
i

i

i

i

i

i

i

i

An Introduction to Stata Programming

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

An Introduction to Stata Programming

Christopher F. Baum
Boston College

A Stata Press Publication
StataCorp LP
College Station, Texas

i

i

i

i

i

i

i

i

Stata Press, 4905 Lakeway Drive, College Station, Texas 77845

Copyright c© 2008 by StataCorp LP

All rights reserved

Typeset in LATEX2ε

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

ISBN !!

This book is protected by copyright. All rights are reserved. No part of this book may be repro-

duced, stored in a retrieval system, or transcribed, in any form or by any means—electronic,

mechanical, photocopying, recording, or otherwise—without the prior written permission of

StataCorp LP.

Stata is a registered trademark of StataCorp LP. LATEX2ε is a trademark of the American

Mathematical Society.

i

i

i

i

i

i

i

i

I must acknowledge many intellectual debts that have been incurred during the cre-
ation of this book. I am most indebted to Nicholas J. Cox, who served as a technical
reviewer of the manuscript, both for his specific contributions to this project and his
willingness to share his extensive understanding of Stata with all of us in the Stata user
community. His Speaking Stata columns alone are worth the cost of a subscription to
the Stata Journal. My study of Nick’s many routines and work with him on develop-
ing several Stata commands has taught me a great deal about how to program Stata
effectively.

My collaboration with Mark E. Schaffer on the development of ivreg2 has led to
fruitful insights into programming techniques, and to the coauthored Section 14.9. At
StataCorp, Bill Gould, David Drukker, Alan Riley and Vince Wiggins have been very
enthusiastic about the potential for a primer on Stata programming, and Bill’s Mata
Matters columns have been invaluable in understanding the potential of this language.
Other members of the Stata user community, including my coauthors Mark E. Schaffer,
Steven Stillman, Bill Rising and Vince Wiggins as well as Austin Nichols and David
Roodman have contributed a great deal to my development of the topics covered in
this manuscript. Ben Jann has been particularly helpful in sharing his understanding
of Mata.

Many members of Statalist and participants in Stata Users Group meetings in
Boston, London, Essen and Berlin have raised issues which have led to a number of
the “cookbook recipes” in this volume. I also thank several generations of Ph.D. stu-
dents at Boston College and workshop participants at Smith College, University of
Nevada–Las Vegas, Rensselaer Polytechnic Institute, University of Sheffield, University
of Nottingham and DIW Berlin for useful feedback on my presentations of Stata usage.

I am deeply grateful to my wife Paula Arnold for graciously coping with my seem-
ingly 24–7 efforts in completing this manuscript.

Christopher F. Baum

Oak Square School
Brighton, Massachusetts
September 2008

i

i

i

i

i

i

i

i

To Paula

i

i

i

i

i

i

i

i

Contents

List of Tables xv

List of Figures xvii

Preface xix

Notation and Typography xxi

1 Why should you become a Stata programmer? 1

Do-file programming . 1

Ado-file programming . 2

Mata programming for ado-files 2

1.1 Plan of the book . 3

1.2 Installing the necessary software . 3

2 Some elementary concepts and tools 5

2.1 Introduction . 5

2.1.1 What you should learn from this chapter 5

2.2 Navigation and organizational issues 5

2.2.1 The current working directory and profile.do 6

2.2.2 Locating important directories: sysdir and adopath 6

2.2.3 Organization of do-, ado- and data files 7

2.3 Editing Stata do- and ado-files . 8

2.4 Data types . 9

2.4.1 Storing data efficiently: the compress command 11

2.4.2 Date and time handling . 11

2.4.3 Time-series operators . 12

2.5 Handling errors: the capture command 13

2.6 Protecting the data in memory: the preserve and restore commands 14

i

i

i

i

i

i

i

i

viii Contents

2.7 Getting your data into Stata . 15

2.7.1 Inputting data from ASCII text files and spreadsheets 15

Handling text files . 16

Free format vs. fixed format 16

The insheet command . 18

Accessing data stored in spreadsheets 19

Fixed format data files . 20

2.7.2 Importing data from other package formats 25

2.8 Guidelines for Stata do-file programming style 26

2.8.1 Basic guidelines for do-file writers 27

2.8.2 Enhancing speed and efficiency 28

2.9 How to seek help for Stata programming 29

3 Do-file programming: functions, macros, scalars and matrices 31

3.1 Introduction . 31

3.1.1 What you should learn from this chapter 31

3.2 Some general programming details . 32

3.2.1 The varlist . 33

3.2.2 The numlist . 33

3.2.3 if exp and in range qualifiers 33

3.2.4 Missing data handling . 34

Recoding missing values: the mvdecode and mvencode commands 35

3.2.5 String to numeric conversion and vice versa 35

Numeric to string conversion 36

Working with quoted strings 37

3.3 Functions for the generate command 38

3.3.1 Use of if exp with indicator variables 40

3.3.2 The cond() function . 42

3.3.3 Recoding discrete and continuous variables 43

3.4 Functions for the egen command . 45

Official egen functions . 45

i

i

i

i

i

i

i

i

Contents ix

egen functions from the user community 47

3.5 Computation for by-groups . 48

3.5.1 Observation numbering: n and N 48

3.6 Local macros . 50

3.7 Global macros . 53

3.8 Extended macro functions and macro list functions 54

3.8.1 System parameters, settings and constants: creturn 55

3.9 Scalars . 55

3.10 Matrices . 57

4 Cookbook: Do-file programming I 61

4.1 Tabulating a logical condition across a set of variables 61

4.2 Computing summary statistics over groups 64

4.3 Computing the extreme values of a sequence 66

4.4 Computing the length of spells . 67

4.5 Summarizing group characteristics over observations 71

4.6 Using global macros to set up your environment 73

4.7 List manipulation with extended macro functions 74

4.8 Using creturn values to document your work 76

5 Do-file programming: validation, results and data management 77

5.1 Introduction . 77

5.1.1 What you should learn from this chapter 77

5.2 Data validation: the assert, count and duplicates commands . . . 77

5.3 Reusing computed results: the return and ereturn commands 84

5.3.1 The ereturn list command 87

5.4 Storing, saving and using estimated results 91

5.4.1 Generating publication-quality tables from stored estimates . . 95

5.5 Reorganizing datasets with the reshape command 97

5.6 Combining datasets . 101

5.7 Combining datasets with the append command 103

5.8 Combining datasets with the merge command 105

i

i

i

i

i

i

i

i

x Contents

5.8.1 The dangers of many-to-many merges 107

5.9 Other data management commands . 108

5.9.1 The fillin command . 108

5.9.2 The cross command . 108

5.9.3 The stack command . 109

5.9.4 The separate command . 109

5.9.5 The joinby command . 111

5.9.6 The xpose command . 111

6 Cookbook: Do-file programming II 113

6.1 Efficiently defining group characteristics and subsets 113

6.1.1 Selecting a subset of observations using a complicated criterion 114

6.2 Applying reshape repeatedly . 115

6.3 Handling time-series data effectively . 119

6.4 reshape to perform row-wise computation 122

6.5 Adding computed statistics to presentation-quality tables 125

6.5.1 Presenting marginal effects rather than coefficients 127

6.6 Generating time series data at a lower frequency 129

7 Do-file programming: prefixes, loops and lists 135

7.1 Introduction . 135

7.1.1 What you should learn from this chapter 135

7.2 Prefix operators . 135

7.2.1 The by operator . 136

7.2.2 The xi operator . 137

7.2.3 The statsby operator . 140

7.2.4 The rolling operator . 141

7.2.5 The simulate and permute operators 143

7.2.6 The bootstrap and jackknife operators 146

7.2.7 Other prefix operators . 148

7.3 The forvalues command . 148

7.4 The foreach command . 150

i

i

i

i

i

i

i

i

Contents xi

8 Cookbook: Do-file programming III 155

8.1 Handling parallel lists . 155

8.2 Calculating moving-window summary statistics 157

8.2.1 Producing summary statistics with rolling and merge 157

8.2.2 Calculating moving-window correlations 159

8.3 Computing monthly statistics from daily data 160

8.4 Requiring at least n observations per panel unit 162

8.5 Counting the number of distinct values per individual 163

9 Do-file programming: other topics 165

9.1 Introduction . 165

9.1.1 What you should learn from this chapter 165

9.2 Storing results in Stata matrices . 165

9.3 The post and postfile commands . 169

9.4 Output: outsheet, outfile and the file command 171

9.5 Automating estimation output . 174

9.6 Automating graphics . 177

9.7 Characteristics . 182

10 Cookbook: Do-file programming IV 185

10.1 Computing firm-level correlations with multiple indices 185

10.2 Computing marginal effects for graphical presentation 188

10.3 Automating the production of LATEX tables 192

10.4 Tabulating downloads from the SSC Archive 196

10.5 Extracting data from graph files’ sersets 199

10.6 Constructing continuous price and returns series 203

11 Ado-file programming 209

11.1 Introduction . 209

11.1.1 What you should learn from this chapter 209

11.2 The structure of a Stata program . 210

11.3 The program statement . 211

11.4 The syntax and return statements . 212

i

i

i

i

i

i

i

i

xii Contents

11.5 Implementing program options . 214

11.6 Including a subset of observations . 216

11.7 Generalizing the command to handle multiple variables 217

11.8 Making commands byable . 219

Program properties . 221

11.9 Documenting your program . 221

11.10 egen function programs . 224

11.11 Writing an e-class program . 225

11.11.1 Defining subprograms . 227

11.12 Certifying your program . 227

11.13 programs for ml, nl, nlsur, simulate, bootstrap and jackknife 229

Writing a ml-based command 230

11.13.1 Programs for the nl and nlsur commands 232

11.13.2 Programs for the simulate, bootstrap and jackknife com-
mands . 234

11.14 Guidelines for Stata ado-file programming style 237

11.14.1 Presentation . 237

11.14.2 Helpful Stata features . 238

11.14.3 Respect for datasets . 239

11.14.4 Speed and efficiency . 239

11.14.5 Reminders . 240

11.14.6 Style in the large . 240

11.14.7 Use the best tools . 241

12 Cookbook: Ado-file programming 243

12.1 Retrieving results from rolling: . 243

12.2 Generalization of egen function pct9010() to support all pairs of
quantiles . 246

12.3 Constructing a certification script . 249

12.4 Estimating means and variances using the ml command 255

12.4.1 Applying equality constraints in ml estimation 257

12.5 Applying inequality constraints in ml estimation 259

i

i

i

i

i

i

i

i

Contents xiii

12.6 Generating a dataset containing the single longest spell for each unit
in panel data . 264

13 Mata functions for ado-file programming 269

13.1 Mata: first principles . 269

13.1.1 What you should learn from this chapter 270

13.2 Mata fundamentals . 270

13.2.1 Operators . 270

13.2.2 Relational and logical operators 272

13.2.3 Subscripts . 272

13.2.4 Populating matrix elements . 273

13.2.5 Mata loop commands . 274

13.2.6 Conditional statements . 275

13.3 Function components . 276

13.3.1 Arguments . 277

13.3.2 Variables . 278

13.3.3 Returns . 278

13.4 Calling Mata functions . 278

13.5 Mata’s st interface functions . 280

13.5.1 Data access . 281

13.5.2 Access to locals, globals, scalars and matrices 283

13.5.3 Access to Stata variables’ attributes 283

13.6 Example: st interface function usage 284

13.7 Example: matrix operations . 285

13.7.1 Extending the command . 290

13.8 Creating arrays of temporary objects with pointers 292

13.9 Structures . 295

13.10 Additional Mata features . 298

13.10.1 Macros in Mata functions . 298

13.10.2 Compiling Mata functions . 299

13.10.3 Building and maintaining an object library 300

i

i

i

i

i

i

i

i

xiv Contents

13.10.4 A useful collection of Mata routines 301

14 Cookbook: Mata function programming 303

14.1 Reversing the rows or columns of a Stata matrix 303

14.2 Shuffling the elements of a string variable 307

14.3 Firm-level correlations with multiple indices with Mata 309

14.4 Passing a function to a Mata function 313

14.5 Using subviews in Mata . 316

14.6 Storing and retrieving country-level data with Mata structures 318

14.7 Locating nearest neighbors with Mata 323

14.8 Computing the SUR estimator for an unbalanced panel 328

14.9 A GMM-CUE estimator using Mata’s optimize() functions (with
Mark E. Schaffer) . 334

References 345

Author index 349

Subject index 351

i

i

i

i

i

i

i

i

Tables

2.1 Numeric data types . 9

5.1 Models of sulphur dioxide concentration 96

9.1 Grunfeld company statistics . 168

9.2 Grunfeld company estimates . 169

9.3 Wage equations for 1984 . 178

10.1 Director-Level Variables . 196

11.1 MCAS percentile ranges . 220

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

Figures

5.1 Superimposed scatter plots. 110

6.1 Change in Treasury bill rate. 120

7.1 Rolling robust regression coefficients. 143

7.2 Distribution of sample median via Monte Carlo simulation. 145

7.3 Q-Q plot of the distribution of sample median. 146

8.1 Moving average growth rates. 158

8.2 Estimated monthly volatility from daily data. 161

9.1 Automated graphics. 181

10.1 Point and interval elasticities computed with mfx. 190

10.2 Air quality in U.S. cities. 200

12.1 Rolling lincom estimates. 246

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

Preface

This book is a concise introduction to the art of Stata programming. It covers three
types of programming that may be used in working with Stata: do-file programming,
ado-file programming and writing Mata functions that work in conjunction with do-
and ado-files. Its emphasis is on the automation of your work with Stata, and how
programming on one or more of these levels can help you use Stata more effectively.

The development of these concepts does not assume that you have prior experience
with Stata programming, although familiarity with the command-line interface is very
helpful. Examples are drawn from a number of disciplines, although my own background
as an applied econometrician may be evident in the selection of some sample problems.
The introductory chapter motivates the why: why should you invest time and effort in
learning Stata programming? Chapter 2 discusses elementary concepts of the command-
line interface and describes some commonly-used tools for working with programs and
datasets.

The format of the book may be unfamiliar to readers who have some familiarity
with other books that help you learn how to use Stata. Beginning with Chapter 3, each
odd-numbered chapter is followed by a cookbook chapter containing several recipes: 40
in total. These recipes pose a problem: how may I perform a certain task with Stata
programming? They then provide a complete worked solution to the problem, and
discuss how the features presented in the previous chapter may be put to good use. As
in the kitchen, you may rarely want to exactly follow a recipe from the cookbook. But
just as in cuisine, a minor variation on the recipe may meet your needs, or the techniques
presented in that recipe may help you see how Stata programming may apply to your
specific problem.

Most Stata users who delve into programming will make use of do-files to automate
and document their work. Consequently, the major focus of the book is do-file pro-
gramming, covered in Chapters 3, 5, 7, and 9. Some users will find that writing formal
Stata programs, or ado-files, meets their needs. Chapter 11 is a concise summary of
ado-file programming, with the following cookbook chapter presenting several recipes
that contain developed ado-files. Stata’s matrix programming language, Mata, may also
be very helpful in automating certain tasks. Chapter 13 presents a summary of Mata
concepts and the key features that allow interchange of variables, scalars, macros and
matrices. The last chapter presents a number of examples of Mata functions developed
to work with ado-files. All of the do-files, ado-files, Mata functions and datasets used in
the book’s examples and recipes are available from the Stata Press website, as discussed
in Section 1.2.

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

Notation and Typography

In this book we assume that you are somewhat familiar with Stata, that you know
how to input data and to use previously created datasets, create new variables, run
regressions, and the like.

We designed this book for you to learn by doing, so we expect you to read this book
while sitting at a computer so you can try using the sequences of commands contained
in the book to replicate our results. In this way, you will be able to generalize these
sequences to suit your own needs.

Generally, we use the typewriter font command to refer to Stata commands, syntax,
and variables. A “dot” prompt followed by a command indicates that you can type
verbatim what is displayed after the dot (in context) to replicate the results in the
book.

Except for some very small expository datasets, all the data we use in this book
are freely available for you to download using Stata from the Stata Press website,
http://www.stata-press.com. In fact, when we introduce new datasets, we merely load
them into Stata the same way that you would. For example,

. use http://www.stata-press.com/data/itsp/urates.dta, clear

Try it. In addition, the ado-files (not the do-files) used may be obtained by typing

. net from http://www.stata-press.com/data/itsp
(output omitted)

. net install itsp
(output omitted)

. !!!!!!
(output omitted)

The itsp command will copy the sample ado-files to your current working directory,
where you can look at them and use them. I suggest that you create a new directory
and copy the materials there.

This text complements the material in the Stata manuals but does not replace it, so
we often refer to the Stata manuals using [R] , [P] , etc. For example, [R] xi refers to the
Stata Reference Manual entry for xi, and [P] syntax refers to the entry for syntax in
the Stata Programming Manual.

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

1 Why should you become a Stata
programmer?

This book provides an introduction to the several contexts of Stata programming. We
must first define what we mean by programming. You can consider yourself a Stata
programmer if you write do-files: sequences of Stata commands which you can execute
with the do command, by double-clicking on the file or by running in the Do-file Editor.
You might also write what Stata formally defines as a program: a set of Stata commands
that includes the program ([P] program) statement. A Stata program, stored in an
ado-file, defines a new Stata command. You may also use Stata’s matrix programming
language, Mata, to write routines in that language that are called by ado-files. Any of
these tasks involves Stata programming.1

With that set of definitions in mind, we must deal with the why: why should you
become a Stata programmer? After answering that essential question, this text takes
up the how: how you can become a more efficient user of Stata by making use of
programming techniques, be they simple or complex.

Using any computer program or language is all about efficiency: getting the com-
puter to do the work that can be routinely automated, allowing you to make more
efficient use of your time and reducing human errors. Computers are excellent at per-
forming repetitive tasks while humans are not. One of the strongest rationales for
learning how to use programming techniques in Stata is the potential to shift more
of the repetitive burden of data management, statistical analysis and the production
of graphics to the computer. Let’s consider several specific advantages of using Stata
programming techniques in the three contexts enumerated above.

Do-file programming

Using a do-file to automate a specific data management or statistical task leads to
reproducible research and the ability to document the empirical research process. This

1. There are also specialized forms of Stata programming, such as dialog programming, scheme pro-

gramming and class programming. A user-written program may present a dialog, like any official Stata
command, if its author writes a dialog file. The command may also be added to the User menu of Stata’s
graphical interface. For more information, see [P] dialog programming and [P] window program-
ming. Graphics users may write their own schemes to set graphics defaults. See [G] schemes intro
for details. Class programming allows you to write object-oriented programs in Stata. As [P] class
indicates, this has primarily been used in Stata’s graphics subsystem and graphical user interface. I do
not consider these specialized forms of programming in this book.

1

i

i

i

i

i

i

i

i

2 Chapter 1 Why should you become a Stata programmer?

reduces the effort needed to perform a similar task at a later point, or to document
the specific steps you followed for your co-workers or supervisor. Ideally, your entire
research project should be defined by a set of do-files which execute every step from
input of the raw data to production of the final tables and graphs. As a do-file can call
another do-file (and so on), a hierarchy of do-files can be used to handle a quite complex
project.

The beauty of this approach is its flexibility. If you find an error in an earlier stage
of the project, you need only modify the code and rerun that do-file and those following
to bring the project up to date. For instance, a researcher may need to respond to a
review of her paper—submitted months ago to an academic journal—by revising the
specification of variables in a set of estimated models and estimating new statistical
results. If all the steps producing the final results are documented by a set of do-
files, her task becomes straightforward. I argue that all serious users of Stata should
gain some facility with do-files and the Stata commands that support repetitive use of
commands.

That advice does not imply that Stata’s interactive capabilities should be shunned.
Stata is a powerful and effective tool for exploratory data analysis and ad hoc queries
about your data. But data management tasks and the statistical analyses leading to
tabulated results should not be performed with “point-and-click” tools which leave you
without an audit trail of the steps you have taken.

Ado-file programming

On a second level, you may find that despite the breadth of Stata’s official and user-
written commands, there are tasks that you must repeatedly perform that involve vari-
ations on the same do-file. You would like Stata to have a command to perform those
tasks. At that point, you should consider Stata’s ado-file programming capabilities.
Stata has great flexibility: a Stata command need be no more than a few lines of Stata
code, and once defined that command becomes a “first-class citizen.” You can easily
write a Stata program, stored in an ado-file, that handles all the features of official
Stata commands such as if exp, in range and command options. You can (and should)
write a help file that documents its operation for your benefit and for those with whom
you share the code. Although ado-file programming requires that you learn how to use
some additional commands used in that context, it may help you become more efficient
in performing the data management, statistical or graphical tasks that you face.

Mata programming for ado-files

On a third level, your ado-files may perform some complicated tasks which involve many
invocations of the same commands. Stata’s ado-file language is easy to read and write,
but it is interpreted: Stata must evaluate each statement and translate it into machine
code. The Mata programming language (help mata) creates compiled code which can
run much faster than ado-file code. Your ado-file can call a Mata routine to carry out

i

i

i

i

i

i

i

i

1.2 Installing the necessary software 3

a computationally intensive task and return the results in the form of Stata variables,
scalars or matrices. Although you may think of Mata solely as a matrix language,
it is actually a general-purpose programming language, suitable for many non-matrix-
oriented tasks such as text processing and list management.

The level of Stata programming that you choose to attain and master depends on
your needs and skills. As I have argued, the vast majority of interactive Stata users
can and should take the next step of learning how to use do-files efficiently in order to
take full advantage of Stata’s capabilities and save time. A few hours of investment
in understanding the rudiments of do-file programming—as covered in the chapters to
follow—should save you days or weeks over the course of a sizable research project.

A smaller fraction of users may choose to develop ado-files. Many users may find that
those features lacking in official Stata are adequately provided by the work of members
of the Stata user community who have developed and documented ado-files, sharing
them via the Stata Journal, SSC Archive2 or their own user site. However, developing
a reading knowledge of ado-file code is highly useful for many Stata users. It permits
you to scrutinize ado-file code—either that of official Stata or user-written code—and
more fully understand how it performs its function. In many cases, minor modifications
to existing code may meet your needs.

Mata was new to Stata as of version 9. It has already been embraced by a number
of user-programmers wishing to take advantage of its many features and speed advan-
tages. As an introduction to Stata programming, this book places the least emphasis
on Mata subroutines for ado-file programming, but discusses the basic elements of that
environment. I do not discuss interactive use of Mata in this book.

1.1 Plan of the book

The chapters of this book present the details of the three types of Stata programming
discussed above, placing the greatest emphasis on the first topic: effective use of do-file
programming. Each fairly brief chapter on the structure of programming techniques
is followed by a cookbook chapter. These chapters contain a number of recipes for
the solution of a particular, commonly encountered problem, illustrating the necessary
programming techniques. Like a cookbook, the recipes are illustrative examples. You
are free to modify the ingredients to produce a somewhat different dish. The recipes
may not address your precise problem, but should prove helpful in devising that solution
as a variation on the same theme.

1.2 Installing the necessary software

This book uses Stata to illustrate many aspects of programming. Stata’s capabilities
are not limited to the commands of official Stata documented in the manuals and in

2. For details on the SSC (“Boston College”) archive of user-contributed routines, help ssc.

i

i

i

i

i

i

i

i

4 Chapter 1 Why should you become a Stata programmer?

on-line help, but include a wealth of commands documented in the Stata Journal, Stata
Technical Bulletin and the SSC Archive.3 Those commands will not be available in
your copy of Stata unless you have already located and installed them. To locate a
user-written command (such as thatcmd), use findit thatcmd (see [R] search).

Newer versions of the user-written commands that you install today may become
available. The official Stata command adoupdate ([R] adoupdate), which you may
use at any time, will check to see whether newer versions of any of these user-written
commands are available. Just as the command update query will determine whether
your Stata executable and official ado-files are up to date, adoupdate will perform the
same check for user-written commands installed in your copy of Stata.

3. help ssc for information on the SSC (“Boston College”) Archive.

i

i

i

i

i

i

i

i

2 Some elementary concepts and tools

2.1 Introduction

This chapter lays out some of the basics that you will need to be an effective Stata
programmer. The first section discusses navigation and organizational issues: how
do you organize your files? How will Stata find a do-file or ado-file? The following
sections discuss editing, data types, several useful commands for programmers, and
some guidelines for Stata programming style. The penultimate section suggests how
you may seek help for your programming problems.

2.1.1 What you should learn from this chapter

• Know where your files are: master the current working directory and the adopath

• Learn how to edit do- and ado-files effectively

• Use appropriate data types for your variables: use compress when useful

• Use time-series operators effectively

• Use capture, preserve, and restore to work efficiently

• Use Stata’s data input commands effectively

• Adopt a good style for do-file programming and internal documentation

• Know where (and when!) to seek help with your Stata programming

• Know how to trace your do-file’s execution to diagnose errors

2.2 Navigation and organizational issues

We are all familiar with the colleague whose computer screen resembles a physical desk
in a cluttered office: a computer with icons covering the screen in seemingly random
order. If you only use Stata interactively, storing data files on the desktop might seem
like a reasonable idea. But when you start to use do-files to manage a project or write
your own ado-file, those files’ locations become crucial: they won’t work if they’re in the
wrong place on your computer. This section of the chapter discusses those navigation
and organizational issues to help you ensure that your files are in the best places.

5

i

i

i

i

i

i

i

i

6 Chapter 2 Some elementary concepts and tools

2.2.1 The current working directory and profile.do

Like most programs, Stata has a concept of the current working directory or cwd. At
any point in time, Stata is referencing a specific directory or folder accessible from your
computer. It may be a directory on your own hard disk, or located on a network drive
or removable disk. In interactive mode, Stata displays the cwd in its toolbar. Why is
the cwd important? If you save a file—a .dta file or log file—it will be placed in the
cwd unless you provide a full file specification directing it to another directory. That is,
save myfile, replace will save that file in the cwd. Likewise, if you attempt to use

a file with the syntax use myfile, clear, it will search for that file in the cwd, and
return an error if the file is not located.

One of the most common problems beginning users of Stata face is saving a data
file and not knowing where it was saved. Of course, if you never change the cwd, all
of your materials will be in the same place, but do you really want everything related
to your research to be located in a single directory? On my computer, the directory is
/Users/baum/Documents, and I would rather not commingle documents with Stata data
files, log files, and graph files. Therefore, you probably should change the cwd to a direc-
tory or folder dedicated to your research project and set up multiple directories for sep-
arate projects. You may change your current working directory with the cd command:
for instance, cd /data/city, or cd d:/project, or cd "My Documents/project1".1

You can use the pwd command to display the cwd at any time. Both cd and pwd are
described in [D] cd.

You may want Stata to automatically change the working directory to your preferred
location when you start Stata. You can accomplish this with profile.do. This file,
placed in your home directory,2 will execute a set of commands when you invoke Stata.
You might place the command cd c:/data/NIHproject in profile.do to direct Stata
to automatically change the working directory to that location.

2.2.2 Locating important directories: sysdir and adopath

The sysdir command provides a list of seven directories or folders on your computer
that are important to Stata. The STATA, UPDATES and BASE directories contain the
Stata program itself and the official ado-files that make up most of Stata. You should
not tamper with the files in these directories. Stata’s update ([R] update) command
will automatically modify the contents of these three directories. The SITE directory
may reference a network drive in a university or corporate setting where a system
administrator places ado-files to be shared by a number of users.

1. Even in a Windows environment, you may use the forward slash (/) as a directory separator. The
backslash (\) usually used in Windows file specifications can be problematic in Stata do-files, as Stata
interprets the backslash as an escape character, modifying its handling of the following character. You
can avoid problems (and enhance cross-platform compatibility of your programs) by using the forward
slash (/) directory separator in all Stata programs.

2. See help profilew (Windows), help profilem (Mac OS X) or help profileu (Unix/Linux) for
operating system-specific details.

i

i

i

i

i

i

i

i

2.2.3 Organization of do-, ado- and data files 7

The PLUS directory is automatically created when you download any user-written
materials. If you use findit to locate and install user-written programs from the Stata
Journal or Stata Technical Bulletin, their ado-files and help files will be located in a
subdirectory of the PLUS directory.3 If you use the ssc ([R] ssc) command to download
user-written materials from the SSC (“Boston College”) Archive, or net install to
download materials from a user’s site, they will also be placed in a subdirectory of the
PLUS directory.

The PERSONAL directory is, as its name suggests, personal. You may place your own
ado-files in that directory. If you want to modify an official Stata ado-file, you should
make a copy of it, change its name (for instance, rename sureg.ado to sureg2.ado)
and place it it your PERSONAL directory.4

Why are there all these different places for Stata’s ado-files? The answer lies in the
information provided by the adopath command:

. adopath
[1] (UPDATES) "/Applications/Stata/ado/updates/"
[2] (BASE) "/Applications/Stata/ado/base/"
[3] (SITE) "/Applications/Stata/ado/site/"
[4] "."
[5] (PERSONAL) "~/Library/Application Support/Stata/ado/personal/"
[6] (PLUS) "~/Library/Application Support/Stata/ado/plus/"
[7] (OLDPLACE) "~/ado/"

Like sysdir, this command lists seven directories. The order of these directories is
important for it defines how Stata will search for a command. It will attempt to find
foo.ado in UPDATES, then in BASE: the possible locations for Stata’s official ado-files.5

The fourth directory is “.”: that is, the current working directory. The fifth is PERSONAL,
while the sixth is PLUS.6 This pecking order implies that if foo.ado is not to be found
among Stata’s official ado-files or the SITE directory, Stata will examine the cwd. If
that fails, it will look for foo.ado in PERSONAL (and its subdirectories). If that fails, it
will look in PLUS (and its subdirectories) and as a last resort in OLDPLACE. If foo.ado
is nowhere to be found, Stata will generate an unrecognized command error.

This search hierarchy indicates that you may locate an ado-file in one of several
places. In the next section, we discuss how you might choose to organize ado-files, as
well as do-files and data files related to your research project.

2.2.3 Organization of do-, ado- and data files

It is crucially important that you place ado-files on the adopath. You can place them in
your current working directory ([4] above in the adopath listing) but that is generally

3. For instance, if sysdir shows that PLUS is ∼/Library/Application Support/Stata/ado/plus/,
foo.ado and foo.hlp will be placed in ∼/Library/Application Support/Stata/ado/plus/f.

4. The OLDPLACE directory exists only for historical reasons.
5. As mentioned above, we may ignore SITE unless you are accessing Stata in a networked environment.
6. We also ignore OLDPLACE, which is only of historical interest.

i

i

i

i

i

i

i

i

8 Chapter 2 Some elementary concepts and tools

a bad idea for if you work in any other directory, those ado-files will not be found. If the
ado-files are your own or have been written by a co-worker, place them in PERSONAL. If
you download ado-files from the SSC Archive, please heed the advice that you should
always use Stata—not a web browser!—to perform the download and locate the files in
the correct directory (in PLUS).

What about your do-files, data files and log files? It makes great sense to create
a directory, or folder, in your home directory for each separate project, and store all
project-related files in that directory. You may always fully qualify a data file when
you use it in a do-file, but if you move that do-file to another computer the do-file will
fail to find it. Referencing files in the same directory simplifies making a copy of that
directory for a co-worker or collaborator, and makes it possible to run the do-files from
an external drive such as a flash disk or “memory key.”

It is also a good idea to place a cd command at the top of each do-file referencing
the current directory. Although this command would have to be altered if you moved
the directory to a different computer, it will prevent a common mistake: saving data
files or log files to a directory other than the project directory.

You might also have several projects that depend on one or two key data files. Rather
than duplicating possibly large data files in each project directory, you can refer to them
with a relative file specification. Say that your research directory is d:/data/research
with subdirectories d:/data/research/project1 and d:/data/research/project2.
Place the key data file master.dta in the research directory, and refer to it in the
project directories with use ../master, clear. The double-dot indicates that the file
is to be found in the parent (enclosing) directory, while allowing you to move your
research directory to a different drive (or even to a Mac OS X or Linux computer)
without having to alter the use statement.

2.3 Editing Stata do- and ado-files

If a do-file or ado-file is relatively small7 and you are working in Stata’s graphical user
interface, you should use Stata’s Do-file editor to create or modify the file. The Do-file
editor has an advantage over most external editors: it allows you to execute only a
section of the file by selecting those lines and hitting the Do icon.

You should recognize that do- and ado-files are merely text files with filetypes of
.do or .ado rather than .txt. As such, it is a very poor idea to edit them in a word
processor such as Microsoft Word. A word processor must read the text file and convert
it into its own binary format, and when the file is saved it must reverse the process.8

Furthermore, a word processor will usually present the file in a variable-width character
format which is harder to read. But the biggest objection to word processing a do-file

7. You may edit files less than 128 kilobytes if you are on a Windows system. There are no limits in
Stata for Macintosh or Stata for Unix/Linux.

8. This is the same translation process that takes place when you insheet a text file and outsheet it
back to text within Stata.

i

i

i

i

i

i

i

i

2.4 Data types 9

or ado-file is the waste of your time: it is considerably faster to edit a file in the Do-file
editor and execute it immediately without the need to translate it back into text.

What if the file is too large to be edited in the Do-file editor? Every operating
system supports a variety of text editors, many of them free. A useful compendium of
information on text editors has been collected and organized by Nicholas J. Cox and
is available from the SSC Archive as texteditors, a HTML document. You may also
view the latest version of that regularly-updated document in your web browser.9 Many
of the text editors described in the document have “Stata editing modes” which will
colorize Stata commands, indicate different elements of syntax and even flag apparent
errors in the code. In any text editor, it is not necessary to close the file after modifying
it. You merely save the file, and its revised version may then be executed by Stata.

2.4 Data types

Stata, as a programming language, supports more data types than do many statistical
packages. The major distinction to consider is between numeric and string data types.
Data management tasks often involve conversions between numeric and string variables.
For instance, data read from a text file (such as a .csv or tab-delimited file created by a
spreadsheet) will often be considered to be a string variable by Stata even though most
of its contents are numeric. The commands destring ([D] destring) and tostring are
helpful in this regard, as are encode ([D] encode) and decode.

String variables may hold values up to 244 characters in length, one byte for each
character. You usually need not declare their length, for Stata’s string functions (help
string functions) will generate a string variable long enough to hold the contents of
any generate ([D] generate) operation. They require as many bytes of storage per
observation as their declaration. For instance, a str20 variable requires 20 bytes per
observation.

Stata’s numeric data types include byte, int, long, float and double. The
byte, int and long data types can only hold integer contents. In summary:

Table 2.1: Numeric data types

Storage type Minimum Maximum Bytes
byte −127 100 1
int −32, 767 32, 740 2
long −2, 147, 483, 647 2, 147, 483, 620 4
float −1.701× 1038 1.701× 1038 4
double −8.988× 10307 8.988× 10307 8

The long integer data type can hold all signed nine-digit integers, but only some ten-

9. http://ideas.repec.org/c/boc/bocode/s423801.html

i

i

i

i

i

i

i

i

10 Chapter 2 Some elementary concepts and tools

digit integers. Integers are held in their exact representation by Stata so that you may
store a nine-digit integer (such as a U.S. Social Security number) as a long. However,
lengthy identification numbers can also be stored as a double data type or as a string
variable. In many cases that will be a wise course of action, as then you need not
worry about possible truncation of values. You will also find it useful to use string
variables when a particular identification code could contain characters. For instance,
the CUSIP code used to identify U.S. securities issues used to be wholly numeric, but
now may contain one or more non-numeric characters. Storing CUSIP values as strings
avoids later problems with numeric missing values.

As displayed above, the two floating-point data types, float and double, can hold
very large numbers. But many users encounter problems with much smaller floating-
point values if they mistakenly assume that floating-point arithmetic operations are
exact. Floating-point numbers (those held as mantissa and exponent, such as 1.056
×103), expressed in base 10, must be stored as base 2 (binary) numbers. Although 1/10
is a rational fraction in base 10, it is not so in the binary number system used in a
computer:

. display %21x 1/10
+1.999999999999aX-004

Further details of this issue can be found in [U] 12.2.2 Numeric storage types,
Gould (2006b) and Cox (2006a). The implications should be clear: an if condition
that tests some floating-point value for equality, such as if diff == 0.01, is likely to
fail when you expect that it would succeed.10 A float contains approximately seven
significant digits in its mantissa. This implies that if you read a set of nine-digit U.S.
Social Security numbers into a float, they will not be held exactly. A double contains
approximately 15 significant digits. We know that residuals computed from a linear
regression using regress and predict eps, residual should sum to exactly zero. In
Stata’s finite-precision computer arithmetic using the default float data type, residuals
from such a regression will sum to a value in the range of 10−7 rather than 0.0. Thus,
discussions of the predict ([R] predict) command often advise using predict double

eps, residual to compute more accurate residuals.

What are the implications of finite-precision arithmetic for Stata programming?

1. You should store ID numbers with many digits as string variables, not as integers,
floats or doubles.

2. You should not rely on exact tests of a floating-point value against a constant:
not even zero. The reldif() function (help math functions) may be used to
test for approximate equality.

3. As suggested above, use double floating-point values for any generated series
where a loss of precision might be problematic, such as residuals, predicted values,
scores, and the like.

10. The alternative syntax if diff == float(0.01) will solve this problem.

i

i

i

i

i

i

i

i

2.4.2 Date and time handling 11

4. You should be wary of variables’ values having very different scales, particularly
when a nonlinear estimation method is employed. Any regression of price from
the venerable auto.dta reference data set on a set of regressors will display ex-
tremely large sums of squares in the ANOVA table. Scaling price from dollars
to thousands of dollars obviates this problem. The scale of this variable does not
affect the precision of linear regression, but it could be problematic for nonlinear
estimation techniques.

5. Use integer data types where it is appropriate to do so. Storing values as byte or
int data types when feasible saves disk space and memory.

2.4.1 Storing data efficiently: the compress command

A very useful command, particularly when working with data sets acquired from other
statistical packages, is compress ([D] compress). This command will examine each
variable in memory and determine whether it may be stored more efficiently. It is
guaranteed never to lose information nor reduce the precision of measurements. The
advantage of storing indicator (0/1) variables as byte data type rather than as four-byte
long data types is substantial for many survey data sets with numerous indicator vari-
ables. It is an excellent idea to apply compress when performing the initial analysis of
a new data set. Alternatively, if you are using the third-party Stat/Transfer application
to convert data from SAS or SPSS format, use the Stat/Transfer optimize option.

2.4.2 Date and time handling

Stata does not have a separate data type for calendar dates. Dates are represented,
as they are in a spreadsheet program, by numbers known as %t values measuring the
time interval from a reference date or epoch: in the case of Stata (and SAS), midnight
on 1 January 1960.11 Days following that date have positive integer values, while
days prior have negative integer values. These are known as %td values. Other calendar
frequencies are represented by the number of weeks, months, quarters or half-years since
that reference date: %tw, %tm, %tq and %th values, respectively. The year is represented
as a %ty value, ranging from 100 to 9999 A.D. For time-series data represented by other
calendar schemes (e.g., business-daily data) you may use consecutive integers and the
generic form, as %tg.

As of version 10, Stata provides support for very accurate intra-daily measurements
of time, down to the millisecond. A date and time variable is known as a %tc (clock)
value, and it may be defined to any intra-day granularity: hours, minutes, seconds, and
milliseconds.12 For more information, see [U] 12.3 Dates and times.

It is very important when working with variables containing dates and times to
ensure that the proper Stata data type is used for their storage. Weekly and lower-

11. The Unix epoch starts at midnight on 1 January 1970.
12. There are also %tC values which take account of leap seconds for very precise measurement of time
intervals.

i

i

i

i

i

i

i

i

12 Chapter 2 Some elementary concepts and tools

frequency values (including generic values) may be stored as data type int or as data
type float. Daily (%td) values should be stored as data type long or as data type
float. If the int data type is used, dates more than 32,740 days from 1 January 1960
(such as beyond 21 August 2049) cannot be stored.

Much more stringent requirements apply to clock (date and time) values. These
values must be stored as data type double to avoid overflow conditions. Clock values,
like other time values, are integers, and there are 86,400,000 milliseconds in a day. The
double data type is capable of precisely storing date and time measurements within the
range of years (100–9999 A.D.) defined in Stata.

Although it is important to use the appropriate data type for date and time values,
you should avoid using a larger data type than needed. The int data type requires
only two bytes per observation; long and float data types require four bytes; and the
double data type requires eight bytes. Although every date and time value could be
stored as a double, that would be very wasteful of memory and disk storage, particularly
in a data set with many observations.

A suite of functions (see help dates and times) is available to handle the definition
of date variables and date/time arithmetic. Display of date variables in calendar formats
(such as 08 Nov 2006) and date and time variables with the desired intraday precision
is handled by the definition of proper formats. As with numeric variables, you should
distinguish between the content or value of a date/time variable and the format in which
it will be displayed.

One helpful hint: if you are preparing to move data from a spreadsheet into Stata
with the insheet ([D] insheet) command, make sure that any date variables in the
spreadsheet display as four-digit years. It is possible to deal with two-digit years such
as 11/08/06 in Stata, but it is easier to format the dates with four-digit years (for
example, 11/08/2006) before reading those data into Stata.

2.4.3 Time-series operators

Stata provides time-series operators L., F., D., S. which allow specification of lags,
leads (forward values), differences and seasonal differences, respectively.13 The time-
series operators make it unnecessary to create a new variable in order to use a lag,
difference or lead. When combined with a numlist, they allow the specification of a set
of these constructs in a single expression. Consider the lag operator, L., which when
prepended to a variable name refers to the (first-)lagged value of that variable: L.x. A
number may follow the operator, so that L4.x would refer to the fourth lag of x. More
generally, a numlist may be used, so that L(1/4).x refers to the first through fourth
lags of x, and L(1/4).(x y z) defines a list of four lagged values of each of the variables
x, y and z. These expressions may be used anywhere that a varlist is required.

Similar to the lag operator, the lead operator F. allows specification of future values

13. This section is adapted from Section 3.2.1 of Baum (2006a).

i

i

i

i

i

i

i

i

2.5 Handling errors: the capture command 13

of one or more variables. Strictly speaking, the lead operator is unnecessary, since a lead
is a negative lag, and an expression such as L(-4/4).x will work, labeling the negative
lags as leads. The difference operator, D., may be used to generate differences of any
order. The first difference, D.x, is ∆x or xt − xt−1. The second difference, D2.x, is not
xt − xt−2, but rather ∆(∆xt): that is, ∆(xt − xt−1), or xt − 2xt−1 + xt−2. You can
also combine the time-series operators so that LD.x is the lag of the first difference of
x (that is, xt−1 − xt−2), and refers to the same expression as does DL.x. The seasonal
difference S. is used to compute the difference between the value in the current period
and the period one year ago. For quarterly data, S.x would generate xt − xt−4, and
S2.x generates xt − xt−8.

In addition to being easy to use, time-series operators will never misclassify an
observation. You could refer to a lagged value as x[n-1], or a first difference as x[n]

- x[n-1], but that construction is not only cumbersome but also dangerous. Consider
an annual time-series dataset in which the 1981 and 1982 data are followed by the data
for 1984, 1985, ..., with the 1983 data not appearing in the dataset (i.e., not recorded as
missing values, but physically absent). The observation-number constructs above will
misinterpret the lagged value of 1984 to be 1982, and the first difference for 1984 will
incorrectly span the two-year gap. The time-series operators will not make this mistake.
As [TS] tsset has been used to define year as the time-series calendar variable, the
lagged value or first difference for 1984 will be properly coded as missing whether or
not the 1983 data are stored as missing in the dataset.Thus you should always use the
time-series operators when referring to past or future values or computing differences
in a time-series dataset.

The time-series operators also provide an important benefit in the context of longitu-
dinal or panel datasets ([XT] xt) in which each observation, xi,t, is identified with both
an i and a t subscript. If those data are xtset ([XT] xtset) or tsset ([TS] tsset), using
the time-series operators will ensure that references will not span panels. For instance,
z[n-1] in a panel context will allow you to reference z1,T (the last observation of panel
1) as the prior value of z2,1 (the first observation of panel 2). In contrast, L.z (or D.z)
will never span panel boundaries. Panel data should always be xtset or tsset, and
any time-series references should make use of the time-series operators.

2.5 Handling errors: the capture command

When an error is encountered in an interactive Stata session it is displayed on the
screen. When a do-file is being executed, however, Stata’s default behavior causes the
do-file to abort when an error occurs.14 There are circumstances when a Stata error
should be ignored: for instance, calculating a measure from each by-group which can
only be computed if there are more than 10 observations in the by-group. Rather
than programming conditional logic that prevents that calculation from taking place
with insufficient observations, you could use capture ([P] capture) as a prefix on that

14. The nostop option of the do ([R] do) command can be used to prevent termination. However,
there is no way to invoke this option if you launch the do-file by double-clicking on it.

i

i

i

i

i

i

i

i

14 Chapter 2 Some elementary concepts and tools

command. For instance, capture regress y x1-x12 will prevent the failure of one
regression from aborting the do-file. If you still would like to see the regression results for
those regressions which are feasible, use noisily capture.... The capture command
may also be used to surround a block of statements, as in

capture {
regress y x1-x12
regress y x13-x24
regress y x25-x36
}

rather than having to repeat capture on each regress command.

2.6 Protecting the data in memory: the preserve and restore

commands

A number of Stata commands replace the data in memory with a new dataset. For
instance, the collapse ([D] collapse) command makes a dataset of summary statistics,
while contract ([D] contract) makes a dataset of frequencies or percentages. In a
program, you may want to invoke one of these commands, but may want to retain
the existing contents of memory for further use in the do-file. You need the preserve

([D] preserve) and restore ([D] restore) commands, which will allow you to set aside
the current contents of memory in a temporary file and bring them back when needed.
As an example:

. sysuse auto, clear
(1978 Automobile Data)

. generate lprice = log(price)

. preserve

. collapse (max) max_lprice=lprice max_mpg=mpg ///
> (iqr) iqr_lprice=lprice iqr_mpg=mpg if !missing(rep78), by(rep78)

. sort rep78

. save repstats, replace
file repstats.dta saved

We use and modify the auto.dta dataset, then preserve the modified file. The
collapse command creates a dataset with one observation for each value of rep78,
the by-variable. We sort that data set of summary statistics and save it. We are now
ready to return to our main dataset:

. restore

. sort rep78

. merge rep78 using repstats, uniqusing
variable rep78 does not uniquely identify observations in the master data

. summarize lprice max_lprice iqr_lprice

Variable Obs Mean Std. Dev. Min Max

lprice 74 8.640633 .3921059 8.098947 9.674452

i

i

i

i

i

i

i

i

2.7.1 Inputting data from ASCII text files and spreadsheets 15

max_lprice 69 9.456724 .2643769 8.503905 9.674452
iqr_lprice 69 .4019202 .0425909 .1622562 .4187889

The restore command brings the preserved dataset back into memory. We sort by
rep78 and use merge to combine the individual automobile data in memory with the
summary statistics from repstats.dta. Although these computations could have been
performed without collapse,15 the convenience of that command should be clear. The
ability to set the current dataset aside (without having to explicitly save it) and bring
it back into memory when needed is a very useful feature.

2.7 Getting your data into Stata

This section discusses data input and manipulation issues.16 Source data may be down-
loaded from a web site, acquired in spreadsheet format, or may be made available in the
format of some other statistical package. The two subsections deal with those variations.

2.7.1 Inputting data from ASCII text files and spreadsheets

Before carrying out statistical analysis with Stata, many researchers must face a number
of thorny issues in converting their foreign data into Stata-usable form. These range
from the mundane (e.g., a text-file dataset may have coded missing values as 99) to the
challenging (e.g., a text-file dataset may be in a hierarchical format, with master records
and detail records). Although a brief guide to these issues cannot possibly cover all of
the ways in which external data may be organized and transformed for use in Stata,
several rules apply:

• You should familiarize yourself with the various Stata commands for data input.
Each has its use, and in the spirit of “don’t pound nails with a screwdriver,” data
handling is much simpler if you use the correct tool. Reading [U] Commands to
input data section is well worth the investment of your time.

• When you need to manipulate a text file, use a text editor, not a word processor
or spreadsheet.

