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Time series data management Stata’s time series calendar

Stata’s time series calendar

To take full advantage of Stata’s time series capabilities, you should be
familiar with its time series calendar and operators. The time series
calendar allows you to specify, via the tsset command, that data are
time series at an annual, half-yearly, quarterly, monthly, weekly or daily
frequency. You may also specify intraday frequencies (as
clocktime), as Stata’s calendar variable has microsecond accuracy.
The frequency may also be specified as generic.

For instance, tsset year, yearly will specify that the integer
variable year in your dataset is the calendar variable, and the data
frequency is annual. You may also use tsset to specify that the data
are panel data: e.g., tsset country qtr, quarterly would
indicate that your data are a (possibly unbalanced) panel of
country-level quarterly data.
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Time series data management Stata’s time series calendar

For all but annual data, you must construct a calendar variable
according to Stata’s definition. Stata, like Unix, assumes that time 0 is
1 January 1960 AD. Thus, display daily("13feb2011","DMY")
yields 18671, as that is how many days have elapsed since 1/1/1960.

display daily("13aug1951","DMY") yields −3063, as that date
is that many days prior to 1/1/1960.

Likewise, display quarterly("2011Q1","YQ") yields 204, as
we are 204 calendar quarters beyond 1960q1.

There are a set of functions, described at help dates and times,
that allow you to convert one calendar variable into another frequency,
or convert string data (such as 13/02/2011 or 2001Q3) into Stata
dates.
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Time series data management Stata’s time series calendar

The delta option

The tsset command also has an optional argument, delta( ),
which allows you to specify that data are defined at one frequency but
recorded at another. For instance, US Census data are produced
every decade. You could define a time series of Census data as
tsset year, yearly delta(10) to indicate that the data are
aligned with particular years, but only recorded every ten years. The
use of the delta(10) option will cause Stata to consider the lagged
value of 2000 to be 1990, for instance, rather than 1999, which would
be missing.
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Time series data management Stata’s time series calendar

tsmktim

If you have a time series that is complete (with no gaps), starting in a
given time period, it may be easiest to establish the calendar variable
with my tsmktim routine. This utility, available from SSC, allows you
to issue a command like tsmktim yq, start(1973q3) which not
only creates the variable yq as a quarterly calendar variable, starting
in 1973q3, but gives it the proper %tq format, so that dates display as
dates rather than as integers.
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Time series data management Stata’s time series calendar

Gaps in time series

A problem arises, though, in that many daily time series contain gaps
for weekends and holidays. Stata does not have a business-daily data
concept, and even if weekends are excluded, holidays are problematic.
Many of Stata’s time series commands do not tolerate gaps, and we
normally want to consider Friday to be followed by Monday in Western
financial market data.

A way to circumvent this problem is described in Stata Tip 40: Taking
care of business, included in your materials. Briefly, the solution
involves creating two time series calendar variables: one with proper
dates, which contains gaps, and a second that does not. The second
may be created by generate t = _n where _n refers to the
sequential observation number.
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Time series data management Stata’s time series calendar

With these two calendar variables (say, ymd and t) defined, you may
tsset t when you want to use data management or statistical
commands that are sensitive to the presence of gaps: for instance,
creating a first difference, or referring to a lagged value. After
completing estimation and producing forecasts, you may want to
tabulate or graph the forecasts with proper calendar dates attached.
You may then tsset ymd to attach the proper calendar variable for
those operations.

This technique may also be used in panel data that contains gaps, as
under the control of a by: prefix the observation number (_n) refers to
the observation within the by-group rather than within the entire data
set. Thus, using by country:, for instance, you could produce the
sequential calendar variable for the entire panel with one command.
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Time series data management Stata’s time series operators

Stata’s time series operators

Stata has several time series operators, described at help
tsvarlist, which allow you to refer to lags, leads, differences and
seasonal differences for a data set that has been tsset. These are
prefixes of the variable names, such as L.gnp, F.gdp, D.tb3mo, or
S.tb3mo, respectively. To specify higher lags or leads, you may use
L4.gnp or F2.gdp.

Keep in mind that D2.tb3mo is the difference of the difference; if you
want to specify the difference between that variable at t and (t − 2),
use the ‘seasonal difference.’ That is particularly useful for quarterly
data, where S4.sales will refer to quarter-over-quarter sales,
comparing the observation to that of the same quarter in the previous
year.
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Time series data management Stata’s time series operators

The operators may also be combined, so that you can use L2D.x to
refer to the second lag of the first difference of x, which could also be
formed as DL2.x. In either case, the operators are applied from the
dot leftward.

A major advantage of the time series operator syntax is that you need
not create the lagged, led, differenced variables. Like factor variables
in Stata 11, they will be instantiated on the fly, and will not be
permanently added to the data set in memory.
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Time series data management Stata’s time series operators

Time series operators ensure validity

The most important argument for using time series operators is that
they enforce validity of any time series expressions. If there is a gap in
the data: for instance, if we have data for 1971–1975 and 1977–2000,
referring to the prior observation using an observation subscript
[_n - 1] will improperly consider the lagged value of 1977 to be that
of 1975. If the data are tsset, the lagged value or first difference of
1977 will properly be flagged as missing.

This is even more important in the case of panel data, where we do not
want the lagged value of one panel unit to refer to the last value of the
previous unit. The time series operators, under a panel tsset, will
respect the data set’s organization and avoid such errors. Thus, you
should always use the time series operators, on a single time series or
in a panel.
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Time series data management Stata’s time series operators

The operators may also be used in a Stata numlist, so that

regress y L(-4/4),x

will run a Sims test for Granger causality, including four leads of x,
current x, and four lags of x in the regression. Following that
regression, to jointly test the coefficients of future x for significance,

testparm L(-4/-1).x

will do so, and provide the proper F -test and p-value.
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Time series data management Stata’s time series operators

The time series operators may also be used with a parenthesized
varlist: for instance,

regress gdp L(1/4).(govtexp money)

will regress gdp on four lags of govtexp and four lags of money.
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Time series data management Forecast accuracy statistics

Forecast accuracy statistics

To compare in-sample forecast accuracy, it may be useful to use
estat ic after estimating a regression model, which will produce the
AIC and BIC statistics.

For instance, using the usmacro1 data set, let us fit models with
differing number of lags on the regressor and store the estimates so
that they may be compared with estimates stats. We hold the
sample fixed with if e(sample).
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Time series data management Forecast accuracy statistics

. use usmacro1

. eststo clear

. eststo eight: qui regress tr10yr L(1/8).rmbase

. eststo six: qui regress tr10yr L(1/6).rmbase if e(sample)

. eststo four: qui regress tr10yr L(1/4).rmbase if e(sample)

. est stat eight six four

Model Obs ll(null) ll(model) df AIC BIC

eight 199 -471.4506 -447.3226 9 912.6452 942.2849
six 199 -471.4506 -448.5081 7 911.0163 934.0694
four 199 -471.4506 -449.5158 5 909.0316 925.4981

Note: N=Obs used in calculating BIC; see [R] BIC note

Both AIC and BIC indicate that the model with four lags is preferred.
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Time series data management the tin( ) function

the tin( ) function

A useful function for time series data that have been declared as such
by tsset is the tin)( ) function, which should be read tee-in. We
can specify calendar dates using this function to restrict the estimation
sample:

. tsset
time variable: yq, 1959q1 to 2010q3

delta: 1 quarter

. qui regress tr10yr L(1/4).rmbase if tin( , 2008q1)

. qui regress tr10yr L(1/4).rmbase if tin(1973q4, 1987q2)

. qui regress tr10yr L(1/4).rmbase if tin(1973q4, )
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Time series data management the tin( ) function

The tin( ) function is also useful if you need to produce
out-of-sample forecasts. Recall that the predict command will
generate predicted values, residuals, and other series for the entire
data set. You might want to run a regression over a subperiod, with a
holdout sample of more recent observations, and then forecast through
the holdout sample period. That is readily specified with tin():

. qui regress tr10yr L(1/4).rmbase if tin( , 2008q1)

. predict double tr10yrhat if tin(2008q2, 2009q4), xb
(200 missing values generated)

In this example, we produce predicted values only for the
out-of-sample period.
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Rolling-window estimation

Rolling-window estimation

Stata provides a prefix, rolling:, which can be used to automate
various types of rolling-window estimation for the evaluation of a
model’s structural stability. These include fixed-width windows,
specified with the window( ) option; expanding windows, specified
with the recursive option; and contracting windows, specified with
the rrecursive, or reverse recursive option.

The fixed-width window executes a statistical command for the
specified number of calendar periods, then moves both the beginning
and ending calendar period forward by one period and repeats it, and
so on, until the last period of the sample is reached. With the
stepsize( ) option, you may move the window by more than one
period.
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Rolling-window estimation

The expanding window executes the command for the number of
calendar periods specified in window( ), then repeats for a sample
with one more calendar period, and so on. The left side of the window
is held fixed while the right side expands.

