a time trend (year). We
provide a set of instruments for that model with the gmm option, and list
year as an iv instrument. We specify that the two-step
Arellano–Bond estimator is to be employed with the Windmeijer
correction. The noleveleq option specifies the original
Arellano–Bond estimator in differences.
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. xtabond2 fatal L.fatal spircons year, ///
> gmmstyle(beertax spircons unrate perincK) ///
> ivstyle(year) twostep robust noleveleq
Favoring space over speed. See help matafavor.
Warning: Number of instruments may be large relative to number of observations.

Arellano-Bond dynamic panel-data estimation, two-step difference GMM results

Group variable: state Number of obs = 240
Time variable : year Number of groups = 48
Number of instruments = 48 Obs per group: min = 5
Wald chi2(3) = 51.90 avg = 5.00
Prob > chi2 = 0.000 max = 5

Corrected
Coef. Std. Err. z P>|z| [95% Conf. Interval]

fatal
L1. .3205569 .071963 4.45 0.000 .1795121 .4616018

spircons .2924675 .1655214 1.77 0.077 -.0319485 .6168834
year .0340283 .0118935 2.86 0.004 .0107175 .0573391

Hansen test of overid. restrictions: chi2(45) = 47.26 Prob > chi2 = 0.381

Arellano-Bond test for AR(1) in first differences: z = -3.17 Pr > z = 0.002
Arellano-Bond test for AR(2) in first differences: z = 1.24 Pr > z = 0.216
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This model is moderately successful in terms of relating spircons to
the dynamics of the fatality rate. The Hansen test of overidentifying
restrictions is satisfactory, as is the test for AR(2) errors. We expect to
reject the test for AR(1) errors in the Arellano–Bond model.

We also illustrate DPD estimation using the Penn World Table
cross-country panel. We specify a model for kc depending on its own
lag, cgnp, and a set of time fixed effects, which we compute with the
xi command, as xtabond2 does not support factor variables. We first
estimate the two-step ‘difference GMM’ form of the model with
(cluster-)robust VCE, using data for 1991–2007. We could use
testparm _I* after estimation to evaluate the joint significance of
time effects (listing of which has been suppressed).
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. xi i.year
i.year _Iyear_1991-2007 (naturally coded; _Iyear_1991 omitted)

. xtabond2 kc L.kc cgnp _I*, gmm(L.kc openc cgnp, lag(2 9)) iv(_I*) ///
> twostep robust noleveleq nodiffsargan
Favoring speed over space. To switch, type or click on mata: mata set matafavor
> space, perm.

Dynamic panel-data estimation, two-step difference GMM

Group variable: iso Number of obs = 1485
Time variable : year Number of groups = 99
Number of instruments = 283 Obs per group: min = 15
Wald chi2(17) = 94.96 avg = 15.00
Prob > chi2 = 0.000 max = 15

Corrected
kc Coef. Std. Err. z P>|z| [95% Conf. Interval]

kc
L1. .6478636 .1041122 6.22 0.000 .4438075 .8519197

cgnp .233404 .1080771 2.16 0.031 .0215768 .4452312
...
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(continued)

Instruments for first differences equation
Standard
D.(_Iyear_1992 _Iyear_1993 _Iyear_1994 _Iyear_1995 _Iyear_1996 _Iyear_1997
_Iyear_1998 _Iyear_1999 _Iyear_2000 _Iyear_2001 _Iyear_2002 _Iyear_2003
_Iyear_2004 _Iyear_2005 _Iyear_2006 _Iyear_2007)

GMM-type (missing=0, separate instruments for each period unless collapsed)
L(2/9).(L.kc openc cgnp)

Arellano-Bond test for AR(1) in first differences: z = -2.94 Pr > z = 0.003
Arellano-Bond test for AR(2) in first differences: z = 0.23 Pr > z = 0.815

Sargan test of overid. restrictions: chi2(266) = 465.53 Prob > chi2 = 0.000
(Not robust, but not weakened by many instruments.)

Hansen test of overid. restrictions: chi2(266) = 87.81 Prob > chi2 = 1.000
(Robust, but can be weakened by many instruments.)
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Given the relatively large number of time periods available, I have
specified that the GMM instruments only be constructed for lags 2–9 to
keep the number of instruments manageable. I am treating openc as
a GMM-style instrument. The autoregressive coefficient is 0.648, and
the cgnp coefficient is positive and significant. Although not shown,
the test for joint significance of the time effects has p-value 0.0270.

We could also fit this model with the ‘system GMM’ estimator, which
will be able to utilize one more observation per country in the level
equation, and estimate a constant term in the relationship. I am
treating lagged openc as a IV-style instrument in this specification.
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. xtabond2 kc L.kc cgnp _I*, gmm(L.kc cgnp, lag(2 8)) iv(_I* L.openc) ///
> twostep robust nodiffsargan

Dynamic panel-data estimation, two-step system GMM

Group variable: iso Number of obs = 1584
Time variable : year Number of groups = 99
Number of instruments = 207 Obs per group: min = 16
Wald chi2(17) = 8193.54 avg = 16.00
Prob > chi2 = 0.000 max = 16

Corrected
kc Coef. Std. Err. z P>|z| [95% Conf. Interval]

kc
L1. .9452696 .0191167 49.45 0.000 .9078014 .9827377

cgnp .097109 .0436338 2.23 0.026 .0115882 .1826297
...