• It is always useful to get the data into Stata as early in the process as you can, and
perform all manipulations via well-documented do-files that may be edited and re-
executed if need be (or if a similar dataset is encountered). Given this exhortation,
we will not discuss input ([D] input) nor the Data Editor which allow interactive
entry of data, nor various copy and paste strategies involving simultaneous use
of a spreadsheet and Stata. Such strategies are not reproducible, and should be
avoided.

15. The commands egen max lprice = max(lprice), by(rep78) and egen iqr lprice =

iqr(lprice), by(rep78) can be used to generate these new variables in place. See Section
3.4.
16. This section is adapted from Appendix A of Baum (2006a).

i

i

i

i

i

i

i

i

16 Chapter 2 Some elementary concepts and tools

• Keeping track of multiple steps of a data input and manipulation process requires
good documentation. If you ever need to replicate or audit the data manipulation
process, you will regret that documentation did not receive the proper attention.

• Working with anything but a simple rectangular data array will almost always
require the use of [D] append, [D] merge or [D] reshape. You should review the
discussion of those commands in Chapter 5 and understand their capabilities.

Handling text files

Text files—often described as ASCII files—are the most common source of raw data in
microeconomic research. Text files may have any file extension: they may be labelled
.raw (as Stata would prefer), .txt, .csv, or .asc. The point is that a text file is just
that: text! Word processing programs like Microsoft Word are inappropriate tools for
working with text files since they have their own native, binary format and generally
use features such as proportional spacing which will cause columns to be misaligned.
A word processor uses a considerable amount of computing power to translate a text
file into its own native format before it can display it on the screen. The inverse of
that transformation must be used to create a text file that can be subsequently read by
Stata.

Stata does not read binary files other than those in its own .dta format.17 The
second rule above thus counsels the use of a text editor, rather than a word processor or
spreadsheet, when manipulating text files. Every operating system supports a variety of
text editors, many of which are freely available. A very useful summary of text editors
of interest to Stata users is edited by Nicholas J. Cox and is available as a web page
from [R] ssc as the package texteditors. You will find that a good text editor—one
without the memory limitations present in Stata’s do-file editor or the built-in routines
in some operating systems—is much faster than a word processor when scrolling through
a large data file. Many text editors colorize Stata commands, making them very useful
for Stata program development. Text editors are also extremely useful when working
with large microeconomic survey datasets that are accompanied with machine-readable
codebooks, often many megabytes in size. Searching those codebooks for particular
keywords with a robust text editor is very efficient.

Free format vs. fixed format

Text files may be free format or fixed format. A free format file contains a number of
fields per record, separated by delimiters: characters which are not to be found within
the fields. A purely numeric file (or one with simple string variables such as U.S. state
codes) may be space delimited: that is, successive fields in the record are separated by
one or more space characters:

AK 12.34 0.09 262000

17. Exceptions to that rule: the fdause command ([R] fdause) can read a SAS Transport (.xpt) file,
and the [TS] haver command can read Haver Analytics datasets on the Windows platform.

i

i

i

i

i

i

i

i

2.7.1 Inputting data from ASCII text files and spreadsheets 17

AL 9.02 0.075 378000
AZ 102.4 0.1 545250

Note that the columns in the file need not be aligned. These data may be read from a
text file (by default with extension .raw) with Stata’s infile command, which must
assign names (and if necessary data types) to the variables:

. clear

. infile str2 state members prop potential using appA_1
(3 observations read)

. list

state members prop potent~l

1. AK 12.34 .09 262000
2. AL 9.02 .075 378000
3. AZ 102.4 .1 545250

In this case, we must indicate that the first variable is a string variable of maximum
length 2 characters (str2), or every record will generate an error that state cannot be
read as a number. We may even have a string variable with contents of varying length
in the record:

. clear

. infile str2 state members prop potential str20 state_name key using appA_2
(3 observations read)

. list

state members prop potent~l state_~e key

1. AK 12.34 .09 262000 Alaska 1
2. AL 9.02 .075 378000 Alabama 2
3. AZ 102.4 .1 545250 Arizona 3

However, this scheme will break down as soon as we hit New Hampshire. The space
within the state name will be taken as a delimiter, and Stata will become quite befud-
dled. If string variables with embedded spaces are to be used in a space-delimited file,
they themselves must be delimited (usually with quotation marks in the text file):

. clear

. type appA_3.raw
AK 12.34 0.09 262000 Alaska 1
AL 9.02 0.075 378000 Alabama 2
AZ 102.4 0.1 545250 Arizona 3
NH 14.9 0.02 212000 "New Hampshire" 4

. infile str2 state members prop potential str20 state_name key using appA_3
(4 observations read)

. list

i

i

i

i

i

i

i

i

18 Chapter 2 Some elementary concepts and tools

state members prop potent~l state_name key

1. AK 12.34 .09 262000 Alaska 1
2. AL 9.02 .075 378000 Alabama 2
3. AZ 102.4 .1 545250 Arizona 3
4. NH 14.9 .02 212000 New Hampshire 4

So what should you do if your text file is space-delimited and contains string variables
with embedded spaces? That is a difficult question, since no mechanical transformation
will generally solve this problem. For instance, using a text editor to change multiple
spaces to a single space and then each single space to a tab character will not help, since
it will then place a tab between New and Hampshire.

If the data are downloadable from a web page that offers formatting choices, you
should choose tab-delimited rather than space-delimited format. The other option,
comma delimited text or comma separated values (.csv) has its own difficulties. Con-
sider field contents (without quotation marks) such as “College Station, TX”, “J. Arthur
Jones, Jr.”, “F. Lee Bailey, Esq.”, or “T. Frank Kennedy, S.J.”. If every city name is
followed by a comma, no problem, since the city and state can then be read as sepa-
rate variables: but if some are written without commas (“Brighton MA”), the problem
returns. In any case, parsing proper names with embedded commas is problematic.
Tab-delimited text avoids most of these problems.

The insheet command

If we are to read tab-delimited text files, the infile ([D] infile) command no longer is
the right tool for the job: we now should employ insheet ([D] insheet). Two caveats:
insheet, despite its name, does not read binary spreadsheet files (e.g. files of type .xls),
and it reads a tab-delimited (or comma-delimited) text file whether or not a spreadsheet
program was involved in its creation. For instance, most database programs contain an
option to generate a tab-delimited or comma-delimited export file, and many datasets
available for web download are in one of these formats.

The insheet command is very handy. As long as one observation in your target
Stata dataset is contained on a single record with tab or comma delimiters this is the
command to use. Stata will automatically try to determine which delimiter is in use
(but options tab and comma are available), or any ASCII character may be specified as
a delimiter with the delimiter(char) option. For instance, some European database
exports use semicolon (;) delimiters, since standard European numeric formats use
comma as the decimal separator. If the first line of the .raw file contains valid Stata
variable names, they will be used. This is very useful because if data are being extracted
from a spreadsheet, they will often have that format. To use the sample dataset above,
now tab delimited with a header record of variable names:

. clear

. insheet using appA_4

i

i

i

i

i

i

i

i

2.7.1 Inputting data from ASCII text files and spreadsheets 19

(6 vars, 4 obs)

. list

state members prop potent~l state_name key

1. AK 12.34 .09 262000 Alaska 1
2. AL 9.02 .075 378000 Alabama 2
3. AZ 102.4 .1 545250 Arizona 3
4. NH 14.9 .02 212000 New Hampshire 4

The issue of embedded spaces or commas no longer arises in tab-delimited data, and
you can rely on the first line of the file to define the variable names.

It is particularly important to heed any informational or error messages produced
by the data input commands. If you know how many observations are present in the
text file, check to see that the number Stata reports is correct. Likewise, the summarize
command should be used to discern whether the number of observations, minimum and
maximum for each numeric variable is sensible. Data entry errors can often be detected
by noting that a particular variable takes on nonsensical values, usually denoting the
omission of one or more fields on that record. Such an omission may also trigger one
or more error messages. For instance, leaving out a numeric field on a particular record
will move an adjacent string field into that variable. Stata will then complain that
it cannot read the string as a number. A distinct advantage of the tab- or comma-
delimited formats is that missing values may be coded with two successive delimiters.
As discussed in Chapter 5, [R] assert can be used to good advantage to ensure that
reasonable values appear in the data.

An additional distinction exists between infile and insheet: the former command
may be used with if exp and in range qualifiers to selectively input data. For instance,
with a very large text-file dataset, you could use in 1/1000 to read only the first
1,000 observations and verify that the input process is working properly. Using if

gender=="M", we could read only the male observations; or by using if runiform()

<= 0.15 we could read each observation with probability 0.15. These qualifiers may not
be used with insheet: but unless the text-file data set is huge and the computer slow,
you could always read the entire dataset and apply [R] keep or [R] drop conditions to
mimic the action of infile.

Accessing data stored in spreadsheets

In the third rule above, we counseled that copy-and-paste techniques should not be used
to transfer data from another application directly to Stata. Such a technique cannot
be reliably replicated. How do you know that the first and last rows or columns of
a spreadsheet were selected and copied to the clipboard, without any loss of data or
extraneous inclusion of unwanted data? If the data are presently in a spreadsheet, the
appropriate portion of that spreadsheet should be copied and pasted (in Excel, Paste
Special to ensure that only values are stored) into a new blank sheet. If Stata variable

i

i

i

i

i

i

i

i

20 Chapter 2 Some elementary concepts and tools

names are to be added, leave the first row blank so that they may be filled in. Save that
sheet, and that sheet alone, as Text Only – Tab delimited to a new filename. If you use
the file extension .raw it will simplify reading the file into Stata.

Two caveats regarding dates. Both Excel and Stata work with the notion that
calendar dates are successive integers from an arbitrary starting point. In order to read
the dates into a Stata date variable, they must be formatted with a four-digit year,
preferably in a format with delimiters (e.g., 12/6/2004 or 6-Dec-2004). It is much easier
to make these changes in the spreadsheet program before reading the data into Stata.
Second, Macintosh OS X users of Excel should note that Excel’s default is the 1904 Date
System. If the spreadsheet was produced in Excel for Windows, and the steps above
are used to create a new sheet with the desired data, the dates will be off by four years
(the difference between Excel for Macintosh and Excel for Windows defaults). Uncheck
the preference Use 1904 Date System before saving the file as text.

Fixed format data files

Many text-file datasets are composed of fixed format records: those obeying a strict
columnar format in which a variable appears in a specific location in each record of
the dataset. Such datasets are accompanied by codebooks, which define each variable’s
name, data type, location in the record and possibly other information such as missing
values, value labels, or frequencies for integer variables.18 We present a fragment of the
codebook for the study “National Survey of Hispanic Elderly People, 1988”, available
from the Inter-University Consortium for Political and Social Research (ICPSR).19

VAR 0001 ICPSR STUDY NUMBER-9289 NO MISSING DATA CODES

REF 0001 LOC 1 WIDTH 4 DK 1 COL 3- 6

VAR 0002 ICPSR EDITION NUMBER-2 NO MISSING DATA CODES

REF 0002 LOC 5 WIDTH 1 DK 1 COL 7

VAR 0003 ICPSR PART NUMBER-001 NO MISSING DATA CODES

REF 0003 LOC 6 WIDTH 3 DK 1 COL 8-10

VAR 0004 ICPSR ID NO MISSING DATA CODES

REF 0004 LOC 9 WIDTH 4 DK 1 COL 11-14

VAR 0005 ORIGINAL ID NO MISSING DATA CODES

REF 0005 LOC 13 WIDTH 4 DK 1 COL 15-18

VAR 0006 PROXY NO MISSING DATA CODES

REF 0006 LOC 17 WIDTH 1 DK 1 COL 19

VAR 0007 TIME BEGUN-HOUR MD=99

REF 0007 LOC 18 WIDTH 2 DK 1 COL 20-21

VAR 0008 TIME BEGUN-MINUTE MD=99

REF 0008 LOC 20 WIDTH 2 DK 1 COL 22-23

VAR 0009 TIME BEGUN-AM/PM MD=9

18. Stata itself has the ability to produce a codebook from a Stata dataset via the [D] codebook
command.
19. Study no. 9289, http://webapp.icpsr.umich.edu/cocoon/ICPSR-STUDY/09289.xml

i

i

i

i

i

i

i

i

2.7.1 Inputting data from ASCII text files and spreadsheets 21

REF 0009 LOC 22 WIDTH 1 DK 1 COL 24

VAR 0010 AGE NO MISSING DATA CODES

REF 0010 LOC 23 WIDTH 3 DK 1 COL 25-27

VAR 0011 HISPANIC GROUP NO MISSING DATA CODES

REF 0011 LOC 26 WIDTH 1 DK 1 COL 28

VAR 0012 HISPANIC GROUP-OTHER MD=99

REF 0012 LOC 27 WIDTH 2 DK 1 COL 29-30

VAR 0013 MARITAL STATUS NO MISSING DATA CODES

REF 0013 LOC 29 WIDTH 1 DK 1 COL 31

Q.A3. ARE YOU NOW MARRIED, WIDOWED, DIVORCED, SEPARATED, OR

HAVE YOU NEVER MARRIED?

--

1083 1. MARRIED

815 2. WIDOWED

160 3. DIVORCED

99 4. SEPARATED

14 5. NOT MARRIED, LIVING WITH PARTNER

128 6. NEVER MARRIED

VAR 0014 MARITAL STATUS-YEARS MD=97 OR GE 98

REF 0014 LOC 30 WIDTH 2 DK 1 COL 32-33

VAR 0015 RESIDENCE TYPE MD=7

REF 0015 LOC 32 WIDTH 1 DK 1 COL 34

VAR 0016 RESIDENCE TYPE-OTHER MD=GE 99

REF 0016 LOC 33 WIDTH 2 DK 1 COL 35-36

VAR 0017 OWN/RENT MD=7

REF 0017 LOC 35 WIDTH 1 DK 1 COL 37

VAR 0018 OWN/RENT-OTHER MD=99

REF 0018 LOC 36 WIDTH 2 DK 1 COL 38-39

VAR 0019 LIVE ALONE NO MISSING DATA CODES

REF 0019 LOC 38 WIDTH 1 DK 1 COL 40

VAR 0020 HOW LONG LIVE ALONE MD=7 OR GE 8

REF 0020 LOC 39 WIDTH 1 DK 1 COL 41

VAR 0021 PREFER LIVE ALONE MD=7 OR GE 8

REF 0021 LOC 40 WIDTH 1 DK 1 COL 42

The codebook specifies the column in which each variable starts (LOC) and the num-
ber of columns it spans (WIDTH).20 In this fragment of the codebook, only integer

numeric variables appear. The missing data codes (MD) for each variable are also speci-
fied. The listing above provides the full codebook detail for variable 13, marital status,
quoting the question posed by the interviewer, coding of the six possible responses and

20. The COL field should not be considered.

i

i

i

i

i

i

i

i

22 Chapter 2 Some elementary concepts and tools

the frequency counts of each response.

One of the important notions about fixed format data file is that fields need not be
separated: as we see above, where the single-column fields of variables 0019, 0020 and
0021 are stored as three successive integers. Stata must be instructed to interpret each
of those digits as a separate variable. This is done with a data dictionary : a separate
Stata file, with file extension .dct, specifying the necessary information to read a fixed
format data file. The information in the codebook may be translated, line for line,
into the Stata data dictionary. The Stata data dictionary need not be comprehensive.
You might not want to read certain variables from the raw data file, so you would
merely ignore those columns. This might be particularly important when working with
Stata/IC and its limit of 2,047 variables. Many survey datasets contain many more
than 2,000 variables. By judiciously specifying only the subset of variables that are of
interest in your research, you may read such a text file using Stata/IC.

Stata supports two different formats of data dictionaries. The simpler format, used
by infix ([D] infix), only requires that the starting and ending columns of each variable
are given along with any needed data type information. To illustrate, we specify the
information needed to read a subset of fields in this codebook into Stata variables, using
the description of the data dictionary in infix:

. clear

. infix using 09289-infix
infix dictionary using 09289-0001-Data.raw {
* dictionary to read extract of ICPSR study 9289
int v1 1-4
int v2 5
int v3 6-8
int v4 9-12
int v5 13-16
int v6 17
int v7 18-19
int v8 20-21
int v9 22
int v10 23-25
int v11 26
int v12 27-28
int v13 29
int v14 30-31
int v15 32
int v16 33-34
int v17 35
int v18 36-37
int v19 38
int v20 39
int v21 40

}
(2299 observations read)

Alternatively, we could set up a dictionary file for the fixed format version of infile
([D] infile). This is the more powerful option, as it allows us to attach variable labels
and specify value labels. However, rather than specifying the column range of each field

i

i

i

i

i

i

i

i

2.7.1 Inputting data from ASCII text files and spreadsheets 23

that you want to read, you must indicate where it starts and its field width, given as
the %infmt for that variable. With a codebook like that displayed above, we have the
field widths available. We could also calculate the field widths from the starting and
ending column numbers. We must not only specify which are string variables, but must
give their data storage type. The storage type could differ from the %infmt for that
variable. You might read a six-character code into a ten-character field knowing that
other data use the latter width for that variable.

. clear

. infile using 09289-0001-Data

infile dictionary using 09289-0001-Data.raw {
_lines(1)
_line(1)
_column(1) int V1 %4f "ICPSR STUDY NUMBER-9289"
_column(5) int V2 :V2 %1f "ICPSR EDITION NUMBER-2"
_column(6) int V3 %3f "ICPSR PART NUMBER-001"
_column(9) int V4 %4f "ICPSR ID"
_column(13) int V5 %4f "ORIGINAL ID"
_column(17) int V6 :V6 %1f "PROXY"
_column(18) int V7 :V7 %2f "TIME BEGUN-HOUR"
_column(20) int V8 :V8 %2f "TIME BEGUN-MINUTE"
_column(22) int V9 :V9 %1f "TIME BEGUN-AM-PM"
_column(23) int V10 :V10 %3f "AGE"
_column(26) int V11 :V11 %1f "HISPANIC GROUP"
_column(27) int V12 :V12 %2f "HISPANIC GROUP-OTHER"
_column(29) int V13 :V13 %1f "MARITAL STATUS"
_column(30) int V14 :V14 %2f "MARITAL STATUS-YEARS"
_column(32) int V15 :V15 %1f "RESIDENCE TYPE"
_column(33) int V16 :V16 %2f "RESIDENCE TYPE-OTHER"
_column(35) int V17 :V17 %1f "OWN-RENT"
_column(36) int V18 :V18 %2f "OWN-RENT-OTHER"
_column(38) int V19 :V19 %1f "LIVE ALONE"
_column(39) int V20 :V20 %1f "HOW LONG LIVE ALONE"
_column(40) int V21 :V21 %1f "PREFER LIVE ALONE"
}

(2299 observations read)

The column() directives in this dictionary are used where dictionary fields are not
adjacent. Indeed, you could skip back and forth along the input record since the columns
read need not be in ascending order. But then we could achieve the same thing with the
[R] order command after data input. We are able to define variable labels using infile.
In both of the examples above, the dictionary file specifies the name of the data file,
which need not be the same as that of the dictionary file. For instance, highway.dct
could read highway.raw, and if that were the case, the latter filename need not be
specified. But we might want to employ the same dictionary to read more than one
.raw file. To do so, leave the filename out of the dictionary file, and use the using

option to specify the name of the .raw file. After loading the data, we may describe

its contents:

. describe

Contains data
obs: 2,299

i

i

i

i

i

i

i

i

24 Chapter 2 Some elementary concepts and tools

vars: 21
size: 105,754 (99.9% of memory free)

storage display value
variable name type format label variable label

V1 int %8.0g ICPSR STUDY NUMBER-9289
V2 int %8.0g V2 ICPSR EDITION NUMBER-2
V3 int %8.0g ICPSR PART NUMBER-001
V4 int %8.0g ICPSR ID
V5 int %8.0g ORIGINAL ID
V6 int %8.0g V6 PROXY
V7 int %8.0g V7 TIME BEGUN-HOUR
V8 int %8.0g V8 TIME BEGUN-MINUTE
V9 int %8.0g V9 TIME BEGUN-AM-PM
V10 int %8.0g V10 AGE
V11 int %8.0g V11 HISPANIC GROUP
V12 int %8.0g V12 HISPANIC GROUP-OTHER
V13 int %8.0g V13 MARITAL STATUS
V14 int %8.0g V14 MARITAL STATUS-YEARS
V15 int %8.0g V15 RESIDENCE TYPE
V16 int %8.0g V16 RESIDENCE TYPE-OTHER
V17 int %8.0g V17 OWN-RENT
V18 int %8.0g V18 OWN-RENT-OTHER
V19 int %8.0g V19 LIVE ALONE
V20 int %8.0g V20 HOW LONG LIVE ALONE
V21 int %8.0g V21 PREFER LIVE ALONE

Sorted by:
Note: dataset has changed since last saved

The dictionary indicates that value labels are associated with the variables, but does
not define those labels. Commands such as

label define V13 1 "MARRIED" 2 "WIDOWED" 3 "DIVORCED" 4 "SEPARATED" ///
5 "NOT MAR COHABITG" 6 "NEVER MARRIED"

must be given to create those labels.

One other advantage of the more elaborate infile data dictionary format should
be noted. Many large survey datasets contain a number of variables that are real or
floating-point values, such as a wage rate in dollars and cents or a percentage interest
rate such as 6.125%. To save space, the decimal points are excluded from the text file
and the codebook indicates how many decimal digits are included in the field. You
could read these data as integer values and perform the appropriate division in Stata,
but a simpler solution would be to build this information into the data dictionary. By
specifying that a variable has an infmt of, for example, %6.2f, a value such as 123456
may be read properly as daily sales of $1,234.56.

Stata’s data dictionary syntax can handle many more complicated text datasets,
including those with multiple records per observation, or those with header records that
are to be ignored. See [D] infile (fixed format) for full details.

i

i

i

i

i

i

i

i

2.7.2 Importing data from other package formats 25

2.7.2 Importing data from other package formats

The previous section discussed how foreign data files could be brought into Stata. In
many cases, the foreign data are already in the format of some other statistical pack-
age or application. For instance, a number of economic and financial data providers
make SAS-formatted datasets readily available, while socio-economic datasets are often
provided in SPSS format. The most straightforward and inexpensive way to deal with
these package formats involves a third-party application: Stat/Transfer, a product of
Circle Systems, Inc. It is not the only third-party application to provide such function-
ality: DBMS/Copy is often mentioned in this context. However, Stat/Transfer has the
advantage of a co-marketing relationship with StataCorp, and a copy of Stat/Transfer
may be acquired at an advantageous price with your Stata order.

The alternative to Stat/Transfer usually involves owning (or having access to) a
working copy of the other statistical package, and having enough familiarity with the
syntax of that package to understand how a dataset may be exported from its own pro-
prietary format to ASCII format.21 Even for those researchers who have that familiarity
and copies of another package, this is a rather cumbersome solution, since (like Stata)
packages such as SAS and SPSS have their own conventions for missing data formats,
value labels, data types, and the like. Although the raw data may be readily exported to
ASCII format, these attributes of the data will have to be recreated in Stata. For a large
survey dataset with many hundred (or several thousand!) variables, that is unpalatable.
A transformation utility like Stat/Transfer performs all of those housekeeping chores,
ensuring that any attributes attached to the data (extended missing value codes, value
labels, etc.) are placed in the Stata-format file. Of course, the mapping between pack-
ages is not always one-to-one. In Stata, a value label stands alone and may be attached
to any variable or set of variables, whereas in other packages it is generally an attribute
of a variable and must be duplicated for similar variables.

A very important distinction between Stata on the one hand and SAS and SPSS
on the other is Stata’s flexible set of data types. Stata, like the C language in which
its core code is written, offers five numeric data types ([R] data types): integer types
byte, int, long and floating-point types float, double, in addition to string types
str1-str244. Most other packages do not have this broad array of data types, and
resort to storing all numeric data in a single data type: e.g., “Raw data come in many
different forms, but SAS simplifies this. In SAS there are just two data types: numeric
and character.” (Delwiche and Slaughter (1998), p. 4). This simplicity bears a sizable
cost, since an indicator variable only requires a single byte of storage, whereas a double-
precision floating-point variable requires eight bytes to hold up to 15 decimal digits
of accuracy. Stata allows the user to specify the data type based on the contents of
each variable, which can result in considerable savings in terms of both disk space and
execution time when reading or writing those variables to disk. Stat/Transfer can be
instructed to optimize a target Stata-format file in the transfer process, or you may use
Stata’s [R] compress statement to automatically perform that optimization. In any

21. If SAS datasets are available in the SAS Transport (.xpt) format, they may be read by Stata’s
fdause command.

i

i

i

i

i

i

i

i

26 Chapter 2 Some elementary concepts and tools

case, you should always take advantage of this optimization, since it will reduce the size
of files and require less of your computer’s memory to work with them.

A very useful feature of Stat/Transfer is the ability to generate a subset of a large
file while transferring it from SAS or SPSS format. We spoke above of the possibility
of reading only certain variables from a text file to avoid Stata/IC’s limitation of 2,047
variables. You can always Stat/Transfer a sizable survey data file from SAS to Stata
format, but if there are more than 2,047 variables in the file, the target file must be
specified as a Stata/SE file. If you do not have access to Stata/SE, that will be prob-
lematic. The solution: use Stat/Transfer’s ability to read a list of variables that you
would like to keep (or a list of variables to drop), which will generate a subset file on the
fly. Since Stat/Transfer can generate a machine-readable list of variable names, that
list may be edited to produce the keep-list or drop-list.

Although we have spoken of SAS and SPSS, Stat/Transfer is capable of exchanging
datasets with a wide variety of additional packages, including GAUSS, Excel, MATLAB,
and others; see http://stattransfer.com for details. Versions of Stat/Transfer for
Windows, Mac OS X and Linux/Unix are available.

We must also mention an alternative solution for data transfer between databases
supporting some flavor of SQL, Structured Query Language. Stata can perform ODBC
(Open Data Base Connectivity) operations with databases accessible via that protocol
([D] odbc for details). Since most SQL databases as well as non-SQL data structures
such as Excel and Microsoft Access support ODBC, this is often suggested as a workable
solution to dealing with foreign data. It does require that the computer system on which
you are running Stata is equipped with ODBC drivers. These are installed by default
on Windows systems with Microsoft Office, but may require the purchase of a third-
party product for Mac OS X or Linux systems. If the necessary database connectivity
is available, Stata’s odbc is a full-featured solution. It allows for both the query of
external databases and the insertion or update of records in those databases.

2.8 Guidelines for Stata do-file programming style

As you move away from interactive use of Stata and make greater use of do-files and ado-
files in your research, the style of the contents of those files becomes more important.
One of the reasons for using do-files is the audit trail that they provide. Are your do-files
readable and comprehensible—not only today, but after several months? To highlight
the importance of good programming style practices, we present here an edited excerpt
from Nicholas J. Cox’s excellent essay on “Suggestions on Stata programming style”22

(Cox 2005f). The remainder of this section is quoted from that essay.

Programming in Stata, like programming in any other computer language, is partly
a matter of syntax, as Stata has rules that must be obeyed. It is also partly a matter
of style. Good style includes, but is not limited to, writing programs that are, above
all else, clear. They are clear to the programmer, who may revisit them repeatedly,

22. I am grateful to Nick Cox for permission to reproduce his excellent suggestions.

i

i

i

i

i

i

i

i

2.8.1 Basic guidelines for do-file writers 27

and they are clear to other programmers, who may wish to understand them, to debug
them, to extend them, to speed them up, to imitate them, or to borrow from them.

People who program a great deal know this: setting rules for yourself and then
obeying them ultimately yields better programs and saves time. They also know that
programmers may differ in style and even argue passionately about many matters of
style, both large and small. In this morass of varying standards and tastes, I suggest
one overriding rule: Set and obey programming style rules for yourself. Moreover, obey
each of the rules I suggest unless you can make a case that your own rule is as good or
better.

Enough pious generalities: The devil in programming is in the details. Many of these
details reflect longstanding and general advice (e.g., Kernighan and Plauger 1978).

2.8.1 Basic guidelines for do-file writers

1. Use natural names for logical constants or variables. Thus local OK should be 1 if
true and 0 if false, permitting idioms such as if ‘OK’. (But beware such logicals’
taking on missing values.)

2. Type expressions so they are readable. Some possible rules are as follows:

a. Put spaces around each binary operator except ^ (gen z = x + y is clear,
but x ^ 2 looks odder than x^2).

b. * and / allow different choices. num / den is arguably clearer than num/den,
but readers might well prefer 2/3 to 2 / 3. Overall readability is paramount;
compare, for example,

hours + minutes / 60 + seconds / 3600

with

hours + minutes/60 + seconds/3600

c. Put a space after each comma in a function, etc.

d. Use parentheses for readability.

Note, however, that such a spaced-out style may make it difficult to fit expressions
on one line, another desideratum.

3. Adopt a consistent style for flow control. Stata has if, while, foreach, and
forvalues structures that resemble those in many mainstream programming lan-
guages. Programmers in those languages often argue passionately about the best
layout. Choose one such layout for yourself. Here is one set of rules:

a. Tab lines consistently after if or else or while or foreach or forvalues

(the StataCorp convention is that a tab is 8 spaces and is greatly preferable
if Stata is to show your programs properly).

b. Put a space before braces.

c. Align the i of if and the e of else, and align closing braces } with the i,
or the e, or the w of while, or the f of foreach or forvalues:

i

i

i

i

i

i

i

i

28 Chapter 2 Some elementary concepts and tools

if ... {
...
...

}

else {
...
...

}

while ... {
...
...

}

foreach ... {
...
...

}

In Stata 8 and later, putting the opening and closing braces on lines above
and below the body of each construct is compulsory (with the exceptions
that the whole of an if construct or the whole of an else construct may
legally be placed on one line). For earlier releases, it is strongly advised.

4. Write within 80 columns (72 are even better). The awkwardness of viewing (and
understanding) long lines outweighs the awkwardness of splitting commands into
two or more physical lines.

5. Use #delimit ; sparingly (Stata is not C). To deal with long lines, use /// and
continue on the next line of your do-file. You may use the triple-slash continuation
on any number of consecutive lines of text.

6. Use blank lines to separate distinct blocks of code.

7. Consider putting quietly on a block of statements rather than on each or many
of them. An alternative in some cases is to use capture, which eats what output
there might have been and any errors that might occur, which is sometimes the
ideal combination.

8. You can express logical negation by either ! or ~. Choose one and stick with it.
StataCorp has changed recently from preferring ~ to preferring !.

9. Define constants to machine precision. Thus use pi or c(pi) rather than some
approximation, such as 3.14159, or use -digamma(1) for the Euler–Mascheroni
constant γ rather than 0.57721. Cruder approximations may give results ade-
quate for your purposes, but that does not mean that you should eschew wired-in
features.

10. Avoid “magic numbers”. Use a macro or a scalar to hold a number whose meaning
is obvious only to the programmer, and add a comment indicating what that
number represents.

2.8.2 Enhancing speed and efficiency

Here is a list of basic ways to increase speed and efficiency of your code:

i

i

i

i

i

i

i

i

2.9 How to seek help for Stata programming 29

1. Test for fatal conditions as early as possible. Do no unnecessary work before
checking that a vital condition has been satisfied.

2. Use summarize, meanonly for speed when its returned results are sufficient (see
Cox 2007e). Also consider whether a quietly count fits the purpose better.

3. foreach and forvalues are cleaner and faster than most while loops.

4. Try to avoid looping over observations, which is very slow. Fortunately, it can
usually be avoided.

5. Avoid using a variable to hold a constant. A macro or a scalar is usually all that
is needed. One clear exception is that some graphical effects depend on a variable
being used to store a constant.

2.9 How to seek help for Stata programming

Programming in any language can be a frustrating experience. In this section, I discuss
a number of resources that you may find helpful in solving a programming problem,
whether it arises as you scratch your head wondering “how can I get Stata to do that?”
or after you have coded a trial solution. A do-file or ado-file program can be syntactically
correct but not produce the desired results, or correct answers, and that is the more
insidious problem: a program that works properly most of the time, but may fail under
special conditions.

As obvious as it may seem, the most useful resources for Stata programmers are the
on-line help and excellent printed documentation. The on-line help contains a great deal
of the information in the manuals, but there is no substitute for the manuals in many
cases. You should ensure that you have ready access to the latest version of Stata’s
manuals. That said, recall that many of Stata’s commands are enhanced, corrected
or even introduced between major versions of Stata, and the only documentation for
new features or new commands appears in the on-line help. The findit ([R] search)
command is often most useful, as it looks for the specified keyword(s) in the on-line
help, FAQs on the Stata website, Stata Technical Bulletin and Stata Journal articles
and the SSC Archive.23 A judicious choice of keywords for findit will often prove very
helpful.

What other resources are available? If you believe that Stata is actually not produc-
ing the results it should according to the documentation for a command, you can contact
Stata technical support, following the guidelines at http://www.stata.com/support/tech-support.
Like any large, complex software system, Stata has bugs. Thankfully, most bugs in offi-
cial Stata are short-lived. Stata’s update ([R] update) capability makes it possible for
Stata’s developers to provide corrected code within a few days of a bug’s diagnosis—but
only if you keep your official Stata up to date! Before producing a trouble report for
tech support, ensure that your Stata executable and ado-files are fully up to date by

23. The search ([R] search) command places output in the Results window and scans all of these
sources except the SSC Archive and other user sites. search..., all, a synonym for findit, will
access all of the sites mentioned.

i

i

i

i

i

i

i

i

30 Chapter 2 Some elementary concepts and tools

using update query. Even if you are using an older version of Stata, you may not have
the last release of that older version installed. Many reported bugs have already been
corrected in the latest downloadable routines.

This caveat also applies, even more emphatically, to the user-written Stata routines
that you may have downloaded from the Stata Journal, SSC Archive or individual
users’ websites. Although a good deal of user-written code may rival official Stata code
in terms of reliability, it stands to reason that user-programmers (such as myself) are
not as uniformly competent and careful as professional software developers. Thankfully,
the adoupdate ([R] adoupdate) command allows you to check whether user-written
code on your machine is up to date. Most user-programmers reliably respond to any
reports of bugs in their code and post corrected versions on the SSC Archive or their
own websites. Before reporting a bug in a user-written routine, ensure that you have
the latest version.

Many users’ programming problems are solved expeditiously by a posting on Stata-
list. Participants in this active discussion list can often suggest a solution to a well-posed
programming problem, or assist in the diagnosis of your do-file or ado-file. To post to
Statalist, you must be a member of the list, and to get helpful comments you should
read and heed the Statalist FAQ (http://www.stata.com/support/statalist/faq).
A posting that states “The xyz command doesn’t work” will not attract much attention.
If you want Statalisters to help, you should pose your problem in well-defined terms that
allow list participants to understand what you are doing (or not doing) and what you
are trying to do. You should not send attachments nor excessively lengthy output to
Statalist, and should post in ASCII text mail format. Attachments, lengthy messages
and non-ASCII messages may be discarded by the managing software. A number of
other important admonitions appear in the Statalist FAQ. In summary, Statalisters can
be very helpful in helping you solve your problems if you explain them clearly. This
caveat also applies to another source of support: local “gurus”, either colleagues or
research support staff in your institution.

Last, I must mention Stata’s own capabilities to diagnose your problem with a
program you have written. Most of official Stata and user-written Stata routines are
written in the interpreted ado-file language. When you give a Stata command, only the
standard results or error messages usually appear. How can you track down an error in
a do-file containing a loop construct (such as forvalues or foreach), or in an ado-file?
By using set trace on ([P] trace). This command will instruct Stata to echo both the
lines of code that it executes as well as their results (for instance, any substitutions of
names or values into a command). By examining the results, which should be directed
to a logfile, you may often determine where and why an error occurs. Coupled with
judicious use of the display ([P] display) statement to print intermediate values, this
can often speed the solution of a programming problem.24

24. You cannot trace the execution of a built-in Stata command. The which ([R] which) command
will indicate whether a command is built-in or ado-file code.

i

i

i

i

i

i

i

i

3 Do-file programming: functions,
macros, scalars and matrices

3.1 Introduction

This chapter discusses several elements of do-file programming: functions used to gen-
erate new variables, macros that store individual results and lists, scalars and matrices.
Although functions will be familiar to all users of Stata, macros and scalars are often
overlooked by interactive users. As nearly all Stata commands return results in the
form of macros and scalars, familiarity with these concepts is very useful.

The first section of the chapter deals with several general details: the varlist , numlist,
if exp and in range qualifiers, missing data handling and string to numeric conversion
(and vice versa). Subsequent sections present functions for generate ([D] generate),
functions for egen ([D] egen), computation with a by varlist:, and introduce macros,
scalars and matrices.

3.1.1 What you should learn from this chapter

• Understand the varlist, numlist and if and in qualifiers

• Know how to handle missing data and conversion of values to missing and vice
versa

• Understand string to numeric conversion and vice versa

• Be familiar with functions for use with generate

• Understand how to recode discrete and continuous variables

• Be familiar with the capabilities of egen functions

• Know how to use by-groups effectively

• Understand the use of local and global macros

• Be familiar with extended macro functions and macro list functions

• Understand how to use numeric and string scalars

• Know how to use matrices to retrieve and store results

31

i

i

i

i

i

i

i

i

32 Chapter 3 Do-file programming: functions, macros, scalars and matrices

3.2 Some general programming details

In this section, we use the census2c dataset of U.S. state-level statistics to illustrate
details of do-file programming:

. use census2c
(1980 Census data for NE and NC states)

. list, sep(0)

state region pop popurb medage marr divr

1. Connecticut NE 3107.6 2449.8 32.00 26.0 13.5
2. Illinois N Cntrl 11426.5 9518.0 29.90 109.8 51.0
3. Indiana N Cntrl 5490.2 3525.3 29.20 57.9 40.0
4. Iowa N Cntrl 2913.8 1708.2 30.00 27.5 11.9
5. Kansas N Cntrl 2363.7 1575.9 30.10 24.8 13.4
6. Maine NE 1124.7 534.1 30.40 12.0 6.2
7. Massachusetts NE 5737.0 4808.3 31.20 46.3 17.9
8. Michigan N Cntrl 9262.1 6551.6 28.80 86.9 45.0
9. Minnesota N Cntrl 4076.0 2725.2 29.20 37.6 15.4
10. Missouri N Cntrl 4916.7 3349.6 30.90 54.6 27.6
11. Nebraska N Cntrl 1569.8 987.9 29.70 14.2 6.4
12. New Hampshire NE 920.6 480.3 30.10 9.3 5.3
13. New Jersey NE 7364.8 6557.4 32.20 55.8 27.8
14. New York NE 17558.1 14858.1 31.90 144.5 62.0
15. N. Dakota N Cntrl 652.7 318.3 28.30 6.1 2.1
16. Ohio N Cntrl 10797.6 7918.3 29.90 99.8 58.8
17. Pennsylvania NE 11863.9 8220.9 32.10 93.7 34.9
18. Rhode Island NE 947.2 824.0 31.80 7.5 3.6
19. S. Dakota N Cntrl 690.8 320.8 28.90 8.8 2.8
20. Vermont NE 511.5 172.7 29.40 5.2 2.6
21. Wisconsin N Cntrl 4705.8 3020.7 29.40 41.1 17.5

The listing of this dataset, census2c, is arranged in tabular format, similar to a spread-
sheet. The rows of the table are the observations, cases or records. The columns are
the Stata variables or fields. We see that there are 21 rows, each corresponding to one
US state in the North East or North Central regions, and seven columns, or variables:
state, region, pop, popurb, medage, marr, divr. The variables pop and popurb

represent each state’s 1980 population and urbanized population in thousands. The
variable medage, median age, is measured in years, while the variables marr and divr

represent the number of marriages and divorces, respectively, in thousands.

The Stata variable names must be distinct and follow certain rules of syntax. For
instance, they may not contain embedded spaces, nor hyphens (-), nor characters outside
the sets A-Z, a-z, 0-9, . In particular, full stop or period (.) cannot appear within
a variable name. Variable names must start with a letter or an underscore. Most
importantly, case matters: STATE, State and state are three different variables to
Stata. The Stata convention, which I urge that you adopt, is to use lower case names
by default for all variables to avoid confusion, and only use upper case for some special
reason. You may always use variable labels to contain additional information.

i

i

i

i

i

i

i

i

3.2.3 if exp and in range qualifiers 33

3.2.1 The varlist

Many Stata commands accept a varlist : a list of one or more variables to be used. A
varlist may contain the variable names, or you may use a wild card (*) such as *id

in the varlist . The * will stand in for an arbitrary set of characters. In the census2c

dataset pop* will refer to pop and popurb:

. summarize pop*

Variable Obs Mean Std. Dev. Min Max

pop 21 5142.903 4675.152 511.456 17558.07
popurb 21 3829.776 3851.458 172.735 14858.07

A varlist may also contain a hyphenated list, such as dose1-dose4. That refers to all
variables in the dataset between dose1 and dose4, including those two, in the order
of the dataset. The dataset order is that provided by describe ([D] describe), or
that shown in the Variables window. It may be modified by the order ([D] order)
command.

3.2.2 The numlist

Many Stata commands require use of a numlist. A list of numeric arguments can be
provided in several ways. It may be spelled out explicitly, as 0.5 1.0 1.5. It may
involve a range of values, such as 1/4 or -3/3. These lists would include the integers
between those limits. You could also specify 10 15 to 30, which would count from 10
to 30 by 5s, or use a colon to say the same thing as 10 15:30. You may count by steps,
as 1(2)9, which is a list of the first five odd integers, or 9(-2)1, that same list in reverse
order. Square brackets may be used in place of parentheses.

One thing that generally should not appear in a numlist is a comma. A comma
in a numlist will usually cause a syntax error. Other programming languages’ loop
constructs often spell out a range with an expression such as 1,10. In Stata, such an
expression will involve a numlist of 1/10. One of the primary uses of the numlist is the
forvalues ([P] forvalues) statement, described in Section 7.3 (but note that not all
valid numlists are acceptable in forvalues).

3.2.3 if exp and in range qualifiers

Stata commands operate on all of the observations in memory by default. Almost
all Stata commands accept qualifiers: if exp and in range clauses that restrict the
command to a subset of the observations. If we wanted to apply a transformation
to a subset of the dataset, or wanted to list ([R] list) only certain observations, or
summarize ([R] summarize) only those observations that met some criterion, we would
use an if exp or an in range clause on the command.

In many problems, the desired subset of the data is not defined in terms of obser-

i

i

i

i

i

i

i

i

34 Chapter 3 Do-file programming: functions, macros, scalars and matrices

vation numbers (as specified with in range) but in terms of some logical condition. In
that case, it is more useful to employ the if exp qualifier. We could, of course, use
if exp to express an in range condition. But the most common use of if exp involves
transformation of data or specification of a statistical procedure for a subset of data
identified by if exp as a logical condition. To illustrate these qualifiers:

. list state pop in 1/5

state pop

1. Connecticut 3107.6
2. Illinois 11426.5
3. Indiana 5490.2
4. Iowa 2913.8
5. Kansas 2363.7

. list state pop medage if medage >= 32

state pop medage

1. Connecticut 3107.6 32.00
13. New Jersey 7364.8 32.20
17. Pennsylvania 11863.9 32.10

3.2.4 Missing data handling

Stata possesses 27 numeric missing value codes: the system missing value . and 26
others from .a through .z. They are treated as large positive values, and sort in that
order, so that plain . is the smallest missing value (see [U] 12.2.1 Missing values).
This allows qualifiers such as if variable <. to exclude all possible missing values.1 To
make your code as readable as possible, use the missing() function described below.

Stata’s standard practice for missing data handling is to omit those observations from
any computation. For generate ([D] generate) or replace, missing values are typically
propagated so that any function of missing data is missing. In univariate statistical
computations (such as [R] summarize computing a mean or standard deviation) only
non-missing cases are considered. For multivariate statistical commands, Stata generally
practices casewise deletion: an observation in which any variable is missing is deleted
from the computation. The missing(x1,x2,...,xn) function ([R] functions) returns 1 if
any of the arguments is missing, and 0 otherwise: that is, it provides the user with a
casewise deletion indicator.

Several Stata commands handle missing data in non-standard ways. The functions

1. Pre-version 8 Stata user code often used qualifiers like if variable != . to rule out missing values.
That is now dangerous practice, since that qualifier will only capture the . missing data code. If any
of the additional codes are present in the data (for instance, by virtue of having used Stat/Transfer to
convert a SPSS or SAS dataset to Stata format) they will only be handled properly when if variable

<. or if !missing(variable) is employed.

i

i

i

i

i

i

i

i

3.2.5 String to numeric conversion and vice versa 35

max() and min() and the egen ([D] egen) row-wise functions (rowmax(), rowmean(),

rowmin(), rowsd(), rowtotal()) all ignore missing values (see Section 3.4). For ex-
ample, rowmean(x1,x2,x3)will compute the mean of three, two, or one of the variables,
returning missing only if all three variables’ values are missing for that observation. The
egen functions rownonmiss() and rowmiss() return, respectively, the number of non-
missing and missing elements in their varlists. Although correlate ([R] correlate)
varlist uses casewise deletion to remove any observation containing missing values in
any variable of the varlist from the computation of the correlation matrix, the alterna-
tive command pwcorr computes pair-wise correlations using all available data for each
pair of variables.

We have discussed missing values in numeric variables, but Stata also provides for
missing values in string variables. The empty or null string ("") is taken as missing.
There is an important difference to Stata between a string variable containing one
or more spaces and a string variable containing no spaces (although they will appear
identical to the naked eye). That suggests that you should not include one or more
spaces as a possible value of a string variable; take care if you do.

Recoding missing values: the mvdecode and mvencode commands

When importing data from another statistical package, or a spreadsheet or database,
differing notions of missing data codes may hinder the proper rendition of the data
within Stata. Likewise, if the data are to be used in another program that does not
use the . notation for missing data codes, there may be a need to use an alternative
representation of Stata’s missing data. The mvdecode and mvencode commands (see
[D] mvencode) may be useful in those circumstances. The mvdecode command permits
you to recode various numeric values to missing, as would be appropriate when missing
data have been represented as −99,−999, 0.001, and so on. Stata’s full set of 27 numeric
missing data codes may be used, so that −9 may be mapped to .a, −99 to .b, etc. The
mvencode command provides the inverse function, allowing Stata’s missing values to be
revised to numeric form. Like mvdecode, mvencode can map each of the 27 numeric
missing data codes to a different numeric value.

Many of the thorny details involved with the reliable transfer of missing data values
between packages are handled very competently by Stat/Transfer. As this third-party
application (remarketed by StataCorp) can also handle the transfer of variable and value
labels between major statistical packages and create subsets of files’ contents (e.g., only
selected variables are translated into the target format) it is well worth the cost for
those researchers who frequently import or export datasets.

3.2.5 String to numeric conversion and vice versa

Stata has two major kinds of variables: string and numeric. Quite commonly, a variable
imported from an external source will be misclassified as string when it should be
considered as numeric. For instance, if the first value read by insheet ([D] insheet) is

i

i

i

i

i

i

i

i

36 Chapter 3 Do-file programming: functions, macros, scalars and matrices

NA, that variable will be classified as a string variable. Stata provides several methods for
converting string variables to numeric. First, if the variable has merely been misclassified
as string, you may apply the brute force approach of the real() function: e.g., generate
patid = real(patientid). This will create missing values for any observations that
cannot be interpreted as numeric.

Second, a more subtle approach is given by the destring ([D] destring) command,
which can transform variables in place (with the replace option), and may be used
with a varlist to apply the same transformation to an entire set of variables with a
single command. This is useful if there are a number of variables that may require
conversion. However, destring should only be used for variables that have genuine
numeric content, but happen to have been misclassified as string variables.

Third, if the variable truly has string content and you need a numeric equivalent,
you may use the encode ([D] encode) command. You should not apply encode to
a string variable that has purely numeric content (for instance, one which has been
misclassified as a string variable) because encode will attempt to create a value label
for each distinct value of the variable. As an example, we create a numeric equivalent
of the state variable:

. encode state, generate(stateid)

. describe state stateid

storage display value
variable name type format label variable label

state str13 %-13s State
stateid long %13.0g stateid State

. list state stateid in 1/5

state stateid

1. Connecticut Connecticut
2. Illinois Illinois
3. Indiana Indiana
4. Iowa Iowa
5. Kansas Kansas

Although stateid is numeric, it has automatically been given the value label of the
values of state. To see the numeric values, use list ([R] list) with the nolabel option.