The contracting window executes the command for the number of
calendar periods specified in window( ), then repeats for a sample
excluding the earliest calendar period, and so on. The left side of the
window moves while the right side is held fixed at the last period.
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Rolling-window estimation

For all uses of rolling:, a new data set is created with the results of
the statistical command. This behavior is similar to that of other prefix
commands such as simulate:, jackknife: and bootstrap. The
dataset will contain two new variables, start and end, which identify
the ‘edges’ of the window for each observation. One of those variables
may be used to merge the new data set back on the original data set.
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Rolling-window estimation mvsumm and mvcorr

Although the most common use of rolling: may involve estimation
(e-class) commands such as regress, the prefix may also be used
with r-class statistical commands such as summarize. However, if
your only interest is in producing moving-window descriptive statistics,
you might find Baum and Cox’s mvsumm command easier to use.
Along those lines, their mvcorr routine, which produces
moving-window correlations of two time series, should be noted. Both
routines will automatically operate on a panel data set that has been
properly tsset.
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Rolling-window estimation The rolling: prefix

The rolling: prefix works with the concept of an exp_list, or list of
expressions, that are to be computed for each window. For an e-class
command such as regress, the default exp_list is _b, the vector of
estimated coefficients (that is, e(b). For a r-class command such as
summarize, the default exp_list is all the scalars stored in r( ). You
may override this behavior by specifying particular expressions in the
exp_list.

For instance, to add the standard errors of the estimated coefficients to
the exp_list, you may specify _se. To add the R2 or RMS Error
statistics from a regression, specify r2=e(r2) rmse=e(rmse) in the
exp_list.

We will illustrate in a later talk how statistics not available in e( ) or
r( ) may be collected.
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Rolling-window estimation The rolling: prefix

You generally will want to specify the saving filename, replace
option to rolling:, so that a new data set will be constructed,
leaving the current data set in memory. Otherwise, rolling: will
replace the current data set in memory with its results.

For example, say that we want to produce moving-window regression
estimates from a window containing 48 quarterly observations:
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Rolling-window estimation The rolling: prefix

. rolling _b _se r2=e(r2) rmse=e(rmse), window(48) ///
> saving(rolltr10, replace) nodots: regress tr10yr rmbase lrwage, robust
file rolltr10.dta saved

. use rolltr10, clear
(rolling: regress)

. describe

Contains data from rolltr10.dta
obs: 160 rolling: regress

vars: 10 15 Feb 2011 14:50
size: 7,680 (99.9% of memory free)

storage display value
variable name type format label variable label

start float %tq
end float %tq
_b_rmbase float %9.0g _b[rmbase]
_b_lrwage float %9.0g _b[lrwage]
_b_cons float %9.0g _b[_cons]
_se_rmbase float %9.0g _se[rmbase]
_se_lrwage float %9.0g _se[lrwage]
_se_cons float %9.0g _se[_cons]
_eq2_r2 float %9.0g e(r2)
_eq2_rmse float %9.0g e(rmse)

Sorted by:

Notice that all options to rolling: appear before the colon.
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Rolling-window estimation The rolling: prefix

We can now present the coefficient estimates graphically (optionally,
with interval estimates):

. tsset end, quarterly
time variable: end, 1970q4 to 2010q3

delta: 1 quarter

. tw (tsline _b_rmbase) (tsline _b_lrwage, yaxis(2)), ///
> scheme(s2mono) ti("Rolling coefficients on real money base and real wage") //
> /
> t2("48-quarter windows, right endpoint labeled")
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Rolling-window estimation The rolling: prefix
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Structural break models

Structural break models

Rolling-window regression estimates are one way of evaluating
structural stability, or the lack thereof, in a time series regression. Many
other approaches have been developed: for instance, the cusums and
cusums-squared tests of Brown, Durbin, Evans (JRSS, 1975).

With the widespread use of unit root tests, whose power is severely
degraded by the presence of structural breaks, a number of tests
allowing for one or more structural breaks have been devised (Zivot &
Andrews, JBES, 1992; Perron & Vogelsang, JBES, 1992; Clemente,
Montanes, Reyes, Ec. Let., 1998). Stata routines for these tests are
available from SSC as packages zandrews and clemao_io,
respectively.
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Structural break models The Elliott–Müller approach

The Elliott–Müller approach

However, tests for structural stability or structural change are not only
relevant in the case of potentially nonstationary processes. We may be
equally concerned with the temporal stability of a regression model in
which there is no evidence of nonstationarity. To that end, Elliott and
Müller (EM) proposed a novel strategy (REStud, 2006) that they claim
is an encompassing approach to the problem of testing for temporal
stability.
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Structural break models The Elliott–Müller approach

They consider “tests of the null hypothesis of a stable linear model

yt = X ′t β̄ + Z ′t γ + ε

against the alternative of a partially unstable model

yt = X ′t βt + Z ′t γ + ε

where the variation in βt is of the strong form” (p. 907), or nontrivial.
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Structural break models The Elliott–Müller approach

Consideration of this alternative has led to a huge literature based on
the “diversity of possible ways {βt} can be non-constant.” EM point out
that optimal tests and their asymptotic distributions have not been
derived for many particular models of the alternative.

Their approach develops a single unified framework, noting that the
“seemingly different approaches of ‘structural breaks’ and ‘random
coefficients’ are in fact equivalent.” (p.908) EM unify the approaches
that describe a breaking process with a number of non-random
parameters with tests that specify stochastic processes for {βt}
without requiring to specify its exact evolution.
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Structural break models The Elliott–Müller approach

The processes considered include breaks that occur in a random
fashion, serial correlation in the changes of the coefficients, a
clustering of break dates, and so on.

Under a normality assumption on the disturbances, “small sample
efficient tests in this broad set are asymptotically equivalent” and
“leaving the exact breaking process unspecified (apart from a scaling
parameter) does not result in a loss of power in large samples.” (p.
908)
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Structural break models The Elliott–Müller approach

The consequences of this approach to the problem of structural
stability are profound. “The equivalence of power over many models
means that there is little point in deriving further optimal tests for
particular processes in our set” (p. 908) and the researcher can carry
out (almost) efficient inference without specifying the exact path of the
breaking process.

Furthermore, the computation of EM’s Quasi-Local Level (qLL) test
statistic is straightforward, and it remains valid for very general
specifications of the error term and covariates. The computation
requires no more than (k + 1) OLS regressions for a model with k
covariates, in contrast to many approaches which require T or T 2

regressions. No arbitrary trimming of the data is required.
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Structural break models The Elliott–Müller approach

In the structural break literature, a fixed number of N breaks at
τ1, . . . , τN are assumed. Much of the literature addresses N = 1: e.g.
the “Chow test”, cusums tests of Brown–Durbin–Evans, Bai and
Perron, Andrews and Ploberger, etc.

In contrast, the time-varying parameter literature considers a random
process generating βt : often considered as a random walk process.
The approaches of Leybourne and McCabe, Nyblom, and Saikkonen
and Luukonen are based on classical statistics, while Koop and Potter
and Giordani et al. consider a Bayesian approach. All of these
approaches are very analytically challenging.

EM argue that tests for one of these phenomena will have power
against the other, and vice versa. Therefore a single approach will
suffice.
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Structural break models Evaluating parameter constancy

EM raise the interesting question: why do we test for parameter
constancy? They consider three motivations:

1 Stability relates to theoretical constructs such as the Lucas
critique of economic policymaking

2 Forecasting will depend crucially on a stable relationship
3 Standard inference on β̄ will be useless if {βt} varies in a

permanent fashion; persistent changes will render a fixed model
misleading

“The more pervasive these three motivations are, the more persistent
the changes in {β}.” (p. 912) Therefore, EM propose that a useful test
should maximize its power against persistent changes in {βt}.
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Structural break models Evaluating parameter constancy

The conditions underlying the EM test allow for diverse breaking
models, from relatively rare (including a single break) to very frequent
small breaks (such as breaks every period with probability p). Breaks
can also occur with a regular pattern, such as every 16 quarters
following U.S. presidential elections.

Computation of the qLL test statistic is straightforward, relying only on
OLS regressions and construction of an estimate of the long-run
covariance matrix of {Xtεt}. For uncorrelated εt , a robust covariance
matrix will suffice. For possibly autocorrelated εt , a HAC
(Newey–West) covariance matrix is appropriate.

The null hypothesis of parameter stability is rejected for small values of
q̂LL: that is, values more negative than the critical values. Asymptotic
critical values are provided by EM for k = 1, . . . ,10 and are
independent of the dimension of Zt (the set of covariates assumed to
have stable coefficients).
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Structural break models The qll command

The qll Stata command implements the EM qLL test using Mata to
produce the test statistic. EM’s Table 1 of asymptotic critical values is
stored in the program and used to produce 10%, 5% and 1% critical
values corresponding to number of regressors with potentially unstable
parameters. The command syntax:

qll depvar varlist [if exp] [in range] [ , (zvarlist) rlag(#) ]

where the parenthesized zvarlist optionally specifies the list of
covariates assumed to have stable coefficients (none are required).
The rlag option specifies the number of lags to be used in computing
the long-run covariance matrix of {Xtεt}. If a negative value is given,
the optimal lag order is chosen by the BIC criterion. The qll
command is available from SSC.