_cons -6.091674 3.45096 -1.77 0.078 -12.85543 .672083
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(continued)

Instruments for first differences equation
Standard
D.(_Iyear_1992 _Iyear_1993 _Iyear_1994 _Iyear_1995 _Iyear_1996 _Iyear_1997
_Iyear_1998 _Iyear_1999 _Iyear_2000 _Iyear_2001 _Iyear_2002 _Iyear_2003
_Iyear_2004 _Iyear_2005 _Iyear_2006 _Iyear_2007 L.openc)

GMM-type (missing=0, separate instruments for each period unless collapsed)
L(2/8).(L.kc cgnp)

Instruments for levels equation
Standard
_cons
_Iyear_1992 _Iyear_1993 _Iyear_1994 _Iyear_1995 _Iyear_1996 _Iyear_1997
_Iyear_1998 _Iyear_1999 _Iyear_2000 _Iyear_2001 _Iyear_2002 _Iyear_2003
_Iyear_2004 _Iyear_2005 _Iyear_2006 _Iyear_2007 L.openc

GMM-type (missing=0, separate instruments for each period unless collapsed)
DL.(L.kc cgnp)

Arellano-Bond test for AR(1) in first differences: z = -3.29 Pr > z = 0.001
Arellano-Bond test for AR(2) in first differences: z = 0.42 Pr > z = 0.677

Sargan test of overid. restrictions: chi2(189) = 353.99 Prob > chi2 = 0.000
(Not robust, but not weakened by many instruments.)

Hansen test of overid. restrictions: chi2(189) = 88.59 Prob > chi2 = 1.000
(Robust, but can be weakened by many instruments.)
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Note that the autoregressive coefficient is much larger: 0.945 in this
context. The cgnp coefficient is again positive and significant, but has
a much smaller magnitude when the system GMM estimator is used.

We can also estimate the model using the forward orthogonal
deviations (FOD) transformation of Arellano and Bover, as described in
Roodman’s paper. The first-difference transformation applied in DPD
estimators has the unfortunate feature of magnifying any gaps in the
data, as one period of missing data is replaced with two missing
differences. FOD transforms each observation by subtracting the
average of all future observations, which will be defined (regardless of
gaps) for all but the last observation in each panel. To illustrate:
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. xtabond2 kc L.kc cgnp _I*, gmm(L.kc cgnp, lag(2 8)) iv(_I* L.openc) ///
> twostep robust nodiffsargan orthog

Dynamic panel-data estimation, two-step system GMM

Group variable: iso Number of obs = 1584
Time variable : year Number of groups = 99
Number of instruments = 207 Obs per group: min = 16
Wald chi2(17) = 8904.24 avg = 16.00
Prob > chi2 = 0.000 max = 16

Corrected
kc Coef. Std. Err. z P>|z| [95% Conf. Interval]

kc
L1. .9550247 .0142928 66.82 0.000 .9270114 .983038

cgnp .0723786 .0339312 2.13 0.033 .0058746 .1388825
...

_cons -4.329945 2.947738 -1.47 0.142 -10.10741 1.447515
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(continued)

Instruments for orthogonal deviations equation
Standard
FOD.(_Iyear_1992 _Iyear_1993 _Iyear_1994 _Iyear_1995 _Iyear_1996
_Iyear_1997 _Iyear_1998 _Iyear_1999 _Iyear_2000 _Iyear_2001 _Iyear_2002
_Iyear_2003 _Iyear_2004 _Iyear_2005 _Iyear_2006 _Iyear_2007 L.openc)

GMM-type (missing=0, separate instruments for each period unless collapsed)
L(2/8).(L.kc cgnp)

Instruments for levels equation
Standard
_cons
_Iyear_1992 _Iyear_1993 _Iyear_1994 _Iyear_1995 _Iyear_1996 _Iyear_1997
_Iyear_1998 _Iyear_1999 _Iyear_2000 _Iyear_2001 _Iyear_2002 _Iyear_2003
_Iyear_2004 _Iyear_2005 _Iyear_2006 _Iyear_2007 L.openc

GMM-type (missing=0, separate instruments for each period unless collapsed)
DL.(L.kc cgnp)

Arellano-Bond test for AR(1) in first differences: z = -3.31 Pr > z = 0.001
Arellano-Bond test for AR(2) in first differences: z = 0.42 Pr > z = 0.674

Sargan test of overid. restrictions: chi2(189) = 384.95 Prob > chi2 = 0.000
(Not robust, but not weakened by many instruments.)

Hansen test of overid. restrictions: chi2(189) = 83.69 Prob > chi2 = 1.000
(Robust, but can be weakened by many instruments.)
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Using the FOD transformation, the autoregressive coefficient is a bit
larger, and the cgnp coefficient a bit smaller, although its significance
is retained.

After any DPD estimation command, we may save predicted values or
residuals and graph them against the actual values:
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. predict double kchat if inlist(country, "Italy", "Spain", "Greece", "Portugal
> ")
(option xb assumed; fitted values)
(1619 missing values generated)

. label var kc "Consumption / Real GDP per capita"

. xtline kc kchat if !mi(kchat), scheme(s2mono)
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Although the DPD estimators are linear estimators, they are highly
sensitive to the particular specification of the model and its
instruments: more so in my experience than any other
regression-based estimation approach. There is no substitute for
experimentation with the various parameters of the specification to
ensure that your results are reasonably robust to variations in the
instrument set and lags used.
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