Numeric to string conversion

We may also need to generate the string equivalent of a numeric variable. In many
cases, it is easier to parse the contents of string variables and extract substrings that
may have some particular significance. Such transformations can be applied to inte-
ger numeric variables by means of integer division and remainders, but are generally
more cumbersome and error-prone. It should also be noted that the limits to exact
representation of numeric values such as integers with many digits are circumvented by

i

i

i

i

i

i

i

i

3.2.5 String to numeric conversion and vice versa 37

placing those values in string form. A thorough discussion of these issues is given in
Cox (2002c).

We discussed three methods for string-to-numeric conversion. For each method,
the inverse function or command is available: the string() function, tostring and
decode. The string() function is quite useful in allowing a numeric display format
([D] format) to be used. This would allow, for instance, the creation of a variable with
leading zeros, as are integral in some ID-number schemes. The tostring command
provides a more comprehensive approach, as it contains various safeguards to prevent
the loss of information and may be used with a particular display format. Like destring,
tostring may be applied to a varlist to alter an entire set of variables.

A common task is the restoration of leading zeros in a variable that has been trans-
ferred from a spreadsheet. For instance, U.S. ZIP (postal) codes and Social Security
numbers may start with zero. The tostring command is useful here. Say that we have
a variable zip:

. tostring zip, format(%05.0f) generate(zipstring)

The variable zipstring will contain strings of five-digit numbers with leading zeros
included, as specified by the format option.

As an example of decode use, say that you have the stateid numeric variable
defined above (with its value label) in your dataset, but do not have the variable in
string form. You can create the string variable statename using decode:

. decode stateid, generate(statename)

. list stateid statename in 1/5

stateid statename

1. Connecticut Connecticut
2. Illinois Illinois
3. Indiana Indiana
4. Iowa Iowa
5. Kansas Kansas

Note that to use decode, the numeric variable to be decoded must have a value label.

Working with quoted strings

You may be aware that display "this is a quoted string" ([P] display) will dis-
play the contents of that quoted string. What happens, though, if your string itself
contains quotation marks? Then you must resort to compound double quotes. A com-
mand such as

. display ‘"This is a "quoted" string."’

i

i

i

i

i

i

i

i

38 Chapter 3 Do-file programming: functions, macros, scalars and matrices

will properly display the string, with the inner quotation marks intact. If ordinary
double quotes are used, Stata will produce an error message. Compound double quotes
may often be used advantageously when there is any possibility that the contents of
string variables might include quotation marks.

3.3 Functions for the generate command

The fundamental commands for data transformation are generate ([D] generate) and
replace. They function in the same way, but two rules govern their use. generate

may only be used to create a new variable: one whose name is not currently in use. On
the other hand, replace can only be used to revise the contents of an existing variable.
Unlike other Stata commands whose names can be abbreviated, replacemust be spelled
out for safety’s sake.

We illustrate the use of generate by creating a new variable in our dataset that
measures the fraction of each state’s population living in urban areas in 1980. We need
only specify the appropriate formula and Stata will automatically apply that formula to
every observation that is specified by the generate command, using the rules of algebra.
For instance, if the formula would result in a division by zero for a given state, the result
for that state would be flagged as missing. We generate the fraction, urbanized, and
use the summarize ([R] summarize) command to display its descriptive statistics:

. generate urbanized = popurb / pop

. summarize urbanized

Variable Obs Mean Std. Dev. Min Max

urbanized 21 .6667691 .1500842 .3377319 .8903645

We see that the average state in this part of the US is 66.7% urbanized, with that
fraction ranging from 34% to 89%.

If the urbanized variable already existed, but we wanted to express it as a percentage
rather than a decimal fraction, we must use replace:

. replace urbanized = 100 * urbanized
(21 real changes made)

. summarize urbanized

Variable Obs Mean Std. Dev. Min Max

urbanized 21 66.67691 15.00843 33.77319 89.03645

Note that replace reports the number of changes it made. In this case, it changed all
21 observations.

The concern for efficiency of a do-file is first a concern for human efficiency. You
should write the data transformations as a simple, succinct set of commands that may
readily be audited and modified. You may find that there are several ways to create the

i

i

i

i

i

i

i

i

3.3 Functions for the generate command 39

same variable using generate ([D] generate) and replace. It is usually best to stick
with the simplest and clearest form of these statements.

A variety of useful functions are located in Stata’s programming functions category
(help programming functions or [R] functions). For instance, a number of replace
statements might themselves be replaced by a single call to the inlist() or inrange()
functions (see Cox 2006c). The former will allow the specification of a variable and
a list of values, and returns 1 for each observation if the variable matches one of the
elements of the list, 0 otherwise. The function may be applied to either numeric or
string variables. For string variables, up to ten string values may be specified in the
list. For example:

. generate byte newengland = inlist(state, "Connecticut", "Maine", ///
> "Massachusetts", "New Hampshire", "Rhode Island", "Vermont")

. sort medage

. list state medage pop if newengland, sep(0)

state medage pop

6. Vermont 29.40 511.5
13. New Hampshire 30.10 920.6
14. Maine 30.40 1124.7
16. Massachusetts 31.20 5737.0
17. Rhode Island 31.80 947.2
19. Connecticut 32.00 3107.6

The inrange() function allows specification of a variable and an interval on the real
line and returns 1 or 0 to indicate whether the variable’s values fall within the interval
(which may be open: i.e., one limit may be ±∞). For example:

. list state medage pop if inrange(pop, 5000, 9999), sep(0)

state medage pop

2. Michigan 28.80 9262.1
4. Indiana 29.20 5490.2
16. Massachusetts 31.20 5737.0
21. New Jersey 32.20 7364.8

A number of data transformations involve the use of integer division: that is, trun-
cating the remainder. For instance, four-digit U.S. Standard Industrial Classification
(SIC) codes 3211–3299 divided by 100 must all yield 32. This is accomplished with the
int() function (defined in help math functions).2 A common task involves extract-
ing one or more digits from an integer code; for instance, the third and fourth digits of
the codes above can be defined as

. generate digit34 = SIC - int(SIC / 100) * 100

2. Also see the discussion of floor() and ceil() functions in Section 3.3.3.

i

i

i

i

i

i

i

i

40 Chapter 3 Do-file programming: functions, macros, scalars and matrices

or

. generate mod34 = mod(SIC,100)

where the second construct makes use of the modulo (mod()) function (see Cox (2007c)).
The third digit alone could be extracted with

. generate digit3 = int((SIC - int(SIC / 100) * 100) / 10)

or

. generate mod3 = (mod(SIC, 100) - mod(SIC, 10)) / 10

or even

. generate sub3 = real(substr(string(SIC), 3, 1))

using the string() function to express SIC as a string, the substr() function to extract
the desired piece of that string and the real() function to convert the extracted string
into numeric form.

As discussed above in Section 2.4, you should realize the limitations of this method
in dealing with very long integers such as U.S. Social Security numbers of nine digits or
ID codes of ten or twelve digits. The functions maxbyte(), maxint() and maxlong()

are useful here. An excellent discussion of these issues is given in Cox (2002c).

Last, we must mention one exceedingly useful function for generate ([D] generate):
the sum() function, which produces cumulative or running sums. That capability is very
useful in the context of time-series data, where it may be used to convert a flow or other
rate variable into a stock or other amount variable. If we have an initial capital stock
value and a net investment series, the sum() of investment plus the initial capital stock
defines the capital stock at each point in time. Note that this function does not place
the single sum of the series into the new variable. If that is what you want, use the
egen ([D] egen) function total().

3.3.1 Use of if exp with indicator variables

A key element of many empirical research projects is the indicator variable: a variable
taking on values {0,1} to indicate whether a particular condition is satisfied. These
are commonly known as dummy variables or Boolean variables. Creation of indicator
(dummy) variables is best accomplished using a Boolean condition: an expression that
evaluates to true or false for each observation. The if exp qualifier has an important
role here as well. Using our dataset, it would be possible to generate indicator variables
for small and large states with the following commands. As we note below, we must
take care to handle potentially missing values using the missing() function.

. generate smallpop = 0

. replace smallpop = 1 if pop <= 5000 & !missing(pop)
(13 real changes made)

. generate largepop = 0

i

i

i

i

i

i

i

i

3.3.1 Use of if exp with indicator variables 41

. replace largepop = 1 if pop > 5000 & !missing(pop)
(8 real changes made)

. list state pop smallpop largepop, sep(0)

state pop smallpop largepop

1. Connecticut 3107.6 1 0
2. Illinois 11426.5 0 1
3. Indiana 5490.2 0 1
4. Iowa 2913.8 1 0
5. Kansas 2363.7 1 0
6. Maine 1124.7 1 0
7. Massachusetts 5737.0 0 1
8. Michigan 9262.1 0 1
9. Minnesota 4076.0 1 0
10. Missouri 4916.7 1 0
11. N. Dakota 652.7 1 0
12. Nebraska 1569.8 1 0
13. New Hampshire 920.6 1 0
14. New Jersey 7364.8 0 1
15. New York 17558.1 0 1
16. Ohio 10797.6 0 1
17. Pennsylvania 11863.9 0 1
18. Rhode Island 947.2 1 0
19. S. Dakota 690.8 1 0
20. Vermont 511.5 1 0
21. Wisconsin 4705.8 1 0

This combination of generate and replace is required to define both the 0 and 1 values.
If you merely used replace smallpop = 1 if pop <= 5000, the variable smallpop

would be set to missing, not zero, for all observations which did not satisfy the if

condition. A simpler approach would merely use the Boolean conditions:

. generate smallpop = (pop <= 5000)

. generate largepop = (pop > 5000)

Although this latter approach is more succinct, it suffers from a potentially serious flaw:
if any values of pop are missing ([U] 12.2.1 Missing values), they will be coded as 1
in the variable largepop and 0 in the variable smallpop as all of Stata’s missing value
codes are represented as very large positive numbers. The solution requires an if exp:
if !missing(pop) added to the generate statements.3

. generate smallpop = (pop <= 5000) if !missing(pop)

. generate largepop = (pop > 5000) if !missing(pop)

If the data may contain missing values, they should always be taken into account using
if exp qualifiers. Even if the current data do not include missing values, it is good
programming practice to allow for them.

3. We could also apply this condition as if pop < 0, taking advantage of the fact that all measurable
values are less than the system missing value.

i

i

i

i

i

i

i

i

42 Chapter 3 Do-file programming: functions, macros, scalars and matrices

The if exp in the example above must be used as shown: placing the !missing(pop)
inside the Boolean expression (e.g., (pop > 5000 & !missing(pop))) would mistak-
enly assign a value of 0 to largepop for missing values of pop. The if exp qualifier,
on the other hand, will cause any missing values of pop to be properly reflected in
largepop.4

3.3.2 The cond() function

You may often want to code a result variable as a if a condition is true and b if that
condition is false. The cond(x,a,b) function provides this capability without requiring
an if exp qualifier: x is the condition to be tested, a is the result when true and b is the
result when false. If you are familiar with the C or perl programming languages, you
will recognize the similarity to those languages’ ternary conditional operator x ?a:b.

Suppose that we want to separate states having a ratio of marriages to divorces (the
net marriage rate) above and below 2.0. We define netmarr2x as taking on values 1 and
2 and attach value labels for ease of use. The variable may then be used in tabstat

([R] tabstat):

. generate netmarr2x = cond(marr/divr > 2.0, 1, 2)

. label define netmarr2xc 1 "marr > 2 divr" 2 "marr <= 2 divr"

. label values netmarr2x netmarr2xc

. tabstat pop medage, by(netmarr2x)

Summary statistics: mean
by categories of: netmarr2x

netmarr2x pop medage

marr > 2 divr 5792.196 30.38333
marr <= 2 divr 4277.178 30.08889

Total 5142.903 30.25714

We see that states with a high net marriage rate are larger and have slightly older
populations.

It is possible to nest the cond() function: that is, its second and third arguments
may be additional cond() functions. However, this syntax can lead to rather unwieldy
constructs with many parentheses. For a more positive view, see Kantor and Cox (2005).

4. An even simpler approach takes advantage of the mutually exclusive and exhaustive nature of these
two indicator variables: generate largepop = 1 - smallpop. If missing values are properly handled in
defining smallpop, the algebraic generate statement will propagate them in largepop, as any function
of missing data produces missing data.

i

i

i

i

i

i

i

i

3.3.3 Recoding discrete and continuous variables 43

3.3.3 Recoding discrete and continuous variables

Stata’s recode ([D] recode) command creates a new variable based on the coding of
an existing categorical variable. If data transformations involve a large number of very
similar statements, they are not being written efficiently. It is perfectly feasible to write
a large number of transformation statements such as

replace newcode = 5 if oldcode == 2
replace newcode = 8 if oldcode == 3
replace newcode = 12 if inlist(oldcode, 5, 6, 7)
...

It is not a very good idea to perform transformations this way, because the use of copy
and paste steps to construct these very similar statements is very likely to lead to typing
errors when constructing a sizable number of statements.

Stata’s recode ([R] recode) command usually produces more efficient and readable
code.5 For instance,

recode oldcode (2 = 5) (3 = 8) (5/7 = 12), gen(newcode)

will perform the above transformation. The equal sign should be taken to indicate
assignment: (oldvalue(s) → newvalue). Unlike the line by line approach above using
replace, recode can be applied to an entire varlist. This is handy in many cases
where a questionnaire-based dataset contains a number of similar questions with the
same coding. Use the pref() option to define the variable name stub. Missing data
codes may be handled, all non-specified values may be mapped to a single outcome,
and value labels for the values of the newly created variables may be defined. In fact,
[R] recode may work in place, modifying the existing variables rather than creating
new ones. As its documentation suggests, that is probably not a good idea in case any
further modifications to the mapping arise.

Several recode functions are also available. The recode(x,x1,x2,x3,x4,. . . ,xn) func-
tion will code a continuous variable into intervals: x ≤ x1, x1 < x ≤ x2, and so on. The
resulting values are set equal to the threshold values. For example:

. generate medagebrack = recode(medage, 29, 30, 31, 32, 33)

. tabulate medagebrack

medagebrack Freq. Percent Cum.

29 3 14.29 14.29
30 8 38.10 52.38
31 4 19.05 71.43
32 4 19.05 90.48
33 2 9.52 100.00

Total 21 100.00

5. In some cases, there is an algebraic expression that offers a one-line solution using generate.

i

i

i

i

i

i

i

i

44 Chapter 3 Do-file programming: functions, macros, scalars and matrices

The floor() and ceil() functions may also be used to generate an integer variable (see
Cox (2003c)). The floor function always rounds down (to the floor), while the ceil()

function always rounds up (to the ceiling). These functions may be used to implement
top-coding or bottom-coding of values.

Formally, for a value x, the floor(x) function returns the integer n such that n ≤
x < n + 1, while ceil(x) function returns the integer n such that n − 1 < x ≤
n. For positive integers, floor() discards the decimal part. The function int(),
on the other hand, returns the integer obtained by truncating x toward zero, so that
int(−3.14159) = −3. The round(x) function returns the closest integer to x.6

Alternatively, to categorize x into a group defined by threshold values, the
irecode(x,x1,x2,x3,x4,. . . ,xn) function will return the group number (where x ≤ x1 →
0, x1 < x ≤ x2 → 1 and so on). To illustrate, we create four population size categories
and present their descriptive statistics. Given that state populations in our sample
ranged from about 0.5 million to 17.5 million in 1980, we split the distribution at 1, 4
and 8 million:

. generate size=irecode(pop, 1000, 4000, 8000, 20000)

. label define popsize 0 "<1m" 1 "1-4m" 2 "4-8m" 3 ">8m"

. label values size popsize

. tabstat pop, stat(mean min max) by(size)

Summary for variables: pop
by categories of: size

size mean min max

<1m 744.541 511.456 947.154
1-4m 2215.91 1124.66 3107.576
4-8m 5381.751 4075.97 7364.823
>8m 12181.64 9262.078 17558.07

Total 5142.903 511.456 17558.07

Rather than categorizing a continuous variable using threshold values, we may want
to group observations based on quantiles: quartiles, quintiles, deciles, or any other
percentiles of their empirical distribution. We can readily create groupings of that sort
with xtile (see [R] pctile):

. xtile medagequart = medage, nq(4)

. tabstat medage, stat(n mean min max) by(medagequart)

Summary for variables: medage
by categories of: medagequart (4 quantiles of medage)

medagequart N mean min max

1 7 29.02857 28.3 29.4
2 4 29.875 29.7 30
3 5 30.54 30.1 31.2
4 5 32 31.8 32.2

6. The round() function also has a two-argument form; see help functions for details.

i

i

i

i

i

i

i

i

3.4 Functions for the egen command 45

Total 21 30.25714 28.3 32.2

3.4 Functions for the egen command

While the functions available for use with generate ([D] generate) or replace are lim-
ited to those listed in [R] functions (or, given subsequent additions, by help functions)
Stata’s egen ([D] egen) command provides an open-ended list of capabilities. Just as
Stata’s command set may be extended by placing additional .ado and .sthlp files on
the adopath, the functions which may be invoked from egen are those defined by .ado-
files whose names start with g, stored on the adopath. A number of those functions
are part of official Stata, as documented by [D] egen (or, given subsequent additions,
by help egen). But your copy of Stata may include additional egen functions: either
those you have written yourself, or those downloaded from the SSC Archive ([R] ssc) or
from another Stata user’s net from... site. In this section, we first discuss a number
of official Stata’s functions, and then present several useful additions developed by the
Stata user community.

Although the syntax of an egen ([D] egen) statement is very similar to that of
generate, several differences should be noted. As only a subset of egen functions allow
a by varlist: prefix or by(varlist) option, the documentation should be consulted to
determine whether a particular function is byable, in Stata parlance. Similarly, the
explicit use of n and N, often useful in generate and replace commands (see Section
3.5.1) is not compatible with egen. As there is no way to specify that a variable created
with a non-byable egen function should use the logic of replace, it may be necessary
to use a temporary variable as the egen result and a subsequent replace to combine
those values over by-groups.

Official egen functions

If you seek spreadsheet-like functionality in Stata’s data transformations, you should
become acquainted with the row-wise egen ([D] egen) functions. Like the equivalent
spreadsheet functions, the row-wise functions support the calculation of sums, averages,
standard deviations, extrema and counts across a number of Stata variables. Wildcards
may be used: e.g., if you have state-level U.S. Census variables pop1890, pop1900,

..., pop2000 you may use egen nrCensus = rowmean(pop*) to compute the average
population of each state over those decennial censuses. As discussed in the treatment of
missing values in Section 3.2.4, the row-wise functions operate in the presence of missing
values. The mean will be computed for all 50 states, although several were not part of
the U.S. in 1890.

The number of non-missing elements in the row-wise varlist may be computed with
rownonmiss(), with rowmiss() as the complementary value. Other official row-wise

i

i

i

i

i

i

i

i

46 Chapter 3 Do-file programming: functions, macros, scalars and matrices

functions include rowmax(), rowmin(), rowtotal() and rowsd() (row standard devia-
tion). The functions rowfirst() and rowlast() give the first (last) non-missing values
in the varlist. You may find this useful if the variables refer to sequential items: for
instance, wages earned per year over several years, with missing values when unem-
ployed. rowfirst() would return the earliest wage observation, and rowlast() the
most recent.

Official egen also provides a number of statistical functions which compute a statistic
for specified observations of a variable and place that constant value in each observation
of the new variable. Since these functions generally allow the use of by varlist:, they
may be used to compute statistics for each by-group of the data, as discussed in Section
3.5. This facilitates computing statistics for each household for individual-level data or
each industry for firm-level data. The count(), mean(), min(), max() and total()7,8

functions are especially useful in this context. As an illustration, we egen the average
population in each of the size groups defined above, and express each state’s population
as a percentage of the average population in that group. Size category 0 includes the
smallest states in our sample.

. bysort size: egen avgpop = mean(pop)

. generate popratio = 100 * pop / avgpop

. format popratio %7.2f

. list state pop avgpop popratio if size == 0, sep(0)

state pop avgpop popratio

1. Rhode Island 947.2 744.541 127.21
2. Vermont 511.5 744.541 68.69
3. N. Dakota 652.7 744.541 87.67
4. S. Dakota 690.8 744.541 92.78
5. New Hampshire 920.6 744.541 123.65

Other functions in this statistical category include iqr() (inter-quartile range),
kurt() (kurtosis), egen mad() (median absolute deviation), mdev() (mean absolute
deviation), median(), mode(), pc() (percent or proportion of total), pctile(), p(n)
(nth percentile), rank(), sd() (standard deviation), skew() (skewness) and std() (z-
score).

7. Before Stata version 9, the egen sum() function performed this task, but was often confused with
generate’s sum() function. Hence it was renamed.

8. An important note regarding egen’s total() function: it treats missing values as zeros, so that the
total() of a variable with all missing values is computed as zero rather than missing. You can change
this behavior with this function’s missing option.

i

i

i

i

i

i

i

i

3.4 Functions for the egen command 47

egen functions from the user community

The most comprehensive collection of additional egen ([D] egen) functions is contained
in Nicholas J. Cox’s egenmore package, available with the ssc ([R] ssc) command.9 The
egenmore package is a collection of many varied routines by Cox and others (including
the author). Some of these routines extend the functionality of official egen routines,
while others provide capabilities lacking in official Stata. Although some of the routines
require Stata version 8.2 or better, many will work with older versions of Stata.10

Several egenmore functions work with standard Stata dates, expressed in numeric
form as discussed in Section 2.4.2. The egen bom() and eom() functions create date
variables corresponding to the first day or last day of a given calendar month. They can
be used to generate the offset for any number of months (e.g., the last day of the third
month hence). With the work option, the first (last) non-weekend day of the month can
be specified (although there is no support for holidays). Companion functions bomd()

and eomd() provide similar functionality using date variables: that is, they may be used
to find the first (last) day of a month in which their date-variable argument falls. This
is useful if you wish to aggregate observations by the calendar month in which they
occurred.

A number of egenmore functions extend egen’s statistical capabilities. The corr()

function computes correlations (optionally covariances) between two variables, gmean()
and hmean() compute geometric and harmonic means, rndint() computes random
integers from a specified uniform distribution, semean() computes the standard error
of the mean and var() the variance. The filter() function generalizes egen’s ma()

function, which can only produce two-sided moving averages of an odd number of terms.
In contrast, filter() can apply any linear filter to data which have been declared as
time series data by tsset ([TS] tsset), including panel data, for which the filter is
applied separately to each panel.11 The companion function ewma() may be used to
apply an exponentially-weighted moving average to time series data.12

A function that has proved useful in data management is the record() function,
meant to evoke “setting a record.” We may want to compute the highest wage earned
to date by each employee, or the lowest stock price encountered to date. That value can
be considered the record value, and may be computed with this function. If our data
contain annual wage rates for a number of employees over several years,

. egen hiwage = record(wage), by(empid) order(year)

will compute for each employee (as specified with by(empid)) the highest wage earned

9. The package is labelled egenmore as it further extends egenodd, which appeared in the Stata

Technical Bulletin (Cox (1999), Cox (2000)). Most of the egenodd functions now appear in official
Stata, so they will not be further discussed here. I am grateful to Nicholas J. Cox for his thorough
documentation of egenmore functionality in help egenmore.
10. Some of the egenmore routines provide limited date-and-time functionality for pre-Stata 10 users.
As discussed in Section 2.4.2, Stata now offers extensive support for timestamp variables, offering up
to millisecond precision.
11. Similar functionality is available from tssmooth ma ([TS] tssmooth ma).
12. Also see tssmooth exponential ([TS] tssmooth exponential).

i

i

i

i

i

i

i

i

48 Chapter 3 Do-file programming: functions, macros, scalars and matrices

to date, allowing ready evaluation of conditions under which wages have fallen due to
a job change, et cetera. A number of other egen functions are available in egenmore,
and a variety of other useful user-written functions are available in the SSC Archive.

In summary, a number of common data management tasks can be expeditiously
handled by egen functions. The open-ended nature of this command implies that new
functions often become available, either through ado-file updates to official Stata or
through contributions from the user community. The latter will generally be adver-
tised on Statalist, with past messages accessible in the Statalist archives, and recent
contributions are highlighted in ssc whatsnew.

3.5 Computation for by-groups

One of Stata’s most useful features is the ability to transform variables or compute
statistics over by-groups. by-groups are defined with the by varlist: prefix, and are
often useful in data transformations using generate ([R] generate), replace and egen

([D] egen). Using by varlist: with one or more categorical variables, a command will
be repeated automatically for each value of the by varlist:. However, it also has its
limitations: by varlist: can only execute a single command.13

3.5.1 Observation numbering: n and N

The observations in the dataset are numbered 1, 2,. . . ,21 in the list above. When
you refer to an observation, you may do so with its observation number. The highest
observation number, corresponding to the total number of observations, is known as N,
while the current observation number is known as n. Under some circumstances, the
meanings of these two symbols will be altered. The observation numbers will change if
a sort ([R] sort) command alters the order of the dataset in memory.

Under the control of a by-group, the meanings of n and N are altered. Those
markers usually refer to the current observation and last defined observation in the
dataset, respectively. Within a by-group, n is the current observation of the group
and N is the last observation of the group. In this example, we gsort ([R] gsort) the
state-level data by region and descending order of population. We then use generate’s
running sum() function, by region:, to display the total population in each region that
lives in the largest, two largest, three largest . . . states:

. gsort region -pop

. by region: generate totpop = sum(pop)

. list region state pop totpop, sepby(region)

region state pop totpop

1. NE New York 17558.1 17558.07
2. NE Pennsylvania 11863.9 29421.97

13. Also see Section 7.2.1.

i

i

i

i

i

i

i

i

3.5.1 Observation numbering: n and N 49

3. NE New Jersey 7364.8 36786.79
4. NE Massachusetts 5737.0 42523.83
5. NE Connecticut 3107.6 45631.4
6. NE Maine 1124.7 46756.06
7. NE Rhode Island 947.2 47703.22
8. NE New Hampshire 920.6 48623.83
9. NE Vermont 511.5 49135.28

10. N Cntrl Illinois 11426.5 11426.52
11. N Cntrl Ohio 10797.6 22224.15
12. N Cntrl Michigan 9262.1 31486.23
13. N Cntrl Indiana 5490.2 36976.45
14. N Cntrl Missouri 4916.7 41893.14
15. N Cntrl Wisconsin 4705.8 46598.9
16. N Cntrl Minnesota 4076.0 50674.87
17. N Cntrl Iowa 2913.8 53588.68
18. N Cntrl Kansas 2363.7 55952.36
19. N Cntrl Nebraska 1569.8 57522.18
20. N Cntrl S. Dakota 690.8 58212.95
21. N Cntrl N. Dakota 652.7 58865.67

We may use n and N in this context. They will be equal for the last observation of
each by-group:

. by region: list region totpop if _n == _N

-> region = NE

region totpop

9. NE 49135.28

-> region = N Cntrl

region totpop

12. N Cntrl 58865.67

The computation of total population by region, stored as a new variable, could also have
been performed with egen’s total() function. We could calculate mean population (or
any other statistic) over a by varlist: with more than one variable:

. bysort region popsize: egen meanpop2 = mean(pop)

. list region popsize state pop meanpop2, sepby(region popsize)

region popsize state pop meanpop2

1. NE <= 5 million Rhode Island 947.2 1322.291
2. NE <= 5 million Vermont 511.5 1322.291
3. NE <= 5 million Connecticut 3107.6 1322.291
4. NE <= 5 million Maine 1124.7 1322.291

i

i

i

i

i

i

i

i

50 Chapter 3 Do-file programming: functions, macros, scalars and matrices

5. NE <= 5 million New Hampshire 920.6 1322.291

6. NE > 5 million Massachusetts 5737.0 10630.96
7. NE > 5 million Pennsylvania 11863.9 10630.96
8. NE > 5 million New York 17558.1 10630.96
9. NE > 5 million New Jersey 7364.8 10630.96

10. N Cntrl <= 5 million Nebraska 1569.8 2736.153
11. N Cntrl <= 5 million Missouri 4916.7 2736.153
12. N Cntrl <= 5 million S. Dakota 690.8 2736.153
13. N Cntrl <= 5 million Kansas 2363.7 2736.153
14. N Cntrl <= 5 million Minnesota 4076.0 2736.153
15. N Cntrl <= 5 million N. Dakota 652.7 2736.153
16. N Cntrl <= 5 million Iowa 2913.8 2736.153
17. N Cntrl <= 5 million Wisconsin 4705.8 2736.153

18. N Cntrl > 5 million Illinois 11426.5 9244.112
19. N Cntrl > 5 million Ohio 10797.6 9244.112
20. N Cntrl > 5 million Michigan 9262.1 9244.112
21. N Cntrl > 5 million Indiana 5490.2 9244.112

We may now compare each state’s population with the average population of states of
its size class (large or small) in its region.

Although egen’s statistical functions can be very handy, creating variables with
constant values or constant values over by-groups in a large dataset will consume a
great deal of Stata’s available memory. If the constant values are only needed for a
subsequent transformation such as computing each state population’s deviation from
average size, and will not be used in later analyses, you should drop ([D] drop) those
variables at the earliest opportunity. Alternatively, consider other Stata commands
that can provide this functionality. Ben Jann’s center command (findit center) can
transform a variable into deviation from mean form and it works with by-groups.

Another important consideration is the interpreted nature of egen functions, which
implies that they may be considerably slower than built-in functions or special-purpose
commands. egen functions can be used to generate constant values for each element of a
by-group: total household income or average industry output. If that is your objective—
if you want to construct a dataset with one value per household or per industry—egen is
a very inefficient tool. Stata’s collapse ([D] collapse) command, as illustrated above,
is especially tailored to perform that very function and will generate a single summary
statistic for each by-group.

3.6 Local macros

One of the most important concepts for Stata do-file authors is the local macro. This
entity does not have an exact equivalent in some statistical packages and matrix lan-
guages. If you are familiar with lower-level programming languages such as Fortran
or C you may find Stata’s terminology for various objects rather confusing. In those
languages, you refer to a variable with statements such as x = 2. Although you might

i

i

i

i

i

i

i

i

3.6 Local macros 51

have to declare x before its use—for instance, as integer or float—the notion of a
variable in those languages refers to an entity which can be assigned a single value,
either numeric or string. In contrast, the Stata variable refers to one column of the
dataset which contains N values, one per observation.

So what corresponds to a Fortran or C variable in Stata’s command language? Either
a Stata macro or a scalar, to be discussed below. But that correspondence is not one-
to-one, since a Stata macro may contain multiple elements. Stata’s local macro is a
container which can hold either a single object—such as a number or variable name—or
a set of objects. A local macro may contain any combination of alphanumeric characters
and can hold more than 8,600 characters in all versions of Stata. The Stata macro is
really an alias which has both a name and a value. When its name is dereferenced, it
returns its value. That operation may be carried out at any time. Alternatively, the
macro’s value may be modified by an additional command.

A macro may be either local or global, which refers to its scope, defining where its
name will be recognized. A local macro is created in a do-file or in an ado-file and ceases
to exist when that do-file terminates, either normally or abnormally. A global macro
exists for the duration of the Stata program or interactive session. There are some good
reasons to use global macros, but like any global definition, they may have unintended
consequences. We shall say more about global macros in Section 3.7.

The Stata command to define a local macro is local (see [P] macro). For example:

. local anxlevel None Mild Moderate Severe

. display "The defined levels of anxiety are: ‘anxlevel’"
The defined levels of anxiety are: None Mild Moderate Severe

Notice that the first local command names the macro—as maxlevel—and then defines
its value to be the list of four anxiety codes. To work with the value of the macro
we must dereference it. The expression ‘anxlevel’ refers to the value of the macro.
Notice that the macro’s name is preceded by the left single quote character (‘) and
followed by the right single quote character (’).14 Stata uses different opening and
closing quote characters to signify the beginning and end of a macroname because, as
we shall see, macro references may be nested, one inside the other. It is important to
understand that if macros are nested, they are evaluated from the inside out: that is,
‘pid‘year’’ will first replace ‘year’ with its value, and then evaluate ‘pidyear’.15

To dereference the macro, the correct punctuation is vital. In the example’s display

([P] display) statements, we must wrap the dereferenced macro in double quotes since
display expects a double-quoted string argument or the value of a scalar expression
such as display log(14).

In most cases the local statement is written without an equals sign (=). It is
acceptable syntax to use an equals sign following the macro’s name, but it is a very

14. These characters are found in different places on different languages’ keyboards. The right single
quote is commonly known as the apostrophe.
15. For a thorough discussion of these issues, see Cox (2002b).

i

i

i

i

i

i

i

i

52 Chapter 3 Do-file programming: functions, macros, scalars and matrices

bad idea to get in the habit of using it unless it is required. The equals sign causes the
remainder of the expression to be evaluated, rather than merely aliased to the macro’s
name. This is a common cause of head-scratching, where a user will complain “my
do-file worked when I had eight regressors, but not when I had nine...”. Defining a
macro with an equals sign will cause evaluation of the remainder of the command as a
numeric expression or as a string expression. A string expression cannot contain more
than 244 characters, so that a result longer than that will not be evaluated correctly.

When is it appropriate to use an equals sign in a local statement? Whenever you
must evaluate the macro’s value. In this example, we show a macro used as a counter
which fails to do quite what we had in mind:16

. local count 0

. local anxlevel None Mild Moderate Severe

. foreach a of local anxlevel {
2. local count ‘count’ + 1
3. display "Anxiety level ‘count’ : ‘a’"
4. }

Anxiety level 0 + 1 : None
Anxiety level 0 + 1 + 1 : Mild
Anxiety level 0 + 1 + 1 + 1 : Moderate
Anxiety level 0 + 1 + 1 + 1 + 1 : Severe

In this case, we must use the equals sign to request evaluation rather than concatenation:

. local count 0

. local anxlevel None Mild Moderate Severe

. foreach a of local anxlevel {
2. local count = ‘count’ + 1
3. display "Anxiety level ‘count’ : ‘a’"
4. }

Anxiety level 1 : None
Anxiety level 2 : Mild
Anxiety level 3 : Moderate
Anxiety level 4 : Severe

The corrected example’s local statement contains the name of the macro twice: without
punctuation, which defines its name, and on the right-hand side of the equals sign with
its current value dereferenced by ‘count’. It is crucial to understand why the statement
is written this way. Here we are redefining the macro in the first instance and referencing
its current value in the second.

In contrast to this example, there are instances where we want to construct a macro
within a loop, repeatedly redefining its value, and must avoid the equals sign:

. local count 0

. local anxlevel None Mild Moderate Severe

. foreach a of local anxlevel {
2. local count = ‘count’ + 1

16. The foreach command is presented in Section 7.4.

i

i

i

i

i

i

i

i

3.7 Global macros 53

3. local newlist "‘newlist’ ‘count’ ‘a’"
4. }

. display "‘newlist’"
1 None 2 Mild 3 Moderate 4 Severe

The local newlist statement introduces a new twist. It defines the local macro
newlist as a string containing its own current contents, space, value–of–count, space,
value-of-a. Notice that the foreach ([P] foreach) statement defines the local macro a

with the value of each anxiety level in turn. The first time through the loop, newlist
does not exist, so how may we refer to its current value? Easily: every Stata macro has
an empty or null value unless it has explicitly been given a non-null value. Thus, it takes
on the string " 1 None" the first time, and then the second time through concatenates
that string with the new string " 2 Mild", and so on. Use of the equals sign would be
inappropriate in the local newlist statement as it would cause truncation of newlist
at 244 characters. This would not cause trouble in this example, but it would be a
serious problem if we had a longer list.

We may also use macro evaluation to generate macro values “on the fly”. For
instance, we could construct a loop (see Section 7.3) that generates new variable names
as local macros. Say that we have variables v11, v12, . . . , v15 which should be renamed
to x1971, x1972, . . . , x1975. We could do so with macro evaluation:

. forvalues i = 11/15 {

. rename v‘i’ = x‘=1960 + ‘i’’

. }

In this code fragment, the macro i is evaluated and added to the constant 1960 before
the outer macro is evaluated. The first time through the loop, i = 11 and the new
variable name will be x1971.

From these examples, we might conclude that Stata’s macros are useful in construct-
ing lists, or as counters and loop indices. They are that, but they play a much larger
role in Stata do-files and ado-files and in the return values of many Stata commands.
Macros are one of the key elements of Stata’s programming language that allow you to
avoid repetitive commands and the retyping of computed results. Macros allow you to
change the performance of your do-file by merely altering the contents of a local macro.
In this manner, your do-file can be made quite general, and that set of Stata commands
may be reused or adapted for use in similar tasks with a minimum of effort.

3.7 Global macros

Global macros are distinguished from local macros by their manner of creation (with
the global statement; see [P] macro) and their means of reference. We obtain the
value of the global macro george as $george with the dollar sign taking the place of
the punctuation surrounding the local macro’s name when it is dereferenced. Global
macros are often used to store items parametric to a program, such as a character string

i

i

i

i

i

i

i

i

54 Chapter 3 Do-file programming: functions, macros, scalars and matrices

containing today’s date that is to be embedded in all filenames created by the program,
or the name of a default directory in which your data sets and do-files are to be accessed.

Unless there is an explicit need for a global macro—a symbol with global scope—it
is usually preferable to use a local macro. It is easy to forget that a global symbol was
defined in do-file A. By the time you run do-file G or H in that session of Stata, you
may find that they do not behave as expected, since they now pick up the value of the
global symbol. Such problems are quite difficult to debug. Authors of Fortran or C
programs have always been encouraged to “keep definitions local unless they must be
visible outside the module.” That is very good advice for Stata programmers as well.

3.8 Extended macro functions and macro list functions

Stata contains a versatile library of functions that may be applied to macros: the
extended macro functions (help extended fcn, or [P] macro). These functions allow
you to easily retrieve and manipulate the contents of macros. For instance:

. local anxlevel None Mild Moderate Severe

. local wds: word count ‘anxlevel’

. display "There are ‘wds’ anxiety levels:"
There are 4 anxiety levels:

. forvalues i = 1/‘wds’ {
2. local wd: word ‘i’ of ‘anxlevel’
3. display "Level ‘i’ is ‘wd’"
4. }

Level 1 is None
Level 2 is Mild
Level 3 is Moderate
Level 4 is Severe

In this example, we use the word count and word # of extended functions, both of
which operate on strings. We do not enclose the macro’s value (‘anxlevel’) in double
quotes, for it then would be considered a single word.17 This do-file will work for any
definition of the list in local anxlevel without the need to define a separate count

macro.

A wide variety of extended macro functions (help extended fcn) perform useful
tasks such as extracting the variable label or value label from a variable, or determining
its data type or display format; extracting the row or column names from a Stata matrix;
or generating a list of the files in a particular directory that match a particular pattern
(e.g., *.dta). The subinstr() function allows a particular pattern to be substituted
in a macro, either the first time the pattern is encountered or in all instances.

Another very useful set of functions support the manipulation of lists held in local
macros. These functions are described in help macro lists or [P] macro lists. They

17. In this context a word is a space-delimited token in the string. In the string Stata was first

released in 1985 there are six words, including “1985”.

i

i

i

i

i

i

i

i

3.9 Scalars 55

may be used to identify the unique elements of a list, or the duplicate entries; to sort
a list; and to combine lists with Boolean operators such as AND, OR. A set of handy
list functions allow one list’s contents to be subtracted from another, identifying the
elements of list A that are not also found in list B. You can test lists for equality,
defined for lists as containing the identical elements in the same order, or for weak
equality, which does not consider ordering. Functions are available which produce the
union or intersection of two lists and to sort the elements of a list in alphabetical
order. The uniq list function returns the unique (distinct) elements of a list, while dups
returns the duplicate elements. The posof function may be used to determine whether
a particular entry exists in a list, and if so, in which position in the list. To consider the
entire list, function A in B returns 1 if all elements in list A are found in B, 0 otherwise.
An excellent discussion of many of these issues may be found in Cox (2003a).

3.8.1 System parameters, settings and constants: creturn

When using Stata macros, you may find the system parameters, settings, and con-
stants available in creturn ([P] creturn) very useful. For instance, you may want to
embed today’s date in Stata output such as the title of a table or graph. The value
c(current date) will return that string, and c(current time) will return the time.
You may use c() return values to capture the current working directory (c(pwd)), the
version of Stata that you are running (c(stata version)), the name of the last file spec-
ified in [D] use (c(filename)) and the date and time it was last saved (c(filedate)).

A number of creturn values are constants: c(pi) is an accurate value of π (which
may also be referenced as pi), while c(alpha) (c(ALPHA)) returns a list of the lowercase
(uppercase) letters of the alphabet. The list of month names may be retrieved in full
or abbreviated (3-letter) form with c(Months) (c(Mons)), while the list of weekdays in
full or abbreviated form is accessible in c(Weekdays) (c(Wdays)). These month and
day lists are often useful when matching input data that may have been provided in
that format. See Cox (2004c).

3.9 Scalars

In addition to Stata’s variables and local and global macros, there are two additional
entities related to every analysis command: scalars and matrices. Scalars, like macros,
can hold either numeric or string values, but a scalar can hold only a single value.18

Most analysis commands return one or more results as numeric scalars. For instance,
describe ([D] describe) returns the scalars r(N) and r(k), corresponding to the num-
ber of observations and variables in the dataset. A scalar is also much more useful for
storing a single numeric result, such as the mean of a variable, rather than storing that
value in a Stata variable containing N copies of the same number. A scalar may be
referred to in any subsequent Stata command by its name:

18. The length of a string scalar is limited to the length of a string variable (244 characters).

i

i

i

i

i

i

i

i

56 Chapter 3 Do-file programming: functions, macros, scalars and matrices

. scalar root2 = sqrt(2.0)

. generate double rootage = age * root2

The distinction between a macro and a scalar appears when it is referenced. The macro
must be dereferenced to refer to its value, while the scalar is merely named.

There is one important distinction between macros and Stata’s scalars: the length
of a string scalar is limited to the length of a string variable (244 bytes: see [R] limits),
whereas a macro’s length is for most purposes unlimited.19

Stata’s scalars are typically used in a numeric context. When a numeric quantity is
stored in a macro it must be converted from its internal (binary) representation into a
printable form. By storing the result of a computation—for instance, a variable’s mean
or standard deviation—in a scalar, no conversion of its value need take place. However,
a scalar can only appear in an expression where a Stata variable or a numeric expression
could be used. For instance, one cannot specify a scalar as part of an in range qualifier
as its value will not be extracted. It may be used in an if exp qualifier as that contains a
numeric expression. Most of Stata’s statistical and estimation commands return various
numeric results as scalars (see Section 5.3).

Stata is capable of working with scalars of the same name as Stata variables. As
the manual suggests, Stata will not become confused, but you well may. So, you should
avoid using the same names for both entities; see Kolev (2006). We discuss Stata’s
matrices below. Scalars and matrices share the same namespace, so that you cannot
have both a scalar named gamma and a matrix named gamma.

Stata’s scalars play a useful role in do-files. By defining scalars at the beginning of
the do-file and referring to them throughout the code, you make the do-file paramet-
ric. This avoids the difficulties of changing various constants in the do-file’s statements
everywhere where they appear. You may often need to repeat a complex data transfor-
mation task for a different category. You may want to work with 18–24 year old subjects
rather than 25–39 year old subjects. Your do-files contain the qualifiers for minimum
and maximum age throughout the program. If you define those age limits as scalars at
the program’s outset, the do-file becomes much simpler to modify and maintain.

We illustrate using the fem2 dataset. These data are a modified version of the
fem dataset on 118 female psychiatric patients presented in Rabe-Hesketh and Everitt
(2006), originally available in Hand et al. (1994).20 The anxiety measure is on a scale
from 1=none to 4=severe, while iq is the intelligence quotient score. We use scalars to
define segments of the IQ range for which we want to analyze anxiety.

. use fem2, clear

. scalar lb1 = 80

. scalar ub1 = 88

19. A macro is limited to 165,200 characters in Stata/IC and over one million characters in Stata/SE
and Stata/MP.
20. I am grateful to Sophia Rabe-Hesketh and Brian Everitt for permission to use these data.

i

i

i

i

i

i

i

i

3.10 Matrices 57

. scalar lb2 = 89

. scalar ub2 = 97

. scalar lb3 = 98

. scalar ub3 = 109

. forvalues i = 1/3 {
2. display _n "IQ " lb‘i’ " - " ub‘i’
3. tabulate anxiety if inrange(iq, lb‘i’, ub‘i’)
4. }

IQ 80 - 88

ANXIETY Freq. Percent Cum.

1 3 12.00 12.00
2 13 52.00 64.00
3 7 28.00 92.00
4 2 8.00 100.00

Total 25 100.00

IQ 89 - 97

ANXIETY Freq. Percent Cum.

1 5 7.35 7.35
2 38 55.88 63.24
3 24 35.29 98.53
4 1 1.47 100.00

Total 68 100.00

IQ 98 - 109

ANXIETY Freq. Percent Cum.

2 9 75.00 75.00
3 2 16.67 91.67
4 1 8.33 100.00

Total 12 100.00

In this example the macros for lb and ub are dereferenced “on the fly” in the display

and tabulate commands. If we had a much more elaborate do-file in which we wanted
to carry out a number of analyses for these three groups of patients based on IQ score,
we need only refer to the scalars we have defined which delineate the groups.

3.10 Matrices

Stata has long provided a full–featured matrix language which supports a broad range
of matrix operations on real matrices, as described in [P] matrix. Stata also provides
a dedicated matrix language, Mata, which operates in a separate environment within
Stata, as discussed in Chapter 13 below.

Stata’s estimation commands typically create both scalars and Stata matrices: in
particular, the matrix e(b), containing the set of estimated coefficients, and the matrix
e(V), containing the estimated variance-covariance matrix of the coefficients. These

i

i

i

i

i

i

i

i

58 Chapter 3 Do-file programming: functions, macros, scalars and matrices

matrices may be manipulated by Stata’s [P] matrix commands, and their contents
used in later commands. Like all Stata estimation commands, regress ([R] regress)
produces matrices e(b) and e(V) as the row vector of estimated coefficients (a 1 ×
k matrix) and the estimated variance-covariance matrix of the coefficients (a k × k
symmetric matrix), respectively. You can examine those matrices with the matrix

list command or copy them for use in your do-file with the matrix statement. The
command matrix beta = e(b) will create a matrix beta in your program as a copy of
the last estimation command’s coefficient vector:

. generate age2 = age^2

. regress weight age age2

Source SS df MS Number of obs = 107
F(2, 104) = 10.86

Model 135.170028 2 67.5850139 Prob > F = 0.0001
Residual 647.10605 104 6.22217356 R-squared = 0.1728

Adj R-squared = 0.1569
Total 782.276078 106 7.379963 Root MSE = 2.4944

weight Coef. Std. Err. t P>|t| [95% Conf. Interval]

age .1652777 1.0152 0.16 0.871 -1.847902 2.178458
age2 .0009098 .0136163 0.07 0.947 -.0260919 .0279115
_cons -5.918914 18.6551 -0.32 0.752 -42.91268 31.07485

. matrix b = e(b)

. matrix V = e(V)

. matrix list b

b[1,3]
age age2 _cons

y1 .16527767 .00090982 -5.9189145

. matrix list V

symmetric V[3,3]
age age2 _cons

age 1.0306315
age2 -.01380654 .0001854
_cons -18.91199 .25270496 348.01273

When using Stata’s traditional matrix commands, matrix size is limited. In Stata/IC,
you cannot have more than 800 rows or 800 columns in a matrix.21 This implies that
many matrix tasks cannot be handled using traditional matrix commands in a straight-
forward manner. For instance, mkmat ([P] matrix mkmat) can create a Stata matrix
from a varlist of variables, but the number of observations that may be used is limited
to 800 in Stata/IC. Beyond resorting to Mata, there are two points that should be made.
First, Stata contains specialized operators such as [P] matrix accum that can com-
pute cross-product matrices from any number of observations. A regression of 10,000
observations on 5 variables (including constant) involves a 5 × 5 cross–products ma-

21. The limit in Stata/SE and Stata/MP of 11,000 rows or columns is much larger, but sizable matrices
use a great deal of computer memory. As discussed in Chapter 13, Mata provides a more efficient
solution in terms of its views: help mata st view() for details.

i

i

i

i

i

i

i

i

3.10 Matrices 59

trix, regardless of N . Variations on this command such as matrix glsaccum, matrix

vecaccum, matrix opaccum generate other useful summarizations. In that sense, the
limitation on matrix dimension is not binding.