To illustrate, we consider a regression of inflation on the lagged
unemployment rate, the Treasury bill rate and the Treasury bond rate.
We assume the latter two coefficients are stable over the period. We
test over the full sample and a 1990–2000 subsample.
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Structural break models The qll command
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Structural break models The qll command

. qll inf L.UR (TBILL TBON), rlag(8)

Elliott-Muller qLL test statistic for time varying coefficients
in the model of inf, 1960q1 - 2000q4
Allowing for time variation in 1 regressors
H0: all regression coefficients fixed over the sample period (N = 164)

Test stat. 1% Crit.Val. 5% Crit.Val. 10% Crit.Val.
-2.260 -11.05 -8.36 -7.14

Long-run variance computed with 8 lags.

. qll inf L.UR (TBILL TBON) if tin(1990q1,), rlag(8)

Elliott-Muller qLL test statistic for time varying coefficients
in the model of inf, 1990q1 - 2000q4
Allowing for time variation in 1 regressors
H0: all regression coefficients fixed over the sample period (N = 44)

Test stat. 1% Crit.Val. 5% Crit.Val. 10% Crit.Val.
-6.647 -11.05 -8.36 -7.14

Long-run variance computed with 8 lags.
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Structural break models The qll command

In both samples, using eight lags to calculate the long-run covariance
matrix, the null hypothesis that the coefficients on the lagged
unemployment rate (L.UR) are stable cannot be rejected at the 10%
level of confidence. The Elliott–Müller qLL test indicates that the
stability of this regression model, allowing for instability in the
coefficient of the unemployment rate only, cannot be rejected by the
data.
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Time series filtering

Time series filtering

Official Stata contains a number of commands for time series filtering
in the tssmooth suite, including single and double exponential
smoothing; Holt–Winters seasonal and nonseasonal smoothing;
moving-average filtering; and nonlinear filtering.

A number of user-written routines provide Stata commands for time
series filtering. My hprescott command provides the
Hodrick–Prescott filter, which may be applied to multiple time series as
well as to the time series within a panel using the by: prefix. The
somewhat similar Butterworth high-pass filter is also available from
SSC as butterworth.

A recent addition to SSC is Jorge Pérez’ implementation of the
Corbae–Ouliaris filter, couliari. That routine improves upon the
Baxter–King filter (my bking routine) in its handling of endpoints of
the series.
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Time series filtering Interpolation

Interpolation

Official Stata provides some facilities for interpolation and extrapolation
of time series, such as the ipolate command. A nonparametric
locally weighted regression interpolation can also be performed by the
lowess command. Kernel-weighted local polynomial smoothing is
available using the lpoly command.
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Time series filtering The proportional Denton method

In some instances a time series is needed at a higher frequency, but
must obey the accounting constraints that the higher-frequency
observations sum to the lower-frequency observed series. I have
programmed the proportional Denton method, as described in the
IMF’s Quarterly National Accounts Manual, 2001.

The denton command, available from SSC, can interpolate annual
data to quarterly, subject to adding-up constraints. The associated
dentonmq command can interpolate quarterly data to monthly
frequency. These routines are in the process of being translated into
Mata to remove constraints on the length of time series.

A good illustration of how the Denton procedure may be used, by
Victor H. Aguiar, is included in your materials.
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Time series filtering Aggregating time series data

Aggregation

In some cases, you may want to go the other way, and aggregate
higher-frequency data to a lower frequency for presentation or
combination with other lower-frequency data. In general terms, this
sort of aggregation can be performed with Stata’s collapse
command, which is capable of producing a new data set of ‘collapsed’
means, counts, standard deviations, or other statistics.

The particular needs of time series modelers suggest that you may
want to sum some series, average others over the longer period, and
pick beginning-of-period or end-of-period values for others. My
tscollap routine performs these functions, as well as computing
geometric means for growth rates. It can also be applied to panel data,
operating on each time series within a panel.
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Time series filtering tscollap

In this example, using the quarterly US macro data set, we create the
(geometric) average inflation rate, the end-of-year monetary base, the
average oil price over the year and the first quarter’s oil price as new
series. The data are now tsset by the new year variable.

. use usmacro1, clear

. tscollap dcpi (gmean) mbase (last) oilprice (mean) foilpr=oilprice (first), /
> *
> */ to(y) gen(yr)

Converting from Q to Y

time variable: yr, 1959 to 2009
delta: 1 year

. summarize

Variable Obs Mean Std. Dev. Min Max

dcpi 51 4.049612 2.875048 -.342528 13.53583
mbase 51 313.3805 333.4971 40.81946 1779.044

oilprice 51 22.01961 19.83468 2.92 90.6733
foilpr 51 21.72855 20.27324 2.92 99.5875

yr 51 1984 14.86607 1959 2009
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Time series filtering Ex ante forecasting

Ex ante forecasting

One feature not readily supported by the rolling: syntax is the
production of a sequence of ex ante forecasts from moving-window
estimation. This came to light in a discussion with Jim Stock last fall
when he said that producing these forecasts was an important
capability, but one that could not be readily achieved in the rolling:
syntax. In response, I wrote a beta version of staticfc, which does
just that. It is not yet posted on SSC, but is included in your materials.

The routine has a ‘required option’, generate( ), in which you
specify a ‘stub’ from which new variables will be created. The stub
itself is the name of the ex ante rolling forecast variable, while stub_s
and stub_n will contain the standard error of forecast and number of
observations used in the estimation, respectively.
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Time series filtering Ex ante forecasting

At present, the routine only supports the rolling: option of recursive
estimation: that is, the expanding window. You may choose the initial
number of periods to be used in estimation, as well as the number of
steps ahead to forecast. The routine only handles static models
(lacking lagged dependent variables) at present. Optionally, you may
graph the forecast series with its 95% confidence interval.

To illustrate, we use Stata’s manufac monthly data set and estimate a
model of hours as depending on a distributed lag of capital utilization
and its logarithm, using 48 months of data as the initial estimation
sample. We consider three-step-ahead forecasts.
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Time series filtering Ex ante forecasting

. webuse manufac, clear
(St. Louis Fed (FRED) manufacturing data)

. tsset
time variable: month, 1972m1 to 2008m12

delta: 1 month

. staticfc hours L(1/2).caputil lncaputil if tin(1997m1,2008m12), ///
> init(48) step(3) gen(cfc4) graph(fig4) replace ///
> ti("Three-period-ahead recursive forecasts of hours")
(file fig4.gph saved)
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Time series filtering Ex ante forecasting
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ARIMA and ARMAX models

ARIMA and ARMAX models

Stata’s capabilities to estimate ARIMA or ‘Box–Jenkins’ models are
implemented by the arima command. These modeling tools include
both the traditional ARIMA(p,d ,q) framework as well as multiplicative
seasonal ARIMA components.

However, the arima command has features that go beyond univariate
time series modeling. It also implements ARMAX models: that is,
regression equations with ARMA errors. This feature generalizes the
capability of Stata’s prais command to estimate a regression with
first-order autoregressive (AR(1)) errors. In both the ARIMA and
ARMAX contexts, the arima command implements dynamic forecasts.
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ARIMA and ARMAX models

To illustrate, we fit an ARIMA(p,d,q) model to the US consumer price
index (CPI):

. use usmacro1

. arima cpi, arima(1, 1, 1) nolog

ARIMA regression

Sample: 1959q2 - 2010q3 Number of obs = 206
Wald chi2(2) = 12657.64

Log likelihood = -105.364 Prob > chi2 = 0.0000

OPG
D.cpi Coef. Std. Err. z P>|z| [95% Conf. Interval]

cpi
_cons .4711825 .0508081 9.27 0.000 .3716004 .5707646

ARMA
ar
L1. -.3478959 .0590356 -5.89 0.000 -.4636036 -.2321882

ma
L1. .9775208 .0123013 79.46 0.000 .9534106 1.001631

/sigma .4011922 .008254 48.61 0.000 .3850146 .4173697

. estimates store e42a
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ARIMA and ARMAX models

In this example, we use the arima(p, d, q) option to specify the
model. The ar( ) and ma( ) options may also be used separately, in
which case a numlist of lags to be included is specified. Differencing is
then applied to the dependent variable using the D. operator. For
example:

. use usmacro1

. arima D.cpi, ar(1 4) nolog

ARIMA regression

Sample: 1959q2 - 2010q3 Number of obs = 206
Wald chi2(2) = 105.12

Log likelihood = -112.7938 Prob > chi2 = 0.0000

OPG
D.cpi Coef. Std. Err. z P>|z| [95% Conf. Interval]

cpi
_cons .4578741 .1086742 4.21 0.000 .2448766 .6708716

ARMA
ar
L1. .3035501 .0686132 4.42 0.000 .1690707 .4380295
L4. .3342019 .0407126 8.21 0.000 .2544068 .413997

/sigma .4177019 .0071104 58.75 0.000 .4037658 .4316381
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ARIMA and ARMAX models Forecasts from ARIMA models

Several prediction options are available after estimating an arima
model. The default option, xb, predicts the actual dependent variable:
so if D.cpi is the dependent variable, predictions are made for that
variable. In contrast, the y option generates predictions of the original
variable, in this case cpi.

The mse option calculates the mean squared error of predictions, while
yresiduals are computed in terms of the original variable.