The brute force approach is rarely appropriate when working with complex matrix
expressions. For example, the seemingly unrelated regression (SUR) estimator imple-
mented by the sureg command ([R] sureg) is presented in textbooks as a generalized
least squares (GLS) estimator of the form

β̂ = (X′Ω−1X)(X′Ω−1y)

where X is block-diagonal in the individual equations’ X matrices. If there are G
equations, each with T observations, the Ω matrix is of order T × G by T × G. Given
the algebra of partitioned matrices, every statistical package that performs SUR takes
advantage of the fact that this expression can be rewritten as the product of a number
of terms, one per equation in the system. In that expression, each term is no more
than a single equation’s regression. A huge matrix computation can be simplified as a
loop over the individual equations. Although you might be tempted to copy the matrix
expression straight out of the textbook or journal article into code, that will often be
an infeasible approach in Stata’s traditional matrix commands or in Mata, and indeed
in any matrix language limited by the computer’s available memory. Some cleverness
is often necessary when implementing complicated matrix expressions to reduce the
problem to a workable size.

For those Stata users who are writing do-files, Stata matrices are likely to be use-
ful in two particular contexts: that of saved results as described above and as a way
of organizing information for presentation. References to matrix elements appear in
square brackets. As Stata does not have a vector data type, all Stata matrices have two
subscripts and both subscripts must be given in any reference. A range of rows or a
range of columns may be specified in an expression: see [P] matrix for details. Stata’s
traditional matrices are distinctive in that their elements may be addressed both con-
ventionally by their row and column numbers (counting from 1, not 0) and by their row
and column names.

Stata’s matrices are often useful devices for housekeeping purposes such as the accu-
mulation of results that are to be presented in tabular form. The tabstat ([R] tabstat)
command may generate descriptive statistics for a set of by-groups. Likewise, statsmat
(Cox and Baum, available using ssc) can be used to generate a matrix of descriptive
statistics for a set of variables, or for a single variable over by-groups. Baum and Joao
Pedro Azevedo’s outtable can then be used to generate a LATEX table. An example
of its use is given in Section 9.2. Michael Blasnik’s mat2txt may be used to generate
tab-delimited output. Stata matrices’ row and column labels can be manipulated by
matrix rownames, matrix colnames and several macro extended functions described
in Section 3.8. This allows you to control the row and column headings on tabular
output. Stata’s traditional matrix operators make it possible to assemble a matrix
from several submatrices. For instance, you may have one matrix for each country in a
multi-country data set.

i

i

i

i

i

i

i

i

60 Chapter 3 Do-file programming: functions, macros, scalars and matrices

In summary, judicious use of Stata’s traditional matrix commands ease the burden
of many housekeeping tasks and make it feasible to update material in tabular form
without retyping.

i

i

i

i

i

i

i

i

4 Cookbook: Do-file programming I

This first cookbook chapter presents a number of recipes for Stata do-file programmers
using the programming features described in the previous chapter. Each recipe poses a
problem and a worked solution. Although you may not encounter this precise problem,
you may be able to recognize its similarities to a task that you would like to automate
in a do-file.

4.1 Tabulating a logical condition across a set of variables

The problem: considering a number of related variables, you want to determine
whether, for each observation, all variables satisfy a logical condition. Alternatively,
you might want to know whether any satisfy that condition (for instance, taking on
inappropriate values), or you might want to count how many of the variables satisfy the
logical condition.1

This would seem to be a natural application of egen ([D] egen), as that command al-
ready contains a number of row-wise functions to perform computations across variables.
For instance, the anycount() function counts the number of variables in its varlist whose
values for each observation match those of an integer numlist, while the rowmiss() and
rownonmiss() functions tabulate the number of missing and non-missing values for each
observation, respectively. The three tasks above are all satisfied by egen functions from
Nicholas Cox’s egenmore package: rall(), rany() and rcount(), respectively. Why
don’t you just use those functions, then?

Two reasons come to mind. First, recall that egen functions are interpreted code.
Unlike the built-in functions accessed by generate, the logic of an egen function must be
interpreted each time it is called. For a large dataset, the time penalty can be significant.
Second, to use an egen function, you must remember that there is such a function, and
remember its name. In addition to Stata’s official egen functions, documented in on-line
help, there are many user-written egen functions available, but you must track them
down.

For these reasons, current good programming practice suggests that you should avoid
egen function calls in instances where the performance penalty might be an issue. This
is particularly important within an ado-file program, but may apply to many do-files as
well. In many cases, you can implement the logic of an egen function with a few lines
of Stata commands.

1. This recipe relies heavily on Nicholas J. Cox’s egenmore help file.

61

i

i

i

i

i

i

i

i

62 Chapter 4 Cookbook: Do-file programming I

To use the egenmore function rcount(), we must define the logical condition to be
tested using a specific syntax. For instance, imagine that we have a dataset of household
observations, where variables child1. . . child12 contain the current age of each child
(or missing values for nonexistent offspring).2 We could use rcount() to determine the
number of school-age children:

. egen nschool = rcount(child1-child12), cond(@ > 5 & @ < 19)

where, as explained in help egenmore, the at sign (@) is a placeholder for each variable
in the varlist in turn. Alternatively, we could compute nschool with a foreach loop:3

. generate nschool = 0

. foreach v of varlist child1-child12 {

. replace nschool = nschool + inrange(‘v’, 6, 18)

. }

The built-in inrange() function will execute more efficiently than the interpreted logic
within rcount(). As a bonus, if we wanted to also compute an indicator variable
signaling whether there are any school-age children in the household, we could do so
within the same foreach loop:

. generate nschool = 0

. generate anyschool = 0

. foreach v of varlist child1-child12 {

. replace nschool = nschool + inrange(‘v’, 6, 18)

. replace anyschool = max(anyschool, inrange(‘v’, 6, 18))

. }

Note that in this case anyschool will remain at 0 for each observation unless one of the
children’s ages match the criteria specified in the inrange function. Once it is switched
to 1, it will remain so.

An alternative (and more computationally efficient) way of writing this code takes
advantage of the fact that generate is much faster than replace, as the latter command
must keep track of the number of changes made in the variable.4 Thus, we could write

. generate nschool = 0

. foreach v of varlist child1-child12 {

. local nschool "‘nschool’ + inrange(‘v’, 6, 18)"

. }

. generate byte nschool = ‘nschool’

. generate byte anyschool = nschool > 0

In this variation, the local macro is built up to include an inrange() clause for each of
the possible 12 children. For a constructed dataset (ex4.1.dta of one million observa-
tions, the egen code runs in latter code runs in 3.81 seconds, while the comparable code
employing replace and the inrange() function runs in 2.23 seconds.5 By contrast, the
last block of code, avoiding replace, runs in 0.78 seconds.

2. I assume that these variables are contiguous in the dataset (if not, we could use order to make
them so).

3. The foreach command is presented in Section 7.4.
4. I am grateful to a StataCorp reviewer for this suggestion.
5. Note, though, that invoking replace twice in order to define anyschool as well requires 4.73 seconds!

i

i

i

i

i

i

i

i

4.1 Tabulating a logical condition across a set of variables 63

In summary, you may often want to consider whether the convenience of an egen

function is offset by its computational burden. Coding the logic in your do-file may be
a more efficient approach.6

6. As I discuss in Chapter 13, Mata functions may also prove very useful in reducing the computational
burden involved with tasks like these.

i

i

i

i

i

i

i

i

64 Chapter 4 Cookbook: Do-file programming I

4.2 Computing summary statistics over groups

The problem: your dataset has a hierarchical nature, where observations represent
individuals who are also identified by their household id code, or records of individual
patient visits which can be aggregated over the patient id or over the clinic id. In the
latter case, you can define groups of observations belonging to a particular patient, or
to a particular clinic.

With this kind of hierarchical data structure, you may often want to compute sum-
mary statistics for the groups. This can be readily performed in Stata by tabstat

([R] tabstat), but that command will only display a table of summary measures. Al-
ternatively, you could use collapse ([D] collapse) to generate a dataset of aggregated
values for a variety of summary statistics, or contract ([D] contract) to generate a
collapsed dataset of frequencies. However, you may find that these options do not fit
the bill.

What if you want to juxtapose the summary statistics for each aggregate unit with
the individual observations in order to compute one or more variables for each record?
For instance, you might have repeated-measures data for a physican’s patients measuring
their height, weight and blood pressure at the time of each office visit. You might want
to flag observations where their weight is above their median weight, or when their
blood pressure is above the 75th percentile of their repeated measurements.

Computations such as these may be done with a judicious use of by-groups (see
Section 3.5). For instance,

. by patientid: egen medwt = median(weight)

. by patientid: egen bp75 = pctile(bp), p(75)

We have stressed that you should avoid using variables to store constant values (which
would occur if you omitted the by patientid: prefix). But in these cases, we are
storing a separate constant for each patientid. You may now compute indicators for
weight, blood pressure and at-risk status, using the byte datatype for these binary
variables:

. generate byte highwt = weight > medwt & !missing(weight, medwt)

. generate byte highbp = bp > bp75 & !missing(bp, bp75)

. generate byte atrisk = highwt & highbp

If you need to calculate a sum for each group (patientid in this case), you can use
the total() function for egen. Alternatively, to improve computational efficiency, you
could use

. by patientid: generate atriskvisits = sum(atrisk)

. by patientid: generate n atrisk = atriskvisits if n == N

. gsort -n atrisk

. list patientid n atrisk if inrange(n atrisk, 1, .)

This sequence of commands uses the sum() function from generate, which is a running
sum. Its value when n == N is the total for that patientid. We store that value as

i

i

i

i

i

i

i

i

4.2 Computing summary statistics over groups 65

n atrisk and sort it in descending order with gsort ([D] gsort).7 The list command
then prints one record per patientid for those patients with at least one instance of
atrisk in their repeated measures.

7. The gsort command is presented in Section 3.5.1.

i

i

i

i

i

i

i

i

66 Chapter 4 Cookbook: Do-file programming I

4.3 Computing the extreme values of a sequence

The problem: you have hierarchical data such as observations of individual patient
visits to a clinic. In the previous recipe, we described how summary statistics for each
patient could be calculated. These include extrema: for instance, the highest weight
ever recorded for each patient, or the lowest serum cholesterol reading. What you may
need, however, is the record to date for those variables: the maximum (minimum) value
observed so far in the sequence. This is a ‘record’ value in the context of setting a
record: for instance, maximum points scored per game, or minimum time recorded for
the 100-yard dash. How might you compute these values for hierarchical data?8

First, let us consider a single sequence (that is, data for a single patient in our
example above). You might be tempted to think that this is a case where looping over
observations will be essential—and you would be wrong! We exploit the fact that Stata’s
generate and replace commands respect Stata’s sort order (see Newson (2004)). We
need only record the first observation’s value and then use replace to generate the
‘record high’:

. sort visitdate

. generate maxwt = weight in 1

. replace maxwt = max(maxwt[n - 1], weight) in 2/l

Unusually, you need not worry about missing values, as the max() function is smart
enough to ignore them unless it is asked to compare missing with missing. If we want
to calculate a similar measure for each patientid in the dataset, we use the same
mechanism:

. sort patientid visitdate

. by patientid: generate minchol = serumchol if n == 1

. by patientid: replace minchol = min(minchol[n - 1], serumchol) if n > 1

With repeated measures data, we cannot refer to observations 1,2, and so on as those are
absolute references to the entire dataset. Recall that under the control of a by-group,
the n and N values are redefined to refer to the observations in that by-group, allowing
us to refer to n in the generate command and the prior observation in that by-group
with a [n - 1] subscript.

8. This recipe relies heavily on Nicholas J. Cox’ Stata FAQ, “How do I calculate the maximum or
minimum seen so far in a sequence?” (http://www.stata.com/support/faqs/data/sequence2.html).

i

i

i

i

i

i

i

i

4.4 Computing the length of spells 67

4.4 Computing the length of spells

The problem: you have ordered data (for instance, a time series of measurements)
and you would like to examine spells in the data. These might be periods during which
a qualitative condition is unchanged, as signaled by an indicator variable. As examples,
consider the sequence of periods during which a patient’s cholesterol remains above the
recommended level, or a worker remains unemployed, or a released offender stays clear
of the law. Alternatively, they might signal repeated values of a measured variable, such
as the number of years that a given team has been ranked first in its league. Our concern
with spells may involve identifying their existence and measuring their duration. Our
discussion of these issues relies heavily on Cox (2007d). I am grateful to Nick Cox for
his cogent exposition.

One solution to this problem involves using a ready-made Stata command, tsspell,
written by Nicholas J. Cox. This command can handle any aspect of our investigation.
It does require that the underlying data be defined as a Stata time series (for instance,
with tsset ([TS] tsset). This makes it less than ideal if your data are ordered but
not evenly spaced, such as patient visits to their physician which may be irregularly
timed.9 Another issue arises, though: that raised in Recipe 4.1 with respect to egen.
The tsspell program is fairly complicated interpreted code, which may impose a com-
putational penalty when applied to a very large dataset. You may only need one simple
feature of the program for your analysis. Thus, you may want to consider analyzing
spells in do-file code, perhaps much simpler than the invocation of tsspell. As in
Recipe 4.1, you generally can avoid explicit looping over observations, and will want to
do so whenever possible.

Assume that you have a variable denoting the ordering of the data (which might be
a Stata date or date-and-time variable, but need not be) and that the data have been
sorted on that variable. The variable of interest is employer, which takes on values
A,B,C... or missing for periods of unemployment. You want to identify the beginning
of each spell with an indicator variable. How do we know that a spell has begun? The
condition

. generate byte beginspell = employer != employer[n-1]

will suffice to define the start of each new spell (using the byte datatype to define this
indicator variable). Of course, the data may be left censored in the sense that we do
not start observing the employee’s job history on her date of hire. But the fact that
employer[n-1] is missing for period 1 does not matter, as it will be captured as the
start of the first spell. What about spells of unemployment? If they are coded as a
missing value of employer, they will be considered spells as well.

First consider some fictitious data on an employee. She is first observed working for
firm A in 1987, then is laid off in 1990. After a spell of unemployment, she is hired by
firm B in 1992, and so on.

9. As Cox points out (Cox (2007d), p. 250) the ordered data may not have a time dimension at all,
but may refer to spatial orientation.

i

i

i

i

i

i

i

i

68 Chapter 4 Cookbook: Do-file programming I

. generate byte beginspell = employer != employer[_n-1]

. list, sepby(employer) noobs

year employer wage begins~l

1987 A 8.25 1
1988 A 8.50 0
1989 A 8.75 0

1990 . 1
1991 . 0

1992 B 7.82 1
1993 B 7.98 0
1994 B 8.12 0
1995 B 8.40 0
1996 B 8.52 0

1997 C 9.00 1

1998 A 9.25 1

1999 . 1
2000 . 0

2001 D 10.18 1
2002 D 10.37 0

2003 E 11.00 1
2004 E 11.40 0
2005 E 11.80 0

2006 . 1

Notice that beginspell properly flags each change in employment status, including
entry into unemployment. If we wanted to flag only spells of unemployment, we could
do so with

. generate byte beginunemp = missing(employer) & ((employer ~= employer[n-1]) | (n == 1))

which would properly identify years in which unemployment spells commenced as 1990,
1999 and 2006.10 The compound condition, including (n == 1), is required to prevent
the first year as being considered as the start of a spell of unemployment if it is missing.
This is once again the problem of left-censoring: if the employee was unemployed in
1987, she may have been unemployed in earlier years, but we do not observe that. We
use parentheses to make it clear that Stata’s AND and OR operators give us what we
want. Extraneous parentheses are never harmful, and make it clear when you read the
code at a later date what you meant to do.

With an indicator variable flagging the start of a spell, we can compute how many
changes in employment status this employee has faced, as the count of that indicator

10. Recognize that these data are also right-censored, in that we observe the beginning of an unem-
ployment spell in 2006, but do not know its duration.

i

i

i

i

i

i

i

i

4.4 Computing the length of spells 69

variable provides that information. We can also use this notion to tag each spell as
separate:

. list, sepby(employer) noobs

year employer wage begins~l beginu~p spellnr

1987 A 8.25 1 0 1
1988 A 8.50 0 0 1
1989 A 8.75 0 0 1

1990 . 1 1 2
1991 . 0 0 2

1992 B 7.82 1 0 3
1993 B 7.98 0 0 3
1994 B 8.12 0 0 3
1995 B 8.40 0 0 3
1996 B 8.52 0 0 3

1997 C 9.00 1 0 4

1998 A 9.25 1 0 5

1999 . 1 1 6
2000 . 0 0 6

2001 D 10.18 1 0 7
2002 D 10.37 0 0 7

2003 E 11.00 1 0 8
2004 E 11.40 0 0 8
2005 E 11.80 0 0 8

2006 . 1 1 9

We have observed nine spells for this employee, the first and last of which are censored.

What if we now want to calculate the average wage paid by each employer?

. sort spellnr

. by spellnr: egen meanwage = mean(wage)

Or the duration of employment with each employer (length of each employment spell)?

. by spellnr: gen length = N if !missing(employer)

Here we are taking advantage of the fact that the time variable is an evenly spaced time
series. If we had unequally spaced data, we would want to use Stata’s date functions to
compute the duration of each spell.

This example may seem not all that useful as it refers to a single employee’s em-
ployment history. However, all of the techniques we have illustrated work equally well
when applied in the context of panel or longitudinal data as long as they can be placed
on a time-series calendar. If we add an id variable to these data and xtset id year,

i

i

i

i

i

i

i

i

70 Chapter 4 Cookbook: Do-file programming I

we may reproduce all of the results above by merely employing the by id: prefix. In
the last three examples, we must sort by both id and spell: for example,

. sort id spellnr

. bysort id spellnr: egen meanwage = mean(wage)

is now required to compute the mean wage for each spell of each employee in a panel
context.

A number of additional aspects of spells may be of interest. Returning to the single
employee’s data, we may want to flag only employment spells at least three years long.
Using the length variable, we may generate such as indicator as:

. sort spellnr

. by spellnr: gen length = _N if !missing(employer)
(5 missing values generated)

. generate byte longspell = (length >= 3 & !missing(length))

. list year employer length longspell, sepby(employer) noobs

year employer length longsp~l

1987 A 3 1
1988 A 3 1
1989 A 3 1

1990 . 0
1991 . 0

1992 B 5 1
1993 B 5 1
1994 B 5 1
1995 B 5 1
1996 B 5 1

1997 C 1 0

1998 A 1 0

1999 . 0
2000 . 0

2001 D 2 0
2002 D 2 0

2003 E 3 1
2004 E 3 1
2005 E 3 1

2006 . 0

For more detail on the handling of spells, see Cox (2007d).

i

i

i

i

i

i

i

i

4.5 Summarizing group characteristics over observations 71

4.5 Summarizing group characteristics over observations

The problem: your dataset has a hierarchical nature such as observations representing
individuals who are also identified by their household id code, or group identifier. You
would like to compute summary measures for each household (group) and attach them
to the individual records.11 Some fictitious data:

. list fam person female age, sepby(fam) noobs

fam person female age

1 3 1 14
1 2 1 16
1 1 1 36

2 5 0 10
2 4 1 12
2 3 0 14
2 2 1 42
2 1 0 45

3 6 1 3
3 5 1 7
3 4 1 9
3 3 0 11
3 2 1 36
3 1 0 39

For simplicity, we have created data with no missing values. Some of the statements
below would have to be “bulletproofed” if there was the possibility of missing values for
some individuals.

For some calculations of interest, we have already addressed this issue in Recipe 4.2.
We can readily calculate, for instance, the total household income for each family with
the egen total() function with a by: prefix. We could do the same with a logical
condition: for instance, how many adults (age at least 18) are there in each family?

. sort fam

. by fam: egen nadult = total(age >= 18)

How many siblings does each child have?

. by fam: egen nchild = total(age <= 17) if age <= 17

. generate sibs = nchild - 1

Note that the if clause age <= 17 defines nchild only for children’s records. We can
extend this logic to count the number of male children:

. by fam: egen nboys = total(age <= 17 & !female) if age <= 17

11. This recipe relies heavily on Nicholas J. Cox’ Stata FAQ, “How do I create vari-
ables summarizing for each individual properties of the other members of a group?”
(http://www.stata.com/support/faqs/data/members.html).

i

i

i

i

i

i

i

i

72 Chapter 4 Cookbook: Do-file programming I

or to count, for each child, how many brothers they have who are also children:

. by fam: egen nbros = total(age <= 17 & !female) if age <= 17

. replace nbros = nbros - (age <= 17 & !female)

where the subtraction in the replace statement states that you cannot be your own
brother. Which children have older siblings who are also children?

. sort fam (age)

. by fam: generate byte older = (age <= 17 & age[n+1] <= 17) * (age < age[n+1])

How old is each child’s oldest sibling (missing if the child is the oldest child)?

. by fam: egen oldestchild = max(age) if age<=17

. generate oldestsibling = cond(age < oldestchild & age <= 17, oldestchild, .)

. list fam female age nadult sibs nboys nbros older oldestsibling, sepby(fam) n
> oobs

fam female age nadult sibs nboys nbros older oldest~g

1 1 14 1 1 0 0 1 16
1 1 16 1 1 0 0 0 .
1 1 36 1 . . . 0 .

2 0 10 2 2 2 1 1 14
2 1 12 2 2 2 2 1 14
2 0 14 2 2 2 1 0 .
2 1 42 2 . . . 0 .
2 0 45 2 . . . 0 .

3 1 3 2 3 1 1 1 11
3 1 7 2 3 1 1 1 11
3 1 9 2 3 1 1 1 11
3 0 11 2 3 1 0 0 .
3 1 36 2 . . . 0 .
3 0 39 2 . . . 0 .

Many tricks of this sort can be used to evaluate group characteristics for each member
of a group, and most of them allow us to avoid explicit looping over observations as
one might in many programming languages. With judicious use of logical conditions
and by: as a prefix or a by() option, you can write very efficient and succinct code to
perform these tasks.

i

i

i

i

i

i

i

i

4.6 Using global macros to set up your environment 73

4.6 Using global macros to set up your environment

The problem: you are working on a large research project where the same datasets
and Stata do-files may be accessed on several different computers: some Windows-based,
some Linux-based. The do-files have references to datasets to be read and written which
must be adjusted when the material is accessed from a different computer system.

Global macros (see Section 3.7) can be used to deal with these issues. Set up a
master do-file for the project that defines the base directory to be accessed:

. global BASEDIR "c:/documents/project226"

. global SHAREDIR "c:/documents/datastore"

. global USER "gould"

. cd "$BASEDIR"

. do job1

on a Windows system, or

. global BASEDIR "/Users/baum/projects/226"

. global SHAREDIR "/Users/baum/research/data"

. global USER "cfb"

. cd "$BASEDIR"

. do job1

on a Linux or MacOS X machine. Note that in both file specifications I use the forward
slash (/) rather than the backslash usually used in a Windows/DOS environment. Stata
properly handles the slash for Windows, and by using the forward slash you avoid the
difficulty that arises with the backslash’s special meaning to Stata’s interpreter.

With this logic, the master do-file, when executed, sets the system-specific directory
to the value of the global macro BASEDIR and uses cd ([D] cd) to make that the current
directory. The master do-file then calls do-file job1.do. Within that do-file, you may
need to reference files that are outside of the project directory: for instance, files shared
with other research projects. By defining the global macro SHAREDIR, your do-files may
refer to files in that shared directory with syntax like

. use "$SHAREDIR/datafile1.dta"

The quotation marks in the cd and use statements will deal with the case where spaces
may occur within the file specification. It is best to avoid spaces within directory names,
but they are an unfortunate fact of life on many systems.

We may also want to embed additional information in a logfile produced by do-files
of the research project: for instance, the identity of the user who ran the job. We can
do that by placing statements such as

. display "Analysis run by $USER from $BASEDIR at $S_DATE $S_TIME"

in each do-file to be executed.

In summary, global macros may be very useful in establishing your Stata environ-
ment, particularly if you routinely work on more than one computer, or share files
related to a research project with coworkers.

i

i

i

i

i

i

i

i

74 Chapter 4 Cookbook: Do-file programming I

4.7 List manipulation with extended macro functions

The problem: You have a file containing four countries’ GDP values, and you would
like to regress each in turn on the other three countries’ values. To enable this, you
would like to be able to manipulate lists of items. The macro list functions described
in Section 3.8 are available for this task.

We use the gdp4cty file, which is in Stata’s long format,12 in this example. The
levelsof ([D] levelsof) command assembles a list of the cty values defined for gdp.
That command displays the list and stores it in the local macro gdplist. We then apply
reshape wide to place the data in the wide format, with a separate GDP variable for
each country. A foreach loop builds up the macro allcty with those four variable
names.

. use gdp4cty,clear

. keep cty gdp date

. levelsof cty, local(gdplist)
‘"DE"’ ‘"FR"’ ‘"UK"’ ‘"US"’

. reshape wide gdp, i(date) j(cty) string
(note: j = DE FR UK US)

Data long -> wide

Number of obs. 400 -> 100
Number of variables 3 -> 5
j variable (4 values) cty -> (dropped)
xij variables:

gdp -> gdpDE gdpFR ... gdpUS

. describe

Contains data
obs: 100
vars: 5
size: 2,800 (99.9% of memory free)

storage display value
variable name type format label variable label

date float %tq
gdpDE float %9.0g DE gdp
gdpFR float %9.0g FR gdp
gdpUK float %9.0g UK gdp
gdpUS float %9.0g US gdp

Sorted by: date

. foreach c of local gdplist {
2. local allcty "‘allcty’ gdp‘c’"
3. }

We may then use one of the macro list functions (help macrolist). The minus list
function (-) gives us the first list with all elements of the second list removed.13 In a

12. For a discussion of long format, wide format and the reshape command, see Section 5.5.
13. You may also find the OR (|), AND list function (&) and list sort functions very useful.

i

i

i

i

i

i

i

i

4.7 List manipulation with extended macro functions 75

foreach loop over countries, we produce the macro allbut as the other three variable
names, and use that in the regress command.

. foreach c of local allcty {
2. local allbut: list allcty - c
3. qui regress ‘c’ ‘allbut’ date
4. display _newline "Dependent variable ‘c’:"
5. mat list e(b)
6. }

Dependent variable gdpDE:

e(b)[1,5]
gdpFR gdpUK gdpUS date _cons

y1 .0605496 .10816974 .09276896 -.82440282 445.32199

Dependent variable gdpFR:

e(b)[1,5]
gdpDE gdpUK gdpUS date _cons

y1 .05673715 -.16807133 -.08535245 -1.474414 678.2173

Dependent variable gdpUK:

e(b)[1,5]
gdpDE gdpFR gdpUS date _cons

y1 .08791943 -.14578622 -.17140193 -.37449064 621.80752

Dependent variable gdpUS:

e(b)[1,5]
gdpDE gdpFR gdpUK date _cons

y1 .06297068 -.06182947 -.14314374 -.0741045 622.66212

i

i

i

i

i

i

i

i

76 Chapter 4 Cookbook: Do-file programming I

4.8 Using creturn values to document your work

The problem: you would like to document aspects of the environment in the logfile
produced by your do-file. The items you need to capture are available in the set of
creturn ([P] creturn) values. For instance, you might include these lines in your
do-file:

. local date ‘c(current_date)’

. local time ‘c(current_time)’

. local vers ‘c(stata_version)’

. local mem ‘c(memory)’

. local flav = cond(‘c(MP)’, "MP", cond(‘c(SE)’, "SE", "IC"))

. local cwd ‘c(pwd)’

.

. display _newline "Run ‘date’ at ‘time’ on Stata/‘flav’ version ‘vers’, memory
> = ‘mem’ bytes"

Run 5 Sep 2008 at 21:49:58 on Stata/MP version 10.1, memory = 307200000 bytes

. display _newline "Current working directory: ‘cwd’"

Current working directory: /Users/baum/doc/ITSP/dof.8824

If you had already loaded a dataset into memory, you could display additional charac-
teristics of the data:

. sysuse auto, clear
(1978 Automobile Data)

. display _newline "Datafile: ‘c(filename)’ (N=‘c(N)’, k=‘c(k)’) as of ‘c(file
> date)’"

Datafile: /Applications/Stata/ado/base/a/auto.dta (N=74, k=12) as of 13 Apr 20
> 07 17:45

By embedding this information in the logfile, you can capture details of how and when
the do-file was run which may be particularly useful in a shared environment: for
instance, where several research assistants are performing various tasks to update the
data.

i

i

i

i

i

i

i

i

5 Do-file programming: validation,
results and data management

5.1 Introduction

This chapter discusses three topics: data validation, reusing computed results and com-
mands for data management. Data validation tasks involve automating the process of
ensuring that your data are sensible. We discuss the reuse of computed results to stress
that you never need to copy values from Stata output and reenter them. That practice
is error-prone and potentially irreproducible, whereas a do-file that automatically makes
use of earlier computations is consistently reliable. Likewise, results of estimation can
be automatically formatted for presentation in several formats, reducing the need for
retyping and judgments about precision.

The last four sections of the chapter focus on reorganizing datasets. The reshape

([D] reshape) command allows an existing dataset to be altered in form, while the
append ([D] append) and merge ([D] merge) commands serve to combine the dataset
in memory with one or more external Stata-format files. A number of lesser-known but
useful data management commands are also presented.

5.1.1 What you should learn from this chapter

• How to effectively validate data through scripted data checking

• How to access and reuse computed results in return and ereturn lists

• How to save and tabulate estimated results

• The mechanics of reorganizing datasets with reshape

• Procedures for combining data with append and merge

5.2 Data validation: the assert, count and duplicates

commands

The first step in effective data management should always be sanity checking. Do all
values of the raw data make sense? Are there any coding errors that are apparent in
the range of data values? Are there values of numeric variables that should properly
be coded as some sort of missing data, as discussed in Section 3.2.4? A recommended

77

i

i

i

i

i

i

i

i

78 Chapter 5 Do-file programming: validation, results and data management

practice for data management containing an audit trail involves the creation of a do-file
that reads the raw data, applies a number of checks to ensure that data values are
appropriate, and writes the initial Stata binary data file.1 This data file should not
be modified in later programs or interactive analysis. Each program that uses the file
and creates additional variables, subsets or merges of the data should save the resulting
modified file under a new name. Each step in the data validation and transformation
process may then be documented and re-executed if the need arises. Even if the raw
data are provided in Stata binary format from an official source, you should assume
that coding errors may be present.

This methodology, involving the creation of an audit trail of all operations applied to
the data, should begin right at the start of data management. Statalist postings often
contain phrases such as “I did the original data transformations (or merges) in Excel,
and now I need to...” Even if you are more familiar with a spreadsheet syntax than with
the Stata commands needed to replicate that syntax, use of Stata is greatly preferable
as its operations on the data can be precisely documented and replicated. Consider
two research assistants starting with the same set of 12 spreadsheets, instructed to
construct a single spreadsheet performing some complicated append or merge processes
using copy and paste. What is the probability that the two research assistants will
produce identical results? Many experienced researchers would agree that it is likely to
be less than one.

The proposed solution: export the 12 spreadsheets to text format, and read them
into Stata using a do-file that loops over the .txt or .csv files and applies the same
transformations to each one and performing the appropriate append ([D] append) or
merge ([D] merge) operations. That do-file, once properly constructed, will produce a
reproducible result. The do-file can be easily modified to perform a similar task such as
handling twelve spreadsheets containing cost elements rather than revenues. Comments
should be added to the do-file documenting its purpose, dates of creation/modification,
and creator/modifier. You may either place an asterisk (*) or double forward slash (//)
at the beginning of each comment line, or use the block comment syntax (/* to begin
a comment, */ to end it) to add several lines of comments to a do-file. Although it
will take some time to learn how to use Stata’s programming features to set up such a
systematic process of data management, it will prove invaluable in any context when
questions arise about the data or when a modified version of the original data appears.

The data checks recommended above start with the elementary use of describe

([D] describe) and summarize ([R] summarize) which provide some very useful infor-
mation about the data that have been imported (typically using insheet ([D] insheet),
infile ([D] infile) or infix ([D] infix)). Let us consider a version of the census2a

dataset that has been altered to illustrate data validation:

. use census2b, clear
(Version of census2a for data validation purposes)

. describe

Contains data from census2b.dta

1. An intriguing extension of this notion, ckvar, is described in Rising (2007).

i

i

i

i

i

i

i

i

5.2 Data validation: the assert, count and duplicates commands 79

obs: 50 Version of census2a for data vali
> dation

purposes
vars: 5 23 Sep 2004 15:49
size: 2,050 (99.9% of memory free)

storage display value
variable name type format label variable label

state str14 %14s
region str7 %9s
pop float %9.0g
medage float %9.0g
drate float %9.0g

Sorted by:

The log displays the data types of the five variables. The first two are string variables
(of maximum length 14 and 7 characters, respectively) while the other three are float

variables. In this case, all data types appear to be appropriate.

Let us now consider descriptive statistics for the numeric variables in these data:

. summarize pop-drate

Variable Obs Mean Std. Dev. Min Max

pop 49 4392737 4832522 -9 2.37e+07
medage 50 35.32 41.25901 24.2 321
drate 50 104.3 145.2496 40 1107

Several anomalies are revealed for the numeric variables. Population data appear to be
missing for one state, which is unlikely for properly organized census data. Furthermore,
population takes on a negative value for at least one state, indicating some coding errors.
We use the knowledge that the values of U.S. states’ populations in recent decades should
be greater than several hundred thousand but no more than about 30 million. In your
own research projects, you will have similar subject-matter knowledge that helps you
define sensible ranges of values.

For instance, a median age value of 321 would suggest that Ponce de Leon is alive
and well. As the drate (death rate) variable has a mean of 104 per 100,000, a value of
ten times that amount suggests a coding error.

You may also find the codebook ([D] codebook) command very useful in displaying
information about each variable and highlighting any unusual values:

. codebook

state (unlabeled)

type: string (str14), but longest is str13

unique values: 49 missing "": 0/50

examples: "Georgia"

i

i

i

i

i

i

i

i

80 Chapter 5 Do-file programming: validation, results and data management

"Maryland"
"Nevada"
"S. Carolina"

warning: variable has embedded blanks

region (unlabeled)

type: string (str7)

unique values: 4 missing "": 2/50

tabulation: Freq. Value
2 ""
12 "N Cntrl"
9 "NE"
16 "South"
11 "West"

warning: variable has embedded blanks

pop (unlabeled)

type: numeric (float)

range: [-9,23667902] units: 1
unique values: 49 missing .: 1/50

mean: 4.4e+06
std. dev: 4.8e+06

percentiles: 10% 25% 50% 75% 90%
511456 947154 3.0e+06 5.3e+06 1.1e+07

medage (unlabeled)

type: numeric (float)

range: [24.2,321] units: .1
unique values: 37 missing .: 0/50

mean: 35.32
std. dev: 41.259

percentiles: 10% 25% 50% 75% 90%
27.5 28.7 29.75 30.2 31.85

drate (unlabeled)

type: numeric (float)

range: [40,1107] units: 1
unique values: 30 missing .: 0/50

mean: 104.3
std. dev: 145.25

percentiles: 10% 25% 50% 75% 90%
68.5 79 85.5 93 98

Rather than just using the Data Editor to visually scan for the problems sprinkled
through this small illustrative dataset, we are interested in data validation techniques
that can be applied to datasets with thousands of observations. We use assert ([D] as-

i

i

i

i

i

i

i

i

5.2 Data validation: the assert, count and duplicates commands 81

sert) to apply sanity checks for these three variables, and in the event of failure, we
list the offending observations. If all checks are passed, this do-file should run without
error:

use census2b, clear
// check pop

list if ~inrange(pop, 300000, 3e7)
assert inrange(pop, 300000, 3e7)

// check medage
list if ~inrange(medage, 20, 50)
assert inrange(medage, 20, 50)

// check drate
list if ~inrange(drate, 10, 104+145)
assert inrange(drate, 10, 104+145)

The first list ([D] list) command considers that population should be at least 300,000
and that it should be less than 30 million (3.0× 107), and lists the observations (if any)
that fall outside that range by using the unary not operator (~) and the inrange()

function. By reversing the logical conditions in the list command, we construct the
assertion that all cases have valid and non-missing (< .) values for pop. Likewise, we
[D] assert that each state’s median age should be between 20 and 50 years. Finally, we
assert that the death rate should be at least 10 per 100,000 and less than approximately
µ̂ + σ̂ from that variable’s descriptive statistics. Let us run the data validation do-file:

. use census2b, clear
(Version of census2a for data validation purposes)

. // check pop

. list if !inrange(pop, 300000, 3e7)

state region pop medage drate

4. Arkansas South -9 30.6 99
10. Georgia South . 28.7 81
15. Iowa N Cntrl 0 30 90

. assert inrange(pop, 300000, 3e7)
3 contradictions in 50 observations
assertion is false
r(9);

end of do-file

r(9);

As we would expect, the do-file fails to run to completion since the first assert ([D] as-
sert) locates three erroneous values of pop. We should now correct these entries and
rerun the do-file until it executes without error. In these data, the numeric variables
are continuous. In a dataset with categorical variables, you could use the inlist()

function to validate that one of a set of particular integer values was present in each
categorical variable.

This little example could be expanded to a very lengthy do-file (or a set of nested do-
files) that checked each of several hundred variables. The same logic could be employed:

i

i

i

i

i

i

i

i

82 Chapter 5 Do-file programming: validation, results and data management

the do-file should exit without error if all assertions are satisfied. No news is good news.

You can use tabulate ([R] tabulate oneway) to check the values of string variables
in our dataset. In the census2b dataset, we will want to use region as an identifier
variable in later analysis, expecting that each state is classified in one of four U.S. re-
gions.

. use census2b, clear
(Version of census2a for data validation purposes)

. list state if region == ""

state

2. Alaska
11. Hawaii

. tabulate region

region Freq. Percent Cum.

N Cntrl 12 25.00 25.00
NE 9 18.75 43.75

South 16 33.33 77.08
West 11 22.92 100.00

Total 48 100.00

. assert !missing(region)
2 contradictions in 50 observations
assertion is false
r(9);

end of do-file

r(9);

The tabulation reveals that only 48 states have region defined. The assertion that we
should have no missing values of region fails, and a list of values where the variable
equals string missing (the null string) identifies Alaska and Hawaii as the misclassified
entries.

Validating data with tabulate ([R] tabulate twoway) may be used to good ad-
vantage by generating cross-tabulations. Consider, for instance, a dataset of medi-
cal questionnaire respondents in which we construct a two-way table of gender and
NCPregnancy, the number of completed pregnancies. Not only should the latter vari-
able have a lower bound of zero and a sensible upper bound, its crosstabulation with
gender=="Male" should yield zero values unless some females have been misclassified
as males. We could check this with

. assert NCPregnancy = 0 if gender == "Male"

You can use duplicates ([D] duplicates) to check variables that should take on
distinct values. This command can handle much more complex cases in which a combi-
nation of variables must be unique (or a so-called primary key in database terminology),2

2. As an example: U.S. Senators’ surnames may not be unique, but the combination of surname and

i

i

i

i

i

i

i

i

5.2 Data validation: the assert, count and duplicates commands 83

but we will apply it to the single variable state:

. use census2b, clear
(Version of census2a for data validation purposes)

.

. duplicates list state

Duplicates in terms of state

obs: state

16 Kansas
17 Kansas

. duplicates report state

Duplicates in terms of state

copies observations surplus

1 48 0
2 2 1

. assert r(unique_value) == r(N)
assertion is false
r(9);

end of do-file

r(9);

The return item r(unique value) is set equal to the number of unique observations
found. If that value falls short of the number of observations, r(N), duplicates exist.
The identification of duplicates in this supposedly unique identifier implies that the
dataset must be corrected before its further use. The duplicates command could also
be applied to numeric variables to detect the same condition.

In summary, a number of sound data management principles can improve the quality
of analysis conducted with Stata. You should bring the data into Stata for manipulation
as early in the process as possible. You should construct a well-documented do-file to
validate the data, ensuring that variables that should be complete are complete, that
unique identifiers are such, and that only sensible values are present in every variable.
That do-file will run to completion without error if and only if all sanity checks are
passed. Last, the validated and, if necessary, corrected file should not be modified in
later analysis. Subsequent data transformations or merges should create new files rather
than overwriting the original contents of the validated file. Strict adherence to these
principles, although time-consuming, will ultimately save a good deal of your time, and
provide those responsible for the research with the assurance that the data have been
generated in a reproducible and well-documented fashion.

state code almost surely will be unique.

i

i

i

i

i

i

i

i

84 Chapter 5 Do-file programming: validation, results and data management

5.3 Reusing computed results: the return and ereturn com-
mands

Each of Stata’s commands reports its results: sometimes noisily, as when a non-zero
return code is accompanied by an error message (help rc), but usually quite silently.
You may not be aware of the breadth and usefulness of the results made available for
further use by Stata commands. Using stored results can greatly simplify your work
with Stata as a do-file may be constructed to use the results of a previous statement in
a computation, title, graph label, or even in a conditional statement.

We must distinguish between r-class and e-class commands. Each Stata command
belongs to a class which may be r, e, or less commonly s. This applies to both those
commands which are built-in (such as summarize ([R] summarize)) and to the 80%
of official Stata commands that are implemented in the ado-file language.3 The e-class
commands are estimation commands, which return e(b) and e(V)—the estimated pa-
rameter vector and its variance-covariance matrix, respectively—to the calling program
as well as other information (help ereturn). Almost all other official Stata commands
are r-class commands which return results to the calling program (help return). Let
us deal first with the simpler case of r-class commands.

Virtually every Stata command, including those which you might not think of as
generating results, places items in the return list which may be displayed by the com-
mand of the same name.4 For instance, consider describe ([D] describe) applied to a
dataset of United Nations peacekeeping missions:

. use un, clear

. describe

Contains data from un.dta
obs: 58
vars: 15 13 Jun 2006 10:52
size: 4,118 (99.9% of memory free)

storage display value
variable name type format label variable label

name str10 %10s
mistype float %9.0g
contype float %9.0g
sevviol float %9.0g
area float %9.0g
loctype float %9.0g
addloc float %9.0g
borders float %9.0g
primact float %9.0g
spinv float %9.0g
duration float %9.0g
troop float %9.0g

3. If this distinction interests you, which ([P] which) will report that a command is either built-in
(i.e., compiled C or Mata code) or located in a particular ado-file on your hard disk. If it is stored in
an ado-file, the viewsource ([P] viewsource) command may be used to view its code.

4. Significant exceptions: generate ([D] generate), replace and egen ([D] egen).

i

i

i

i

i

i

i

i

5.3 Reusing computed results: the return and ereturn commands 85

expend float %9.0g
deaths float %9.0g
completed byte %8.0g

Sorted by: duration

. return list

scalars:
r(changed) = 0
r(widthmax) = 60000

r(k_max) = 5000
r(N_max) = 4266665
r(width) = 63

r(k) = 15
r(N) = 58

. local sb: sortedby

. display "dataset sorted by : ‘sb’"
dataset sorted by : duration

The return list for the describe command contains items of a single type: scalars,
as described in Section 3.9. r(N) and r(k) contain the number of observations and
variables present in the dataset in memory. r(changed) is an indicator variable that
will be set to 1 as soon as a change is made to the contents of the data. We also
demonstrate here how information about the dataset’s sort order may be retrieved by
one of the extended macro functions discussed in Section 3.8. Any of the scalars defined
in the return list may be used in a following statement without displaying the return
list. A subsequent r-class command will replace the contents of the return list with its
return values, so that if you want to use any of these items, you should save them to
local macros or named scalars. For a more practical example, consider [R] summarize:

. summarize troop, detail

troop

Percentiles Smallest
1% 2 2
5% 28 15
10% 50 28 Obs 49
25% 189 36 Sum of Wgt. 49

50% 1187 Mean 4270.102
Largest Std. Dev. 7624.842

75% 5522 18500
90% 15522 19828 Variance 5.81e+07
95% 19828 25945 Skewness 2.943846
99% 39922 39922 Kurtosis 12.32439

. scalar iqr = r(p75) - r(p25)

. display "IQR = " iqr
IQR = 5333

. scalar semean = r(sd) / sqrt(r(N))

. display "Mean = " r(mean) " S.E. = " semean
Mean = 4270.102 S.E. = 1089.2632

i

i

i

i

i

i

i

i

86 Chapter 5 Do-file programming: validation, results and data management

The detail option displays the full range of results available—in this case, all in the
form of scalars—after the summarize ([R] summarize) command. We compute the
inter-quartile range (IQR) of the summarized variable and its standard error of mean
as scalars and display those quantities. We often need the mean of a variable for
further computations but do not wish to display the results of summarize. In this case,
the meanonly option of summarize both suppresses output and the calculation of the
variance or standard deviation of the series. The scalars r(N), r(mean), r(min) and
r(max) are still available (see Cox 2007e).

When working with time series or panel data, it is often useful to know whether
the data have been xtset ([XT] xtset), and if so, what variable is serving as the panel
variable and (if defined) the calendar variable.5 For example, consider this extract from
the National Longitudinal Survey (NLS):

. use unionT, clear
(NLS Women 14-24 in 1968)

. xtset
panel variable: idcode (unbalanced)
time variable: year, 1970 to 1988, but with gaps

delta: 1 unit

. return list

scalars:
r(tdelta) = 1

r(tmax) = 1988
r(tmin) = 1970
r(imax) = 5159
r(imin) = 1

macros:
r(panelvar) : "idcode"
r(timevar) : "year"

r(unit1) : "."
r(tsfmt) : "%8.0g"

r(tdeltas) : "1 unit"
r(tmaxs) : "1988"
r(tmins) : "1970"

r(balanced) : "unbalanced"

In this example, we may note that the returned scalars include the first and last time
periods in this panel data set (the years 1970 and 1988) and the range of the idcode

variable, which is designated as r(panelvar). The macros also include the time series
calendar variable r(timevar) and the range of that variable in a form that can be
readily manipulated: for instance, for graph titles. The value r(tdelta) indicates that
the interval between time measurements is one time unit, or one year (see r(tdeltas)).
The designation of the dataset as unbalanced implies that there are differing numbers
of time-series observations available for different units (individuals).

A number of statistical commands are r-class as they do not estimate a model. The
correlate command ([R] correlate) will return one estimated correlation coefficient

5. Panel data need not refer to time series for each individual; see [XT] xtset. The tsset ([TS] tsset)
command may also be used to declare data as a time series of cross-sections.

i

i

i

i

i

i

i

i

5.3.1 The ereturn list command 87

regardless of the number of variables in the command’s varlist: the correlation of the
first two variables. However, the command also returns the full correlation matrix as
matrix r(C), which may be copied for further use. The ttest ([R] ttest) command is
also r-class, and we may access its return list to retrieve all of the quantities it computes:

. ttest age, by(union)

Two-sample t test with equal variances

Group Obs Mean Std. Err. Std. Dev. [95% Conf. Interval]

0 20389 30.32302 .0456294 6.515427 30.23358 30.41245
1 5811 30.81535 .0837133 6.381461 30.65124 30.97946

combined 26200 30.43221 .0400895 6.489056 30.35364 30.51079

diff -.4923329 .0964498 -.6813797 -.3032861

diff = mean(0) - mean(1) t = -5.1046
Ho: diff = 0 degrees of freedom = 26198

Ha: diff < 0 Ha: diff != 0 Ha: diff > 0
Pr(T < t) = 0.0000 Pr(|T| > |t|) = 0.0000 Pr(T > t) = 1.0000

. return list

scalars:
r(sd) = 6.489056317184585

r(sd_2) = 6.381460760617624
r(sd_1) = 6.515426706403353
r(se) = .0964497730823021
r(p_u) = .9999998330518228
r(p_l) = 1.66948177204e-07

r(p) = 3.33896354408e-07
r(t) = -5.10455202650672

r(df_t) = 26198
r(mu_2) = 30.81535019790053
r(N_2) = 5811
r(mu_1) = 30.32301731325715
r(N_1) = 20389

The return list contains scalars representing each of the displayed values from ttest

except the total number of observations (which can be computed as r(N 1) + r(N 2)),
the standard errors of the group means and the confidence interval limits.

5.3.1 The ereturn list command

An even broader array of information is provided after any e-class (estimation) command
as displayed by ereturn list ([P] ereturn). Most e-class commands return four types
of Stata objects: scalars such as e(N), summarizing the estimation process; macros,
providing such information as the name of the response variable (e(depvar)) and the
estimation method (e(model)); matrices e(b), e(V) as described above; and a Stata
pseudo-variable, e(sample).6 For example, consider a simple regression on the United

6. Although [U] 18.10.2 Saving results in e() and the ereturn list output describe e(sample) as
a function, it is perhaps better considered a variable, albeit one that does not appear in the dataset.

i

i

i

i

i

i

i

i

88 Chapter 5 Do-file programming: validation, results and data management

Nations peacekeeping dataset:

. use un, clear

. regress deaths duration troop

Source SS df MS Number of obs = 42
F(2, 39) = 33.15

Model 103376.04 2 51688.0199 Prob > F = 0.0000
Residual 60815.7935 39 1559.37932 R-squared = 0.6296

Adj R-squared = 0.6106
Total 164191.833 41 4004.67886 Root MSE = 39.489

deaths Coef. Std. Err. t P>|t| [95% Conf. Interval]

duration .137803 .0405977 3.39 0.002 .0556864 .2199197
troop .0059166 .0007648 7.74 0.000 .0043697 .0074635
_cons -6.556093 8.179624 -0.80 0.428 -23.10094 9.988759

. ereturn list

scalars:
e(N) = 42

e(df_m) = 2
e(df_r) = 39

e(F) = 33.1465341558571
e(r2) = .6296052472842496

e(rmse) = 39.48897720443585
e(mss) = 103376.0398278876
e(rss) = 60815.7935054457
e(r2_a) = .6106106445808778
e(ll) = -212.4320571229659

e(ll_0) = -233.2889619227027

macros:
e(cmdline) : "regress deaths duration troop"

e(title) : "Linear regression"
e(vce) : "ols"

e(depvar) : "deaths"
e(cmd) : "regress"

e(properties) : "b V"
e(predict) : "regres_p"

e(model) : "ols"
e(estat_cmd) : "regress_estat"

matrices:
e(b) : 1 x 3
e(V) : 3 x 3

functions:
e(sample)

Two particularly useful scalars on this list are e(df m), e(df r): the model and residual
degrees of freedom, respectively: the numerator and denominator degrees of freedom for
e(F). The e(rmse) allows retrieval of the Root MSE of the equation. Two of the scalars
do not appear in the printed output: e(ll), e(ll 0), the likelihood function evaluated

i

i

i

i

i

i

i

i

5.3.1 The ereturn list command 89

for the estimated model and for the null model, respectively.7,8 Although the name of
the response variable is available in macro e(depvar), the names of the regressors are
not shown here. They may be retrieved from the matrix e(b), as illustrated in the
example. As the estimated parameters are returned in a 1 × k row vector, the variable
names are column names of that matrix:

. local regressors: colnames e(b)

. display "Regressors: ‘regressors’"
Regressors: duration troop _cons

Another result displayed above should be noted: e(sample), listed as a function

rather than a scalar, macro or matrix. The e(sample) pseudo-variable returns 1 if
an observation was included in the estimation sample and 0 otherwise. The regress

([R] regress) command honors any if exp and in range qualifiers and then practices
casewise deletion to remove any observations with missing values across the set {y, X}.
Thus, the observations actually used in generating the regression estimates may be
fewer than those specified in the regress command. A subsequent command such
as summarize varlist if exp (or in range) will not necessarily provide the descriptive
statistics of the observations on X that entered the regression unless all regressors and
the y variable are in the varlist. But the set of observations actually used in estimation
can easily be determined with the qualifier if e(sample):

. summarize regressors if e(sample)

will yield the appropriate summary statistics from the regression sample. It may be
retained for later use by placing it in a new variable:

. generate byte reg1sample = e(sample)

where we use the byte data type to save memory as e(sample) is an indicator {0,1}
variable.

The estat ([R] estat) command may be used to display a number of items after any
estimation command. Some of those items (ic, summarize, and vce) are common to
all estimation commands, while others depend upon the specific estimation command
which precedes estat. For our estimated regression model,

. estat summarize

Estimation sample regress Number of obs = 42

Variable Mean Std. Dev. Min Max

deaths 34.16667 63.28253 0 234
duration 90.04762 152.8856 2 641

troop 4785.5 8116.061 2 39922

7. In this case of ordinary least squares (OLS) regression with a constant term, the null model is that
considered by the ANOVA F statistic: the intercept-only model with all slope coefficients constrained
to zero.

8. These likelihood values may be displayed with the estimates stats command ([R] estimates)
following estimation.

i

i

i

i

i

i

i

i

90 Chapter 5 Do-file programming: validation, results and data management

produces summary statistics, computed over the estimation sample, for the response
variable and all regressors from the previous regress command.

In the following example, we employ the matrix list ([P] matrix) command to
display the coefficient matrix generated by our regression: e(b), the k-element row
vector of estimated coefficients. Like all Stata matrices, this array bears row and column
labels, so that an element may be addressed by either its row and column number9 or
its row and column names.

. matrix list e(b)

e(b)[1,3]
duration troop _cons

y1 .13780304 .00591661 -6.5560927

The [R] estat command may be used to display the estimated variance-covariance (VCE)
matrix by using estat vce.10 This command provides a number of options to control
the display of the matrix. To illustrate:

. estat vce

Covariance matrix of coefficients of regress model

e(V) duration troop _cons

duration .00164817
troop 3.504e-06 5.849e-07
_cons -.16518387 -.00311436 66.906254

The diagonal elements of the VCE matrix are the squares of the estimated standard
errors (se[]) of the respective coefficients.

Many official Stata commands as well as many user-written routines make use of
the information available from ereturn list. How can a command like estat ovtest

([R] regress postestimation) compute the necessary quantities after regress? Be-
cause it can retrieve all relevant information: the names of the regressors, dependent
variable, and the net effect of all if exp and in range qualifiers (from e(sample)) from
the results left behind as e-class scalars, macros, matrices or functions by the e-class
command. Any do-file you write can perform the same magic if you use ereturn list

to find the names of each quantity left behind for your use and store the results you
need in local macros or scalars immediately after the e-class command. As noted above,
retaining scalars as scalars is preferable to maintain full precision. You should not store
scalar quantities in Stata variables unless there is good reason to do so.

The e-class commands may be followed by any of the estimates suite of commands
described in the next section. Estimates may be saved in memory, combined in tabular
form and saved to disk for use in a later session.

9. Stata matrices’ rows and columns are numbered starting from 1.
10. Prior to version 9 of Stata, the vce command provided this functionality.

i

i

i

i

i

i

i

i

5.4 Storing, saving and using estimated results 91

5.4 Storing, saving and using estimated results

The estimates ([R] estimates) suite of commands makes it easy to work with different
sets of estimation results. You store a set of results in memory with the estimates

store name command, which stores them under a name and, optionally, a descriptive
title. Up to 300 sets of estimates may be stored in memory.11 Stored estimates may
be reviewed with estimates replay namelist where the namelist may refer to one
or several sets of estimates in memory. Most usefully, estimates in memory may be
combined in tabular form with estimates table or by user-written programs such as
estout or outreg2 (available from the SSC Archive). A set of estimates may also
be permanently saved to a disk file by estimates save filename, and read from disk
with estimates use filename. At that point you may review those prior estimates,
tabulate them or even apply post-estimation commands such as test ([R] test) or
lincom ([R] lincom) as long as they do not depend on the original dataset.

To organize several equations’ estimates into a tabular form for scrutiny or pub-
lication you may use estimates table. You specify that a table is to be produced
containing several sets of results. If you do not specify, estimates table assumes that
you mean only the active set of results. To juxtapose several sets of estimates, you give
their names in a namelist or specify all available sets with * or all. Stata automati-
cally handles alignment of the coefficients into the appropriate rows of a table. Options
allow the addition of estimated standard errors (se), t-values (t), p-values (p) or sig-
nificance stars (star). Each of these quantities may be given its own display format

([D] format) if the default is not appropriate, so that the coefficients, standard errors,
t- and p-values need not be rounded by hand. Variable labels may be displayed in place
of variable names with the label option. You may also choose to present coefficients
in exponentiated form with the eform option. The order of coefficients in the table
may be controlled by the keep() option rather than relying on the order in which they
appear in the list of estimates’ contents. Certain parameter estimates may be removed
from the coefficient table with drop(). Any result left in e() (see [P] ereturn) may be
added to the table with the stats() option, as well as several additional criteria such
as the AIC and BIC model selection criteria.

Consider an example using several specifications from a model of air quality in a
number of U.S. cities:

. use usairquality, clear

. quietly regress so2 temp manuf pop

. estimates store model1

. quietly regress so2 temp pop wind

. estimates store model2

. quietly regress so2 temp wind precip days

. estimates store model3

. quietly regress so2 temp manuf pop wind precip days

. estimates store model4

11. See help limits; the limit of 20 sets quoted in [R] estimates is outdated.

i

i

i

i

i

i

i

i

92 Chapter 5 Do-file programming: validation, results and data management

. estimates table model1 model2 model3 model4, stat(r2_a rmse) ///
> b(%7.3f) se(%6.3g) p(%4.3f)

Variable model1 model2 model3 model4

temp -0.587 -1.504 -1.854 -1.268
.371 .43 .861 .621

0.122 0.001 0.038 0.049
manuf 0.071 0.065

.0161 .0157
0.000 0.000

pop -0.047 0.020 -0.039
.0154 .0051 .0151
0.004 0.000 0.014

wind -2.858 -1.685 -3.181
2.22 2.58 1.82

0.206 0.518 0.089
precip 0.539 0.512

.525 .363
0.312 0.167

days 0.006 -0.052
.236 .162
0.980 0.750

_cons 58.196 128.501 128.862 111.728
20.5 36.7 67.7 47.3

0.007 0.001 0.065 0.024

r2_a 0.581 0.386 0.172 0.611
rmse 15.191 18.393 21.356 14.636

legend: b/se/p

After estimating and storing four different models of SO2 (sulphur dioxide concentra-
tion) we use estimates table to present the coefficients, estimated standard errors
and p-values in tabular form. The stats option adds summary statistics from the e()

results.

. estimates table model4 model1 model3 model2, stat(r2_a rmse ll) ///
> b(%7.3g) star label title("Models of sulphur dioxide concentration")

Models of sulphur dioxide concentration

Variable model4 model1 model3 model2

Mean temperature -1.27* -.587 -1.85* -1.5**
Mfg. workers, 000 .0649*** .0712***

Population -.0393* -.0466** .0203***
Mean wind speed -3.18 -1.69 -2.86

Mean precipitation .512 .539
Mean days quality=poor -.0521 .006

Constant 112* 58.2** 129 129**

r2_a .611 .581 .172 .386
rmse 14.6 15.2 21.4 18.4

ll -164 -168 -181 -175

legend: * p<0.05; ** p<0.01; *** p<0.001

i

i

i

i

i

i

i

i

5.4 Storing, saving and using estimated results 93

We chose to suppress the standard errors and display significance stars for the esti-
mates while displaying variable labels rather than names with the label option. We
add the log-likelihood value for each model with the stats option. The estimates com-
mands may be used after any Stata estimation command, including multiple-equation
commands.

We may also execute post-estimation commands on the stored estimates with estimates

for namelist. In the four models above, let us test the hypothesis that the effect of mean
temperature on SO2 concentration is −1.6: a hypothetical value from other researchers’
studies of this relationship.

. estimates for model1 model2 model3 model4: test temp = -1.6

Model model1

(1) temp = -1.6

F(1, 37) = 7.45
Prob > F = 0.0096

Model model2

(1) temp = -1.6

F(1, 37) = 0.05
Prob > F = 0.8236

Model model3

(1) temp = -1.6

F(1, 36) = 0.09
Prob > F = 0.7697

Model model4

(1) temp = -1.6

F(1, 34) = 0.29
Prob > F = 0.5964

We find that in only one case—that of model1—can the hypothesis be rejected by the
data. It is important to note that we need not have the original data in memory to
perform these tests. We can reproduce the results from model1:

. estimates replay model1

Model model1

Source SS df MS Number of obs = 41
F(3, 37) = 19.50

Model 13499.2473 3 4499.7491 Prob > F = 0.0000

i

i

i

i

i

i

i

i

94 Chapter 5 Do-file programming: validation, results and data management

Residual 8538.65513 37 230.774463 R-squared = 0.6125
Adj R-squared = 0.5811

Total 22037.9024 40 550.947561 Root MSE = 15.191

so2 Coef. Std. Err. t P>|t| [95% Conf. Interval]

temp -.5871451 .3710077 -1.58 0.122 -1.338878 .1645878
manuf .0712252 .0160601 4.43 0.000 .0386842 .1037661
pop -.0466475 .0153719 -3.03 0.004 -.0777939 -.0155011

_cons 58.19593 20.48789 2.84 0.007 16.68352 99.70835

The four sets of estimates can also be documented with estimates notes12 and saved
to disk with estimates save for later use or exchange with another researcher:

. forvalues i = 1/4 {
2. estimates restore model‘i’
3. estimates notes: from file ‘c(filename)’ saved ‘c(filedate)’
4. estimates save so2_model‘i’, replace
5. }

(results model1 are active now)
file so2_model1.ster saved
(results model2 are active now)
file so2_model2.ster saved
(results model3 are active now)
file so2_model3.ster saved
(results model4 are active now)
file so2_model4.ster saved

In a later Stata session (or after emailing these .ster files to another Stata user) we may
retrieve any of these saved estimates and work with them. We clear and estimates

clear to illustrate that neither data nor previously-stored estimates are needed.

. clear

. estimates clear

. estimates describe using so2_model3

Estimation results saved on 30jul2008 19:45, produced by

. regress so2 temp wind precip days

Notes:
1. from file usairquality.dta saved 30 Jun 2007 08:41

. estimates use so2_model3

. estimates store so2_model3

. estimates table *

Variable so2_model3

temp -1.8539796
wind -1.6852669

precip .5385879
days .00600175
_cons 128.86154

12. See Section 3.8.1 regarding use of c() return values.

i

i

i

i

i

i

i

i

5.4.1 Generating publication-quality tables from stored estimates 95

We must store the estimates to make them accessible to estimates table, although
we could replay them with the original estimation command (regress) without taking
that step. Note, however, that variable labels are not accessible without the original
data in memory.

5.4.1 Generating publication-quality tables from stored estimates

Ben Jann’s estout is a full-featured solution to preparing publication-quality tables in
various output formats (Jann (2005), Jann (2007)). This routine, which he describes
as a wrapper for estimates table, reformats stored estimates in a variety of formats,
combines summary statistics from model estimation, and produces output in several for-
mats such as Stata’s SMCL for display in the Viewer, tab-delimited or comma-separated
values (for word processors or spreadsheets), LATEX, rich text format (rtf) and HTML.
A companion program in that package, estadd, allows the addition of user-specified
statistics to the e() arrays accessible by estimates. A simplified version of estout is
available as esttab, and the utility command eststo stores estimates without the need
to name them. It may also be used as a prefix command (see Section 7.2). Complete
documentation, including many examples of the use of the estout suite, is available at
the website http://repec.org/bocode/e/estout/.

As an example:

. eststo: quietly regress so2 temp manuf pop
(est1 stored)

. eststo: quietly regress so2 temp pop wind
(est2 stored)

. eststo: quietly regress so2 temp wind precip days
(est3 stored)

. eststo: quietly regress so2 temp manuf pop wind precip days
(est4 stored)

. esttab using esttab_example.tex, ar2 label se nostar nodepvars brackets ///
> nomtitles title("Models of sulphur dioxide concentration") booktabs ///
> alignment(D{.}{.}{-1}) replace
(output written to esttab_example.tex)

producing a formatted LATEX table displayed as Table 5.1. These useful programs are
available using [R] ssc, as is an alternative: Roy Wada’s outreg2, which also has the
facility to work with stored estimates. We illustrate the production of a LATEX table
here, but these programs can equally well generate a rich text format (rtf table or one
in tab-delimited form which may be imported into standard office software.

i

i

i

i

i

i

i

i

96 Chapter 5 Do-file programming: validation, results and data management

Table 5.1: Models of sulphur dioxide concentration

(1) (2) (3) (4)

Mean temperature −0.587 −1.504 −1.854 −1.268
[0.371] [0.430] [0.861] [0.621]

Mfg. workers, 000 0.0712 0.0649
[0.0161] [0.0157]

Population −0.0466 0.0203 −0.0393
[0.0154] [0.00514] [0.0151]

Mean wind speed −2.858 −1.685 −3.181
[2.219] [2.582] [1.815]

Mean precipitation 0.539 0.512
[0.525] [0.363]

Mean days quality=poor 0.00600 −0.0521
[0.236] [0.162]

Constant 58.20 128.5 128.9 111.7
[20.49] [36.73] [67.69] [47.32]

Observations 41 41 41 41
Adjusted R2 0.581 0.386 0.172 0.611

Standard errors in brackets

i

i

i

i

i

i

i

i

5.5 Reorganizing datasets with the reshape command 97

5.5 Reorganizing datasets with the reshape command

When data have more than one identifier per record, they may be organized in different
ways. For instance, it is common to find on-line displays or downloadable spreadsheets
of data for individual units—for instance, U.S. states—with the unit’s name labeling
the row and the year labeling the column. If these data were brought into Stata in this
form, they would be in the wide form, with the same measurement (population) for
different years denoted as separate Stata variables:

. list, noobs

state pop1990 pop1995 pop2000

CT 3291967 3324144 3411750
MA 6022639 6141445 6362076
RI 1005995 1017002 1050664

There are a number of Stata commands—such as egen ([D] egen) row-wise functions—
which work effectively on data stored in the wide form. It may also be a useful form of
data organization for producing graphs.

Alternatively, we can imagine stacking each year’s population figures from this dis-
play into one variable, pop. In this format, known in Stata as the long form, each datum
is identified by two variables: the state name and the year to which it pertains:

. list, noobs sepby(state)

state year pop

CT 1990 3291967
CT 1995 3324144
CT 2000 3411750

MA 1990 6022639
MA 1995 6141445
MA 2000 6362076

RI 1990 1005995
RI 1995 1017002
RI 2000 1050664

This data structure is required for many of Stata’s statistical commands, such as the
[XT] xt suite of panel data commands. As many knowledgeable Stata users have pointed
out, the long form is also very useful for data management using by-groups and the
computation of statistics at the individual level, often implemented with the collapse

([D] collapse) command.

Inevitably, you will acquire data (either raw data or Stata datasets) that are stored
in either the wide or the long form and will find that translation to the other format is

i

i

i

i

i

i

i

i

98 Chapter 5 Do-file programming: validation, results and data management

necessary to carry out your analysis. The solution to this problem is Stata’s reshape

([D] reshape) command, an immensely powerful tool for reformulating a dataset in
memory without recourse to external files. In statistical packages lacking a data-reshape
feature, common practice entails writing the data to one or more external text files and
reading it back in. With the proper use of reshape, this is not necessary in Stata. But
reshape requires, first of all, that the data to be reshaped are labelled in such a way that
they can be handled by the mechanical rules that the command applies. In situations
beyond the simple application of reshape, it may require some experimentation to
construct the appropriate command syntax. This is all the more reason for enshrining
that code in a do-file as some day you are likely to come upon a similar application for
reshape.

In the remainder of this section, we work with several variations on a longitudinal
(panel) dataset of U.S. school district characteristics. Let us consider the original form
of this dataset:

. use mathpnl_long, clear
(modified mathpnl.dta from Wooldridge (2000))

. describe

Contains data from mathpnl_long.dta
obs: 2,200 modified mathpnl.dta from Wooldri

> dge (2000)
vars: 7 28 Jun 2007 09:41
size: 66,000 (99.9% of memory free)

storage display value
variable name type format label variable label

distid float %9.0g district identifier
expp int %9.0g expenditure per pupil
revpp int %9.0g revenue per pupil
avgsal float %9.0g average teacher salary
math4score float %9.0g % satisfactory, 4th grade math
math7score float %9.0g % satisfactory, 7th grade math
year int %9.0g year

Sorted by: distid year

We see that the dataset contains 2,200 observations, identified by the numeric distid

school district identifier and year.

. xtset
panel variable: distid (strongly balanced)
time variable: year, 1992 to 1998

delta: 2 units

. tabulate year

year Freq. Percent Cum.

1992 550 25.00 25.00
1994 550 25.00 50.00
1996 550 25.00 75.00
1998 550 25.00 100.00

i

i

i

i

i

i

i

i

5.5 Reorganizing datasets with the reshape command 99

Total 2,200 100.00

The dataset is in the long form, as xtset ([XT] xtset) shows, and is strongly balanced:
that is, each of the 550 districts appears in the sample for each of the four years. The
delta: 2 units qualifier indicates that the time series are biennial.

Imagine that we did not have this dataset available, but rather had its wide-form
equivalent, perhaps acquired from a spreadsheet on school district expenditures. The
wide-form dataset looks like:

. use mathpnl_wide, clear
(modified mathpnl.dta from Wooldridge (2000))

. describe

Contains data from mathpnl_wide.dta
obs: 550 modified mathpnl.dta from Wooldri

> dge (2000)
vars: 21 28 Jun 2007 09:41
size: 41,800 (99.9% of memory free)

storage display value
variable name type format label variable label

distid float %9.0g district identifier
expp1992 int %9.0g 1992 expp
revpp1992 int %9.0g 1992 revpp
avgsal1992 float %9.0g 1992 avgsal
math4score1992 float %9.0g 1992 math4score
math7score1992 float %9.0g 1992 math7score
expp1994 int %9.0g 1994 expp
revpp1994 int %9.0g 1994 revpp
avgsal1994 float %9.0g 1994 avgsal
math4score1994 float %9.0g 1994 math4score
math7score1994 float %9.0g 1994 math7score
expp1996 int %9.0g 1996 expp
revpp1996 int %9.0g 1996 revpp
avgsal1996 float %9.0g 1996 avgsal
math4score1996 float %9.0g 1996 math4score
math7score1996 float %9.0g 1996 math7score
expp1998 int %9.0g 1998 expp
revpp1998 int %9.0g 1998 revpp
avgsal1998 float %9.0g 1998 avgsal
math4score1998 float %9.0g 1998 math4score
math7score1998 float %9.0g 1998 math7score

Sorted by: distid

We see that there are now 550 observations, one per school district, with separate
variables containing the five measurements for each year. Those Stata variables are
systematically named, which is a very important consideration. It means that we can
readily use wildcards: for instance, summarize expp* to compute descriptive statistics
for all expenditure-per-pupil variables. It also eases our task of reshaping the dataset.
Let’s say that you want to convert this wide-form dataset into its long-form equivalent.

i

i

i

i

i

i

i

i

100 Chapter 5 Do-file programming: validation, results and data management

The reshape command works with the notion of xi,j data. Its syntax lists the variables
to be stacked up, and specifies the i and j variables, where the i variable indexes the
rows and the j variable indexes the columns in the existing form of the data.

. reshape long expp revpp avgsal math4score math7score, i(distid) j(year)
(note: j = 1992 1994 1996 1998)

Data wide -> long

Number of obs. 550 -> 2200
Number of variables 21 -> 7
j variable (4 values) -> year
xij variables:

expp1992 expp1994 ... expp1998 -> expp
revpp1992 revpp1994 ... revpp1998 -> revpp

avgsal1992 avgsal1994 ... avgsal1998 -> avgsal
math4score1992 math4score1994 ... math4score1998->math4score
math7score1992 math7score1994 ... math7score1998->math7score

You use reshape long because the data are in the wide form and we want to place
them in the long form. You provide the variable names to be stacked without their
common suffixes: in this case, the year embedded in their wide-form variable name.
The i variable is distid and the j variable is year: together, those variables uniquely
identify each measurement. Stata’s description of reshape speaks of i defining a unique
observation and j defining a subobservation logically related to that observation. Any
additional variables that do not vary over j are not specified in the reshape statement,
as they will be automatically replicated for each j. After this command, you will have
a dataset which is identical to the long-form dataset displayed above:

. describe

Contains data
obs: 2,200 modified mathpnl.dta from Wooldri

> dge (2000)
vars: 7
size: 66,000 (99.9% of memory free)

storage display value
variable name type format label variable label

distid float %9.0g district identifier
year int %9.0g
expp int %9.0g
revpp int %9.0g
avgsal float %9.0g
math4score float %9.0g
math7score float %9.0g

Sorted by: distid year
Note: dataset has changed since last saved

What if you wanted to reverse the process, and translate the data from the long to
the wide form?

i

i

i

i

i

i

i

i

5.6 Combining datasets 101

. reshape wide expp revpp avgsal math4score math7score, i(distid) j(year)
(note: j = 1992 1994 1996 1998)

Data long -> wide

Number of obs. 2200 -> 550
Number of variables 7 -> 21
j variable (4 values) year -> (dropped)
xij variables:

expp -> expp1992 expp1994 ... expp1998
revpp -> revpp1992 revpp1994 ... revpp199

> 8
avgsal -> avgsal1992 avgsal1994 ... avgsal

> 1998
math4score -> math4score1992 math4score1994 ..

> . math4score1998
math7score -> math7score1992 math7score1994 ..

> . math7score1998

You can see that this command is identical to the first reshape command, with the
exception that now you reshape wide, designating the target form. It reproduces the
wide-form dataset described above.

This example highlights the importance of having appropriate variable names for
reshape. If our wide-form dataset contained the variables expp1992, Expen94, xpend 96

and expstu1998 there would be no way to specify the common stub labeling the choices.
However, one common case can be handled without the renaming of variables. Say that
we have the variables exp92pp, exp94pp, exp96pp, exp98pp. The command

reshape long exp@pp, i(distid) j(year)

will deal with that case, with the @ as a placeholder for the location of the j component
of the variable name. In more difficult cases, where the repeated use of rename ([D] re-
name) may be tedious, renvars (Cox and Weesie (2001), Cox and Weesie (2005)) may
be useful.

This discussion has only scratched the surface of reshape’s capabilities. There is
no substitute for experimentation with this command after a careful perusal of help
reshape ([D] reshape), as it is one of the most complicated elements of Stata. See
the following chapter and Nicholas Cox’s Stata FAQ13 for more guidance with reshape

usage.

5.6 Combining datasets

You may be aware that Stata can only work with one dataset at a time. How, then, do
you combine datasets in Stata? First of all, it is important to understand that at least
one of the datasets to be combined must already have been saved in Stata format. Sec-
ond, you should realize that each of Stata’s commands for combining datasets provides

13. http://www.stata.com/support/faqs/data/reshape3.html

i

i

i

i

i

i

i

i

102 Chapter 5 Do-file programming: validation, results and data management

a certain functionality, which should not confused with that of other commands. For
instance, consider the append ([D] append) command with two stylized datasets:

dataset1 :















id var1 var2

112
...

...

216
...

...

449
...

...















dataset2 :





















id var1 var2

126
...

...

309
...

...

421
...

...

604
...

...





















These two datasets contain the same variables, as they must for append to sensibly
combine them. If dataset2 contained idcode, Var1, Var2 the two datasets could not
sensibly be appended without renaming the variables.14 Appending these two datasets
with common variable names creates a single dataset containing all of the observations:

combined :







































id var1 var2

112
...

...

216
...

...

449
...

...

126
...

...

309
...

...

421
...

...

604
...

...







































The rule for append, then, is that if datasets are to be combined, they should share the
same variable names and datatypes (string vs. numeric). In the above example, if var1
in dataset1 was a float while that variable in dataset2 was a string variable, they
could not be appended. It is permissible to append two datasets with differing variable
names in the sense that dataset2 could also contain an additional variable or variables
(for example, var3, var4). The values of those variables in the observations coming
from dataset1 would then be set to missing.

14. Recall that in Stata var1 and Var1 are two separate variables.

i

i

i

i

i

i

i

i

5.7 Combining datasets with the append command 103

While append combines datasets by adding observations to the existing variables, the
other key command, merge ([D] merge) combines variables for the existing observations.
Consider these two stylized datasets:

dataset1 :















id var1 var2

112
...

...

216
...

...

449
...

...















dataset3 :















id var22 var44 var46

112
...

...
...

216
...

...
...

449
...

...
...















We may merge these datasets on the common merge key: in this case, the id variable:

combined :















id var1 var2 var22 var44 var46

112
...

...
...

...
...

216
...

...
...

...
...

449
...

...
...

...
...















The rule for merge, then, is that if datasets are to be combined on one or more merge
keys, they each must have one or more variables with a common name and datatype
(string vs. numeric). In the example above, each dataset must have a variable named
id. That variable can be numeric or string, but that characteristic of the merge key
variables must match across the datasets to be merged. Of course, we need not have
exactly the same observations in each dataset: if dataset3 contained observations with
additional id values, those observations would be merged with missing values for var1
and var2. As we shall see in Section 5.8, we have illustrated the simplest kind of
merge: the one-to-one merge. Stata supports several other types of merges. But the
key concept should be clear: the merge command combines datasets “horizontally”,
adding variables’ values to existing observations. With these concepts in mind, let us
consider these commands in the context of our prior example.

5.7 Combining datasets with the append command

Datafiles downloaded from their providers often contain a single period’s information,
or data about a single entity. A research project may require that you download sev-
eral separate datasets and combine them for statistical analysis. In the school district
example above, imagine that we could only access separate datafiles for each of the four

i

i

i

i

i

i

i

i

104 Chapter 5 Do-file programming: validation, results and data management

years 1992, 1994, 1996 and 1998. Combining these datasets into a single dataset would
be a task for append ([D] append). However, there are two caveats. First of all, it
is possible that the individual datasets lack a year variable. It would, after all, be a
constant value within the 1992 dataset. But if we append these datasets, we will lose
the information of which observation pertains to which year. If individual datasets lack
a dataset identifier, we must add one. That is as simple as generate int year = 1992

and saving those data.15 Second, as discussed above, we must ensure that the variable
names across the individual datasets are identical. If necessary, rename ([D] rename)
or renvars (Cox and Weesie (2001), Cox and Weesie (2005)) should be used to ensure
that variable names match.

You may then use append to combine the four school district datasets:

. use mathpnl1992, clear
(modified mathpnl.dta from Wooldridge (2000))

. append using mathpnl1994

. append using mathpnl1996

. append using mathpnl1998

. label data ""

. save mathpnl_appended, replace
file mathpnl_appended.dta saved

. describe

Contains data from mathpnl_appended.dta
obs: 2,200
vars: 14 30 Jul 2008 19:45
size: 127,600 (99.9% of memory free)

storage display value
variable name type format label variable label

distid float %9.0g district identifier
lunch float %9.0g % eligible for free lunch
enrol float %9.0g school enrollment
expp int %9.0g expenditure per pupil
revpp int %9.0g revenue per pupil
avgsal float %9.0g average teacher salary
drop float %9.0g high school dropout rate, %
grad float %9.0g high school grad. rate, %
math4score float %9.0g % satisfactory, 4th grade math
math7score float %9.0g % satisfactory, 7th grade math
year int %9.0g year
staff float %9.0g staff per 1000 students
cpi float %9.0g consumer price index
rexpp float %9.0g real spending per pupil, 1997$

Sorted by:

The combined dataset contains all four years’ data in the long form, with each ob-

15. The same caveat applies if individual datasets contain information for a single entity. For instance,
if one file contains timeseries of Connecticut infant mortality data and a second contains that variable
for Massachusetts, we must ensure that each file contains a state identifier variable of some sort before
combining them.

i

i

i

i

i

i

i

i

5.8 Combining datasets with the merge command 105

servation identified by distid and year, identical to the long-form dataset described
above.

5.8 Combining datasets with the merge command

The long-form dataset we constructed above is very useful if you want to add aggregate-
level information to individual records. For instance, imagine that you have downloaded
a separate file identifying the state in which each school district appears:

. describe

Contains data from mathpnl_state.dta
obs: 550
vars: 2 30 Jul 2008 19:45
size: 7,700 (99.9% of memory free)

storage display value
variable name type format label variable label

distid float %9.0g district identifier
state int %8.0g State code

Sorted by: distid

Say you want to compute descriptive statistics and generate graphs for our school district
data separately for certain states. With the aid of this auxiliary dataset, you can easily
code each of the 550 districts’ four timeseries observations with the appropriate state
code:

. use mathpnl_long, clear
(modified mathpnl.dta from Wooldridge (2000))

. merge distid using mathpnl_state, sort uniqusing
variable distid does not uniquely identify observations in the master data

. tab _merge

_merge Freq. Percent Cum.

3 2,200 100.00 100.00

Total 2,200 100.00

. assert _merge == 3

. drop _merge

. save mathpnl_longs, replace
file mathpnl_longs.dta saved

This use of merge ([D] merge) is known as a one-to-many match merge where the state
code for each school district is added to the individual records of each of the district.
The distid variable is the merge key. Unless both the master file (mathpnlL.dta) and
the using file (mathpnl state.dta) are sorted by the merge key, the sort option should
be specified.

i

i

i

i

i

i

i

i

106 Chapter 5 Do-file programming: validation, results and data management

By default, merge creates a new variable merge, which takes on integer values for
each observation of 1 if that observation was only found in the master dataset, 2 if it
was only found in the using dataset, or 3 if it was found in both datasets. In this case,
we expect that tab merge should reveal that all values equal 3, as it does. We also
use the uniqusing option to ensure that there are no duplicate values of the district id
in the using file. That file should uniquely map each district to a single state code, so
a duplicate value of distid must be a data entry error. If the same distid mistakenly
appears on two records in the using file, asserting uniqusing will cause merge to fail.
Absent such errors, each of the district’s observations (four in number, one for each
year) will be mapped to a single state code.

This strategy will also work if you have a comprehensive list of school districts in
the using file. Consider that the 550 school districts in mathpnl long.dta are a random
sample of U.S. school districts, and that the information you have located identifying
districts by state lists all U.S. school districts. The one-to-many merge still works
perfectly well. After the merge, merge will indicate that each distid in the using file
that did not match a distid in our sample now has merge=2. Those observations in
the merged file should be deleted (with drop if merge == 2) before it is saved.

Alternatively, if merge reveals that any observations have merge=1, it indicates
that some of our distid values are not being successfully matched in the using file.
This probably indicates errors in one of the files and should be corrected. The assert

merge == 3 in the commands above will ensure that the do-file aborts if there are
unmatched records in the master file.16

In your particular application, you may find that merge values of 1 or 2 are appro-
priate. The key notion is that you should always tabulate merge and consider whether
the results of the merge are sensible in the context of your work. It is an excellent idea
to use the uniqmaster, uniqusing or unique options on the merge command whenever
those conditions should logically be satisfied in your data, and one of those options is
required if the sort option is also used.

In comparison with a lengthy and complicated do-file using a set of replace state-
ments, the merge technique is far better. By merely altering the contents of the using file
we may correct any difficulties which appear in the one-to-many merge. Furthermore, if
we had a number of school district-specific variables to be added to the individual obser-
vations these variables would all be handled with a single merge command. We might
want to merge aggregate time series information instead. For example, if we wanted to
compute real expenditures per pupil, we would match on the merge key year to incor-
porate a price deflator (varying by year, but not by school district) in the merged file.
This technique proves exceedingly useful when working with individual data and panel
data where we have aggregate information to be combined with the individual-level
data.

16. The do-file will also abort if there are unmatched records in the using file, as described above. If
this is not desired, you could validate the merge using assert merge >= 2.

i

i

i

i

i

i

i

i

5.8.1 The dangers of many-to-many merges 107

5.8.1 The dangers of many-to-many merges

In the previous subsection we discussed using merge ([D] merge) to attach aggregate
characteristics to individual records using a one-to-many merge. There are very good
reasons to employ a one-to-many merge, as we did above with school district-level
characteristics, or its inverse: a many-to-one merge, which would essentially reverse
the roles of the master and using datasets. The merge command may also be used to
combine datasets using a one-to-one match merge, as we illustrated in Section 5.6. This
would be appropriate if we had two or more datasets whose observations pertained to
the same units: e.g., U.S. state population figures from the 1990 and 2000 Censuses. In
that case, you would want to assert merge = 3 if you know that each dataset should
contain the same observations, and should use the unique option on merge.

There is a great danger in stumbling into the alternative to the one-to-many or one-
to-one merge: the many-to-many merge. This problem arises when there are multiple
observations in both datasets for some values of the merge key variable(s). The result
of match-merging two datasets which both have more than one value of the merge key
variable(s) is unpredictable, as it depends on the sort order of the datasets. This leads to
the seemingly illogical result that repeated execution of the same do-file will most likely
result in a different number of cases in the result dataset without any error indication.
There is no unique outcome for a many-to-many merge. When it is encountered it
usually results from a coding error in one of the files. The duplicates ([D] duplicates)
command (see Section 5.2) is very useful in tracking down such errors. To prevent such
difficulties in employing [D] merge, you should specify either the uniqmaster or the
uniqusing option in a match merge. If no uniq. . . option is used, observations may be
matched inappropriately.

In a one-to-one match merge, the option unique should be used as it implies both
uniqmaster and uniqusing, asserting that the merge key should be unique in both
datasets.17 Imagine that you have four separate school district datafiles, within which
each variable is labeled with its year (e.g., expp1992, revpp1992). You would not
want to append these datasets as their variable names differ. But you could generate a
wide-form dataset from the individual datasets with merge:

. use mathpnl1992m, clear

. forvalues y=1994(2)1998 {
2. merge distid using mathpnl‘y’m, sort unique
3. assert _merge == 3
4. drop _merge
5. }

. save mathpnlm, replace
file mathpnlm.dta saved

We have used the unique option to specify that each of the four datasets in the merge
contains unique values of distid.

17. Those familiar with relational data base management systems such as SQL will recognize that the
concept of uniqueness refers to the merge key serving as a valid and unique primary key for the dataset.

i

i

i

i

i

i

i

i

108 Chapter 5 Do-file programming: validation, results and data management

5.9 Other data management commands

Stata provides a number of data management commands less commonly used than
append ([D] append) and merge ([D] merge). In this section, we discuss the fillin

([D] fillin), cross ([D] cross), stack ([D] stack), separate ([D] separate), joinby
([D] joinby) and xpose ([D] xpose) commands.

5.9.1 The fillin command

We spoke earlier of a balanced panel: a longitudinal dataset in which there are N
cross-sectional units, each with T time-series observations. Many panel datasets are
unbalanced, with differing numbers of time-series observations available for different
units. This does not create problems for Stata’s panel data (xt) commands, but may
cause difficulty if the data are to be exported to other software, particularly matrix
languages that expect the dataset to contain N×T observations. The fillin ([D] fillin)
command deals with this issue by adding observations with missing data so that all
interactions of its varlist exist, thus making a complete rectangularization of varlist.18

See Cox (2005a) for more details.

The fillin command will work in any context, not only that of panel data. For
instance, we might have a list of patients’ ages and the average cholesterol level for male
and female patients of that age. That dataset might not contain every combination of
age and gender. If we want to rectangularize it, we specify age gender in the varlist.

5.9.2 The cross command

The cross command ([D] cross) forms every pairwise combination of the data in mem-
ory with the data in the using dataset. Imagine that you have a list of racial categories
as the sole variable in memory: race, coded White, Black, Asian, Hispanic. The
file cancers.dta contains a list of the 10 most common forms of cancer: Lung, Colon,

Breast, Cervical, Prostate, etc. coded as the variable cancertype. If you perform

. cross using cancers

you will create a dataset with 40 observations in which each of the racial categories
is matched with each of the cancer categories in turn. See Franklin (2006) for more
details.

18. The tsfill command ([TS] tsfill) is a specialized version of fillin. When executed with its full

option, a panel dataset will be balanced by the addition of missing observations as needed.

i

i

i

i

i

i

i

i

5.9.4 The separate command 109

5.9.3 The stack command

The stack ([D] stack) command allows you to vertically stack the variables in its
varlist.19 For instance,

. stack x1 x2 x3 x4, into(z1 z2)

will create z1 as the “stack” of x1 and x3, and z2 as the “stack” of x2 and x4.Variables
may be repeated in the varlist to juxtapose a single variable against others. For example,

. stack x1 x2 x1 x3 x1 x4, into(z1 z2)

will create two new variables, one containing three copies of x1, the other containing
the stacked form of x2, x3 and x4.

When might you use stack? It is often a useful tool when preparing data for graphics
where some form of the graph ([G] graph twoway scatter) command expects a single
variable. For example:

. use mathpnl_wide, clear
(modified mathpnl.dta from Wooldridge (2000))

. preserve

. stack expp1992 avgsal1992 expp1998 avgsal1998, into(expp sal) wide clear

. scatter expp1992 expp1998 sal, m(oh x) scheme(s2mono) ///
> title("School District Expenditures vs. Average Salaries") ///
> xtitle("Average salaries") ytitle("Expenditures") ///
> legend(position(5) ring(0) label(1 "1992") label(2 "1998"))

. restore

Using the wide-form school district data, we employ stack to juxtapose expenditures
per pupil in 1992 and 1998 with average teacher salaries in those two years and produce
a scatterplot, as Figure 5.1 illustrates.

Note that stack clears the dataset in memory (automatically if its clear option
is specified), retaining only those variables listed in the into() option unless the wide

option is specified. With that option, the variables in the varlist are retained as well.
In any case, a new variable stack is created which identifies the groups. If you do
not want to disrupt the dataset in memory, use preserve ([D] preserve) and restore

([D] restore) as illustrated above and described in Section 2.5.

5.9.4 The separate command

The separate ([D] separate) command can convert a single variable into several new
variables, either on the basis of a true-or-false Boolean expression (for two groups only)
or in terms of a byvar. In the latter case, the number of distinct values of the byvar
(which may be of numeric or string type) will determine the number of new variables

19. In linear algebra, this is the vec() operation, available in Stata’s matrix language as the vec()

function (help matrix and in Mata (help mata vec()).

i

i

i

i

i

i

i

i

110 Chapter 5 Do-file programming: validation, results and data management

0
50

00
10

00
0

15
00

0
E

xp
en

di
tu

re
s

0 20000 40000 60000 80000
Average salaries

1992 1998

School District Expenditures vs. Average Salaries

Figure 5.1: Superimposed scatter plots.

created.

As an example, consider the long-form school district dataset, and imagine that you
want to create distinct expenditure-per-pupil variables for each year:

. use mathpnl_long, clear
(modified mathpnl.dta from Wooldridge (2000))

. separate expp, by(year) veryshortlabel

storage display value
variable name type format label variable label

expp1992 int %9.0g 1992
expp1994 int %9.0g 1994
expp1996 int %9.0g 1996
expp1998 int %9.0g 1998

. summarize expp*

Variable Obs Mean Std. Dev. Min Max

expp 2200 5205.833 1255.723 946 13982
expp1992 550 4181.165 933.6362 946 9041
expp1994 550 4752.56 993.0163 1147 10461
expp1996 550 5737.953 981.382 2729 10449
expp1998 550 6151.653 1028.371 3811 13982

We make use of the undocumented veryshortlabel option, which is a more austere
variant of the shortlabel option. See Cox (2005e).

i

i

i

i

i

i

i

i

5.9.6 The xpose command 111

The separate command may also be very useful in creating variables that corre-
spond to a qualitative identifier: for instance, different variables for each ethnic group’s
blood pressure measurements.

5.9.5 The joinby command

The joinby ([D] joinby) command creates a new dataset by forming all possible pairwise
combinations of the two datasets, given a merge key. It is similar in that sense to cross

which does not make use of a merge key. In many instances where a researcher considers
joinby, they probably want to do a merge ([D] merge).20

One instance in which joinby might come in handy is that which would involve a
many-to-many merge, as discussed in Section 5.8.1. Let’s say that you have one dataset
containing firms’ subsidiaries, all identified by their firmid number. That is, many
large multinational corporations consist of a number of component firms: in some cases,
corresponding to the country in which they are incorporated. You have a second file
which contains, for each firmid, a set of product codes. You want to construct a dataset
in which each subsidiary is matched with each product sold by the parent firm. The
variable firmid appears with duplicate entries in both datasets. If you use joinby:

. use subsidiaries, clear

. joinby firmid using products

you will create the desired data structure.

By default, if a value of firmid appears in one dataset but not the other, its obser-
vations will be dropped.21 The merge key for joinby need not be a single variable. As
in the example above, if both subsidiaries and product records are coded by country,
you might use

. joinby firmid country using products

to produce a dataset that will contain subsidiary-product combinations for each country
in which that product is sold.

5.9.6 The xpose command

Another Stata data management command is capable of making radical changes to the
organization of the data: xpose ([D] xpose). This is the transpose command, which
turns observations into variables and vice versa. This functionality is familiar to those
who have used spreadsheets or matrix languages. It is rarely useful in Stata, as applying
xpose will usually destroy the contents of string variables. If all variables in the dataset
are numeric, this command may be useful. Rather than employing xpose, you should
consider whether the raw data might be read in using the byvariable option of infile

20. Those familiar with relational data base management systems will recognize joinby as the SQL
outer join, which is a technique to be avoided in most data base tasks.
21. The unmatched option reverses this behavior.

i

i

i

i

i

i

i

i

112 Chapter 5 Do-file programming: validation, results and data management

([D] infile). If there is truly a need to transpose the data, it was probably not created
sensibly in the first place.

i

i

i

i

i

i

i

i

6 Cookbook: Do-file programming II

This cookbook chapter presents a number of recipes for Stata do-file programmers us-
ing the programming features described in the previous chapter. Each recipe poses a
problem and a worked solution. Although you may not encounter this precise problem,
you may be able to recognize its similarities to a task that you would like to automate
in a do-file.

6.1 Efficiently defining group characteristics and subsets

The problem: say that your cross-sectional dataset contains a record for each patient
who has been treated at one of several clinics. You want to associate each patient’s
clinic with an location code (for urban clinics, the Standard Metropolitan Statistical
Area (SMSA) in which the clinic is located). The SMSA identifier is not on the pa-
tient’s record but it is available to you. How do you get this associated information on
each patient’s record without manual editing? One quite cumbersome technique (per-
haps familiar to users of other statistical packages) involves writing a long sequence of
statements with if exp clauses. Thankfully, there is a better way.1

Let us presume that we have Stata dataset patient containing the individual’s
details as well as clinicid, the clinic ID. Assume that it can be dealt with as an
integer. If it were a string code, that could easily be handled as well.

Create a text file, clinics.raw, containing two columns: the clinic ID (clinicid)
and the SMSA FIPS code (smsa).2 For instance,

12367 1120
12467 1120
12892 1120
13211 1200
14012 4560
... ...
23435 5400
29617 8000
32156 9240

where SMSA codes 1120, 1200, 4560, 5400, 8000 and 9240 refer to the Boston, Brock-
ton, Lowell, New Bedford, Springfield-Chicopee-Holyoke and Worcester, MA SMSAs,

1. This recipe is adapted from my Stata FAQ “How do you define group characteristics in your data
in order to create subsets?”, http://www.stata.com/support/faqs/data/characteristics.html.

2. The FIPS (Federal Information Processing System) code is a four-digit integer assigned to each
SMSA. See http://www.census.gov/population/estimates/metro-city/60mfips.txt

113

i

i

i

i

i

i

i

i

114 Chapter 6 Cookbook: Do-file programming II

respectively.