Christopher F Baum (BC / DIW) Time series models IMF Institute, Spring 2011 51 / 119



ARIMA and ARMAX models Forecasts from ARIMA models

We recall the estimates from the first model fitted, and calculate
predictions for the actual dependent variable, ∆CPI:

. estimates restore e42a
(results e42a are active now)

. predict double dcpihat, xb

. tsline dcpihat, ///
> ti("ARIMA(1,1,1) model of {&Delta}US CPI") scheme(s2mono)

Christopher F Baum (BC / DIW) Time series models IMF Institute, Spring 2011 52 / 119



ARIMA and ARMAX models Forecasts from ARIMA models
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ARIMA and ARMAX models Forecasts from ARIMA models

We can see that the predictions are becoming increasingly volatile in
recent years.

We may also compute predicted values and residuals for the level of
CPI:

. estimates restore e42a
(results e42a are active now)

. predict double cpihat, y
(1 missing value generated)

. predict double cpieps, yresiduals
(1 missing value generated)

. tw (tsline cpieps, yaxis(2)) (tsline cpihat), ///
> ti("ARIMA(1,1,1) model of US CPI") scheme(s2mono)
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ARIMA and ARMAX models Forecasts from ARIMA models
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ARIMA and ARMAX models ARMAX estimation and dynamic forecasts

We now illustrate the estimation of an ARMAX model of ∆cpi as a
function of ∆oilprice with ARMA(1,1) errors. The estimation sample
runs through 2008q4.

. arima d.cpi d.oilprice if tin(, 2008q4), ar(1) ma(1) nolog

ARIMA regression

Sample: 1959q2 - 2008q4 Number of obs = 199
Wald chi2(3) = 1829.64

Log likelihood = -27.08681 Prob > chi2 = 0.0000

OPG
D.cpi Coef. Std. Err. z P>|z| [95% Conf. Interval]

cpi
oilprice

D1. .0602003 .0021528 27.96 0.000 .0559808 .0644198

_cons .4397912 .1833278 2.40 0.016 .0804753 .7991071

ARMA
ar
L1. .9732011 .0296099 32.87 0.000 .9151667 1.031235

ma
L1. -.7867952 .0535747 -14.69 0.000 -.8917997 -.6817906

/sigma .2765534 .0091383 30.26 0.000 .2586426 .2944642
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ARIMA and ARMAX models ARMAX estimation and dynamic forecasts

We compute static (one-period-ahead) ex ante forecasts and dynamic
(multi-period-ahead) ex ante forecasts for 2009q1–2010q3. In
specifying the dynamic forecast, the dynamic( ) option indicates the
period in which references to y should first evaluate to the prediction of
the model rather than historical values. In all prior periods, references
to y are to the actual data.

. predict double cpihat_s if tin(2006q1,), y
(188 missing values generated)

. label var cpihat_s "static forecast"

. predict double cpihat_d if tin(2006q1,), dynamic(tq(2008q4)) y
(188 missing values generated)

. label var cpihat_d "dynamic forecast"

. tw (tsline cpihat_s cpihat_d if !mi(cpihat_s)) ///
> (scatter cpi yq if !mi(cpihat_s), c(i)), scheme(s2mono) ///
> ti("Static and dynamic ex ante forecasts of US CPI") ///
> t2("Forecast horizon: 2009q1-2010q3") legend(rows(1))
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ARIMA and ARMAX models ARMAX estimation and dynamic forecasts
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Vector autoregressive models

Vector autoregressive (VAR) models

Stata has a complete suite of commands for fitting and forecasting
vector autoregressive (VAR) models and structural vector
autoregressive (SVAR) models. Its capabilities include estimating and
interpreting impulse response functions (IRFs), dynamic multipliers,
and forecast error vector decompositions (FEVDs).

Subsidiary commands allow you to check the stability condition of VAR
or SVAR estimates; to compute log-order selection statistics for VARs;
to perform pairwise Granger causality tests for VAR estimates; and to
test for residual autocorrelation and normality in the disturbances of
VARs.

Dynamic forecasts may be computed and graphed after VAR or SVAR
estimation.
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Vector autoregressive models

A p-th order vector autoregression, or VAR(p), with exogenous
variables x can be written as:

yt = v + A1yt−1 + · · ·+ Apyt−p + B0xt + B1Bt−1 + · · ·+ Bsxt−s + ut

where yt is a vector of K variables, each modeled as function of p lags
of those variables and, optionally, a set of exogenous variables xt .

We assume that E(ut ) = 0,E(utu′t ) = Σ and E(utu′s) = 0 ∀t 6= s.
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Vector autoregressive models

If the VAR is stable (see command varstable) we can rewrite the
VAR in moving average form as:

yt = µ+
∞∑

i=0

Dixt−i +
∞∑

i=0

Φiut−i

which is the vector moving average (VMA) representation of the VAR,
where all past values of yt have been substituted out. The Di matrices
are the dynamic multiplier functions, or transfer functions. The
sequence of moving average coefficients Φi are the simple
impulse-response functions (IRFs) at horizon i .
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Vector autoregressive models

Estimation of the parameters of the VAR requires that the variables in
yt and xt are covariance stationary, with their first two moments finite
and time-invariant. If the variables in yt are not covariance stationary,
but their first differences are, they may be modeled with a vector error
correction model, or VECM.

In the absence of exogenous variables, the disturbance
variance-covariance matrix Σ contains all relevant information about
contemporaneous correlation among the variables in yt . VARs may be
reduced-form VARs, which do not account for this contemporaneous
correlation. They may be recursive VARs, where the K variables are
assumed to form a recursive dynamic structural model where each
variable only depends upon those above it in the vector yt . Or, they
may be structural VARs, where theory is used to place restrictions on
the contemporaneous correlations.
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Vector autoregressive models

Stata’s varbasic command allows you to fit a simple reduced-form
VAR without constraints and graph the impulse-response functions
(IRFs). The more general var command allows for constraints to be
placed on the coefficients.

The varsoc command allows you to select the appropriate lag order
for the VAR; command varwle computes Wald tests to determine
whether certain lags can be excluded; varlmar checks for
autocorrelation in the disturbances; and varstable checks whether
the stability conditions needed to compute IRFs and FEVDs are
satisfied.
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Vector autoregressive models IRFs, OIRFs and FEVDs

IRFs, OIRFs and FEVDs

Impulse response functions, or IRFs, measure the effects of a shock to
an endogenous variable on itself or on another endogenous variable.
Stata’s irf commands can compute five types of IRFs:
simple IRFs, orthogonalized IRFs, cumulative IRFs, cumulative
orthogonalized IRFs and structural IRFs. We defined the simple IRF
in an earlier slide.

The forecast error variance decomposition (FEVD) measures the
fraction of the forecast error variance of an endogenous variable that
can be attributed to orthogonalized shocks to itself or to another
endogenous variable.
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Vector autoregressive models IRFs, OIRFs and FEVDs

To analyze IRFs and FEVDs in Stata, you estimate a VAR model and
use irf create to estimate the IRFs and FEVDs and store them in a
file. This step is done automatically by the varbasic command, but
must be done explicitly after the var or svar commands. You may
then use irf graph, irf table or other irf analysis commands
to examine results.

For IRFs to be computed, the VAR must be stable. The simple IRFs
shown above have a drawback: they give the effect over time of a
one-time unit increase to one of the shocks, holding all else constant.
But to the extent the shocks are contemporaneously correlated, the
other shocks cannot be held constant, and the VMA form of the VAR
cannot have a causal interpretation.
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Vector autoregressive models Orthogonalized innovations

Orthogonalized innovations

We can overcome this difficulty by taking E(utu′t ) = Σ, the covariance
matrix of shocks, and finding a matrix P such that Σ = PP′ and
P−1ΣP′−1 = IK . The vector of shocks may then be orthogonalized by
P−1. For a pure VAR, without exogenous variables,

yt = µ+
∞∑

i=0

Φiut−i

= µ+
∞∑

i=0

ΦiPP−1ut−i

= µ+
∞∑

i=0

ΘiP−1ut−i

= µ+
∞∑

i=0

Θiwt−i
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Vector autoregressive models Orthogonalized innovations

Sims (Econometrica, 1980) suggests that P can be written as the
Cholesky decomposition of Σ−1, and IRFs based on this choice are
known as the orthogonalized IRFs. As a VAR can be considered to be
the reduced form of a dynamic structural equation (DSE) model,
choosing P is equivalent to imposing a recursive structure on the
corresponding DSE model. The ordering of the recursive structure is
that imposed in the Cholesky decomposition, which is that in which the
endogenous variables appear in the VAR estimation.
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Vector autoregressive models Orthogonalized innovations

As this choice is somewhat arbitrary, you may want to explore the
OIRFs resulting from a different ordering. It is not necessary, using
var and irf create, to reestimate the VAR with a different ordering,
as the order() option of irf create will apply the Cholesky
decomposition in the specified order.

Just as the OIRFs are sensitive to the ordering of variables, the FEVDs
are defined in terms of a particular causal ordering.