Read the file into Stata with infile clinicid smsa using clinics, and save the
file as Stata dataset clinic char. Now use the patient file and give the commands

. merge clinicid using clinic char, sort uniqusing

. tab _merge

We use the uniqusing option as discussed in Section 5.8 to ensure that the clinic char

dataset has a single record per clinic. After the merge is performed you should find that
all patients now have an smsa variable defined. If there are missing values in smsa, list
the clinicids for which that variable is missing and verify that they correspond to
non-urban locations. When you are satisfied that the merge has worked properly, type

. drop merge

You have performed a one-to-many merge, attaching the same SMSA identifier to
all patients who have been treated at clinics in that SMSA. You may now use the smsa

variable to attach SMSA-specific information to each patient record with merge.

Unlike an approach depending on a long list of conditional statements such as

. replace smsa=1120 if inlist(clinicid,12367,12467,12892,...)

this approach leads you to create a Stata dataset containing your clinic ID numbers so
that you may easily see whether you have a particular code in your list. This approach
would be especially useful if you revise the list for a new set of clinics.

6.1.1 Selecting a subset of observations using a complicated criterion

As Nicholas Cox has pointed out in a Stata FAQ,3 this approach may also be fruitfully
applied if you need to work with a subset of observations that satisfy a complicated
criterion. This might be best defined in terms of an indicator variable that specifies
the criterion (or its complement). The same approach may be used. Construct a file
containing the identifiers that define the criterion (in the example above, the clinic IDs
to be included in the analysis). Merge that file with your dataset and examine the
merge variable. That variable will take on values 1, 2 or 3, with a value of 3 indicating
that the observation falls in the subset. You may then define the desired indicator:

. generate byte subset1 = merge == 3

. drop merge

. regress ... if subset1

Using this approach, any number of subsets may be easily constructed and maintained,
avoiding the need for complicated conditional statements.

3. See http://www.stata.com/support/faqs/data/selectid.html

i

i

i

i

i

i

i

i

6.2 Applying reshape repeatedly 115

6.2 Applying reshape repeatedly

The problem: are your data the wrong shape?4 That is, are they not organized in
the structure that you need to conduct the analysis you have in mind? Data sources
often provide the data in a structure quite suitable for presentation but very clumsy for
statistical analysis. One of the key data management tools Stata provides is reshape

([D] reshape). If you need to modify the structure of your data, you should surely
be familiar with reshape and its two functions: reshape wide and reshape long. In
some cases, you may have to apply reshape twice to solve a particularly knotty data
management problem.

As a first example, consider this question, posed on Statalist, by an individual who
has a dataset in the wide form:

country tradeflow Yr1990 Yr1991
Armenia imports 105 120
Armenia exports 90 100
Bolivia imports 200 230
Bolivia exports 80 115
Colombia imports 100 105
Colombia exports 70 71

He would like to reshape the data into the long form:

country year imports exports
Armenia 1990 105 90
Armenia 1991 120 100
Bolivia 1990 200 80
Bolivia 1991 230 115
Colombia 1990 100 70
Colombia 1991 105 71

We must exchange the roles of years and tradeflows in the original data to arrive at
the desired structure, suitable for analysis as xt data. This can be handled by two
successive applications of reshape:

. clear

. input str8 country str7 tradeflow Yr1990 Yr1991

country tradeflow Yr1990 Yr1991
1. Armenia imports 105 120
2. Armenia exports 90 100
3. Bolivia imports 200 230
4. Bolivia exports 80 115
5. Colombia imports 100 105
6. Colombia exports 70 71

4. This recipe is adapted from Stata Tip 45 (Baum and Cox (2007)). I am grateful to Nicholas J.
Cox for his contributions to this Stata Tip.

i

i

i

i

i

i

i

i

116 Chapter 6 Cookbook: Do-file programming II

7. end

. reshape long Yr , i(country tradeflow)
(note: j = 1990 1991)

Data wide -> long

Number of obs. 6 -> 12
Number of variables 4 -> 4
j variable (2 values) -> _j
xij variables:

Yr1990 Yr1991 -> Yr

This transformation swings the data into long form with each observation identified by
country, tradeflow and the new variable j, taking on the values of year. We now
perform reshape wide to make imports and exports into separate variables:

. rename _j year

. reshape wide Yr, i(country year) j(tradeflow) string
(note: j = exports imports)

Data long -> wide

Number of obs. 12 -> 6
Number of variables 4 -> 4
j variable (2 values) tradeflow -> (dropped)
xij variables:

Yr -> Yrexports Yrimports

Transforming the data to wide form once again, the i() option contains country and
year as those are the desired identifiers on each observation of the target dataset.
We specify that tradeflow is the j() variable for reshape, indicating that it is a
string variable. The data now have the desired structure. Although we have illustrated
this double-reshape transformation with only a few countries, years and variables, the
technique generalizes to any number of each.

As a second example of successive applications of reshape, consider the World
Bank’s World Development Indicators (WDI) dataset.5 Their extract program gen-
erates a comma-separated-value (CSV) database extract, readable by Excel or Stata,
but the structure of those data hinders analysis as panel data. For a recent year, the
header line of the CSV file is:

"Series code","Country Code","Country Name","1960","1961","1962","1963",

"1964","1965","1966","1967","1968","1969","1970","1971","1972","1973",

"1974","1975","1976","1977","1978","1979","1980","1981","1982","1983",

"1984","1985","1986","1987","1988","1989","1990","1991","1992","1993",

"1994","1995","1996","1997","1998","1999","2000","2001","2002","2003","2004"

That is, each row of the CSV file contains a variable and country combination, with

5. http://econ.worldbank.org

i

i

i

i

i

i

i

i

6.2 Applying reshape repeatedly 117

the columns representing the elements of the timeseries.6

Our target dataset structure is that appropriate for panel-data modeling with the
variables as columns and rows labeled by country and year. Two applications of reshape
will again be needed to reach the target format. We first insheet ([D] insheet) the
data and transform the triliteral country code into a numeric code with the country
codes as labels:

. insheet using wdiex.raw,comma names

. encode countrycode, generate(cc)

. drop countrycode

We then must deal with the fact that the timeseries variables are named var4-var48,
as the header line provided invalid Stata variable names (numeric values) for those
columns. We use rename ([D] rename) to change v4 to d1960, v5 to d1961 and so
on, as described in Section 3.6. We use a technique for macro expansion, involving the
equals sign, by which an algebraic expression may be evaluated within a macro. In this
case, the target variable name contains the string 1960, 1961, . . . , 2004:

. forvalues i=4/48 {

. rename v‘i’ d‘=1956+‘i’’

. }

We now are ready to carry out the first reshape. We want to identify the rows of
the reshaped dataset by both countrycode (cc) and seriescode, the variable name.
The reshape long will transform a fragment of the WDI dataset containing two series
and four countries:

reshape long d, i(cc seriescode) j(year)
(note: j = 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 197
> 3 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988
> 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 20
> 04)

Data wide -> long

Number of obs. 7 -> 315
Number of variables 48 -> 5
j variable (45 values) -> year
xij variables:

d1960 d1961 ... d2004 -> d

list in 1/15

cc seriesc~e year countryname d

1. AFG adjnetsav 1960 Afghanistan .
2. AFG adjnetsav 1961 Afghanistan .
3. AFG adjnetsav 1962 Afghanistan .
4. AFG adjnetsav 1963 Afghanistan .
5. AFG adjnetsav 1964 Afghanistan .

6. AFG adjnetsav 1965 Afghanistan .

6. A variation occasionally encountered will resemble this structure, but with time periods in reverse
chronological order. The solution below can be used to deal with that problem as well.

i

i

i

i

i

i

i

i

118 Chapter 6 Cookbook: Do-file programming II

7. AFG adjnetsav 1966 Afghanistan .
8. AFG adjnetsav 1967 Afghanistan .
9. AFG adjnetsav 1968 Afghanistan .
10. AFG adjnetsav 1969 Afghanistan .

11. AFG adjnetsav 1970 Afghanistan -2.97129
12. AFG adjnetsav 1971 Afghanistan -5.54518
13. AFG adjnetsav 1972 Afghanistan -2.40726
14. AFG adjnetsav 1973 Afghanistan -.188281
15. AFG adjnetsav 1974 Afghanistan 1.39753

The rows of the data are now labeled by year but one problem remains: all variables for
a given country are stacked vertically. To unstack the variables and put them in shape
for xtreg ([XT] xtreg), we must carry out a second reshape which spreads the variables
across the columns, specifying cc and year as the i variables and j as seriescode. As
that variable has string content we use the string option.

reshape wide d, i(cc year) j(seriescode) string
(note: j = adjnetsav adjsavC02)

Data long -> wide

Number of obs. 315 -> 180
Number of variables 5 -> 5
j variable (2 values) seriescode -> (dropped)
xij variables:

d -> dadjnetsav dadjsavC02

order cc countryname

tsset cc year
panel variable: cc (strongly balanced)
time variable: year, 1960 to 2004

After this transformation, the data are now in shape for xt modeling, tabulation or
graphics.

As illustrated here, the reshape command can transform even the most inconvenient
data structure into the structure needed for your research. It may take more than one
application of reshape to get there from here, but it can do the job.

i

i

i

i

i

i

i

i

6.3 Handling time-series data effectively 119

6.3 Handling time-series data effectively

The problem: daily data are often generated by non-daily processes. For instance,
the financial markets are closed on weekends and many holidays.7 Stata’s time-series
date schemes ([U] 24. Dealing with dates and times) allow for daily (and intra-
daily) data, but gaps in time-series may be problematic. A model that employs lags or
differences will lose multiple observations every time a gap appears, discarding many of
the original data points. Analysis of “business-daily” data often proceeds by assuming
that Monday follows Friday, and so on. At the same time, we usually want data to
be placed on Stata’s time-series calendar so that useful tools such as the [G] tsline
([G] tsline) graph will work and label data points with readable dates.

In a 2006 Stata Users Group presentation in Boston, David Drukker spoke to this
point. His solution: generate two date variables, one containing the actual calendar
dates, another numbering successive available observations consecutively. The former
variable (caldate) is tsset ([TS] tsset) when the calendar dates are to be used, while
the latter (seqdate) is tsset when statistical analyses are to be performed.

To illustrate, I download daily data on the three-month US Treasury bill rate with
Drukker’s freduse command (Drukker (2006)) and retain the August 2005–present data
for analysis.8

. clear

. freduse DTB3
(14263 observations read)

. rename daten caldate

. tsset caldate
time variable: caldate, 04jan1954 to 03sep2008, but with gaps

delta: 1 day

. keep if tin(1aug2005,)
(13455 observations deleted)

. label var caldate date

. tsline DTB3

These data do not contain observations for weekends and are missing for US holidays.
You may not want to drop the observations containing missing data, though, as we may
have complete data for other variables. For instance, exchange rate data are available
every day. If there were no missing data in our series—only missing observations—you
could use Drukker’s suggestion and generate seqdate = n. As there are observations
for which DTB3 is missing, you must follow a more complex route:

. quietly generate byte notmiss = !missing(DTB3)

. quietly generate seqdate = cond(notmiss,sum(notmiss),.)

. tsset seqdate

7. This recipe is adapted from Stata Tip 40 (Baum (2007)). I am grateful to David M. Drukker for
his contributions to this Stata Tip.

8. If you run this example, you will retrieve a longer time-series, and produce different output than
shown below.

i

i

i

i

i

i

i

i

120 Chapter 6 Cookbook: Do-file programming II

time variable: seqdate, 1 to 776
delta: 1 unit

The variable seqdate is created as the sequential day number for every non-missing
day and is itself missing when DTB3 is missing. This allows us to use this variable in
tsset and then employ time-series operators (see [U] 11.4 varlists) in generate or
estimation commands such as regress. You may want to display the transformed data
(or results from estimation, such as predicted values) on a time-series graph. You can
view the data graphically with tsline ([G] tsline): To do this, you can just revert to
the other tsset declaration:

. quietly generate dDTB3 = D.DTB3

. label var dDTB3 "Daily change in 3-mo Treasury rate"

. tsset caldate
time variable: caldate, 01aug2005 to 03sep2008, but with gaps

delta: 1 day

. tsline dDTB3, yline(0)

−
.5

0
.5

D
ai

ly
 c

ha
ng

e
in

 3
−

m
o

T
re

as
ur

y
ra

te

01jul2005 01jul2006 01jul2007 01jul2008
date

Figure 6.1: Change in Treasury bill rate.

If you retain both the caldate and seqdate variables in our saved dataset, you will
always be able to view these data either on a time-series calendar or as a sequential
series. In my research, I need to know how many calendar days separate each observed
point (1 for Thursday–Friday but 3 for Friday–Monday) and then sum the dDTB3 by
month, weighting each observation by the square root of the days of separation:

i

i

i

i

i

i

i

i

6.3 Handling time-series data effectively 121

. tsset seqdate
time variable: seqdate, 1 to 776

delta: 1 unit

. quietly generate dcal = D.caldate if !missing(seqdate)

. quietly generate month = mofd(caldate) if !missing(seqdate)

. format %tm month

. sort month (seqdate)

. quietly by month: generate adjchange = sum(dDTB3/sqrt(dcal))

. quietly by month: generate sumchange = adjchange if _n==_N & !missing(month)

. list month sumchange if !missing(sumchange), sep(0) noobs

month sumchange

2005m8 -.003812
2005m9 -.0810769
2005m10 .2424316
2005m11 -.063453
2005m12 .096188
2006m1 .2769615
2006m2 .099641
2006m3 .0142265
2006m4 .0938675
2006m5 .0350555
2006m6 .0327906
2006m7 .0304485
2006m8 -.083812
2006m9 -.123094
2006m10 .1338675
2006m11 -.0428446
2006m12 -.015
2007m1 .0523205
2007m2 .0023205
2007m3 -.1142265
2007m4 -.0973205
2007m5 -.2245855
2007m6 .012376
2007m7 .0089786
2007m8 -.9057735
2007m9 -.4818504
2007m10 -.0882864
2007m11 -.9123026
2007m12 -.029279
2008m1 -1.177312
2008m2 -.2422094
2008m3 -.6493376
2008m4 -.000718
2008m5 .377735
2008m6 -.1321539
2008m7 -.201188
2008m8 -.0783419
2008m9 -.02

i

i

i

i

i

i

i

i

122 Chapter 6 Cookbook: Do-file programming II

6.4 reshape to perform row-wise computation

The problem: in the context of a panel (longitudinal) dataset, some attributes are
stored in separate Stata variables. We want to perform some computations across those
Stata variables.

In this example, taken from a question on Statalist, the user has a panel of elections
identified by U.S. state and year with a set of variables listing names of candidates
(given names only in this fictitious example):

. use cb5a, clear

. list

state year cand1 cand2 cand3

1. TX 2001 Tom Dick Harry
2. TX 2005 Dick Jane Harry
3. MA 2002 John Jim Jack
4. MA 2003 Jim Jill Joan
5. MA 2005 John Jill Jim

We want to compute the number of candidates who have stood for election in each state
over the available years. Several candidates have stood more than once. This problem
is solved by placing the data in Stata’s long form with reshape long. The unique row
identifier is constructed from the state and year variables with the concat() function
from egen ([D] egen):

. egen rowid = concat(state year)

. reshape long cand, i(rowid) j(candnr)
(note: j = 1 2 3)

Data wide -> long

Number of obs. 5 -> 15
Number of variables 6 -> 5
j variable (3 values) -> candnr
xij variables:

cand1 cand2 cand3 -> cand

. list

rowid candnr state year cand

1. MA2002 1 MA 2002 John
2. MA2002 2 MA 2002 Jim
3. MA2002 3 MA 2002 Jack
4. MA2003 1 MA 2003 Jim
5. MA2003 2 MA 2003 Jill

6. MA2003 3 MA 2003 Joan
7. MA2005 1 MA 2005 John
8. MA2005 2 MA 2005 Jill
9. MA2005 3 MA 2005 Jim

i

i

i

i

i

i

i

i

6.4 reshape to perform row-wise computation 123

10. TX2001 1 TX 2001 Tom

11. TX2001 2 TX 2001 Dick
12. TX2001 3 TX 2001 Harry
13. TX2005 1 TX 2005 Dick
14. TX2005 2 TX 2005 Jane
15. TX2005 3 TX 2005 Harry

. save cb5along, replace
file cb5along.dta saved

Alternatively, we could have created the rowid variable with

. generate rowid = state + string(year)

The concat() function has the advantage that it will perform any needed string con-
versions on the fly.

We now use by-groups and the egen total() function to produce the desired state-
level tally. We return the data, now containing this state-level statistic, to the wide
structure:

. bysort state cand: generate byte last=(_n == _N)

. egen totcand = total(last), by(state)

. drop last

. quietly reshape wide

. list, sepby(state)

rowid cand1 cand2 cand3 state year totcand

1. MA2002 John Jim Jack MA 2002 5
2. MA2003 Jim Jill Joan MA 2003 5
3. MA2005 John Jill Jim MA 2005 5

4. TX2001 Tom Dick Harry TX 2001 4
5. TX2005 Dick Jane Harry TX 2005 4

If only a table of states and the number of distinct candidates was needed, the drop

and egen statements could be replaced with tabstat ([R] tabstat) applied to the last

variable:

. tabstat last, stat(sum) nototal by(state)

Summary for variables: last
by categories of: state

state sum

MA 5
TX 4

As an alternative, we could use the tag() function from egen which tags a single

i

i

i

i

i

i

i

i

124 Chapter 6 Cookbook: Do-file programming II

observation in each distinct group defined by the egen varlist . Tagged observations are
flagged by 1, while others have value 0. Thus, we could calculate the desired total for
each state:

. use cb5along, clear

. egen indivcount = tag(state cand)

. egen totcand = total(indivcount), by(state)

. tabstat totcand, nototal by(state)

Summary for variables: totcand
by categories of: state

state mean

MA 5
TX 4

Although we illustrate this concept of employing reshape long in the context of
panel data, it is equally useful in many cross-section datasets. Many applications which
would involve the use of row-wise operators in a spreadsheet can be better handled in
Stata by transforming the data to the long structure and transforming it back to wide
if desired.

i

i

i

i

i

i

i

i

6.5 Adding computed statistics to presentation-quality tables 125

6.5 Adding computed statistics to presentation-quality ta-
bles

The problem: you need to produce presentation-quality tables from estimation out-
put that include quantities not available in the ereturn list. Stata’s mfx command
([R] mfx) can compute many measures of marginal effects, and its computed quantities
can be stored with the saved estimates via estimates store. However, there is no way
to access those stored quantities with estimates table.

A solution to this problem, removing the need for manual editing of the tables, is
available from Ben Jann’s estout suite, described in Section 5.4.1. First of all, the
quantities to be retrieved from the estimates must be made into additional scalars and
stored with the estimates using estadd. Then, those scalars may be requested in the
esttab output as additional statistics, and given appropriate labels.

In the example below, we estimate two forms of an equation from the usairquality
dataset (Rabe-Hesketh and Everitt (2006)) using OLS (regress) and IV (ivregress
2sls). The variable of interest is so2, the sulphur dioxide concentration in each city’s
atmosphere. This pollutant is modeled as a function of the city’s population, number
of manufacturing establishments and average wind speed. In the instrumental variables
estimation, we consider population as possibly endogenous, and instrument it with
average temperature and mean precipitation.

After each estimation, we use mfx compute, eyex to compute the elasticities of so2
with respect to each regressor.9 As mfx is an e-class command, its results are accessible:
in this case, in matrices e(Xmfx eyex) and e(Xmfx se eyex) for the elasticity point
estimates and their standard errors, respectively. The [1,1] element of each matrix
refers to mpg, as it is the first regressor. We store that element of the matrix as a scalar,
nu for the elasticity and nuse for its standard error, before storing the estimates.

. use airquality, clear

. // estimate with OLS

. qui regress so2 pop manuf wind

. mfx compute, eyex

Elasticities after regress
y = Fitted values (predict)

= 30.04878

variable ey/ex Std. Err. z P>|z| [95% C.I.] X

pop -1.158096 .30621 -3.78 0.000 -1.75826 -.55793 608.61
manuf 1.291947 .25205 5.13 0.000 .797928 1.78597 463.098
wind -.4346578 .55942 -0.78 0.437 -1.53111 .661794 9.4439

. matrix nu = e(Xmfx_eyex)

. estadd scalar nu = nu[1, 1]

added scalar:
e(nu) = -1.158096

9. Elasticities are discussed in Section 9.5.

i

i

i

i

i

i

i

i

126 Chapter 6 Cookbook: Do-file programming II

. matrix nuse = e(Xmfx_se_eyex)

. estadd scalar nuse = nuse[1, 1]

added scalar:
e(nuse) = .30621274

. estimates store one

. // reestimate using IV

. qui ivregress 2sls so2 (pop = temp precip) manuf wind

. mfx compute, eyex

Elasticities after ivregress
y = Fitted values (predict)

= 30.04878

variable ey/ex Std. Err. z P>|z| [95% C.I.] X

pop -2.599056 .83744 -3.10 0.002 -4.24041 -.957699 608.61
manuf 2.37258 .64775 3.66 0.000 1.10301 3.64215 463.098
wind -.5755015 .68932 -0.83 0.404 -1.92655 .775546 9.4439

. matrix nu = e(Xmfx_eyex)

. estadd scalar nu = nu[1, 1]

added scalar:
e(nu) = -2.5990558

. matrix nuse = e(Xmfx_se_eyex)

. estadd scalar nuse = nuse[1, 1]

added scalar:
e(nuse) = .83744228

. estimates store two

We now are ready to use esttab to present the estimates. The stat() option allows us
to name the nu and nuse scalars as added statistics and give them appropriate labels.

. esttab one two, mtitles("OLS" "IV") stat(nu nuse, labels("Elas.(pop)" "SE"))

(1) (2)
OLS IV

pop -0.0572*** -0.128**
(-3.97) (-3.26)

manuf 0.0838*** 0.154***
(5.63) (3.93)

wind -1.383 -1.831
(-0.78) (-0.84)

_cons 39.09* 54.15*
(2.32) (2.47)

Elas.(pop) -1.158 -2.599
SE 0.306 0.837

t statistics in parentheses
* p<0.05, ** p<0.01, *** p<0.001

i

i

i

i

i

i

i

i

6.5.1 Presenting marginal effects rather than coefficients 127

Using additional options on esttab, we could create a table in LATEX, HTML, CSV,
RTF or tab-delimited format.

6.5.1 Presenting marginal effects rather than coefficients

When presenting the results from limited dependent variable estimation commands such
as probit ([R] probit) or logit ([R] logit), it is usual practice to display the effects on
the probability of observing unity rather than the raw coefficient estimates. The latter
estimates reflect ∂I/∂Xj, that is, the change in the index variable or latent variable
resulting from a change in Xj. Stata can readily compute the quantities ∂Pr[y = 1]/∂Xj

with mfx, but how may you present them in a publication-quality table for a set of
equations?

The margin option on Ben Jann’s esttab and estout commands provide this capa-
bility. With that option specified, display of the raw coefficient estimates is suppressed,
and the desired marginal effects and their standard errors are displayed in their place.
As an example, let’s generate an indicator variable for cities with sulphur dioxide con-
centration above and below the median level, and estimate two forms of a ⁀probit model:

. qui summarize so2, detail

. generate hiso2 = (so2 > r(p50)) & !missing(so2)

. summarize precip, meanonly

. generate hiprecip = (precip > r(mean)) & !missing(precip)

. qui probit hiso2 pop manuf

. mfx compute

Marginal effects after probit
y = Pr(hiso2) (predict)

= .50262647

variable dy/dx Std. Err. z P>|z| [95% C.I.] X

pop -.0008596 .00055 -1.57 0.115 -.00193 .000211 608.61
manuf .001419 .00068 2.08 0.037 .000084 .002754 463.098

. estimates store three

. qui probit hiso2 pop manuf hiprecip

. mfx compute

Marginal effects after probit
y = Pr(hiso2) (predict)

= .503741

variable dy/dx Std. Err. z P>|z| [95% C.I.] X

pop -.0009268 .00056 -1.67 0.095 -.002016 .000163 608.61
manuf .0015382 .00071 2.17 0.030 .000151 .002925 463.098

hiprecip* .1562071 .17248 0.91 0.365 -.181851 .494265 .560976

(*) dy/dx is for discrete change of dummy variable from 0 to 1

. estimates store four

i

i

i

i

i

i

i

i

128 Chapter 6 Cookbook: Do-file programming II

It is straightforward to present the marginal effects using esttab:

. esttab three four, margin

(1) (2)
hiso2 hiso2

pop -0.000860 -0.000927
(-1.57) (-1.67)

manuf 0.00142* 0.00154*
(2.08) (2.17)

hiprecip (d) 0.156
(0.91)

N 41 41

Marginal effects; t statistics in parentheses
(d) for discrete change of dummy variable from 0 to 1
* p<0.05, ** p<0.01, *** p<0.001

As in the prior example, this tabular output could be presented in any of several formats
in addition to the default SMCL.

i

i

i

i

i

i

i

i

6.6 Generating time series data at a lower frequency 129

6.6 Generating time series data at a lower frequency

The problem: your data are on a time series calendar, but you want to express them at
a lower time series frequency. For instance, you may have monthly data, but you would
like to present them as quarterly data. You might want to retain only one observation
per quarter (such as the quarter-end value), or sum the values over the quarter, or
average the values over the quarter depending on the type of data.

To solve this problem, I will make use of a handy tool, tsmktim (Baum and Wiggins
(2000), which will compute a time series calendar variable given the first observation’s
value.10 The tsmktim command also automatically applies tsset with the appropriate
frequency so that time series operators and functions may be used. It is your respon-
sibility to ensure that the data are correctly sorted in time order and have no missing
time periods before invoking tsmktim.

We access the air2 dataset of airline passenger boardings. This contains a variable
time taking on values 1949.0, 1949.083, 1949.167, etc. but no proper Stata calendar
variable. We generate such a variable with tsmktim as ym. The option start(1949m1)

tells the command that these data are to be placed on a monthly calendar. To compute
the month of each observation, we use the Stata date functions month() and dofm().
The last month of each quarter can be found with the mod() function; quarter-end
month numbers are evenly divisible by 3, providing the indicator variable eoq.

. use air2, clear
(TIMESLAB: Airline passengers)

. * put a timeseries calendar on the data

. tsmktim ym, start(1949m1)
time variable: ym, 1949m1 to 1960m12

delta: 1 month

. * get the month number

. generate mnr = month(dofm(ym))

. * find the end-of-quarter months

. generate eoq = (mod(mnr, 3) == 0)

. list ym mnr eoq air in 1/16, sep(4) noobs

ym mnr eoq air

1949m1 1 0 112
1949m2 2 0 118
1949m3 3 1 132
1949m4 4 0 129

1949m5 5 0 121
1949m6 6 1 135
1949m7 7 0 148
1949m8 8 0 148

1949m9 9 1 136
1949m10 10 0 119
1949m11 11 0 104
1949m12 12 1 118

10. The most recent version of tsmktim is available from the SSC Archive ([R] ssc).

i

i

i

i

i

i

i

i

130 Chapter 6 Cookbook: Do-file programming II

1950m1 1 0 115
1950m2 2 0 126
1950m3 3 1 141
1950m4 4 0 135

We now can consider each of the proposed tasks. To retain only the quarter-end obser-
vations, we need only keep the values indicated by eoq, and use tsmktim on the new
series to define it as quarterly data:

. // keep only last month of quarter

. keep if eoq
(96 observations deleted)

. tsmktim yq, start(1949q1)
time variable: yq, 1949q1 to 1960q4

delta: 1 quarter

. list yq air in 1/16, sep(4) noobs

yq air

1949q1 132
1949q2 135
1949q3 136
1949q4 118

1950q1 141
1950q2 149
1950q3 158
1950q4 140

1951q1 178
1951q2 178
1951q3 184
1951q4 166

1952q1 193
1952q2 218
1952q3 209
1952q4 194

To sum the values over the quarter, we must compute the quarter associated with each
month in Stata’s calendar system, using the qofd() function. We can then use collapse
to create the new dataset of quarterly values, each of which is the sum of the monthly
values of air. We again use tsmktim to generate the new quarterly calendar variable.

. // sum the values over the quarter

. generate qtr = qofd(dofm(ym))

. format qtr %tq

. collapse (sum) airsum=air, by(qtr)

. tsmktim yq, start(1949q1)
time variable: yq, 1949q1 to 1960q4

delta: 1 quarter

i

i

i

i

i

i

i

i

6.6 Generating time series data at a lower frequency 131

. list yq airsum in 1/16, sep(4) noobs

yq airsum

1949q1 362
1949q2 385
1949q3 432
1949q4 341

1950q1 382
1950q2 409
1950q3 498
1950q4 387

1951q1 473
1951q2 513
1951q3 582
1951q4 474

1952q1 544
1952q2 582
1952q3 681
1952q4 557

If instead we wanted the average values over each quarter, we would merely apply
collapse which computes the mean as a default:

. // average the values over the quarter

. generate qtr = qofd(dofm(ym))

. format qtr %tq

. collapse airavg=air, by(qtr)

. tsmktim yq, start(1949q1)
time variable: yq, 1949q1 to 1960q4

delta: 1 quarter

. list yq airavg in 1/16, sep(4) noobs

yq airavg

1949q1 120.667
1949q2 128.333
1949q3 144
1949q4 113.667

1950q1 127.333
1950q2 136.333
1950q3 166
1950q4 129

1951q1 157.667
1951q2 171
1951q3 194
1951q4 158

1952q1 181.333

i

i

i

i

i

i

i

i

132 Chapter 6 Cookbook: Do-file programming II

1952q2 194
1952q3 227
1952q4 185.667

As these tasks with time series data are encountered quite commonly, a variation on
the official collapse command is available in the tscollap routine (Baum (2000)).11

The syntax of tscollap mirrors that of collapse, with one additional mandatory op-
tion: the frequency to which the time series are to be collapsed. In this case, to(q) spec-
ifies that the monthly data are to be collapsed to quarterly. Optionally, the generate()
option can be used to name the time series calendar variable that will be created. To
illustrate:

. tsset ym
time variable: ym, 1949m1 to 1960m12

delta: 1 month

. tscollap (last) aireoq=air (sum) airsum=air (mean) airavg=air, to(q) gen(yq)

Converting from M to Q

time variable: yq, 1949q1 to 1960q4
delta: 1 quarter

. list in 1/16, sep(4) noobs

aireoq airsum airavg yq

132 362 120.667 1949q1
135 385 128.333 1949q2
136 432 144 1949q3
118 341 113.667 1949q4

141 382 127.333 1950q1
149 409 136.333 1950q2
158 498 166 1950q3
140 387 129 1950q4

178 473 157.667 1951q1
178 513 171 1951q2
184 582 194 1951q3
166 474 158 1951q4

193 544 181.333 1952q1
218 582 194 1952q2
209 681 227 1952q3
194 557 185.667 1952q4

In this case, we see that all three operations on the air time series may be performed
by a single invocation of tscollap.

For another recipe involving generating lower-frequency measures from time series

11. The most recent version of tscollap is available from the SSC Archive ([R] ssc).

i

i

i

i

i

i

i

i

6.6 Generating time series data at a lower frequency 133

data, see Section 8.3.

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

7 Do-file programming: prefixes, loops
and lists

7.1 Introduction

Stata’s facility for efficient data management, statistical analysis and graphics is largely
based on the ability to program repetitive tasks, avoiding manual effort and reducing
errors. In developing your use of these techniques, you should always consider how you
can get the computer to do what it does best. Any research project involves repetitive
tasks of some sort and a modest amount of time taken automating those tasks will
greatly reduce your workload and likelihood of errors.

In this chapter, we discuss three programming features specifically applicable to
repetitive tasks: Stata’s prefix operators, loop commands and list constructs.

7.1.1 What you should learn from this chapter

• How to use the by and xi prefix operators effectively

• How to use statsby and rolling to collect statistics

• How to perform Monte Carlo simulations

• How to compute bootstrap and jackknife estimates of precision

• How to perform loops with forvalues and foreach

7.2 Prefix operators

Stata’s prefix operators perform repetitive tasks without explicit specification of the
range of values over which the tasks are to be performed. This is of particular value when
the distribution of values may be discontinuous or forms no particular pattern. These
operators will often serve your needs in performing tasks with minimal programming,
but they also have limitations. For instance, the by ([D] by) prefix repetitively executes
a single command but cannot perform multiple commands. In terms of ease of use, it
is a good strategy to consider whether a prefix operator will serve your needs before
turning to more complicated programming constructs.

135

i

i

i

i

i

i

i

i

136 Chapter 7 Do-file programming: prefixes, loops and lists

7.2.1 The by operator

Many Stata users are already familiar with the by ([D] by) prefix operator, as discussed
in Section 3.5. The syntax

by varlist [, sort]: command

specifies that command is to be repeated for each distinct value of the varlist . Con-
sider the simplest case, where varlist contains a single variable: if numeric, an integer
(categorical) variable, or a string variable. If the data are not sorted by that variable
(or in general terms by the varlist) before employing by, the sort option or the form
bysort varlist should be used. The command will be repeated for each distinct value
of the variable regardless of how many values that may entail. Repetitions will follow
the sorting order of the variable, whether string or numeric.

If the varlist contains multiple variables, the same principle applies. The data must
be sorted by the varlist , or bysort may be used. The command will be repeated for each
distinct combination of values in the varlist . Consider the bpress dataset containing
blood pressure measurements of individuals categorized by gender (with an indicator
sex, 0=male) and one of three agegrp codes (1=30-45, 2=46-59, 3=60+).

. use bpress, clear
(fictional blood-pressure data)

. bysort sex agegrp: summarize bp

-> sex = Male, agegrp = 30-45

Variable Obs Mean Std. Dev. Min Max

bp 40 119.95 12.53498 95 146

-> sex = Male, agegrp = 46-59

Variable Obs Mean Std. Dev. Min Max

bp 40 128.15 13.90914 102 155

-> sex = Male, agegrp = 60+

Variable Obs Mean Std. Dev. Min Max

bp 40 134.075 10.27665 116 155

-> sex = Female, agegrp = 30-45

Variable Obs Mean Std. Dev. Min Max

bp 40 116.05 9.483995 101 138

-> sex = Female, agegrp = 46-59

Variable Obs Mean Std. Dev. Min Max

bp 40 117.725 10.10201 97 140

-> sex = Female, agegrp = 60+

i

i

i

i

i

i

i

i

7.2.2 The xi operator 137

Variable Obs Mean Std. Dev. Min Max

bp 40 127.475 12.02985 108 155

The summarize ([R] summarize) command will be executed for each combination of
sex and agegrp. If a combination did not exist in the data (for instance, if there were
no elderly males in our sample) it will merely be skipped.

Another way in which you might approach this problem makes use of the egen

function group(). This function creates a variable taking on values 1, 2,. . . for the
groups formed by varlist . To create groups by gender and age group, we could use

. egen group = group(sex agegrp), label

. by group, sort: summarize bp

The label option causes the groups defined by egen to be labeled with the elements of
each group, so that the summarize headers will read

-> group = Male 30-45

and so on. For additional pointers on using by:, see Cox (2002a).

A by: option rc0 (return code zero), specified before the colon, is often useful. You
might specify command to be an estimation command which would fail if insufficient
observations existed in a particular by-group. This would normally abort the do-file,
which might be appropriate if you expected that all by-groups could be successfully
processed. In many cases, though, you may know that there are some infeasible by-
groups. Rather than having to program for that eventuality, you can specify rc0 to
force by to continue through the remaining by-groups.

7.2.2 The xi operator

While by repeats a command based on the distinct values of varlist , we often want to
produce indicator (binary, or dummy) variables for each of those distinct values. The
xi ([R] xi) command prefix serves two roles. It may be used by itself to produce a set of
indicator variables from one or more terms. More commonly, it is used in conjunction
with another command in which those terms play a role. To understand its function,
we must first define the terms which xi comprehends.

In the simplest form, a term may be just i.varname, where varname refers to a
numeric or string categorical variable.1 For instance, using

. xi i.agegrp

Stata will create two indicator variables, omitting the lowest value (which Stata refers
to as naturally coded indicators). By default the indicator variables will be named
Iagegrp2 and Iagegrp3 and their variable labels will contain the name of the cat-

1. I.varname (with a capital I) may also be used.

i

i

i

i

i

i

i

i

138 Chapter 7 Do-file programming: prefixes, loops and lists

egorical variable and its level. Using the prefix(string) option, the prefix may be
specified as something other than I. You may refer to the set of indicator variables
with a wildcard: for instance,

. regress bp _I*

will include both agegrp indicator variables in the regression. When you use xi, all
previously created variables with the same prefix (for example, I) will be automatically
dropped.

For a single term (such as i.agegrp) similar functionality is available using the
command

tabulate varname, generate(prefix)

with the distinction that tabulate will generate a full set of indicator variables.

More commonly, xi may be used as a prefix operator, preceding another Stata
command to produce the needed indicator variables on the fly:

. xi: regress bp i.agegrp

More than one term may be included in either format of xi. For instance,

. xi: regress income i.agegrp i.sex

would include both two agegrp dummies and one sex dummy (denoting females) in the
regression:

. xi: regress bp i.agegrp i.sex
i.agegrp _Iagegrp_1-3 (naturally coded; _Iagegrp_1 omitted)
i.sex _Isex_0-1 (naturally coded; _Isex_0 omitted)

Source SS df MS Number of obs = 240
F(3, 236) = 23.98

Model 9559.19583 3 3186.39861 Prob > F = 0.0000
Residual 31353.6 236 132.854237 R-squared = 0.2336

Adj R-squared = 0.2239
Total 40912.7958 239 171.183246 Root MSE = 11.526

bp Coef. Std. Err. t P>|t| [95% Conf. Interval]

_Iagegrp_2 4.9375 1.822459 2.71 0.007 1.347134 8.527866
_Iagegrp_3 12.775 1.822459 7.01 0.000 9.184634 16.36537

_Isex_1 -6.975 1.488031 -4.69 0.000 -9.906521 -4.043479
_cons 121.4875 1.488031 81.64 0.000 118.556 124.419

The advantages of xi are clearly evident when interactions of variables are to be
used in a model. In the example above, you may want to allow agegrp and sex to
have non-independent effects on bp. This implies that two interaction terms must also
be created, one for each combination of included agegrp and sex terms. This can be
achieved by using

. xi: regress bp i.agegrp*i.sex

i

i

i

i

i

i

i

i

7.2.2 The xi operator 139

This model will include both the main effects of the qualitative factors agegrp and sex

as well as the interaction effects of those two factors. The interaction terms will be
named to specify their elements: for instance, IsexXage 1 3 is the interaction (X) of
sex = 1 and agegrp = 3. Note that the variable name agegrp has been shortened to
ensure that the variable names obey length limits.

. xi: regress bp i.agegrp*i.sex
i.agegrp _Iagegrp_1-3 (naturally coded; _Iagegrp_1 omitted)
i.sex _Isex_0-1 (naturally coded; _Isex_0 omitted)
i.age~p*i.sex _IageXsex_#_# (coded as above)

Source SS df MS Number of obs = 240
F(5, 234) = 15.12

Model 9989.17083 5 1997.83417 Prob > F = 0.0000
Residual 30923.625 234 132.152244 R-squared = 0.2442

Adj R-squared = 0.2280
Total 40912.7958 239 171.183246 Root MSE = 11.496

bp Coef. Std. Err. t P>|t| [95% Conf. Interval]

_Iagegrp_2 8.2 2.570528 3.19 0.002 3.135666 13.26433
_Iagegrp_3 14.125 2.570528 5.49 0.000 9.060666 19.18933

_Isex_1 -3.9 2.570528 -1.52 0.131 -8.964334 1.164334
_IageXse~2_1 -6.525 3.635275 -1.79 0.074 -13.68705 .6370503
_IageXse~3_1 -2.7 3.635275 -0.74 0.458 -9.86205 4.46205

_cons 119.95 1.817638 65.99 0.000 116.369 123.531

A similar syntax may also be used to interact a categorical variable such as agegrp
with a continuous variable. If you had a measurement of blood pressure from the
previous year’s examination (bp0) you could use the syntax

. xi: regress bp i.agegrp*bp0

to estimate a model in which each agegrp has its own constant term and slope. The
coefficient on bp0 is the effect of that variable for agegrp = 1, and the coefficients on
IageXbp0 2 and IageXbp0 3 are the contrasts between the slopes of agegrp = 2, 3
and agegrp = 1, respectively.

. xi: regress bp i.agegrp*bp0
i.agegrp _Iagegrp_1-3 (naturally coded; _Iagegrp_1 omitted)
i.agegrp*bp0 _IageXbp0_# (coded as above)

Source SS df MS Number of obs = 240
F(5, 234) = 1030.30

Model 39135.1347 5 7827.02693 Prob > F = 0.0000
Residual 1777.66117 234 7.59684259 R-squared = 0.9565

Adj R-squared = 0.9556
Total 40912.7958 239 171.183246 Root MSE = 2.7562

bp Coef. Std. Err. t P>|t| [95% Conf. Interval]

_Iagegrp_2 -6.916522 4.092998 -1.69 0.092 -14.98036 1.147314
_Iagegrp_3 -.4387195 4.423308 -0.10 0.921 -9.153316 8.275876

bp0 .9269775 .0262564 35.30 0.000 .8752485 .9787066
_IageXbp0_2 .0527261 .0352761 1.49 0.136 -.0167733 .1222255

i

i

i

i

i

i

i

i

140 Chapter 7 Do-file programming: prefixes, loops and lists

_IageXbp0_3 .0079293 .0368904 0.21 0.830 -.0647505 .0806091
_cons 13.58902 2.97342 4.57 0.000 7.730927 19.44712

One other type of term may be handled by xi for the interaction of categorical and
continuous variables.2 The syntax

. xi: regress bp i.agegrp|bp0

specifies that the interaction variables should be included in the model, but that the
main effects of the categorical variable should not. The constant term of this regression
pertains to all observations, while the slope with respect to bp0 is allowed to differ by
agegrp categories.

7.2.3 The statsby operator

As mentioned above, a limitation of by: is that only a single command may be specified.
When performing an estimation command such as regress ([R] regress), you may want
to both view the regression output for each by-group and save some of the statistics pro-
duced in each regression. These might include some or all of the estimated coefficients,
their standard errors and summary statistics from the regression. This functionality is
provided by the statsby ([D] statsby) prefix operator. With the syntax

statsby exp list, by(varlist) [options] : command

the command will be executed for each element of the by-list, as with by. However,
the exp list specifies that for each repetition, the results of evaluating one or more
expressions are to be saved. By default, the dataset in memory will be replaced by
the saved expressions. To preserve the existing contents of memory, you may use the
saving(filename) option of statsby (before the colon) to specify the name of a new
dataset.

Using the example given above for by:, you could use the command

. statsby mean=r(mean) sd=r(sd) n=r(N), by(agegrp sex) saving(bpstats, replace): summarize bp

to produce a new dataset named bpstats with one observation per by-group. The
dataset will contain three variables specified in the exp list: the mean, standard devia-
tion and number of observations in each by-group. It will also contain one variable for
each element of the by-list to identify from which combination of variables the observa-
tion was calculated (in this example, agegrp and sex).

. statsby mean=r(mean) sd=r(sd) n=r(N), by(agegrp sex) saving(bpstats, replace)
> : summarize bp
(running summarize on estimation sample)

command: summarize bp
mean: r(mean)

2. If you are using anova ([R] anova), note that it has its own specific syntax for defining interaction
effects.

i

i

i

i

i

i

i

i

7.2.4 The rolling operator 141

sd: r(sd)
n: r(N)
by: agegrp sex

Statsby groups
1 2 3 4 5

......

. use bpstats, clear
(statsby: summarize)

. list, sepby(agegrp)

agegrp sex mean sd n

1. 30-45 Male 119.95 12.53498 40
2. 30-45 Female 116.05 9.483994 40

3. 46-59 Male 128.15 13.90914 40
4. 46-59 Female 117.725 10.10201 40

5. 60+ Male 134.075 10.27665 40
6. 60+ Female 127.475 12.02985 40

The total option on statsby specifies that an additional observation should be
generated for the entire dataset specified by the command. The values of the by-variables
are set to missing for the observation corresponding to the total.

7.2.4 The rolling operator

The statsby ([D] statsby) prefix computes statistics for non-overlapping subsamples.
In the context of time series data, you often want to compute statistics for overlapping
subsamples: so-called rolling window estimation using the rolling ([TS] rolling) prefix.
For instance, you may want to forecast a variable for a number of time periods, using only
the observations available at the time to make a one-period-ahead forecast. The window
may be an ever-widening window, including more observations over time (referred to as
recursive estimation), or the window width may be fixed, so that a chosen number of
past time periods are considered in each computation. In the latter case, the number of
available observations in each window may vary due to holidays, weekends, etc. in the
case of daily data.3

Like the statsby prefix, the rolling prefix can create a new dataset of results from
the specified statistical command. With the syntax

rolling exp list [if exp] [in range] [, options] : command

the command will be executed as specified by the options. For instance, if window(12) is
specified, twelve time periods will be included in each estimation. The exp list specifies
that for each repetition, one or more expressions are to be saved. By default, the dataset

3. The rolling prefix also supports reverse recursive analysis, where the endpoint is held fixed and
the starting period varies.

i

i

i

i

i

i

i

i

142 Chapter 7 Do-file programming: prefixes, loops and lists

in memory will be replaced by the saved expressions. To preserve the existing contents
of memory, you may use the saving(filename) option of rolling (before the colon) to
specify the name of a new dataset.

To illustrate, we estimate a quantile regression (qreg, [R] qreg) of the daily return
on IBM stock on the S&P 500 index return, using a 90-day window. This regression
represents the celebrated Capital Asset Pricing Model (CAPM) in which the slope
coefficient measures the sensitivity of the stock’s return to that of the market (the so-
called CAPM beta). Finance theory predicts that stocks with higher betas are more
risky, and require a higher return.

. use ibm, clear
(Source: Yahoo! Finance)

. rolling _b _se, window(90) saving(capm, replace) nodots: qreg ibm spx
file capm.dta saved

We may now examine the resulting Stata data file created by rolling. The start and
end variables indicate the endpoints of each moving window. The variable of particular
interest is b spx, the coefficient of the S&P 500 index return.

. use capm, clear
(rolling: qreg)

. label var _b_spx "quantile reg IBM beta"

. label var end "date"

. list in 1/5

start end _b_spx _b_cons _se_spx _se_cons

1. 02jan2003 01apr2003 1.066401 .1961641 .0866684 .1246594
2. 03jan2003 02apr2003 1.123538 .2001785 .0668068 .0978385
3. 04jan2003 03apr2003 1.123538 .2001785 .0667553 .097853
4. 05jan2003 04apr2003 1.094441 .1730048 .0870072 .126642
5. 06jan2003 05apr2003 1.094441 .1730048 .0870072 .126642

You could graph the movements of the rolling CAPM beta coefficients:

. tsset end
time variable: end, 01apr2003 to 16dec2004

delta: 1 day

. format end %tdMonYY

. tsline _b_spx, yline(1) saving(fig7_1, replace) scheme(s2mono)
(file fig7_1.gph saved)

In the CAPM model, a beta of one implies that the volatility of the stock price is equal
to that of the market index. Values above one imply that the stock price is more volatile
than the market index, and vice versa. From Figure 7.1, it appears that IBM shares
became less sensitive to stock market movements over the period.

i

i

i

i

i

i

i

i

7.2.5 The simulate and permute operators 143

.4
.6

.8
1

1.
2

qu
an

til
e

re
g

IB
M

 b
et

a

Apr03 Jul03 Oct03 Jan04 Apr04 Jul04 Oct04 Jan05
date

Figure 7.1: Rolling robust regression coefficients.

7.2.5 The simulate and permute operators

The simulate ([R] simulate) prefix provides Stata’s facilities for Monte Carlo sim-
ulation. Like the other prefix commands, simulate repeatedly executes a specified
command. In this case, the reps() option specifies how many repetitions of the com-
mand are to be performed, each one producing a set of results in the exp list. With
formal syntax

simulate exp list, reps(#) [options] : command

simulateworks quite similarly to other prefix commands, with one important difference:
the command often will refer to a user-written program or ado-file.4 You could, for
instance, simulate the behavior of several percentiles of a randomly distributed random
variable with the following program. In this case, the program you must write is quite
formulaic: it clears memory, sets the number of observations in the dataset, creates
a random variable and generates its descriptive statistics. Those statistics are passed
back to simulate as scalars through the return list (see Section 5.3).

. type simpctile.ado

capture program drop simpctile

program simpctile, rclass
version 10.1
drop _all

4. We defer a full discussion of writing an ado-file to Chapter 11.

i

i

i

i

i

i

i

i

144 Chapter 7 Do-file programming: prefixes, loops and lists

set obs 200
generate z = invnormal(uniform())
summarize z, detail
return scalar p25 = r(p25)
return scalar p50 = r(p50)
return scalar p75 = r(p75)

end

Once we have written this program and stored it in simpctile.ado, we are ready to
execute it, specifying that we want to perform 1,000 repetitions. Setting the seed of
Stata’s pseudo-random number generator guarantees that the results will be identical
for multiple runs of the experiment (preferable during debugging of our program).

. clear

. set seed 2007062926

. simulate p25=r(p25) p50=r(p50) p75=r(p75), reps(1000) nodots ///
> saving(pctiles, replace): simpctile

command: simpctile
p25: r(p25)
p50: r(p50)
p75: r(p75)

We can examine the distribution of these three percentiles of our N(0, 1) random vari-
ables statistically, and graph the distribution of sample median in a histogram.

. use pctiles, clear
(simulate: simpctile)

. summarize

Variable Obs Mean Std. Dev. Min Max

p25 1000 -.6727567 .0944072 -.9533168 -.3055624
p50 1000 -.001541 .0884508 -.2731787 .3048038
p75 1000 .6694791 .0912676 .3836729 .9612866

. label var p50 "Sample median"

. histogram p50, normal saving(fig7_2, replace) scheme(s2mono)
(bin=29, start=-.2731787, width=.01993043)
(file fig7_2.gph saved)

Figure 7.2 illustrates that the distribution of the sample median is slightly skewed
relative to that of a standard Normal variate in this example. The overlay of the
standard Normal distribution is produced by the normal option. This is confirmed by
the descriptive statistics for p50, in which nonzero skewness is apparent:

. use bpress, clear
(fictional blood-pressure data)

. set seed 2007062926

. ttest bp, by(sex)

Two-sample t test with equal variances

Group Obs Mean Std. Err. Std. Dev. [95% Conf. Interval]

i

i

i

i

i

i

i

i

7.2.5 The simulate and permute operators 145

0
1

2
3

4
5

D
en

si
ty

−.4 −.2 0 .2 .4
Sample median

Figure 7.2: Distribution of sample median via Monte Carlo simulation.

Male 120 127.3917 1.236031 13.54004 124.9442 129.8391
Female 120 120.4167 1.064357 11.65944 118.3091 122.5242

combined 240 123.9042 .8445493 13.0837 122.2405 125.5679

diff 6.975 1.631143 3.761679 10.18832

diff = mean(Male) - mean(Female) t = 4.2761
Ho: diff = 0 degrees of freedom = 238

Ha: diff < 0 Ha: diff != 0 Ha: diff > 0
Pr(T < t) = 1.0000 Pr(|T| > |t|) = 0.0000 Pr(T > t) = 0.0000

. bootstrap diff=(r(mu_1) - r(mu_2)), nodots: ttest bp, by(sex)

Warning: Since ttest is not an estimation command or does not set e(sample),
bootstrap has no way to determine which observations are used in
calculating the statistics and so assumes that all observations are
used. This means no observations will be excluded from the
resampling because of missing values or other reasons.

If the assumption is not true, press Break, save the data, and drop
the observations that are to be excluded. Be sure that the dataset
in memory contains only the relevant data.

Bootstrap results Number of obs = 240
Replications = 50

command: ttest bp, by(sex)
diff: r(mu_1) - r(mu_2)

Observed Bootstrap Normal-based

i

i

i

i

i

i

i

i

146 Chapter 7 Do-file programming: prefixes, loops and lists

Coef. Std. Err. z P>|z| [95% Conf. Interval]

diff 6.975 1.271685 5.48 0.000 4.482544 9.467456

Alternatively, we can examine the distribution of sample median with a Q-Q plot, using
qnorm ([R] diagnostic plots):

. use pctiles, clear
(simulate: simpctile)

. qnorm p50, saving(fig7_3, replace) scheme(s2mono)
(file fig7_3.gph saved)

−
.4

−
.2

0
.2

.4
S

am
pl

e
m

ed
ia

n

−.4 −.2 0 .2 .4
Inverse Normal

Figure 7.3: Q-Q plot of the distribution of sample median.

A related prefix operator, permute ([R] permute) is also based on Monte Carlo
methods. It is used to estimate p-values for permutation tests from simulation results,
where the randomness refers to reordering of the observations of a particular variable.

7.2.6 The bootstrap and jackknife operators

The bootstrap ([R] bootstrap) prefix is used to perform bootstrap estimation. Like
simulate ([R] simulate), it executes a command for a certain number of repetitions,
gathering statistics in an exp list (by default the estimated coefficient vector, b,
from a standard estimation (e-class) command). The crucial difference is that whereas

i

i

i

i

i

i

i

i

7.2.6 The bootstrap and jackknife operators 147

simulate draws (pseudo-) random values from a specified distribution, bootstrap

draws random samples with replacement from a variable in your dataset. For instance,
you may run a regression in which you doubt the classical assumption of Normally dis-
tributed errors. The assumption of identically and independently distributed (i.i.d.)
errors underlies the classical calculation of the covariance matrix of the regression co-
efficients. You could develop an alternative measure of the coefficients’ precision by
computing their bootstrap standard errors. These statistics are computed by randomly
sampling (with replacement) from the regression residuals, taking their empirical dis-
tribution as a given. For estimation commands such as regress ([R] regress), you
may use the vce(bootstrap) option to produce this estimator of the covariance ma-
trix. However, if you are using a nonestimation (r-class) command such as summarize
([R] summarize) or correlate ([R] correlate), or writing your own program as a
command, the bootstrap prefix is essential. The formal syntax:

bootstrap [exp list] [,options] : command

The command may be a standard statistical command or it may refer to a user-written
program. By default, bootstrap conducts 50 replications. The bootstrap samples are
by default of size N, the current sample size. They may be chosen to be either smaller
or larger than the sample size with the size() option.

Let us consider the case of computing a bootstrap standard error for a two-sample
t-test of sample means. We employ the bpress dataset of fictitious blood pressure
measurements, and test whether mean blood pressure is affected by the patient’s gender.
For comparison, we present the standard ttest ([R] ttest) results as well as those
produced by bootstrap. As shown, the exp list may contain expressions involving the
return values of the command.

. use bpress, clear
(fictional blood-pressure data)

. set seed 2007062926

. ttest bp, by(sex)

Two-sample t test with equal variances

Group Obs Mean Std. Err. Std. Dev. [95% Conf. Interval]

Male 120 127.3917 1.236031 13.54004 124.9442 129.8391
Female 120 120.4167 1.064357 11.65944 118.3091 122.5242

combined 240 123.9042 .8445493 13.0837 122.2405 125.5679

diff 6.975 1.631143 3.761679 10.18832

diff = mean(Male) - mean(Female) t = 4.2761
Ho: diff = 0 degrees of freedom = 238

Ha: diff < 0 Ha: diff != 0 Ha: diff > 0
Pr(T < t) = 1.0000 Pr(|T| > |t|) = 0.0000 Pr(T > t) = 0.0000

. bootstrap diff=(r(mu_1) - r(mu_2)), nodots: ttest bp, by(sex)

Warning: Since ttest is not an estimation command or does not set e(sample),
bootstrap has no way to determine which observations are used in
calculating the statistics and so assumes that all observations are

i

i

i

i

i

i

i

i

148 Chapter 7 Do-file programming: prefixes, loops and lists

used. This means no observations will be excluded from the
resampling because of missing values or other reasons.

If the assumption is not true, press Break, save the data, and drop
the observations that are to be excluded. Be sure that the dataset
in memory contains only the relevant data.

Bootstrap results Number of obs = 240
Replications = 50

command: ttest bp, by(sex)
diff: r(mu_1) - r(mu_2)

Observed Bootstrap Normal-based
Coef. Std. Err. z P>|z| [95% Conf. Interval]

diff 6.975 1.271685 5.48 0.000 4.482544 9.467456

We see that the bootstrap standard error for the difference of means of 1.272 is consider-
ably smaller than the classical standard error of 1.631, resulting in a narrower confidence
interval.

Similar to bootstrap, you may use the jackknife ([R] jackknife) prefix to calculate
an alternative measure of coefficients’ precision. The concept of the jackknife is to
execute a command for each observation in the dataset leaving out one observation each
time. As with the bootstrap prefix, you usually will prefer to use the vce(jackknife)

option on an estimation command that supports it. The usefulness of the jackknife

prefix arises when you are using a nonestimation (r-class) command such as summarize
or correlate, or writing your own program as a command.

7.2.7 Other prefix operators

As [U] prefix commands indicates, there are three other prefix operators in official
Stata: svy ([SVY] svy), nestreg ([R] nestreg) and stepwise ([R] stepwise). The first
is the most widely employed as it provides access to Stata’s extensive list of commands
for the handling of complex survey data. These datasets are not produced by simple
random sampling from a population of interest. In contrast, their survey design may
make use of an elaborate multi-stage sampling process, which is specified to Stata by
the svyset ([SVY] svyset) command. Once the data have been svyset, many of Stata’s
standard estimation commands may be used following the svy: prefix.

Four other commands are technically prefixes: capture, quietly, noisily and
version. They are all useful for programming. For historical reasons, the first three do
not require the use of a trailing colon (:).

7.3 The forvalues command

One of Stata’s most powerful features is the ability to write a versatile Stata pro-
gram without a large number of repetitive statements. Many Stata commands con-

i

i

i

i

i

i

i

i

7.3 The forvalues command 149

tribute to this flexibility. As discussed in Section 3.5, egen ([R] egen) with a by option
makes it possible to avoid many explicit statements such as compute mean of age for

race==1; compute mean of age for race==2; etc. But two of Stata’s most useful
commands are not to be found in the Reference Manual: forvalues ([P] forvalues) and
foreach ([P] foreach). These versatile tools have essentially supplanted other mecha-
nisms in Stata for looping. You could also use while ([P] while) to construct a loop:
most commonly, when you are unsure how many times to repeat the loop contents. This
is a common task when seeking convergence of a numeric quantity to some target value:
for instance,

. while reldif(newval, oldval) > 0.001 {

. ...

. }

would test for the relative difference ([D] functions) between successive values of a
criterion, and would exit the loop when that difference was less than 0.1%. Conversely,
if the computational method is not guaranteed to converge, this could become an infinite
loop.

In contrast, when you have a defined set of values over which to iterate, the forvalues
and foreach commands are the tools of choice. These commands are followed by a left
brace ({), one or more following command lines, and a terminating line containing only
a right brace (}). You may place as many commands in the loop body as you wish. A
simple numeric loop may thus be constructed as:

. forvalues i = 1/4 {
2. generate double lngdp‘i’ = log(gdp‘i’)
3. summarize lngdp‘i’
4. }

Variable Obs Mean Std. Dev. Min Max

lngdp1 400 7.931661 .59451 5.794211 8.768936

Variable Obs Mean Std. Dev. Min Max

lngdp2 400 7.942132 .5828793 4.892062 8.760156

Variable Obs Mean Std. Dev. Min Max

lngdp3 400 7.987095 .537941 6.327221 8.736859

Variable Obs Mean Std. Dev. Min Max

lngdp4 400 7.886774 .5983831 5.665983 8.729272

In this example, we define the local macro i as the loop index. Following an equals
sign, we give the range of values that i is to take on as a Stata numlist.5 A range
may be as simple as 1/4, or 10(5)50, indicating 10 to 50 in steps of 5; or 100(-10)20,
from 100 to 20 counting down by tens. Other syntaxes for the range are available. See
[P] forvalues for details.

5. See Section 3.2.2. Note that not all Stata numlists are compatible with forvalues.

i

i

i

i

i

i

i

i

150 Chapter 7 Do-file programming: prefixes, loops and lists

This example provides one of the most important uses of forvalues: looping over
variables where the variables have been given names with an integer component. This
avoids the need for separate statements to transform each of the variables. The integer
component need not be a suffix. We could loop over variables named ctyNgdp just as
readily. Or, say that we have variable names with more than one integer component,
but we want to summarize the data only for countries 2 and 4:

. forvalues y = 1995(2)1999 {
2. forvalues i = 2(2)4 {
3. summarize gdp‘i’_‘y’
4. }
5. }

Variable Obs Mean Std. Dev. Min Max

gdp2_1995 400 3242.162 1525.788 133.2281 6375.105

Variable Obs Mean Std. Dev. Min Max

gdp4_1995 400 3093.778 1490.646 288.8719 6181.229

Variable Obs Mean Std. Dev. Min Max

gdp2_1997 400 3616.478 1677.353 153.0657 7053.826

Variable Obs Mean Std. Dev. Min Max

gdp4_1997 400 3454.322 1639.356 348.2078 6825.981

Variable Obs Mean Std. Dev. Min Max

gdp2_1999 400 3404.27 1602.077 139.8895 6693.86

Variable Obs Mean Std. Dev. Min Max

gdp4_1999 400 3248.467 1565.178 303.3155 6490.291

As we see here, a nested loop is readily constructed with two forvalues statements.

7.4 The foreach command

As useful as forvaluesmay be, the foreach ([P] foreach) command is even more useful
in constructing efficient do-files. This command interacts perfectly with some of Stata’s
most common constructs: the macro, the varlist and the numlist. Like forvalues, a
local macro is defined as the loop index. Rather than cycling through a set of numeric
values, foreach specifies that the loop index iterates through the elements of a local
(or global) macro, or the variable names of a varlist, or the elements of a numlist. The
list can also be an arbitrary list of elements on the command line, or a newvarlist of
valid names for variables not present in the data set.

This syntax allows foreach to be used in a very flexible manner with any set of
items, regardless of pattern. In several of the examples above, we employed foreach

with the elements of a local macro defining the list. We illustrate its use here with a
varlist from the lifeexp Reference Manual data set. We compute summary statistics,

i

i

i

i

i

i

i

i

7.4 The foreach command 151

correlations with popgrowth and generate scatterplots (not shown) for each element of
a varlist versus popgrowth:

. sysuse lifeexp,clear
(Life expectancy, 1998)

. foreach v of varlist lexp-safewater {
2. summarize ‘v’
3. correlate popgrowth ‘v’
4. scatter popgrowth ‘v’
5. }

Variable Obs Mean Std. Dev. Min Max

lexp 68 72.27941 4.715315 54 79
(obs=68)

popgro~h lexp

popgrowth 1.0000
lexp -0.4360 1.0000

Variable Obs Mean Std. Dev. Min Max

gnppc 63 8674.857 10634.68 370 39980
(obs=63)

popgro~h gnppc

popgrowth 1.0000
gnppc -0.3580 1.0000

Variable Obs Mean Std. Dev. Min Max

safewater 40 76.1 17.89112 28 100
(obs=40)

popgro~h safewa~r

popgrowth 1.0000
safewater -0.4280 1.0000

Given the order of variables in this dataset, we could have also written the first line as

. foreach v of varlist lexp-safewater {

but that depends on the order of variables in this dataset. As you are free to reorder
the variables in a dataset,6 a do-file that depends on variable ordering may produce
unpredictable results if variables have been reordered.

In the following example, we automate the construction of a recode ([D] recode)7

statement for a dataset containing values of gross domestic product (gdp) for several
countries and several years. The country codes are labeled as 1, 2, 3, 4 in the cc variable.
We would like to embed their three-digit International Monetary Fund country codes
into a copy of cc, newcc, so that we could use these values elsewhere: for instance, in
a merge operation. The resulting statement could just be typed out for four elements,

6. See [D] order.
7. See Section 3.3.3.

i

i

i

i

i

i

i

i

152 Chapter 7 Do-file programming: prefixes, loops and lists

but imagine its construction if we had 180 country codes! Note the use of local ++i, a
shorthand way of incrementing the counter variable within the loop. The loop is used
to build up the local macro rc which defines the set of transformations that are to be
applied to the cc variable.

. use gdp4cty, clear

. local ctycode 111 112 136 134

. local i 0

. foreach c of local ctycode {
2. local ++i
3. local rc "‘rc’ (‘i’=‘c’)"
4. }

. display "‘rc’"
(1=111) (2=112) (3=136) (4=134)

. recode cc ‘rc’, gen(newcc)
(400 differences between cc and newcc)

. tabulate newcc

RECODE of
cc Freq. Percent Cum.

111 100 25.00 25.00
112 100 25.00 50.00
134 100 25.00 75.00
136 100 25.00 100.00

Total 400 100.00

The foreach statement can also be used to advantage with nested loops. You may
combine foreach and forvalues in a nested loop structure, as illustrated here:

. use gdp4cty, clear

. local country US UK DE FR

. local yrlist 1995 1999

. forvalues i = 1/4 {
2. local cname: word ‘i’ of ‘country’
3. foreach y of local yrlist {
4. rename gdp‘i’_‘y’ gdp‘cname’_‘y’
5. }
6. }

. summarize gdpUS*

Variable Obs Mean Std. Dev. Min Max

gdpUS_1995 400 3226.703 1532.497 328.393 6431.328
gdpUS_1999 400 3388.038 1609.122 344.8127 6752.894

It is a good idea to use indentation (either spaces or tabs) to align the loop body
statements as shown here. Stata does not care as long as the braces appear as required,
but it makes the do-file much more readable and easier to revise at a later date.

Alternatively, we could store the elements of the country list in numbered macros

i

i

i

i

i

i

i

i

7.4 The foreach command 153

with tokenize ([P] tokenize), which places them into the macros 1, 2, 3, 4:

. use gdp4cty, clear

. describe gdp*_*

storage display value
variable name type format label variable label

gdp1_1995 float %9.0g
gdp1_1999 float %9.0g
gdp2_1995 float %9.0g
gdp2_1999 float %9.0g
gdp3_1995 float %9.0g
gdp3_1999 float %9.0g
gdp4_1995 float %9.0g
gdp4_1999 float %9.0g
gdp1_1997 float %9.0g
gdp2_1997 float %9.0g
gdp3_1997 float %9.0g
gdp4_1997 float %9.0g

. local country US UK DE FR

. local yrlist 1995 1999

. local ncty: word count country

. tokenize ‘country’

. forvalues i = 1/‘ncty’ {
2. foreach y of local yrlist {
3. rename gdp‘i’_‘y’ gdp‘‘i’’_‘y’
4. }
5. }

. summarize gdpUS*

Variable Obs Mean Std. Dev. Min Max

gdpUS_1995 400 3226.703 1532.497 328.393 6431.328
gdpUS_1999 400 3388.038 1609.122 344.8127 6752.894

Note that in this case the country names are stored as the values of the numbered
macros. To extract those values on the right-hand side of the generate statement, we
must doubly dereference the macro i. The content of that macro the first time through
the loop is the number 1. To access the first country code, we must dereference the
macro ‘1’. Putting these together, within the loop we dereference i twice: ‘‘i’’ is
the string US.

This latter technique, making use of tokenize, should be used with caution within
an ado-file. Stata uses the numbered macros to reference positional arguments (the
first, second, . . . words on the command line) in an ado-file. Use of tokenize within
an ado-file will redefine those numbered macros, so care should be taken to move their
contents into other macros. See Chapter 11 for details of ado-file programming.

In summary, the foreach and forvalues statements are essential components of
any do-file writer’s toolkit. Whenever you see a set of repetitive statements in a Stata
do-file, it is likely to mean that its author did not understand how one of these loop
constructs could have made the program, its upkeep and her life simpler. An excellent

i

i

i

i

i

i

i

i

154 Chapter 7 Do-file programming: prefixes, loops and lists

discussion of the loop commands is to be found in Cox (2002b).

The forvalues and foreach commands often require the manipulation of local
macros and lists. Stata’s macro extended functions and macro list functions are very use-
ful in this regard. For more information on macro extended functions (help extended fcn,
[P] macro) and macro list functions (help macrolists, [P] macro lists) see Section
3.8.

i

i

i

i

i

i

i

i

8 Cookbook: Do-file programming III

This cookbook chapter presents a number of recipes for Stata do-file programmers us-
ing the programming features described in the previous chapter. Each recipe poses a
problem and a worked solution. Although you may not encounter this precise problem,
you may be able to recognize its similarities to a task that you would like to automate
in a do-file.

8.1 Handling parallel lists

The problem: For each of a set of variables, you want to perform some steps that
involve another group of variables, perhaps creating a third set of variables. These are
parallel lists, but the variable names of the other lists may not be deducible from those
of the first list.1 How can these steps be automated?

First, let’s consider that we have two arbitrary sets of variable names, and want to
name the resulting variables based on the first set’s variable names. For instance, you
might have some time series of population data for several counties and cities:

. local county Suffolk Norfolk Middlesex Worcester Hampden

. local cseat Boston Dedham Cambridge Worcester Springfield

. local wc 0

. foreach c of local county {

. local ++wc

. local sn : word ‘wc’ of ‘cseat’

. generate seatshare‘county’ = ‘sn’ / ‘c’

. }

This foreach loop will operate on each pair of elements in the parallel lists, generating
a set of new variables seatshareSuffolk, seatshareNorfolk. . .

Another form of this logic would use a set of numbered variables in one of the loops.
In that case, you could use a forvalues loop over the values (assuming they were
consecutive or otherwise patterned) and the extended macro function word of. . . to
access the elements of the other loop. The tokenize command could also be used, as
illustrated in Section 7.4.

Alternatively, you could use a forvalues loop over both lists, employing the word

count extended macro function:

1. This recipe borrows from Kevin Crow’s Stata FAQ, “How do I process parallel lists?”, at
http://www.stata.com/support/faqs/lang/parallel.html.

155

i

i

i

i

i

i

i

i

156 Chapter 8 Cookbook: Do-file programming III

. local n: word count ‘county’

. forvalues i = 1/‘n’ {

. local a: word ‘i’ of ‘county’

. local b: word ‘i’ of ‘cseat’

. generate seatshare‘a’ = ‘b’/‘a’

. }

yielding the same results as the previous approach.

You may also find this logic useful in handling a set of constant values that align
with variables. Let’s say that you have a cross-sectional dataset of hospital budgets
over various years, in the wide structure: that is, separate variables for each year (e.g.,
exp1994, exp1997,. . . . You would like to apply a health care price deflator to each
variable to place them in comparable terms. For instance:

. local yr 1994 1997 2001 2003 2005

. local defl 87.6 97.4 103.5 110.1 117.4

. local n: word count ‘yr’

. forvalues i = 1/‘n’ {

. local y: word ‘i’ of local yr

. local pd: word ‘i’ of local defl

. generate rexp‘y’ = exp‘y’ * 100 / ‘pd’

. }

This loop will generate a set of new variables measuring real expenditures, rexp1994,
rexp1997,. . . by scaling each of the original (nominal valued) variables by (100/defl)
for that year’s value of the health care price deflator. This could also be achieved by
using reshape ([D] reshape) to transform the data into the long structure as described
in Section 5.5, but that is not really necessary in this context.

i

i

i

i

i

i

i

i

8.2.1 Producing summary statistics with rolling and merge 157

8.2 Calculating moving-window summary statistics

The problem: you would like to calculate moving-window statistics for a variable
in your dataset. As discussed in Section 7.2.4, these computations over overlapping
subsamples cannot be handled with the statsby: prefix. Each observation can only
appear in one by-group. These statistics could be generated by the rolling: prefix,
but that approach creates a new dataset which must then be merged back into the
original dataset.

A solution is provided by Cox and Baum’s mvsumm routine, which calculates moving
summary statistics.2 These include all statistics available from summarize, detail as
well as several additional derived values such as the inter-quartile range. The command
works with either a single time-series or a panel. Its only restriction: there can be no
internal gaps in the time-series. Values may be missing, but an observation must be
defined for each consecutive time period. If this is not the case in your data, you can
use tsfill ([TS] tsfill) to rectify that problem.

In a question raised on Statalist, a user wanted to calculate the average rate of
growth over the past three years as a new variable. We can use the grunfeld dataset,
containing ten firms’ time series, to illustrate how that might be done. The growth rate
is approximated by the difference of the logarithm of the variable: in this case, invest,
the firms’ capital investment expenditure. We want the average of the three past years’
values, so we use the LD. time-series operator to specify the lag of the first difference
of invest and the stat(mean) option to specify the statistic to be computed in the
mvsumm command.

. use grunfeld, clear

. generate linvest = log(invest)

. mvsumm LD.linvest, generate(invrate) stat(mean) window(3) end

In the mvsumm command, the window() option specifies the window width: how many
time periods are to be included in the moving-window estimate. The end option specifies
that the summary value should be aligned with the last period included in the window.

Having computed these moving average growth rates for each firm, we can now
display several firms’ growth rate histories with tsline ([G] tsline):

. tsline invrate if inrange(company, 1, 4) & year >= 1937, by(company, ti(" "))
> ///
> yline(0) ysc(range(-0.2 0.3)) ytick(-0.2(0.1)0.3) ylab(-0.2(0.1)0.3) ///
> scheme(s2mono)

8.2.1 Producing summary statistics with rolling and merge

We could also use the rolling: prefix to generate these summary statistics:

2. The mvsumm routine is available from ssc ([R] ssc).

i

i

i

i

i

i

i

i

158 Chapter 8 Cookbook: Do-file programming III

−
.2

−
.1

0
.1

.2
.3

−
.2

−
.1

0
.1

.2
.3

1935 1940 1945 1950 19551935 1940 1945 1950 1955

1 2

3 4

T
hr

ee
−

ye
ar

 a
ve

ra
ge

 in
ve

st
m

en
t r

at
e

year
Graphs by company

Figure 8.1: Moving average growth rates.

. qui rolling r(mean), window(3) saving(ldinvest, replace): summarize LD.linves
> t

Some additional work is needed to get the statistics produced by rolling: back into
our dataset. The prefix operator creates new variables start and end indicating the
first and last periods included in each window. As we adopted the convention that
a rolling-window statistic should be aligned with the last time period included in the
window, we rename the end variable to year, and give a more meaningful name to the
summary variable stat 1. Finally, we must take into account rolling’s convention
of dealing with missing values. You could argue that a three-period window estimate
of the mean of the lagged difference of a time-series variable may first be calculated
from observations 3–5 and stored in observation 5, as observations 1, 2 will be lost by
the lag and differencing operations (and mvsumm makes that assumption). However,
rolling will produce a value for observations 3 and 4. We choose to omit those values
(corresponding to years 1937–1938 in the Grunfeld dataset). We use xtset ([XT] xtset)
and save the revised dataset as ldinvest. We may then restore our original dataset

i

i

i

i

i

i

i

i

8.2.2 Calculating moving-window correlations 159

and use merge ([D] merge) to include the summary statistics in the dataset:

. preserve

. use ldinvest, clear
(rolling: summarize)

. rename end year

. rename _stat_1 rolling_ldinvest

. keep if year >= 1939
(20 observations deleted)

. xtset company year
panel variable: company (strongly balanced)
time variable: year, 1939 to 1954

delta: 1 unit

. save ldinvest, replace
file ldinvest.dta saved

. restore

. merge company year using ldinvest, unique

. drop _merge

. summarize invrate rolling_ldinvest

Variable Obs Mean Std. Dev. Min Max

invrate 160 .0602769 .1303373 -.2292838 .475313
rolling_ld~t 160 .0602769 .1303373 -.2292838 .475313

We see that over the 160 observations (16 years per firm) in common, the mvsumm and
rolling: approaches produced the same summary statistics.

8.2.2 Calculating moving-window correlations

In a number of applications in finance you may need to calculate a moving correlation
between two time-series. For instance, the calculation of an optimal hedge ratio involves
computing the correlation between two series in a moving-window context. A companion
program to mvsumm, Cox and Baum’s mvcorr, uses a similar syntax to support the
computation of moving-window correlations between two time-series, x1 and x2. If the
two time-series are specified as x1 and Ln.x1, a moving nth–order autocorrelation is
calculated.3

As shown above, we could also use rolling: to produce moving-window correla-
tions.

3. The mvcorr routine is available from ssc ([R] ssc).

i

i

i

i

i

i

i

i

160 Chapter 8 Cookbook: Do-file programming III

8.3 Computing monthly statistics from daily data

The problem: you have trading-day data from the stockmarket, with one observation
for each day when the market is open. You want to calculate a measure of monthly
volatility defined by Merton (1980). His method uses the intra-month price movements
to compute a measure of volatility for the month. This takes account of both the changes
in the price series (∆pt) and the number of days elapsed between the price observations
(φt). Merton’s daily volatility measure is computed from 100 × the change in the price
variable divided by the square root of the number of elapsed days. Algebraically, we
want to calculate this quantity for each trading day:

ςt =

(

100
∆pt√
∆φt

)2

(8.1)

In our Stata dataset, each observation contains that day’s closing price, p, and the
date variable date, a proper Stata date variable which represents each day as an integer
value (see Section 2.4.2). As trading days are not consecutive calendar days given
weekends and holidays, we do not use the time series lag operator L. to calculate price
changes, as they would be missing at those times.4 We calculate the elements of the
formula for ςt as the Stata variable ds2:

. use fictprice, clear

. qui generate dscorr = 100 * (p - p[_n-1])

. qui generate deld = date - date[_n-1]

. qui generate dscorrd = dscorr / sqrt(deld)

. qui generate ds2 = dscorrd^2

The series of daily values of ds2, is then aggregated to monthly frequency to produce
the monthly volatility measure:

Φt =

√

√

√

√

T
∑

t=1

ςt (8.2)

To compute monthly volatility, we generate a month variable, mon, and use the
bysort: prefix to cumulate the ds2 variable over each month, recalling that the sum()

function generates a running sum:

. gen mon = mofd(date)

. bysort mon: generate cumds2 = sum(ds2)

For each month, we take the square root of the last observation of the month and define
it as ssq:

. qui bysort mon: generate ssq = sqrt(cumds2) if _n == _N

4. See Section 2.4.3.

i

i

i

i

i

i

i

i

8.3 Computing monthly statistics from daily data 161

We now can drop all daily observations for days prior to the last day of each month,
define the time series calendar to be monthly, and save the new monthly dataset:

. drop if ssq == .
(2044 observations deleted)

. tsset mon, monthly
time variable: mon, 1998m5 to 2006m7

delta: 1 month

. save myvolat, replace
file myvolat.dta saved

We may now graph our fictitious monthly volatility timeseries with the tsline

([G] tsline) command:

. tsline ssq, ti("Monthly volatility from Merton method")

10
00

15
00

20
00

25
00

E
st

im
at

ed
 v

ol
at

ili
ty

1998m1 2000m1 2002m1 2004m1 2006m1
month

Monthly volatility from Merton method

Figure 8.2: Estimated monthly volatility from daily data.

i

i

i

i

i

i

i

i

162 Chapter 8 Cookbook: Do-file programming III

8.4 Requiring at least n observations per panel unit

The problem: per a common question to Statalist, if you have unbalanced panel data,
how do you ensure that each unit has at least n observations available?

It is straightforward to calculate the number of available observations for each unit:

. xtset patient date

. by patient: generate nobs = N

. generate want = (nobs >= n)

These commands will produce an indicator variable, want, which selects those units
which satisfy the condition of having at least n available observations.

This works well if all you care about is the number of observations available, but you
may have a more subtle concern: you want to count consecutive observations. You may
want to compute statistics based on changes in various measurements using Stata’s L.
or D. time series operators.5 Applying these operators to series with gaps will create
missing values.

A solution to this problem is provided by Nicholas J. Cox and Vince Wiggins in a
Stata FAQ, “How do I identify runs of consecutive observations in panel data?”6 The
sequence of consecutive observations is often termed a run (a term commonly used in
nonparametric statistics: see [R] runtest) or a spell.7 They propose defining the runs
in the timeseries for each panel unit:

. generate run = .

. by patient: replace run = cond(L.run == ., 1, L.run + 1)

. by patient: egen maxrun = max(run)

. generate wantn = (maxrun >= n)

The second command replaces the missing values of run with either 1 (denoting the
start of a run) or the prior value + 1. For observations on consecutive dates, that will
produce an integer series 1,. . . ,.len where len is the last observation in the run. When a
break in the series occurs, the prior (lagged) value of run will be missing, and run will
be reset to 1. The variable maxrun then contains, for each patient, the highest value of
run in that unit’s sequence.

Although this identifies (with indicator wantn) those patients who do (or do not) have
a sequence or spell of n consecutive observations, it does not allow you to immediately
identify this spell. You may want to retain only this longest spell, or run of observations,
and discard other observations from this patient. To carry out this sort of screening,
you should become familiar with Nicholas J. Cox’s tsspell program (available from
ssc), which provides comprehensive capabilities for spells in time series and panel data.
A “canned” solution to the problem of retaining only the longest spell per patient is
also available from Christopher F Baum’s onespell routine (findit onespell), which
makes use of tsspell.

5. See Section 2.4.3.
6. http://www.stata.com/support/faqs/data/panel.html
7. See Section 4.4.

i

i

i

i

i

i

i

i

8.5 Counting the number of distinct values per individual 163

8.5 Counting the number of distinct values per individual

The problem: per a question to Statalist, if you have data on individuals that indicate
their association with a particular entity, how do you count the number of entities
associated with each individual? For instance, we may have a dataset of consumers who
purchase items from various Internet vendors. Each observation identifies the consumer
(pid and the vendor (vid), where 1=amazon.com, 2=llbean.com, 3=overstock.com, and
so on. Several solutions were provided by Nicholas J. Cox in a Statalist posting:8

. bysort pid vid: generate count = (n == 1)

. by pid : replace count = sum(count)

. by pid : replace count = count(N)

Here, we consider each combination of consumer and vendor and set count = 1 for their
first observation. We then replace count with its sum() for each consumer, keeping in
mind that this is a running sum, so that it takes on 1 for the first vendor, 2 for the
second, and so on. Finally, count is replaced with its value in observation N for each
consumer: the maximum number of vendors with whom she deals.

A second, somewhat less intuitive but shorter solution:

. bysort pid (vid) : generate count = sum(vid != vid[n-1])

. by pid: replace count = count(N)

This solution takes advantage of the fact that when (vid) is used on the bysort prefix,
the data are sorted in order of vid within each pid, even though the pid is the only
variable defining the by-group. When the vid changes, another value of 1 is gener-
ated and summed. When subsequent transactions pertain to the same vendor, vid !=

vid[n-1] evaluates to 0, and those zero values are added to the sum.

This problem is common enough that an official egen function has been developed
to tag observations:

. egen tag = tag(pid vid)

. egen count = total(tag), by(pid)

The tag() function returns 1 for the first observation of a particular combination of
pid vid, and zero otherwise. Thus, its total() for each pid is the number of vids
with whom she deals.

As a last solution, Cox’s egenmore package (see Section 3.4) contains the nvals()

function, which allows you to say

. egen count = nvals(vid), by(pid)

For more information, see the Stata FAQ by Nicholas J. Cox and Gary Longton,
“How do I compute the number of distinct observations?”9

8. http://www.hsph.harvard.edu/cgi-bin/lwgate/STATALIST/archives/statalist.0705/Author/article-461.html
9. http://www.stata.com/support/faqs/data/distinct.html

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

9 Do-file programming: other topics

9.1 Introduction

This chapter presents a number of do-file programming techniques which you can use
to reduce your workload and improve the reliability and replicability of your work.
The first section discusses the use of Stata matrices for the storage and presentation of
computed quantities. The post ([P] post) and postfile commands’ ability to create
a new Stata dataset are discussed, followed by mention of the several commands that
can create external files for use in other software. The next two sections of the chapter
discuss the automation of estimation and graphics.

9.1.1 What you should learn from this chapter

• How to use Stata matrices to organize and present computed results

• The uses of postfile and post to generate Stata datasets

• How you may use outsheet and outfile to export Stata variables’ contents

• The use of file to create a completely flexible output file

• How to automate the production of standard format tables

• How to automate the production of standard format graphs

• How to use characteristics

9.2 Storing results in Stata matrices

A number of Stata commands may be used to generate new Stata datasets containing
the results of repetitive computations. For instance, the statsby ([D] statsby) prefix,
discussed in Section 7.2.3, can execute a statistical (r-class) or estimation (e-class) com-
mand for each by-group and save one or more results as observations in new variables.
The rolling ([TS] rolling) prefix, described in Section 7.2.4, performs the same func-
tion for rolling-window estimates in a time series context.1 But these prefix commands
have a limitation: unless you have written your own statistical or estimation command,

1. The simulate ([R] simulate) prefix, as discussed in Section 7.2.5, does the same for the results
specified in a user-written Monte Carlo simulation program. In that context, you may use any number
of commands to generate the desired results, circumventing the limitations of by ([D] by).

165

i

i

i

i

i

i

i

i

166 Chapter 9 Do-file programming: other topics

they can only execute one Stata command, and they can only place results generated
by that command in the resulting dataset.2

In many cases, your goal may involve tabular output of statistical and estimation
results, requiring the execution of several Stata commands to create each row of the
table. It may be very convenient to store these results in a Stata matrix rather than in
a separate Stata dataset.

As an example, let us consider an enhanced version of the grunfeld dataset available
from the Stata Reference Manual. It is a balanced panel of 10 companies’ time series
of several variables. Our version of that dataset contains two additional variables:
the average levels of firms’ investment expenditures invavg and stock of fixed capital
kapavg. Let us say that we want to generate a table, one row per company, containing
the 25th, 50th and 75th percentiles of firm investment; the timeseries correlation of the
firm’s investment with that of the average firm; the correlation of firm capital stock with
that of the average firm; and a regression coefficient (and its standard error) from the
regression of investment on the lagged values of the firm’s capital stock and the average
firm.

To produce this table from the grunfeldavg dataset, we first generate a list of the
values of the company variable using the levelsof ([P] levelsof) command, storing that
list in a local macro colist. We find the number of companies with the macro extended
function3 word count of the local colist, which tells us how many rows we need in our
matrix. We want to tabulate seven statistics per firm: three quantiles, two correlation
coefficients, an estimated coefficient and its standard error. We thus define the table1

matrix with the J(#rows, #cols, value) function as a null matrix of ncomp rows and
seven columns.

. use grunfeldavg, clear

. levelsof company, local(colist)
1 2 3 4 5 6 7 8 9 10

. local ncomp : word count ‘colist’

. matrix table1 = J(‘ncomp’, 7, 0)

We are now ready to set up a foreach ([P] foreach) loop over companies. In this
case, the company variable merely takes on values 1, . . . , 10, but we want our program
to work regardless of its values. Storing the distinct values of that variable in the local
macro colist provides that feature. At the same time, we need a counter to address
the successive rows of the matrix table1, which we provide with the local macro i,
incremented within the loop.

The summarize command computes the desired percentiles, which we place in the
first three columns of the company’s row of the table1 matrix. Likewise, we use
correlate to generate the desired correlations and place them in columns 4 and 5, and
a regress to generate the desired statistics for the last two columns of the matrix. The

2. For a solution circumventing this limitation, see Section 12.1.
3. See Section 3.8.

i

i

i

i

i

i

i

i

9.2 Storing results in Stata matrices 167

entire set of commands is wrapped in a quietly block to suppress their output. Now
we need only apply labels to the matrix with matrix rownames and matrix colnames.

. local i 0

. levelsof company, local(colist)
1 2 3 4 5 6 7 8 9 10

. foreach c of local colist {
2. quietly {
3. local ++i
4. summarize invest if company == ‘c’, detail
5. matrix table1[‘i’, 1] = r(p25)
6. matrix table1[‘i’, 2] = r(p50)
7. matrix table1[‘i’, 3] = r(p75)
8. correlate invest invavg if company == ‘c’
9. matrix table1[‘i’, 4] = r(rho)
10. correlate kstock kapavg if company == ‘c’
11. matrix table1[‘i’, 5] = r(rho)
12. regress invest L.kstock L.kapavg if company == ‘c’
13. matrix table1[‘i’, 6] = _b["L.kstock"]
14. matrix table1[‘i’, 7] = _se["L.kstock"]
15. }
16. }

. matrix rownames table1 = ‘colist’

. matrix colnames table1 = p25 p50 p75 r_invest r_kap beta_k se_k

The matrix of results we have generated can be viewed with matrix list, which
offers us limited functionality over its appearance.

. mat list table1, format(%9.3f) ti("Grunfeld company statistics")

table1[10,7]: Grunfeld company statistics
p25 p50 p75 r_invest r_kap beta_k se_k

1 429.300 538.350 665.500 0.964 0.985 0.150 0.361
2 321.750 419.550 471.350 0.808 0.898 -0.626 0.299
3 59.050 93.550 146.750 0.899 0.991 -0.180 0.249
4 55.990 71.085 95.010 0.928 0.957 0.298 0.160
5 51.525 60.385 72.290 0.848 0.966 -0.019 0.059
6 27.685 43.110 72.750 0.959 0.990 -0.281 0.265
7 33.245 44.200 57.680 0.876 0.944 0.045 0.060
8 30.305 38.540 53.920 0.928 0.963 -0.132 0.177
9 29.715 38.110 55.405 0.723 0.975 0.350 0.118
10 1.925 2.215 4.440 0.797 0.887 0.113 0.182

To produce a version of the table that we could include in our LATEX research paper,
we rely on Baum and Azevedo’s outtable routine.4 The resulting table is displayed as
Table 9.1.

. outtable using ch9.02t, mat(table1) replace ///
> format(%9.3f) center caption("Grunfeld company statistics")

You might also use the flexibility of Stata matrices to juxtapose estimation results

4. If you wanted tab-delimited output, suitable for a word processor or spreadsheet, you could use
Michael Blasnik’s mat2txt, available from the SSC Archive.

i

i

i

i

i

i

i

i

168 Chapter 9 Do-file programming: other topics

Table 9.1: Grunfeld company statistics

p25 p50 p75 rinvest rkap betak sek
1 429.300 538.350 665.500 0.964 0.985 0.150 0.361
2 321.750 419.550 471.350 0.808 0.898 −0.626 0.299
3 59.050 93.550 146.750 0.899 0.991 −0.180 0.249
4 55.990 71.085 95.010 0.928 0.957 0.298 0.160
5 51.525 60.385 72.290 0.848 0.966 −0.019 0.059
6 27.685 43.110 72.750 0.959 0.990 −0.281 0.265
7 33.245 44.200 57.680 0.876 0.944 0.045 0.060
8 30.305 38.540 53.920 0.928 0.963 −0.132 0.177
9 29.715 38.110 55.405 0.723 0.975 0.350 0.118
10 1.925 2.215 4.440 0.797 0.887 0.113 0.182

in a matrix with coefficients on the columns. This facility is not readily available from
estimates table or Ben Jann’s estout (see Section 5.4.1). We again loop over com-
panies with forvalues and run a regression of each company’s investment expenditures
on two lags of its capital stock and the lagged value of the average firm’s capital stock.
This will estimate four coefficients per firm, counting the constant term. Those coeffi-
cients will be made available in the ereturn list as Stata matrix e(b), a row vector
(see 5.3). We use Stata’s row join operator (\) to concatenate each firm’s vector of
coefficients into a matrix named allbeta.5 Unlike the previous example, we do not
predefine this matrix. How can, then, this concatenation be done for the first firm? By
employing the nullmat() matrix function, as shown below, in which a null matrix of
the appropriate size is prepended to the first firm’s coefficient vector. We also build up
the local row so that we may provide matrix rownames for the allbeta matrix.

. levelsof company, local(colist)
1 2 3 4 5 6 7 8 9 10

. local ncomp : word count ‘colist’

. forvalues i = 1/‘ncomp’ {
2. local c : word ‘i’ of ‘colist’
3. quietly regress invest L(1/2).kstock L.kapavg if company == ‘c’
4. matrix beta‘i’ = e(b)
5. matrix allbeta = (nullmat(allbeta) \ beta‘i’)
6. local row "‘row’ ‘c’"
7. }

. matrix rownames allbeta = ‘row’

We are now ready to invoke outtable to produce the desired LATEX table, which we
display as Table 9.2.

. outtable using ch9.03t, mat(allbeta) replace ///
> format(%9.4f) center caption("Grunfeld company estimates")

5. A similar technique would make use of the column join operator (,) to concatenate matrices by
column.

i

i

i

i

i

i

i

i

9.3 The post and postfile commands 169

Table 9.2: Grunfeld company estimates

L.kstock L2.kstock L.kapavg cons
1 0.0070 0.0437 1.8377 118.8346
2 −0.8291 0.3487 0.9758 312.8891
3 −0.6049 0.4138 0.6065 37.7697
4 0.2517 0.0032 0.1267 27.2760
5 −0.2762 0.2523 0.1081 54.6390
6 −0.6712 0.4115 0.3612 −6.3536
7 0.4983 −0.4442 0.0695 5.0020
8 −0.5233 0.4040 0.1471 19.9655
9 0.2177 0.1351 −0.1390 −21.3947
10 0.0567 0.0110 0.0095 0.2617

A “canned” solution for the generation of Stata matrices of descriptive statistics is
provided by Cox and Baum’s statsmat, available from the SSC Archive. That routine
can provide a wide range of descriptive statistics as a matrix, or in transposed form.6

By default, statsmat will calculate the maximum, minimum, 25th, 50th and 75th
percentiles, mean and standard deviation of each variable. This command can work
with a single variable to produce descriptive statistics for each value of a by-list, and
can use either the default casewise deletion or listwise deletion. Casewise deletion will
cause any observation which is missing anywhere in the statsmat varlist to be omitted,
while listwise deletion will use all available observations per variable.

9.3 The post and postfile commands

In most data management and statistical tasks, you work with an existing Stata dataset
and may create a new version of the dataset in the process of the do-file. But what if
you want to create a completely new Stata dataset with quite different contents, in the
process, without disrupting the existing dataset? You could, of course, use the preserve
([P] preserve) command, perform whatever steps are needed to create the new dataset,
save it, and then use the restore command to return to the preexisting structure of data
in memory. That is the preferred way of using collapse ([D] collapse) or contract

([D] contract) which necessarily replace the data in memory. In some cases, however,
it might be very useful to be able to create a new Stata dataset while processing the
existing data.

This sort of task is handled by several of the prefix commands described in Section
7.2. As discussed in that context, the statsby ([D] statsby), rolling ([TS] rolling)
and simulate ([R] simulate) prefixes each provide a saving(filename) option that

6. A similar functionality is available from tabstat ([R] tabstat), but that routine usually produces
several matrices rather than a single matrix.

i

i

i

i

i

i

i

i

170 Chapter 9 Do-file programming: other topics

specifies the name of the new Stata dataset to be created. But what if the items you
wish to place in the new dataset are not those readily computed by one of these prefix
operators? Then you will want to learn how to use the postfile ([P] postfile) command
suite.

This suite of command is described as containing “. . . utilities to assist Stata pro-
grammers in performing Monte Carlo-type experiments.”But these commands are quite
general, and may be used to create new datasets with no relation to Monte Carlo exper-
iments. They allow you to circumvent the restriction that Stata can only work with a
single dataset at a time, in that you can construct a new Stata dataset “on-the-fly” with
these commands without disturbing the contents of the dataset in memory. To set this
up, you first use postfile to specify a newvarlist for the new dataset and a filename
where it is to be stored. In order to reference this file, you must use a postname: an
identifier or “handle” to be used in subsequent commands. It is best to obtain the post-
name from the tempname ([P] macro) command. As each postfile command requires
a postname, it is possible to post results to more than one postfile at a time.

After defining the structure and location of the new dataset, you use the post

command to fill in each observation, referencing the postname. The individual variables’
values are specified as exps, or expressions, which must appear in parentheses. After
the dataset is complete, you use the postclose command to close the file, referenced
by its postname.

Consider the example given in the last section in which we created a Stata matrix
containing a number of different firm-level statistics. Let’s see how you might make that
into a new Stata dataset with postfile.

We use the same logic as above to construct a list of the companies in local colist,
and then invoke the postfile command. The syntax of this command is:

. postfile postname newvarlist using filename [, replace]

The postname, only used within your do-file, is best created using a temporary name
with the tempname command. You then must define the newvarlist: the new dataset’s
variables and optionally their data types. For instance, you could store one or more
string variables in the dataset, declaring their data type before their name in the
postfile variable list. The using clause specifies the external filename of the new
Stata dataset.