If there are additional (strictly) exogenous variables in the VAR, the
dynamic multiplier functions or transfer functions can be computed.
These measure the impact of a unit change in the exogenous variable
on the endogenous variables over time. They are generated by fcast
compute and graphed with fcast graph.
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Vector autoregressive models varbasic

varbasic

For a simple VAR estimation, you need only specify the varbasic
varlist command. The number of lags, which is given as a numlist,
defaults to (1 2). Note that you must list every lag to be included; for
instance lags(4) would only include the fourth lag, whereas
lags(1/4) would include the first four lags.

Using the usmacro1 dataset, let us estimate a basic VAR for the first
differences of log real investment, log real consumption and log real
income through 2005q4. By default, the command will produce a
graph of the orthogonalized IRFs (OIRFs) for 8 steps ahead. You may
choose a different horizon with the step( ) option.
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Vector autoregressive models varbasic

. use usmacro1

. varbasic D.lrgrossinv D.lrconsump D.lrgdp if tin(,2005q4)

Vector autoregression

Sample: 1959q4 - 2005q4 No. of obs = 185
Log likelihood = 1905.169 AIC = -20.3694
FPE = 2.86e-13 HQIC = -20.22125
Det(Sigma_ml) = 2.28e-13 SBIC = -20.00385

Equation Parms RMSE R-sq chi2 P>chi2

D_lrgrossinv 7 .017503 0.2030 47.12655 0.0000
D_lrconsump 7 .006579 0.0994 20.42492 0.0023
D_lrgdp 7 .007722 0.2157 50.88832 0.0000

Coef. Std. Err. z P>|z| [95% Conf. Interval]

D_lrgrossinv
lrgrossinv

LD. .1948761 .0977977 1.99 0.046 .0031962 .3865561
L2D. .1271815 .0981167 1.30 0.195 -.0651237 .3194868

lrconsump
LD. .5667047 .2556723 2.22 0.027 .0655963 1.067813
L2D. .1771756 .2567412 0.69 0.490 -.326028 .6803791

lrgdp
LD. .1051089 .2399165 0.44 0.661 -.3651189 .5753367
L2D. -.1210883 .2349968 -0.52 0.606 -.5816736 .3394969

_cons -.0009508 .0027881 -0.34 0.733 -.0064153 .0045138

D_lrconsump
lrgrossinv

LD. .0106853 .0367601 0.29 0.771 -.0613631 .0827338
L2D. -.0448372 .03688 -1.22 0.224 -.1171207 .0274463

lrconsump
LD. -.0328597 .0961018 -0.34 0.732 -.2212158 .1554964
L2D. .1113313 .0965036 1.15 0.249 -.0778123 .300475

lrgdp
LD. .1887531 .0901796 2.09 0.036 .0120043 .3655018
L2D. .1113505 .0883304 1.26 0.207 -.0617738 .2844748

_cons .0058867 .001048 5.62 0.000 .0038326 .0079407

D_lrgdp
lrgrossinv

LD. .1239506 .0431482 2.87 0.004 .0393818 .2085195
L2D. .043157 .0432889 1.00 0.319 -.0416878 .1280017

lrconsump
LD. .4077815 .1128022 3.62 0.000 .1866933 .6288696
L2D. .2374275 .1132738 2.10 0.036 .0154149 .45944

lrgdp
LD. -.2095935 .1058508 -1.98 0.048 -.4170572 -.0021298
L2D. -.1141997 .1036802 -1.10 0.271 -.3174091 .0890097

_cons .0038423 .0012301 3.12 0.002 .0014314 .0062533
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Vector autoregressive models varbasic
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Vector autoregressive models varbasic

As any of the VAR estimation commands save the estimated IRFs,
OIRFs and FEVDs in an .irf file, you may examine the FEVDs with a
graph command. These items may also be tabulated with the irf
table and irf ctable commands. The latter command allows you
to juxtapose tabulated values, such as the OIRF and FEVD for a
particular pair of variables, while the irf cgraph command allows
you to do the same for graphs.

. irf graph fevd, lstep(1)
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Vector autoregressive models varbasic
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Vector autoregressive models varbasic

After producing any graph in Stata, you may save it in Stata’s internal
format using graph save filename. This will create a .gph file which
may be accessed with graph use. The file contains all the
information necessary to replicate the graph and modify its
appearance. However, only Stata can read .gph files. If you want to
reproduce the graph in a document, use the graph export
filename.format command, where format is .eps (for a Windows or
Linux system) or .pdf for Mac OS X.
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Vector autoregressive models varbasic

We now consider a model fit with var to the same three variables,
adding the change in the log of the real money base as an exogenous
variable. We include four lags in the VAR.
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Vector autoregressive models varbasic

. var D.lrgrossinv D.lrconsump D.lrgdp if tin(,2005q4), ///
> lags(1/4) exog(D.lrmbase)

Vector autoregression

Sample: 1960q2 - 2005q4 No. of obs = 183
Log likelihood = 1907.061 AIC = -20.38318
FPE = 2.82e-13 HQIC = -20.0846
Det(Sigma_ml) = 1.78e-13 SBIC = -19.64658

Equation Parms RMSE R-sq chi2 P>chi2

D_lrgrossinv 14 .017331 0.2426 58.60225 0.0000
D_lrconsump 14 .006487 0.1640 35.90802 0.0006
D_lrgdp 14 .007433 0.2989 78.02177 0.0000

Coef. Std. Err. z P>|z| [95% Conf. Interval]

D_lrgrossinv
lrgrossinv

LD. .2337044 .0970048 2.41 0.016 .0435785 .4238303
L2D. .0746063 .0997035 0.75 0.454 -.1208089 .2700215
L3D. -.1986633 .1011362 -1.96 0.049 -.3968866 -.0004401
L4D. .1517106 .1004397 1.51 0.131 -.0451476 .3485688

lrconsump
LD. .4716336 .2613373 1.80 0.071 -.040578 .9838452
L2D. .1322693 .2758129 0.48 0.632 -.408314 .6728527
L3D. .2471462 .2697096 0.92 0.359 -.281475 .7757673
L4D. -.0177416 .2558472 -0.07 0.945 -.5191928 .4837097

lrgdp
LD. .1354875 .2455182 0.55 0.581 -.3457193 .6166942
L2D. .0414686 .254353 0.16 0.870 -.4570541 .5399914
L3D. .1304675 .2523745 0.52 0.605 -.3641774 .6251124
L4D. -.135457 .2366945 -0.57 0.567 -.5993698 .3284558

lrmbase
D1. .0396035 .1209596 0.33 0.743 -.1974729 .2766799

_cons -.0030005 .003383 -0.89 0.375 -.0096311 .0036302

D_lrconsump
lrgrossinv

LD. .0217782 .0363098 0.60 0.549 -.0493876 .092944
L2D. -.0523122 .0373199 -1.40 0.161 -.1254578 .0208335
L3D. -.0286832 .0378562 -0.76 0.449 -.1028799 .0455136
L4D. .0750044 .0375955 2.00 0.046 .0013186 .1486902

lrconsump
LD. -.0891814 .0978209 -0.91 0.362 -.2809068 .102544
L2D. .131353 .1032392 1.27 0.203 -.0709922 .3336982
L3D. .1927974 .1009547 1.91 0.056 -.0050702 .3906651
L4D. .0101163 .0957659 0.11 0.916 -.1775814 .1978139

lrgdp
LD. .2010624 .0918997 2.19 0.029 .0209424 .3811825
L2D. .0947972 .0952066 1.00 0.319 -.0918043 .2813987
L3D. -.0969827 .094466 -1.03 0.305 -.2821327 .0881673
L4D. -.1210815 .0885969 -1.37 0.172 -.2947282 .0525652

lrmbase
D1. .1071698 .0452763 2.37 0.018 .01843 .1959097

_cons .0051542 .0012663 4.07 0.000 .0026723 .0076361

D_lrgdp
lrgrossinv

LD. .1547249 .0416013 3.72 0.000 .0731878 .2362619
L2D. .0488007 .0427587 1.14 0.254 -.0350048 .1326061
L3D. -.1157621 .0433731 -2.67 0.008 -.2007718 -.0307524
L4D. .0321552 .0430744 0.75 0.455 -.052269 .1165795

lrconsump
LD. .3234787 .1120767 2.89 0.004 .1038125 .5431449
L2D. .1546979 .1182847 1.31 0.191 -.0771358 .3865315
L3D. .1368512 .1156672 1.18 0.237 -.0898524 .3635548
L4D. .1352606 .1097222 1.23 0.218 -.0797909 .3503121

lrgdp
LD. -.1872008 .1052925 -1.78 0.075 -.3935703 .0191687
L2D. -.0301044 .1090814 -0.28 0.783 -.2439 .1836912
L3D. -.0461081 .1082329 -0.43 0.670 -.2582407 .1660244
L4D. -.0820566 .1015084 -0.81 0.419 -.2810095 .1168962

lrmbase
D1. .0979823 .0518745 1.89 0.059 -.0036898 .1996545

_cons .0027223 .0014508 1.88 0.061 -.0001213 .0055659
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Vector autoregressive models varbasic

To evaluate whether the money base variable should be included in the
VAR, we can use testparm to construct a joint test of significance of
its coefficients:

. testparm D.lrmbase

( 1) [D_lrgrossinv]D.lrmbase = 0
( 2) [D_lrconsump]D.lrmbase = 0
( 3) [D_lrgdp]D.lrmbase = 0

chi2( 3) = 7.95
Prob > chi2 = 0.0471

The variable is marginally significant in the estimated system.
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Vector autoregressive models varbasic

A common diagnostic from a VAR are the set of block F tests, or
Granger causality tests, that consider whether each variable plays a
significant role in each of the equations. These tests may help to
establish a sensible causal ordering. They can be performed by
vargranger:

. vargranger

Granger causality Wald tests

Equation Excluded chi2 df Prob > chi2

D_lrgrossinv D.lrconsump 4.2531 4 0.373
D_lrgrossinv D.lrgdp 1.0999 4 0.894
D_lrgrossinv ALL 10.34 8 0.242

D_lrconsump D.lrgrossinv 5.8806 4 0.208
D_lrconsump D.lrgdp 8.1826 4 0.085
D_lrconsump ALL 12.647 8 0.125

D_lrgdp D.lrgrossinv 22.204 4 0.000
D_lrgdp D.lrconsump 11.349 4 0.023
D_lrgdp ALL 42.98 8 0.000
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Vector autoregressive models varbasic

We may also want to compute selection order criteria to gauge
whether we have included sufficient lags in the VAR. Introducing too
many lags wastes degrees of freedom, while too few lags leave the
equations potentially misspecified and are likely to cause
autocorrelation in the residuals. The varsoc command will produce
selection order criteria, and highlight the optimal lag.

. varsoc

Selection-order criteria
Sample: 1960q2 - 2005q4 Number of obs = 183

lag LL LR df p FPE AIC HQIC SBIC

0 1851.22 3.5e-13 -20.1663 -20.1237 -20.0611
1 1887.29 72.138* 9 0.000 2.6e-13* -20.4622* -20.3555* -20.1991*
2 1894.14 13.716 9 0.133 2.7e-13 -20.4387 -20.2681 -20.0178
3 1902.58 16.866 9 0.051 2.7e-13 -20.4325 -20.1979 -19.8538
4 1907.06 8.9665 9 0.440 2.8e-13 -20.3832 -20.0846 -19.6466

Endogenous: D.lrgrossinv D.lrconsump D.lrgdp
Exogenous: D.lrmbase _cons
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Vector autoregressive models varbasic

We should also be concerned with stability of the VAR, which requires
the moduli of the eigenvalues of the dynamic matrix to lie within the
unit circle. As there is more than one lag in the VAR we have
estimated, it is likely that complex eigenvalues, leading to cycles, will
be encountered.

. varstable

Eigenvalue stability condition

Eigenvalue Modulus

.6916791 .691679
-.5793137 + .1840599i .607851
-.5793137 - .1840599i .607851
-.3792302 + .4714717i .605063
-.3792302 - .4714717i .605063
.1193592 + .5921967i .604106
.1193592 - .5921967i .604106
.5317127 + .2672997i .59512
.5317127 - .2672997i .59512
-.4579249 .457925
.1692559 + .3870966i .422482
.1692559 - .3870966i .422482

All the eigenvalues lie inside the unit circle.
VAR satisfies stability condition.
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Vector autoregressive models varbasic

As the estimated VAR appears stable, we can produce IRFs and
FEVDs in tabular or graphical form:

. irf create icy, step(8) set(res1)
(file res1.irf created)
(file res1.irf now active)
(file res1.irf updated)

. irf table oirf coirf, impulse(D.lrgrossinv) response(D.lrconsump) noci stderr
> or

Results from icy

(1) (1) (1) (1)
step oirf S.E. coirf S.E.

0 .003334 .000427 .003334 .000427
1 .000981 .000465 .004315 .000648
2 .000607 .000468 .004922 .000882
3 .000223 .000471 .005145 .001101
4 .000338 .000431 .005483 .001258
5 -.000034 .000289 .005449 .001428
6 .000209 .000244 .005658 .001571
7 .000115 .000161 .005773 .001674
8 .000092 .00012 .005865 .001757

(1) irfname = icy, impulse = D.lrgrossinv, and response = D.lrconsump
. irf graph oirf coirf, impulse(D.lrgrossinv) response(D.lrconsump) ///
> lstep(1) scheme(s2mono)
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Vector autoregressive models Structural VAR estimation

Structural VAR estimation

All of the capabilities we have illustrated for reduced-form VARs are
also available for structural VARs, which are estimated with the svar
command. In the SVAR framework, the orthogonalization matrix P is
not constructed manually as the Cholesky decomposition of the error
covariance matrix. Instead, restrictions are placed on the P matrix,
either in terms of short-run restrictions on the contemporaneous
covariances between shocks, or in terms of restrictions on the long-run
accumulated effects of the shocks.
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Vector autoregressive models Short-run SVAR models

Short-run SVAR models

A short-run SVAR model without exogenous variables can be written
as

A(IK − A1L− A2L2 − · · · − ApLp)yt = Aεt = Bet

where L is the lag operator. The vector εt refers to the original shocks
in the model, with covariance matrix Σ, while the vector et are a set of
orthogonalized disturbances with covariance matrix IK .

In a short-run SVAR, we obtain identification by placing restrictions on
the matrices A and B, which are assumed to be nonsingular. The
orthgonalization matrix Psr = A−1B is then related to the error
covariance matrix by Σ = Psr P′sr .
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Vector autoregressive models Short-run SVAR models

As there are K (K + 1)/2 free parameters in Σ, given its symmetric
nature, only that many parameters may be estimated in the A and B
matrices. As there are 2K 2 parameters in A and B, the order condition
for identification requires that 2K 2 − K (K + 1)/2 restrictions be placed
on the elements of these matrices.
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Vector autoregressive models Short-run SVAR models

For instance, we could reproduce the effect of the Cholesky
decomposition by defining matrices A and B appropriately. In the
syntax of svar, a missing value in a matrix is a free parameter to be
estimated. The form of the A matrix imposes the recursive structure,
while the diagonal B orthogonalizes the effects of innovations.

. matrix A = (1, 0, 0 \ ., 1, 0 \ ., ., 1)

. matrix B = (., 0, 0 \ 0, ., 0 \ 0, 0, 1)

. matrix list A

A[3,3]
c1 c2 c3

r1 1 0 0
r2 . 1 0
r3 . . 1

. matrix list B

symmetric B[3,3]
c1 c2 c3

r1 .
r2 0 .
r3 0 0 1
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Vector autoregressive models Short-run SVAR models

. svar D.lrgrossinv D.lrconsump D.lrgdp if tin(,2005q4), aeq(A) beq(B) nolog
Estimating short-run parameters

Structural vector autoregression

( 1) [a_1_1]_cons = 1
( 2) [a_1_2]_cons = 0
( 3) [a_1_3]_cons = 0
( 4) [a_2_2]_cons = 1
( 5) [a_2_3]_cons = 0
( 6) [a_3_3]_cons = 1
( 7) [b_1_2]_cons = 0
( 8) [b_1_3]_cons = 0
( 9) [b_2_1]_cons = 0
(10) [b_2_3]_cons = 0
(11) [b_3_1]_cons = 0
(12) [b_3_2]_cons = 0

Sample: 1959q4 - 2005q4 No. of obs = 185
Exactly identified model Log likelihood = 1905.169

Coef. Std. Err. z P>|z| [95% Conf. Interval]

/a_1_1 1 . . . . .
/a_2_1 -.2030461 .0232562 -8.73 0.000 -.2486274 -.1574649
/a_3_1 -.1827889 .0260518 -7.02 0.000 -.2338495 -.1317283
/a_1_2 (omitted)
/a_2_2 1 . . . . .
/a_3_2 -.4994815 .069309 -7.21 0.000 -.6353246 -.3636384
/a_1_3 (omitted)
/a_2_3 (omitted)
/a_3_3 1 . . . . .

/b_1_1 .0171686 .0008926 19.24 0.000 .0154193 .018918
/b_2_1 (omitted)
/b_3_1 (omitted)
/b_1_2 (omitted)
/b_2_2 .0054308 .0002823 19.24 0.000 .0048774 .0059841
/b_3_2 (omitted)
/b_1_3 (omitted)
/b_2_3 (omitted)
/b_3_3 .0051196 .0002662 19.24 0.000 .0045979 .0056412
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Vector autoregressive models Short-run SVAR models

The output from the VAR can also be displayed with the var option.
This model is exactly identified; if we impose additional restrictions on
the parameters, it would be an overidentified model, and the
overidentifying restrictions could be tested.

For instance, we could impose the restriction that A2,1 = 0 by placing a
zero in that cell of the matrix rather than a missing value. This implies
that changes in the first variable (D.lrgrossinv) do not
contemporaneously affect the second variable, (D.lrconsump).

. matrix Arest = (1, 0, 0 \ 0, 1, 0 \ ., ., 1)

. matrix list Arest

Arest[3,3]
c1 c2 c3

r1 1 0 0
r2 0 1 0
r3 . . 1
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Vector autoregressive models Short-run SVAR models

. svar D.lrgrossinv D.lrconsump D.lrgdp if tin(,2005q4), aeq(Arest) beq(B) nolog
Estimating short-run parameters

Structural vector autoregression

...

Sample: 1959q4 - 2005q4 No. of obs = 185
Overidentified model Log likelihood = 1873.254

Coef. Std. Err. z P>|z| [95% Conf. Interval]

/a_1_1 1 . . . . .
/a_2_1 (omitted)
/a_3_1 -.1827926 .0219237 -8.34 0.000 -.2257622 -.1398229
/a_1_2 (omitted)
/a_2_2 1 . . . . .
/a_3_2 -.499383 .0583265 -8.56 0.000 -.6137008 -.3850652
/a_1_3 (omitted)
/a_2_3 (omitted)
/a_3_3 1 . . . . .

...

LR test of identifying restrictions: chi2( 1)= 63.83 Prob > chi2 = 0.000

As we would expect from the significant coefficient in the exactly
identified VAR, the overidentifying restriction is clearly rejected.
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Long-run SVAR models

A short-run SVAR model without exogenous variables can be written
as

A(IK − A1L− A2L2 − · · · − ApLp)yt = AĀ yt = B et

where Ā is the parenthesized expression. If we set A = I, we can write
this equation as

yt = Ā−1B et = C et

In a long-run SVAR, constraints are placed on elements of the C
matrix. These constraints are often exclusion restrictions. For
instance, constraining C1,2 = 0 forces the long-run response of
variable 1 to a shock to variable 2 to zero.
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Vector autoregressive models Long-run SVAR models

We illustrate with a two-variable SVAR in the first differences in the
logs of real money and real GDP. The long-run restrictions of a
diagonal C matrix implies that shocks to the money supply process
have no long-run effects on GDP growth, and shocks to the GDP
process have no long-run effects on the money supply.

. matrix lr = (., 0\0, .)

. matrix list lr

symmetric lr[2,2]
c1 c2

r1 .
r2 0 .
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Vector autoregressive models Long-run SVAR models

. svar D.lrmbase D.lrgdp, lags(4) lreq(lr) nolog
Estimating long-run parameters

Structural vector autoregression

( 1) [c_1_2]_cons = 0
( 2) [c_2_1]_cons = 0

Sample: 1960q2 - 2010q3 No. of obs = 202
Overidentified model Log likelihood = 1020.662

Coef. Std. Err. z P>|z| [95% Conf. Interval]

/c_1_1 .0524697 .0026105 20.10 0.000 .0473532 .0575861
/c_2_1 (omitted)
/c_1_2 (omitted)
/c_2_2 .0093022 .0004628 20.10 0.000 .0083951 .0102092

LR test of identifying restrictions: chi2( 1)= 1.448 Prob > chi2 = 0.229

The test of overidentifying restrictions cannot reject the validity of the
constraints imposed on the long-run responses.
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Vector error correction models

Vector error correction models (VECMs)

VECMs may be estimated by Stata’s vec command. These models
are employed because many economic time series appear to be
‘first-difference stationary,’ with their levels exhibiting unit root or
nonstationary behavior. Conventional regression estimators, including
VARs, have good properties when applied to covariance-stationary
time series, but encounter difficulties when applied to nonstationary or
integrated processes.

These difficulties were illustrated by Granger and Newbold
(J. Econometrics, 1974) when they introduced the concept of spurious
regressions. If you have two independent random walk processes, a
regression of one on the other will yield a significant coefficient, even
though they are not related in any way.
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Vector error correction models cointegration

This insight, and Nelson and Plosser’s findings (J. Mon. Ec., 1982) that
unit roots might be present in a wide variety of macroeconomic series
in levels or logarithms, gave rise to the industry of unit root testing, and
the implication that variables should be rendered stationary by
differencing before they are included in an econometric model.

Further theoretical developments by Granger and Engle in their
celebrated paper (Econometrica, 1987) raised the possibility that two
or more integrated, nonstationary time series might be cointegrated, so
that some linear combination of these series could be stationary even
though each series is not.
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Vector error correction models cointegration

If two series are both integrated (of order one, or I(1)) we could model
their interrelationship by taking first differences of each series and
including the differences in a VAR or a structural model.

However, this approach would be suboptimal if it was determined that
these series are indeed cointegrated. In that case, the VAR would only
express the short-run responses of these series to innovations in each
series. This implies that the simple regression in first differences is
misspecified.

If the series are cointegrated, they move together in the long run. A
VAR in first differences, although properly specified in terms of
covariance-stationary series, will not capture those long-run
tendences.
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Vector error correction models The error-correction term

Accordingly, the VAR concept may be extended to the vector
error-correction model, or VECM, where there is evidence of
cointegration among two or more series. The model is fit to the first
differences of the nonstationary variables, but a lagged error-correction
term is added to the relationship.

In the case of two variables, this term is the lagged residual from the
cointegrating regression, of one of the series on the other in levels. It
expresses the prior disequilibrium from the long-run relationship, in
which that residual would be zero.

In the case of multiple variables, there is a vector of error-correction
terms, of length equal to the number of cointegrating relationships, or
cointegrating vectors, among the series.
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Vector error correction models The error-correction term

In terms of economic content, we might expect that there is some
long-run value of the dividend/price ratio for common equities. During
market ‘bubbles’, the stock price index may be high and the ratio low,
but we would expect a market correction to return the ratio to its
long-run value. A similar rationale can be offered about the ratio of
rents to housing prices in a housing market where there is potential to
construct new rental housing as well as single-family homes.

To extend the concept to more than two variables, we might rely on the
concept of purchasing power parity (PPP) in international trade, which
defines a relationship between the nominal exchange rate and the
price indices in the foreign and domestic economies. We might find
episodes where a currency appears over- or undervalued, but in the
absence of central bank intervention and effective exchange controls,
we expect that the ‘law of one price’ will provide some long-run anchor
to these three measures’ relationship.
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Vector error correction models The error-correction term

Consider two series, yt and xt , that obey the following equations:

yt + βxt = εt , εt = εt−1 + ωt

yt + αxt = νt , νt = ρνt−1 + ζt , |ρ| < 1

Assume that ωt and ζt are i .i .d . disturbances, correlated with each
other. The random-walk nature of εt implies that both yt and xt are also
I(1), or nonstationary, as each side of the equation must have the
same order of integration. By the same token, the stationary nature of
the νt process implies that the linear combination (yt + αxt ) must also
be stationary, or I(0).

Thus yt and xt cointegrate, with a cointegrating vector (1, α).
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Vector error correction models The error-correction term

We can rewrite the system as

∆yt = βδzt−1 + η1t

∆xt = −δzt−1 + η2t

where δ = (1− ρ)/(α− β), zt = yt + αxt , and the errors (η1t , η2t ) are
stationary linear combinations of (ωt , ζt ).

When yt and xt are in equilibrium, zt = 0. The coefficients on zt
indicate how the system responds to disequilibrium. A stable dynamic
system must exhibit negative feedback: for instance, in a functioning
market, excess demand must cause the price to rise to clear the
market.
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Vector error correction models The error-correction term

In the case of two nonstationary (I(1)) variables yt and xt , if there are
two nonzero values (a,b) such that ayt + bxt is stationary, or I(0), then
the variables are cointegrated. To identify the cointegrating vector, we
set one of the values (a,b) to 1 and estimate the other. As Granger
and Engle showed, this can be done by a regression in levels. If the
residuals from that ‘Granger–Engle’ regression are stationary,
cointegration is established.

In the general case of K variables, there may be 1, 2,. . . ,(K-1)
cointegrating vectors representing stationary linear combinations. That
is, if yt is a vector of I(1) variables and there exists a vector β such that
βyt is a vector of I(0) variables, then the variables in yt are said to be
cointegrated with cointegrating vector β. In that case we need to
estimate the number of cointegrating relationships, not merely whether
cointegration exists among these series.
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Vector error correction models VAR and VECM representations

For a K -variable VAR with p lags,

yt = v + A1yt−1 + · · ·+ Apyt−p + εt

let εt be i .i .d . normal over time with covariance matrix Σ. We may
rewrite the VAR as a VECM:

∆yt = v + Πyt−1 +

p−1∑
i=1

Γi∆yt−i + εt

where Π =
∑j=p

j=1 Aj − Ik and Γi = −
∑j=p

j=i+1 Aj .
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Vector error correction models VAR and VECM representations

If all variables in yt are I(1), the matrix Π has rank 0 ≤ r < K , where r
is the number of linearly independent cointegrating vectors. If the
variables are cointegrated (r > 0) the VAR in first differences is
misspecified as it excludes the error correction term.

If the rank of Π = 0, there is no cointegration among the nonstationary
variables, and a VAR in their first differences is consistent.

If the rank of Π = K , all of the variables in yt are I(0) and a VAR in
their levels is consistent.

If the rank of Π is r > 0, it may be expressed as Π = αβ′, where α and
β are (K × r) matrices of rank r . We must place restrictions on these
matrices’ elements in order to identify the system.
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Vector error correction models The Johansen framework

Stata’s implementation of VECM modeling is based on the maximum
likelihood framework of Johansen (J. Ec. Dyn. Ctrl., 1988 and
subsequent works). In that framework, deterministic trends can appear
in the means of the differenced series, or in the mean of the
cointegrating relationship. The constant term in the VECM implies a
linear trend in the levels of the variables. Thus, a time trend in the
equation implies quadratic trends in the level data.

Writing the matrix of coefficients on the vector error correction term
yt−1 as Π = αβ′, we can incorporate a trend in the cointegrating
relationship and the equation itself as

∆yt = α(β′yt−1 + µ+ ρt) +

p−1∑
i=1

Γi∆yt−i + γ + τ t + εt
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Vector error correction models The Johansen framework

Johansen spells out five cases for estimation of the VECM:
1 Unrestricted trend: estimated as shown, cointegrating equations

are trend stationary
2 Restricted trend, τ = 0: cointegrating equations are trend

stationary, and trends in levels are linear but not quadratic
3 Unrestricted constant: τ = ρ = 0: cointegrating equations are

stationary around constant means, linear trend in levels
4 Restricted constant: τ = ρ = γ = 0: cointegrating equations are

stationary around constant means, no linear time trends in the
data

5 No trend: τ = ρ = γ = µ = 0: cointegrating equations, levels and
differences of the data have means of zero

We have not illustrated VECMs with additional (strictly) exogenous
variables, but they may be added, just as in a VAR model.
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Vector error correction models A VECM example

To consistently test for cointegration, we must choose the appropriate
lag length. The varsoc command is capable of making that
determination, as illustrated earlier. We may then use the vecrank
command to test for cointegration via Johansen’s max-eigenvalue
statistic and trace statistic.

We illustrate a simple VECM using the Penn World Tables data. In that
data set, the price index is the relative price vs. the US, and the
nominal exchange rate is expressed as local currency units per US
dollar. If the real exchange rate is a cointegrating combination, the logs
of the price index and the nominal exchange rate should be
cointegrated. We test this hypothesis with respect to the UK, using
Stata’s default of an unrestricted constant in the taxonomy given
above.
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Vector error correction models A VECM example

. use pwt6_3, clear
(Penn World Tables 6.3, August 2009)

. keep if inlist(isocode,"GBR")
(10962 observations deleted)

. // p already defined as UK/US relative price

. g lp = log(p)

. // xrat is nominal exchange rate, GBP per USD

. g lxrat = log(xrat)

. varsoc lp lxrat if tin(,2002)

Selection-order criteria
Sample: 1954 - 2002 Number of obs = 49

lag LL LR df p FPE AIC HQIC SBIC

0 19.4466 .001682 -.712107 -.682811 -.63489
1 173.914 308.93 4 0.000 3.6e-06 -6.85363 -6.76575 -6.62198
2 206.551 65.275* 4 0.000 1.1e-06* -8.02251* -7.87603* -7.63642*
3 210.351 7.5993 4 0.107 1.1e-06 -8.01433 -7.80926 -7.47381
4 214.265 7.827 4 0.098 1.1e-06 -8.0108 -7.74714 -7.31585

Endogenous: lp lxrat
Exogenous: _cons

Two lags are selected by most of the criteria.
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Vector error correction models A VECM example

. vecrank lp lxrat if tin(,2002)

Johansen tests for cointegration
Trend: constant Number of obs = 51
Sample: 1952 - 2002 Lags = 2

5%
maximum trace critical

rank parms LL eigenvalue statistic value
0 6 202.92635 . 22.9305 15.41
1 9 213.94024 0.35074 0.9028* 3.76
2 10 214.39162 0.01755

We can reject the null of 0 cointegrating vectors in favor of > 0 via the
trace statistic. We cannot reject the null of 1 cointegrating vector in
favor of > 1. Thus, we conclude that there is one cointegrating vector.
For two series, this could have also been determined by a
Granger–Engle regression in levels.
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Vector error correction models A VECM example

. vec lp lxrat if tin(,2002), lags(2)

Vector error-correction model

Sample: 1952 - 2002 No. of obs = 51
AIC = -8.036872

Log likelihood = 213.9402 HQIC = -7.9066
Det(Sigma_ml) = 7.79e-07 SBIC = -7.695962

Equation Parms RMSE R-sq chi2 P>chi2

D_lp 4 .057538 0.4363 36.37753 0.0000
D_lxrat 4 .055753 0.4496 38.38598 0.0000

Coef. Std. Err. z P>|z| [95% Conf. Interval]

D_lp
_ce1
L1. -.26966 .0536001 -5.03 0.000 -.3747143 -.1646057

lp
LD. .4083733 .324227 1.26 0.208 -.2270999 1.043847

lxrat
LD. -.1750804 .3309682 -0.53 0.597 -.8237663 .4736054

_cons .0027061 .0111043 0.24 0.807 -.019058 .0244702

...
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Vector error correction models A VECM example

D_lxrat
_ce1
L1. .2537426 .0519368 4.89 0.000 .1519484 .3555369

lp
LD. .3566706 .3141656 1.14 0.256 -.2590827 .9724239

lxrat
LD. .8975872 .3206977 2.80 0.005 .2690313 1.526143

_cons .0028758 .0107597 0.27 0.789 -.0182129 .0239645

Cointegrating equations

Equation Parms chi2 P>chi2

_ce1 1 44.70585 0.0000

Identification: beta is exactly identified

Johansen normalization restriction imposed

beta Coef. Std. Err. z P>|z| [95% Conf. Interval]

_ce1
lp 1 . . . . .

lxrat -.7842433 .1172921 -6.69 0.000 -1.014131 -.5543551
_cons -4.982628 . . . . .
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Vector error correction models A VECM example

In the lp equation, the L1._ce1 term is the lagged error correction
term. It is significantly negative, representing the negative feedback
necessary in relative prices to bring the real exchange rate back to
equilibrium. The short-run coefficients in this equation are not
significantly different from zero.

In the lxrat equation, the lagged error correction term is positive, as
it must be for the other variable in the relationship: that is, if
(log p − log e) is above long-run equilibrium, either p must fall or e
must rise. The short-run coefficient on the exchange rate is positive
and significant.
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Vector error correction models A VECM example

The estimated cointegrating vector is listed at the foot of the output,
normalized with a coefficient of unity on lp and an estimated
coefficient of −0.78 on lxrat, significantly different from zero. The
constant term corresponds to the µ term in the representation given
above.

The significance of the lagged error correction term in this equation,
and the significant coefficient estimated in the cointegrating vector,
indicates that a VAR in first differences of these variables would yield
inconsistent estimates due to misspecification.
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Vector error correction models In-sample VECM forecasts

We can evaluate the cointegrating equation by using predict to
generate its in-sample values:

. predict ce1 if e(sample), ce equ(#1)

. tsline ce1 if e(sample)
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Vector error correction models In-sample VECM forecasts
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Vector error correction models In-sample VECM forecasts

We should also evaluate the stability of the estimated VECM. For a
K-variable model with r cointegrating relationships, the companion
matrix will have K − r unit eigenvalues. For stability, the moduli of the
remaining r eigenvalues should be strictly less than unity.

. vecstable, graph

Eigenvalue stability condition

Eigenvalue Modulus

1 1
.7660493 .766049
.5356276 + .522604i .748339
.5356276 - .522604i .748339

The VECM specification imposes a unit modulus.

The eigenvalues meet the stability condition.
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Vector error correction models In-sample VECM forecasts
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Vector error correction models Dynamic VECM forecasts

We can use much of the same post-estimation apparatus as
developed for VARs for VECMs. Impulse response functions,
orthogonalized IRFs, FEVDs, and the like can be constructed for
VECMs. However, the presence of the integrated variables (and unit
moduli) in the VECM representation implies that shocks may be
permanent as well as transitory.

We illustrate here one feature of Stata’s vec suite: the capability to
compute dynamic forecasts from a VECM. We estimated the model on
annual data through 2002, and now forecast through the end of
available data in 2007:

. tsset year
time variable: year, 1950 to 2007

delta: 1 year

. fcast compute ppp_, step(5)

. fcast graph ppp_lp ppp_lxrat, observed scheme(s2mono) legend(rows(1)) ///
> byopts(ti("Ex ante forecasts, UK/US RER components") t2("2003-2007"))
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Vector error correction models Dynamic VECM forecasts
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Vector error correction models Dynamic VECM forecasts

We see that the model’s predicted log relative price was considerably
lower than that observed, while the predicted log nominal exchange
rate was considerably higher than that observed over this
out-of-sample period.

Consult the Stata Time Series manual for much greater detail on
Stata’s VECM capabilities, applications to multiple-variable systems
and alternative treatments of deterministic trends in the VECM context.
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Stata’s additional capabilities for time series data

Although we have discussed a number of Stata’s time series
capabilities relevant for macroeconometrics in this talk, you should be
aware that there are many additional Stata features that may be useful
in your work. A number of them were added in Stata version 11
(2009), as significant development efforts in the time series
econometrics field were a large part of that release.

Some of these additional capabilities (and their command names):
univariate ARCH and GARCH models, including 18 alternative
specifications, with Gaussian, t or GED errors (arch)
diagonal vech multivariate ARCH models (dvech)
linear state-space models via the Kalman filter (sspace)
dynamic-factor multivariate time series models (dfactor)

For each of these commands, see the version 11 Time Series manual,
available in PDF on your machine.
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