. use grunfeldavg, clear

. levelsof company, local(colist)
1 2 3 4 5 6 7 8 9 10

. local ncomp : word count ‘colist’

. tempname p

. postfile ‘p’ compnr p25 p50 p75 r_invest r_kap beta_k se_k using firmstats, r
> eplace

The command to write a single observation to the dataset is post, with syntax

i

i

i

i

i

i

i

i

9.4 Output: outsheet, outfile and the file command 171

. post postname (exp) (exp) (exp) ...

where each expression’s value must be enclosed in parentheses. The value may be, as
in this example, a local macro, or a global macro, scalar, or constant. Rather than
creating a matrix with one row per firm, you create a new dataset with one observation
per firm. At the end of the loop over observations, you use postclose postname to
close the file.

. forvalues i = 1/‘ncomp’ {
2. local c : word ‘i’ of ‘colist’
3. quietly {
4. summarize invest if company == ‘c’, detail
5. local p25 = r(p25)
6. local p50 = r(p50)
7. local p75 = r(p75)
8. correlate invest invavg if company == ‘c’
9. local r_invest = r(rho)
10. correlate kstock kapavg if company == ‘c’
11. local r_kap = r(rho)
12. regress invest L.kstock L.kapavg if company == ‘c’
13. }
14. post ‘p’ (‘i’) (‘p25’) (‘p50’) (‘p75’) (‘r_invest’) (‘r_kap’) ///
> (_b["L.kstock"]) (_se["L.kstock"])
15. }

. postclose ‘p’

Notice that as the post command accepts expressions as its arguments, we can reference
the b and se elements from the regress command directly, without having to store
them in local macros. You can verify that the new dataset contains the desired contents:

. use firmstats, clear

. summarize

Variable Obs Mean Std. Dev. Min Max

compnr 10 5.5 3.02765 1 10
p25 10 104.049 146.2543 1.925 429.3
p50 10 134.9095 185.0054 2.215 538.35
p75 10 169.5095 218.1057 4.44 665.5

r_invest 10 .87306 .0785282 .7234149 .9635566

r_kap 10 .9555067 .0364744 .8865225 .9906394
beta_k 10 -.0282959 .2910943 -.6264817 .3501322

se_k 10 .1930768 .1002899 .0594801 .3614677

9.4 Output: outsheet, outfile and the file command

You may often encounter the need to export the contents of a Stata dataset to another
application. Stata contains several commands that facilitate the export of a dataset’s
contents. You must keep in mind that this sort of export generally will not be able
to capture every aspect of Stata’s variables: for instance, value labels will generally be

i

i

i

i

i

i

i

i

172 Chapter 9 Do-file programming: other topics

lost on export, unless they are used in place of the numeric variable’s values. For that
reason, it is usually preferable to use a third-party application such as Stat/Transfer to
move data between applications.7 Nevertheless, you may need to export the data as an
ASCII text file.

The outsheet ([D] outsheet) command writes data in “spreadsheet-style” format:
either tab-delimited or comma-separated values (CSV). Tab-delimited format is usually
a better choice as it avoids the issue of commas embedded in string variables.8 The
command syntax is:

outsheet [varlist] using filename [if exp] [in range] [,options]

If the varlist is not provided, all variables in memory are written to the output file in
the order of their appearance (see order, ([D] order). By default the first line of the
file will contain the variable names (which may be suppressed, but are useful if you plan
to read this file into a spreadsheet). You may choose to write numeric values of labeled
variables rather than their labels. If the filename is specified without a suffix, the suffix
.out is assumed.

Just as insheet reads tab-delimited (or comma-separated) values, while infile

([D] infile) reads space-delimited files, outsheet has a counterpart, outfile ([D] out-
file) which writes an ASCII text-format file, by default space-delimited. Optionally a
comma-separated file may be written. The outfile command is also capable of writing
a Stata dictionary file. That is, a separate .dct text file documents the contents of the
datafile.9 By default, outfile writes a file with suffix .raw. The command syntax is
identical to that of outsheet.

The most flexible form of output is provided by the file ([P] file) command suite.
Using the file commands, you may both write and read ASCII text or binary files.
Unlike post, outsheet and outfile, which can only write a fixed number of fields per
output record, file is capable of writing (or reading) a file of any arbitrary format. For
instance, some statistical packages use a format in which a set of variables is stored in
a file with a header record containing two integer values: the number of observations
(rows) and the number of columns (variables) in the subsequent data matrix. To write
such a file from Stata, you must use the file command (or Mata functions with similar
capability). You may also write arbitrary string content into an output file. As an
example, let us write the matrix created in Section 9.2 into an external file, prefixed
with two header lines: a timestamp and a line containing the matrix dimensions.

To use the file commands, we must first set up a file handle,10 best done as above
with a tempname, and open that file handle:

file open handle using filename, {read|write|read write} [options]

7. Those concerned with export to SAS should be aware of Stata’s fdasave ([D] fdasave) command,
which despite its name is a general-purpose export routine that creates a SAS XPORT Transport file.

8. You do have to be careful with string variables that could contain tab characters.
9. See [D] infile (fixed format) for the description of dictionary files.

10. The file handle plays the same role as the postname in the postfile suite of commands.

i

i

i

i

i

i

i

i

9.4 Output: outsheet, outfile and the file command 173

The file open command must specify whether the file is to be used for input, output, or
possibly both. We may also specify text or binary format, with default text (meaning
ASCII).

. tempname fh

. file open ‘fh’ using matout.raw, write replace

Once the file is open, we may use file write to create each record. We must
explicitly write line-end characters (denoted as newline) where they should appear.
Note that the symbol newline—which may be abbreviated to n—in this context has
nothing to do with the observation number as described in Section 3.5.1. In the file

command, n is used to indicate that a newline symbol should be written to the file. If
separate lines are to be written, the newline (or line-end) characters must be explicitly
specified. As Stata runs on systems with different newline conventions, it will write the
appropriate newline characters for your operating system.

First, we determine how many rows and columns are in the matrix and assemble the
two header records. We are then ready to write out each matrix element using a double
forvalues ([P] forvalues) loop. Notice that we do not write the newline character
(newline) within the inner forvalues loop, but only at the completion of each row of
the output file.

. local rows = rowsof(table1)

. local cols = colsof(table1)

. local timestamp "Matrix created ‘c(current_date)’ ‘c(current_time)’"

. file write ‘fh’ "‘timestamp’" _n

. file write ‘fh’ "‘rows’ ‘cols’" _n

. forvalues i = 1/‘rows’ {
2. forvalues j = 1/‘cols’ {
3. file write ‘fh’ (table1[‘i’, ‘j’]) " "
4. }
5. file write ‘fh’ _n
6. }

. file close ‘fh’

This works well, but suppose we want to label the matrix rows and columns with their
rownames and colnames. In our case, the rownames are merely the integers 1. . . 10,
but imagine that they are firm code numbers, or their stockmarket ticker symbols. We
enhance the previous do-file to extract the row and column names using macro extended
functions and add them to the output. We guard against quotation marks appearing
in the firm’s name by using compound double quotes to display that item (see Section
3.2.5).

. tempname fh

. file open ‘fh’ using matout2.raw, write replace

. local rows = rowsof(table1)

. local cols = colsof(table1)

i

i

i

i

i

i

i

i

174 Chapter 9 Do-file programming: other topics

. local timestamp "Matrix created ‘c(current_date)’ ‘c(current_time)’"

. file write ‘fh’ "‘timestamp’" _n

. file write ‘fh’ "‘rows’ ‘cols’" _n

. local coln : colnames table1

. local rown : rownames table1

. file write ‘fh’ "firmno ‘coln’" _n

. forvalues i = 1/‘rows’ {
2. local rn : word ‘i’ of ‘rown’
3. file write ‘fh’ ‘"‘rn’ "’
4. forvalues j = 1/‘cols’ {
5. file write ‘fh’ (table1[‘i’, ‘j’]) " "
6. }
7. file write ‘fh’ _n
8. }

. file close ‘fh’

You may now use type ([D] type) to examine the new file:

. type matout2.raw
Matrix created 26 Jul 2008 16:41:11
10 7
firmno p25 p50 p75 r_invest r_kap beta_k se_k
1 429.3 538.35001 665.5 .96355661 .98464086 .14971282 .36146776
2 321.75 419.54999 471.34999 .80775991 .89819793 -.62648164 .29878812
3 59.049999 93.549999 146.75 .89941256 .99063942 -.1804446 .24927241
4 55.99 71.085003 95.010002 .92792669 .9570222 .29802565 .16047287
5 51.525 60.385 72.289997 .8478581 .96597103 -.01904298 .05948012
6 27.685 43.110001 72.75 .9593111 .98986261 -.28145697 .26466183
7 33.244999 44.199999 57.679998 .87604314 .9442384 .04509232 .05995572
8 30.305 38.540001 53.92 .92841638 .96329808 -.13167999 .176705
9 29.715 38.109999 55.405001 .7234149 .97467447 .3501322 .11761613
10 1.925 2.215 4.4400001 .79690054 .88652247 .11318377 .1823479

This example only scratches the surface of the file command’s capabilities. You can use
file to produce any format of output file that you need, incorporating text strings, local
and global macros, scalar and matrix values as well as the contents of Stata variables.
This same flexibility is afforded by file read, allowing you to read a file of arbitrary
format without disturbing the contents of Stata’s memory.

9.5 Automating estimation output

One of the primary advantages to mastery of do-file programming is the ability to
automate the production of datasets, tables and graphs. Prior sections of this chapter
have dealt with various methods of producing new datasets in Stata or ASCII text
format. In this section, we present an extended example illustrating how production of
a set of tables of statistical output may be fully automated. In this example, we create
seven tables, each relating to underlying data for a specific year in a panel (longitudinal)
dataset of individual workers’ wages and hours. It should be clear that the same do-file

i

i

i

i

i

i

i

i

9.5 Automating estimation output 175

could serve as a model for similar automation of statistical results for a set of hospitals,
cancer trials, industries or countries.

We illustrate using the wagepan dataset. These longitudinal data, 4,360 observations
on 48 variables, are presented in Rabe-Hesketh and Everitt (2006). We read the data
and generate one additional variable: lhours, the log of hours worked.

. use wagepan, clear

. xtset nr year
panel variable: nr (strongly balanced)
time variable: year, 1980 to 1987

delta: 1 unit

. generate lhours = log(hours)

As indicated by xtset ([XT] xtset), this dataset is a balanced panel of eight years’
annual observations on 545 young males from the U.S. National Longitudinal Survey’s
Youth Sample. We want to estimate three wage equations for each year’s wave of these
data, and eventually produce a separate table of regression results for each year. We may
use Ben Jann’s estout package’s11 (Jann (2007)) eststo to generate stored estimates
and esttab to tabulate them. Our target is a set of LATEX tables, although we could
also produce SMCL, HTML, RTF or tab-delimited output.

We construct a forvalues ([P] forvalues) loop over the years 1980–1987 with local
macro y as the loop index. For each regression explaining lwage, the log of the worker’s
hourly wage, we estimate the model with the qualifier if year == ‘y’. For all three
models, we want to add two statistics to the output: the semi-elasticity of the log
wage with respect to the worker’s years of education educ and its standard error, which
we may calculate with the [R] mfx command. For the third model, we also want to
calculate an additional statistic. The model contains a measure of years of experience
and its square. Thus, the partial effect ∂lwage

∂exper
must be computed from both of those

coefficients for a given level of exper.

A digression on measures of marginal effects: the elasticity of y with respect to x is
approximately the percentage change in y with regard to a one percent change in x, or
∂ log y
∂ log x

. If y or x is already in logarithmic terms, we need a semi-elasticity such as ∂y
∂ log x

or ∂ log y
∂x

. The full elasticity measure is specified in the mfx ([R] mfx) command with
the option eyex. The former semi-elasticity is specified as dyex—that is, we want the
change in y (already in logs) from a one percent change in x—and the latter is eydx. The
fourth option, dydx, is the regression coefficient itself. Although a regression coefficient
is unchanged through the range of its regressor’s values, any of the other measures will
vary depending on the values of y and x. By default, mfx computes these values at
the means of the estimation sample. A discussion of elasticities and semi-elasticities is
provided in Wooldridge (2006), pp. 719–720 and Wooldridge (2002), pp. 16–18.

In the case at hand, as the dependent variable is already in log terms, we use mfx,

dyex. The mfx command stores its results in matrices, and from those matrices we may

11. The estout package was presented in Section 5.4.1.

i

i

i

i

i

i

i

i

176 Chapter 9 Do-file programming: other topics

recover the semi-elasticity point estimates (from matrix e(Xmfx dyex), a row vector)
and their standard errors (from matrix e(Xmfx se dyex), also a row vector). We stack
those vectors into matrix eta and extract the relevant estimates for use in the eststo

command.

For the third model, we extract the mean level of exper from the [R] mfx ere-

turn list’s matrix Xmfx X and use [R] lincom to compute the expression β̂exper +

2µ̂experβ̂exper2 in point and interval form. The lincom ([R] lincom) command leaves its
results in the return list, from which we extract r(estimate) and r(se). Those values
are passed to eststo for posting with the stored estimates.

Finally, we invoke esttab for the particular year’s table, composing the output
filename and table title to contain the year of analysis. The scalar() option allows
us to include the statistics we have computed for each model in the table, and the
addnotes() option is used to annotate the output, defining those statistics. We wrap
the computation commands in quietly to suppress their output.

. forvalues y = 1980/1987 {
2. quietly {
3. eststo clear
4. regress lwage educ lhours if year == ‘y’
5. mfx compute, dyex
6. mat eta = e(Xmfx_dyex) \ e(Xmfx_se_dyex)
7. eststo, add(eta_educ eta[1, 1] etase eta[2, 1])
8. regress lwage educ lhours black hisp if year == ‘y’
9. mfx compute, dyex
10. mat eta = e(Xmfx_dyex) \ e(Xmfx_se_dyex)
11. eststo, add(eta_educ eta[1, 1] etase eta[2, 1])
12. regress lwage educ exper expersq lhours black hisp if year
> == ‘y’
13. mfx compute, dyex
14. mat eta = e(Xmfx_dyex) \ e(Xmfx_se_dyex)
15. mat xbar = e(Xmfx_X)
16. scalar mu2 = 2 * xbar[1, 2]
17. lincom exper + mu2 * expersq
18. eststo, addscalars(eta_educ eta[1, 1] etase eta[2, 1] expe
> r r(estimate) se r(se))
19. }
20. esttab _all using lwage‘y’.tex, replace ti("Wage equations for ‘y’
> ") ///
> nomtitles nodepvars not se noobs ar2 booktabs ///
> scalar(eta_educ etase exper se) ///
> addnotes("eta_educ: semi-elasticity of lwage with respect to e
> duc" ///
> "etase: standard error of the semi-elasticity" ///
> "exper: effect of exper on lwage at mean exper") ///
> substitute("_cons" "Constant" "eta_educ" "η_{educ}" ///
> "etase" "η_{se}")
21. }
(output written to lwage1980.tex)
(output written to lwage1981.tex)
(output written to lwage1982.tex)
(output written to lwage1983.tex)
(output written to lwage1984.tex)
(output written to lwage1985.tex)

i

i

i

i

i

i

i

i

9.6 Automating graphics 177

(output written to lwage1986.tex)
(output written to lwage1987.tex)

We may now include the separate LATEX tables produced by our do-file in our research
paper with the LATEX commands

\input{lwage1981}

\input{lwage1982}

...

\input{lwage1987}

This approach has the advantage that the tables themselves need not be included in the
LATEX document, so that if we revise the tables (to include a different specification, for
instance) we need not copy and paste the tables. To illustrate, we display one of the
tables here. LATEX output is most convenient as LATEX is itself a programming language,
and Stata code may easily write programs in that language. The example above could
be easily adapted to produce a set of tab-delimited files for use in Word or Excel, or
alternatively a set of HTML web pages. For an excellent example of the automation of
a web site containing many tables, see Gini and Pasquini (2006).

9.6 Automating graphics

Just as you may use do-files to automate the production of tabular output, you will find
that Stata’s graphical environment is particularly amenable to automation. In a research
project, you often may need a number of essentially identical graphs: the same variables
plotted for each unit of analysis or time period. Although Stata’s graphics language is
quite complex, it offers you the facility of complete customization of every aspect of the
graph, including exporting the graph to a format usable by other applications. In this
section, we present an extended example of the automation of graphs, building upon
the example of the previous section. We present various examples of Stata graphics
without explanation of the full syntax of Stata’s graphics language. For an introduction
to Stata graphics, please see help graph intro and [G] graph intro. An in-depth
presentation of Stata’s graphics capabilities is provided by Mitchell’s A Visual Guide
to Stata Graphics (Mitchell (2008)) and a number of Nicholas Cox’s Speaking Stata
columns in the Stata Journal (Cox (2004a,b,d,e, 2005b,c,d, 2006b).

Let’s imagine that you want to produce a set of graphs for one of the wage equations
estimated from the U.S. National Longitudinal Survey’s Youth Sample. You would
like two graphs for each year’s regression. First, you want a scatterplot of the log
wage (dependent) variable against the log hours variable, but you’d like to distinguish
minority workers (Black and Hispanics) from non-minority workers in the plot. Second,
after estimating a wage equation,

regress lwage educ exper lhours if year == ‘y’

you would like to examine one of the added-variable plots available from [R] regress

i

i

i

i

i

i

i

i

178 Chapter 9 Do-file programming: other topics

Table 9.3: Wage equations for 1984

(1) (2) (3)

educ 0.0759∗∗∗ 0.0758∗∗∗ 0.0923∗∗∗

(0.0124) (0.0127) (0.0158)

lhours −0.162 −0.173 −0.173
(0.0949) (0.0950) (0.0948)

black −0.123 −0.126
(0.0689) (0.0691)

hisp 0.0160 0.00976
(0.0619) (0.0620)

exper −0.0660
(0.0765)

expersq 0.00551
(0.00461)

Constant 2.046∗∗ 2.140∗∗ 2.122∗∗

(0.741) (0.741) (0.807)

adj. R2 0.064 0.067 0.070
ηeduc 0.893 0.892 1.086
ηse 0.146 0.150 0.185
exper 0.0113
se 0.0190

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

ηeduc: semi-elasticity of lwage with respect to educ

ηse: standard error of the semi-elasticity

exper: effect of exper on lwage at mean exper

i

i

i

i

i

i

i

i

9.6 Automating graphics 179

postestimation.

The added-variable plot or avplot is a graphical technique designed to identify
the important variables in a relationship. The technique decomposes the multivariate
relationship into a set of two-dimensional plots.12 Taking each regressor (x∗) in turn,
the added-variable plot is based on two residual series. The first series, e1, contains the
residuals from the regression of x∗ on all other x, while the second series, e2, contains the
residuals from the regression of y on all x variables except x∗. That is, e1 represents that
part of x∗ which is not linearly related to those other regressors while e2 represents the
information in y that is left unexplained by a linear combination of the other regressors
(excluding x∗). The added-variable plot for x∗ is then the scatterplot of e1 versus e2.
Two polar cases (as discussed by Cook and Weisberg (1994), p. 194) are of interest. If
most points are clustered around a horizontal line at the level of zero in the added-
variable plot, x∗ is irrelevant. On the other hand, if most points are clustered around
a vertical line on the x-axis at zero for that predictor, the plot would indicate that
near-perfect collinearity is evident. In this case as well, addition of x∗ to the model
would not be helpful.

The strength of a linear relationship between e1 and e2 (that is, the slope of a least
squares line through this scatter of points) represents the marginal value of x∗ in the
full model. If the slope is significantly different from zero, then x∗ makes an important
contribution to the model over and above that of the other regressors. The more closely
the points are grouped around a straight line in the plot, the more important is the
marginal contribution of x∗. As an added check, if the specification of the full model
(including x∗) is correct, the plot of e1 versus e2 must exhibit linearity. Significant
departures from linearity in the plot cast doubt on the appropriate specification of x∗

in the model.

Suppose that you want to focus on the added-variable plot (avplot) of the log hours
variable, lhours, in the wage equation. You would like the two graphs combined in a
single figure for each year of the analysis, 1980–1987.

To produce your automated graphics, you must first generate an indicator (dummy)
variable denoting minority status and use the separate ([D] separate) command to
split the log wage variable into minority and non-minority groups. The syntax of this
command is

separate varname [if exp] [in range] , by(byvar |exp) [options]

The by clause specifies the groups into which varname is to be separated.13 You might,
for instance, want to separate the variable into a number of categories. Alternatively,
an exp, or algebraic expression, can be given to create two categories: for instance,
exper > 5. The shortlabels option specifies that the variable name be omitted from
the new variable labels, while the undocumented veryshortlabels option removes the
by-variable name as well (see Cox (2005e).) By default, the varname will be used as

12. An excellent discussion of the rationale for the added-variable plot is given by Cook and Weisberg
(1994), pp. 191–94.
13. The separate command was discussed in Section 5.9.4.

i

i

i

i

i

i

i

i

180 Chapter 9 Do-file programming: other topics

the stub of the new variables to be created. In your case, with minority as an indicator
variable taking on values 0 and 1, two variables will be created: lwage0 and lwage1.
These variables may then be placed on the y-axis of a scatterplot in place of the single
variable lwage.

Creating the set of eight combined figures then involves, as in our prior example,
setting up a forvalues loop over year with y as the loop variable, running the regression
and producing the two figures for each year. You may use the nodraw option on each
graph command to prevent their display, and the name option to name them. Although
the manual’s description of avplot does not list all of these options, the command
allows any graph twoway ([G] graph twoway) option to be employed. Finally, graph
combine ([G] graph combine) puts the graphs together into a single figure. You
could choose to juxtapose them horizontally or vertically using the rows() and cols()

options. You might have four graphs or six graphs per year. In this case, we only have
the two, so they are combined and the resulting graph is saved to a .gph file named
lwage‘y’ for each value of year.

. separate lwage, by(black | hisp) veryshortlabel

storage display value
variable name type format label variable label

lwage0 float %9.0g !(black | hisp)
lwage1 float %9.0g black | hisp

. forvalues y = 1981/1987 {
2. quietly {
3. regress lwage educ exper lhours if year == ‘y’
4. scatter lwage0 lwage1 lhours if year==‘y’, msize(small) ///

> scheme(s2mono) nodraw ///
> name(scat‘y’,replace) ytitle(lwage) legend(pos(5) ring(0) col
> (1))
5. avplot lhours, msize(small) nodraw scheme(s2mono) name(avplot‘y’,

> replace)
6. graph combine scat‘y’ avplot‘y’, nodraw col(2) saving(lwage‘y’, re

> place) ///
> ti("Log wage vs. log hours for ‘y’")
7. }
8. }

If you are satisfied with the graphs and want to include them in a document, you may
translate the native-format Stata .gph file into another format. The highest-quality
format for many purposes is Encapsulated PostScript, or .eps. This may be performed
with

. graph export lwage‘y’.eps, replace

within the forvalues loop. Alternative high-quality export formats available from
graph export ([G] graph export) include .png for HTML pages, .tif for page-layout
programs and .pdf (only available in Stata for Macintosh).

You may also change the aspect of the graph before exporting it with a command
such as

i

i

i

i

i

i

i

i

9.6 Automating graphics 181

. graph display, xsize(5) ysize(3)

where the arguments of these two options are in inches. An example of the graphs pro-
duced is given as Figure 9.1. In summary, the complete flexibility of Stata’s graphics

−
4

−
2

0
2

4
lw

ag
e

6.5 7 7.5 8 8.5
lhours

!(black | hisp)

black | hisp −
6

−
4

−
2

0
2

e(
 lw

ag
e

| X
)

−1 −.5 0 .5 1
e(lhours | X)

coef = −.1626479, se = .0947997, t = −1.72

Log wage vs. log hours for 1984

Figure 9.1: Automated graphics.

language lends itself to generating graphs automatically, with no resort to manual mod-
ification of each graph.14 In this example, we demonstrated producing a set of graphs
for subsets of the data on which statistical analyses have been performed. Alterna-
tively, you may need to produce the same set of graphs in a repetitive process, such as
a monthly update of a web site based on the latest statistics. For an excellent example
of a graph-rich web site automatically updated when new data become available, see
Gini and Pasquini (2006).

Many user-written graphics commands are conveniences that help you produce the
graphics you need without having to master more complex details of Stata’s graphics
language. A useful guide to Nicholas Cox’s many contributions in this area is available
on the SSC Archive as njc stuff (Cox (2007a)).

14. Stata’s Graph Editor permits complete manual customization of the graph. Its Recorder option
allows the changes made to be written to a script. See help graph editor.

i

i

i

i

i

i

i

i

182 Chapter 9 Do-file programming: other topics

9.7 Characteristics

Characteristics are described in [U] 12.8 Characteristics as “an arcane feature of
Stata but are of great use to Stata programmers.” Each saved dataset and each variable
within the dataset may have any number of characteristics associated with them. The
characteristics are saved with the data, so that they are persistent. Dataset characteris-
tics include indicators for data saved as panel (longitudinal) data with xtset or tsset,
as survival-time data with stset or as complex survey data with svyset. Storing these
characteristics with the data allow the datasets to retain this useful information, so
that they may be exchanged with other users who need not reestablish the panel (or
survival-time, or complex survey) qualifiers of the data.

Characteristics may be examined, defined or renamed with the char ([P] char) com-
mand. char listwill show the characteristics of the current dataset as dta[charname]
as well as those defined for any variables in the dataset. char list varname will display
characteristics associated with that varname. Characteristics may be defined with

. char evarname [charname] ‘‘text’’

where evarname may be either dta or the name of a variable. This command will
define the characteristic charname for that evarname as the string text. If you are
defining your own characteristics, you should include at least one capital letter in its
name, as lower-case characteristics are reserved for official Stata. Characteristics’ values
may contain 8,681 characters in Small Stata and 67,784 characters in all other flavors
of Stata. The char rename command allows you to move a set of characteristics from
one variable to another.

One interesting use for characteristics involves defining the varname characteristic
for one or more variables. This characteristic interacts with the subvarname option of
the list ([D] list) command. With that option invoked, the name of the variable is
replaced in the output with the value of the varname characteristic. As an example, let
us define characteristics for several variables in auto.dta:

. sysuse auto, clear
(1978 Automobile Data)

. char make[varname] "modle"

. char price[varname] "prix"

. char weight[varname] "poids"

. char length[varname] "longueur"

We may now display the data with either English or French labels:

. list make price weight length in 1/10, sep(0)

make price weight length

1. AMC Concord 4,099 2,930 186
2. AMC Pacer 4,749 3,350 173
3. AMC Spirit 3,799 2,640 168

i

i

i

i

i

i

i

i

9.7 Characteristics 183

4. Buick Century 4,816 3,250 196
5. Buick Electra 7,827 4,080 222
6. Buick LeSabre 5,788 3,670 218
7. Buick Opel 4,453 2,230 170
8. Buick Regal 5,189 3,280 200
9. Buick Riviera 10,372 3,880 207
10. Buick Skylark 4,082 3,400 200

. list make price weight length in 1/10, sep(0) subvarname

modle prix poids longueur

1. AMC Concord 4,099 2,930 186
2. AMC Pacer 4,749 3,350 173
3. AMC Spirit 3,799 2,640 168
4. Buick Century 4,816 3,250 196
5. Buick Electra 7,827 4,080 222
6. Buick LeSabre 5,788 3,670 218
7. Buick Opel 4,453 2,230 170
8. Buick Regal 5,189 3,280 200
9. Buick Riviera 10,372 3,880 207
10. Buick Skylark 4,082 3,400 200

For a large-scale example of the use of characteristics in data validation, see Bill
Rising’s ckvar command, described in Rising (2007).

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

10 Cookbook: Do-file programming IV

This cookbook chapter presents a number of recipes for Stata do-file programmers us-
ing the programming features described in the previous chapter. Each recipe poses a
problem and a worked solution. Although you may not encounter this precise problem,
you may be able to recognize its similarities to a task that you would like to automate
in a do-file.

10.1 Computing firm-level correlations with multiple indices

The problem: a user on Statalist posed a question involving a very sizable dataset
of firm-level stock returns and a set of index fund returns. He wanted to calculate, for
each firm, the average returns and the set of correlations with the index funds, and
determine with which fund they were most highly correlated.

We illustrate this problem with some actual daily stock returns data for 291 firms,
1992–2006, from CRSP (the Center for Research on Securities Prices): 311,737 firm-
daily observations in total. We have constructed nine simulated index funds’ returns.
The hypothetical funds, managed by a group of Greek investment specialists, are labeled
the Kappa, Lambda, Nu, Xi, Tau, Upsilon, Phi, Chi and Psi funds. To solve the
problem, we define a loop over firms. For each firm of the nf firms, we want to calculate
the correlations between firm returns and the set of nind index returns, and find the
maximum value among those correlations. The variable hiord takes on values 1–9, while
permno is an integer code assigned to each firm by CRSP. We set up a Stata matrix
retcorr to hold the correlations, with nf rows and nind columns. The number of firms
and number of indices are computed by the word count extended macro function1

applied to the local macro produced by levelsof ([R] levelsof).

. qui levelsof hiord, local(indices)

. local nind : word count ‘indices’

. qui levelsof permno, local(firms)

. local nf : word count ‘firms’

. matrix retcorr = J(‘nf’, ‘nind’, .)

We calculate the average return for each firm with summarize, meanonly ([R] summa-
rize). In a loop over firms, we use correlate ([R] correlate) to compute the correlation
matrix of each firm’s returns, ret, with the set of index returns. For firm n, we move

1. See Section 3.8.

185

i

i

i

i

i

i

i

i

186 Chapter 10 Cookbook: Do-file programming IV

the elements of the last row of the matrix corresponding to the correlations with the
index returns into the nth row of the retcorr matrix. We also place the mean for the
nth firm into that observation of variable meanret.

. local n 0

. qui gen meanret = .

. qui gen ndays = .

. local row = ‘nind’ + 1

. foreach f of local firms {
2. qui correlate index1-index‘nind’ ret if permno == ‘f’
3. matrix sigma = r(C)
4. local ++n
5. forvalues i = 1/‘nind’ {
6. matrix retcorr[‘n’, ‘i’] = sigma[‘row’, ‘i’]
7. }
8. summarize ret if permno == ‘f’, meanonly
9. qui replace meanret = r(mean) in ‘n’
10. qui replace ndays = r(N) in ‘n’
11. }

We now may use the svmat command ([P] matrix mkmat) to convert the retcorr

matrix into a set of variables, retcorr1-retcorr9. The egen function rowmax() com-
putes the maximum value for each firm. We then must determine which of the nine
elements is matched by that maximum value. This number is stored in highcorr.

. svmat double retcorr

. qui egen double maxretcorr = rowmax(retcorr*)

. qui generate highcorr = .

. forvalues i = 1/‘nind’ {
2. qui replace highcorr = ‘i’ if maxretcorr == retcorr‘i’ ///

> & !missing(maxretcorr)
3. }

We now can sort the firm-level data in descending order of meanret, using gsort

([D] gsort) and list firms and their associated index fund numbers. These values show,
for each firm, which index fund their returns most closely resemble. For brevity, we list
only the fifty best-performing firms.

. gsort -meanret highcorr

. label values highcorr ind

. list permno meanret ndays highcorr in 1/50, noobs sep(0)

permno meanret ndays highcorr

24969 .0080105 8 Nu
53575 .0037981 465 Tau
64186 .0033149 459 Upsilon
91804 .0028613 1001 Psi
86324 .0027118 1259 Chi
60090 .0026724 1259 Upsilon
88601 .0025065 1250 Chi

i

i

i

i

i

i

i

i

10.1 Computing firm-level correlations with multiple indices 187

73940 .002376 531 Nu
84788 .0023348 945 Chi
22859 .0023073 1259 Lambda
85753 .0022981 489 Chi
39538 .0021567 1259 Nu
15667 .0019581 1259 Kappa
83674 .0019196 941 Chi
68347 .0019122 85 Kappa
81712 .0018903 1259 Chi
82686 .0017555 987 Chi
23887 .0017191 1259 Lambda
75625 .0017182 1259 Phi
24360 .0016474 1259 Lambda
68340 .0016361 1259 Upsilon
34841 .001558 1259 Nu
81055 .0015497 1259 Lambda
85631 .0015028 1259 Chi
89181 .0015013 1259 Chi
76845 .0014899 1006 Phi
48653 .0014851 1259 Xi
90879 .0014393 1259 Psi
85522 .0014366 454 Chi
80439 .0014339 1186 Chi
85073 .0014084 1259 Phi
86976 .0014042 1259 Chi
51596 .0014028 1259 Tau
77971 .0013873 1259 Xi
25487 .0013792 1259 Chi
14593 .0013747 1072 Kappa
79950 .0013615 1259 Nu
79879 .0013607 127 Phi
12236 .0012653 858 Kappa
77103 .0012513 648 Lambda
81282 .0012314 1259 Chi
75034 .0012159 1259 Phi
46922 .0012045 1259 Xi
82488 .0011911 359 Chi
75912 .0011858 1173 Phi
82307 .0011574 1259 Kappa
83985 .0011543 1259 Kappa
79328 .0011498 1259 Phi
11042 .0011436 1259 Lambda
92284 .0011411 1259 Psi

An alternative approach to the computations, taking advantage of Mata, is presented
in Section 14.3.

i

i

i

i

i

i

i

i

188 Chapter 10 Cookbook: Do-file programming IV

10.2 Computing marginal effects for graphical presentation

The problem: you would like to produce a graph showing how a regressor’s marginal
effect and its associated confidence interval (see [R] mfx) vary across a range of values
for the regressor. As discussed in Section 9.5, in a linear regression, the coefficients’
point estimates are fixed, but derived estimates such as the elasticities (mfx, eyex)
vary throughout the range of the regressor and response variable.

To illustrate, we estimate a model of median housing prices as a function of several
explanatory factors: nox, the concentration of pollutants; dist, the distance from an
urban center; rooms, the number of rooms in the house; stratio, the student-teacher
ratio in that community; and proptax, the level of local property taxes. We compute
elasticities (by default, at the point of means) with the eyex option for each explanatory
variable.

. use hprice2a, clear

. regress price nox dist rooms stratio proptax

Source SS df MS Number of obs = 506
F(5, 500) = 165.85

Model 2.6717e+10 5 5.3434e+09 Prob > F = 0.0000
Residual 1.6109e+10 500 32217368.7 R-squared = 0.6239

Adj R-squared = 0.6201
Total 4.2826e+10 505 84803032 Root MSE = 5676

price Coef. Std. Err. t P>|t| [95% Conf. Interval]

nox -2570.162 407.371 -6.31 0.000 -3370.532 -1769.793
dist -955.7175 190.7124 -5.01 0.000 -1330.414 -581.021
rooms 6828.264 399.7034 17.08 0.000 6042.959 7613.569

stratio -1127.534 140.7653 -8.01 0.000 -1404.099 -850.9699
proptax -52.24272 22.53714 -2.32 0.021 -96.52188 -7.963555

_cons 20440.08 5290.616 3.86 0.000 10045.5 30834.66

. mfx, eyex

Elasticities after regress
y = Fitted values (predict)

= 22511.51

variable ey/ex Std. Err. z P>|z| [95% C.I.] X

nox -.6336244 .10068 -6.29 0.000 -.830954 -.436295 5.54978
dist -.1611472 .03221 -5.00 0.000 -.224273 -.098022 3.79575

rooms 1.906099 .1136 16.78 0.000 1.68344 2.12876 6.28405
stratio -.9245706 .11589 -7.98 0.000 -1.15171 -.697429 18.4593
proptax -.0947401 .04088 -2.32 0.020 -.174871 -.014609 40.8237

The significance levels of the elasticities are very similar to those of the original coeffi-
cients. The regressor rooms is elastic, with an increase in rooms having almost twice as
large an effect on price in percentage terms.2 The other three regressors are inelastic,

2. In an elastic relationship, the elasticity is greater than one in absolute value, so that a one percent
change in x causes more than a one percent change in y.

i

i

i

i

i

i

i

i

10.2 Computing marginal effects for graphical presentation 189

with estimated elasticities within the unit interval. Note, though, that the 95% confi-
dence interval for stratio includes values less than −1.0, so that we cannot conclude
that housing prices are inelastic with respect to the student-teacher ratio. They might
drop by more than one percent with a one percent increase in stratio.

The at() option of mfx is capable of computing point and interval estimates of the
marginal effects or elasticities at any point. For ease of use, you may specify that one
variable takes on a specific value while all others are held at their sample means or
medians to trace out the effects of that regressor. For instance, we may calculate a
house price elasticity over the range of values of nox in the sample. The command also
handles the discrete changes appropriate for indicator variables.

In the example below we evaluate the variation in the elasticity of median house
price with respect to the community’s student-teacher ratio in both point and interval
form. We first run the regression and compute selected percentiles of stratio using the
detail option of summarize, saving them in a temporary variable x obtained from the
tempvar ([P] macro) command.

. use hprice2a, clear

. // run regression

. quietly regress price nox dist rooms stratio

. // compute appropriate t-statistic for 95% confidence interval

. scalar tmfx = invttail(e(df_r), 0.975)

. tempvar y x eyex seyex1 seyex2

. foreach v in ‘y’ ‘x’ ‘eyex’ ‘seyex1’ ‘seyex2’ { // generate variables needed
2. qui generate ‘v’ = .
3. }

. // summarize, detail computes percentiles of stratio

. quietly summarize stratio if e(sample), detail

. local pct 1 10 25 50 75 90 99

. local i = 0

. foreach p of local pct {
2. local pc‘p’ = r(p‘p’)
3. local ++i
4. // set those percentiles into tempvar x

. quietly replace ‘x’ = ‘pc‘p’’ in ‘i’
5. }

To produce the graph, we must compute elasticities at the selected percentiles and store
the mfx results in temporary variable y. The mfx command, like all estimation com-
mands, leaves results behind that are described in ereturn list. The saved quantities
include scalars such as e(Xmfx y), the predicted value of y generated from the regres-
sors, and a number of matrices containing the marginal effects or elasticities. In the
example above, we compute the elasticities with option eyex. They are returned in the
matrix e(xMfx eyex) with standard errors returned in the matrix e(xMfx se eyex).
The do-file extracts the appropriate values from those matrices and uses them to create
variables containing the percentiles of stratio, the corresponding predicted values of
price, the elasticity estimates and their confidence interval bounds.

i

i

i

i

i

i

i

i

190 Chapter 10 Cookbook: Do-file programming IV

. local i = 0

. foreach p of local pct {
2. // compute elasticities at those points

. quietly mfx compute, eyex at(mean stratio = ‘pc‘p’’)
3. local ++i
4. // save predictions at these points in tempvar y

. quietly replace ‘y’ = e(Xmfx_y) in ‘i’
5. // retrieve elasticities

. matrix Meyex = e(Xmfx_eyex)
6. matrix eta = Meyex[1, "stratio"] // for the stratio column
7. quietly replace ‘eyex’ = eta[1, 1] in ‘i’ // and save in tempvar eye

> x
8. // retrieve standard errors of the elasticities

. matrix Seyex = e(Xmfx_se_eyex)
9. matrix se = Seyex[1,"stratio"] // for the stratio column
10. // compute upper and lower bounds of confidence interval
. quietly replace ‘seyex1’ = ‘eyex’ + tmfx*se[1, 1] in ‘i’
11. quietly replace ‘seyex2’ = ‘eyex’ - tmfx*se[1, 1] in ‘i’
12. }

20
00

0
25

00
0

30
00

0
P

re
di

ct
ed

 m
ed

ia
n

ho
us

e
pr

ic
e,

 d
ol

la
rs

−
2

−
1.

5
−

1
−

.5
E

la
st

ic
ity

 o
f p

ric
e

v.
 s

tu
de

nt
/te

ac
he

r
ra

tio

12 14 16 18 20 22
Student/teacher ratio (percentiles 1 10 25 50 75 90 99)

Elasticity 95% c.i.
Predicted median house price, dollars

Figure 10.1: Point and interval elasticities computed with mfx.

i

i

i

i

i

i

i

i

10.2 Computing marginal effects for graphical presentation 191

These series are then graphed in Figure 10.1, combining three twoway graph types:
scatter for the elasticities, rline for their standard errors and connected for the
predicted values, with a second axis labeled with their magnitudes.3

. label variable ‘x’ "Student/teacher ratio (percentiles ‘pct’)"

. label variable ‘y’ "Predicted median house price, dollars"

. label variable ‘eyex’ "Elasticity"

. label variable ‘seyex1’ "95% c.i."

. label variable ‘seyex2’ "95% c.i."

. // graph the scatter of elasticities vs. percentiles of stratio

. // as well as the predictions with rline

. // and the 95% confidence bands with connected

. twoway (scatter ‘eyex’ ‘x’, ms(Oh) yscale(range(-0.5 -2.0)) ylabel(,nogrid))
> ///
> (rline ‘seyex1’ ‘seyex2’ ‘x’) ///
> (connected ‘y’ ‘x’, yaxis(2) yscale(axis(2) range(18000 35000))), ///
> ytitle(Elasticity of price v. student/teacher ratio)

The predictions of the model for various levels of the student-teacher ratio demon-
strate that more crowded schools are associated with lower housing prices, other things
being equal. The elasticities vary considerably over the range of stratio values.

3. For a presentation of Stata’s more sophisticated graphics capabilities, including overlaying several
plot types, please see A Visual Guide to Stata Graphics, Second Edition (Mitchell (2008)).

i

i

i

i

i

i

i

i

192 Chapter 10 Cookbook: Do-file programming IV

10.3 Automating the production of LATEX tables

The problem: a group of researchers is working with a frequently updated dataset
containing information on U.S. corporate directors. One of the deliverables for the re-
search project is a set of tables of variables’ descriptive statistics and tests on their
subsample means to be included in a LATEX document. They want to automate the pro-
duction of these tables so that when the data are updated the tables can be immediately
regenerated without any manual effort.

The researchers can use Stata matrices as housekeeping devices in conjunction with
the file command (discussed in Section 9.4) to achieve these goals. A particularly
useful tool is Nicholas J. Cox’s makematrix command (Cox (2003b)).This command
makes a Stata matrix from the output of other Stata commands that do not store their
results in a directly usable matrix form. For instance, consider the tabstat command
([R] tabstat), used here to tabulate the number of observations that fall into two
categories defined by the indicator variable insider (signalling whether the director
is an “inside” director, employed by the firm, or an “outside” (independent) director).
The command will produce the subsample and total counts needed, but with the save

option it places them in three separate matrices, as the return list shows.4

. use litgov_estsample.dta, clear

. tabstat insider, by(insider) stat(N) save

Summary for variables: insider
by categories of: insider

insider N

0 1736
1 984

Total 2720

. return list

macros:
r(name2) : "1"
r(name1) : "0"

matrices:
r(Stat2) : 1 x 1
r(Stat1) : 1 x 1

r(StatTotal) : 1 x 1

We use makematrix to place the tabulated counts into a row vector, matrix t2a, and
use the column-join operator (,) to add the total count:

. makematrix t2a, from(r(Stat1) r(Stat2)): tabstat insider, by(insider) stat(N)
> save

t2a[1,2]

4. If there were more than two categories of the variable being tabulated, additional matrices would
be created by the save option. All of the subsample matrices could be combined using the technique
below.

i

i

i

i

i

i

i

i

10.3 Automating the production of LATEX tables 193

Stat1 Stat2
insider 1736 984

. summarize insider, mean

. matrix temp = r(N)

. matrix t2a = t2a, temp

We use a similar command to produce the fraction of directors who are their company’s
CEOs; the variable ceo is an indicator variable for that characteristic. We assemble
that information in matrix t2aa, and use the row-join operator (\) to combine that
matrix with matrix t2a.

. makematrix t2aa, from(r(Stat1) r(Stat2)): tabstat ceo, by(insider) stat(mean)
> save

t2aa[1,2]
Stat1 Stat2

ceo 0 .27845528

. mat t2aa[1,1] = .

. summarize ceo if insider, mean

. mat temp = r(N)

. mat t2aa = t2a \ (t2aa, temp)

We now want to produce descriptive statistics for a set of variables and conduct two
statistical tests on their subsample means: a standard t-test for the difference of means
(ttest ([R] ttest) and a Mann–Whitney two-sample test (ranksum, [R] ranksum). For
each test, we want to tabulate the p-value. This value is available in r(p) for the t-test,
and may be calculated after ranksum from its computed z-statistic, stored in r(z). We
make use of one other useful function in this code fragment: the nullmat() matrix
function, which allows you to include a matrix in an expression even if it does not yet
exist.5

. foreach v of varlist audit defendant_ANY ins_trade_ANY departed age tenure st
> kholding {
2. qui makematrix t2b, from(r(Stat1) r(Stat2)): tabstat ‘v’, by(insider)

> stat(mean) save
3. summarize ‘v’, mean
4. matrix ‘v’1 = r(N)
5. qui ttest ‘v’, by(insider)
6. matrix ‘v’2 = r(p)
7. qui ranksum ‘v’, by(insider)
8. matrix ‘v’3 = 1 - normprob(abs(r(z)))
9. matrix ‘v’ = t2b, ‘v’1, ‘v’2, ‘v’3
10. matrix t2bb = (nullmat(t2bb) \ ‘v’)
11. }

Before working on the output routine, we should check to see whether the two matrices
we have constructed look sensible:

5. See Section 9.2.

i

i

i

i

i

i

i

i

194 Chapter 10 Cookbook: Do-file programming IV

. matrix colnames t2aa = Outsider Insider Total

. matrix rownames t2aa = Observations CEO

. matrix list t2aa

t2aa[2,3]
Outsider Insider Total

Observations 1736 984 2720
CEO . .27845528 984

. matrix colnames t2bb = Outsider Insider N t_pval MW_pval

. matrix list t2bb

t2bb[7,5]
Outsider Insider N t_pval MW_pval

audit .49884793 .14126016 2720 4.498e-82 0
defendant_ANY .1013986 .50102249 2694 8.83e-132 0
ins_trade_ANY .03484062 .21733333 2099 2.260e-42 0

departed .38652074 .4949187 2720 3.656e-08 1.977e-08
age 59.703341 54.963415 2720 1.608e-41 0

tenure 7.734764 9.3958844 2720 9.011e-10 .00005246
stkholding .17106612 2.6251817 2720 3.311e-27 0

The very small p-values result from the considerable differences between the means for
outside and inside directors.

Having validated the matrices’ contents, we are now ready to use the file command
to produce the output file table2.tex. We set up a tempname ([P] macro) for the file
handle as local macro hh. This file handle is referenced in each subsequent invocation
of file.6 When using this command to produce an ASCII text file, we must explicitly
write line-end markers (newline) at the end of each line.7 Using standard LATEX table
syntax, we separate column entries with ampersands (&) and mark the table line endings
with a double backslash (\\).8 Where a dollar sign ($) is needed in the output, we must
“quote” it with a preceding backslash so that the dollar sign is not considered as the
beginning of a global macro.9 Within each row of the table, we reference the appropriate
cells of the t2aa and t2bb matrices.

. local inv Audit Defendant Ins_Trading Departed Age Tenure Voting_Share

. local inv1 "Member Audit Committee (0/1)"

. local inv2 "Defendant (0/1)"

. local inv5 "Age (Years)"

. local inv6 "Board Tenure (Years)"

. local inv7 "Voting Share (\%)"

. tempname hh

. file open ‘hh’ using table2.tex, write replace

. file write ‘hh’ "\begin{table}[htbp]\caption{Director-Level Variables}\bigski
> p" _newline

6. Note that you may open more than one file handle, and write to different handles in turn. See
Section 9.3 for a discussion of file handles.

7. You may use the abbreviation n for the line-end marker. We avoid that notation to prevent
confusion with the use of n in Stata to refer to the current observation.

8. Where a percent sign (%) is needed in LATEX, it must be “escaped” with a preceding backslash.
9. See Section 4.6.

i

i

i

i

i

i

i

i

10.3 Automating the production of LATEX tables 195

.

. file write ‘hh’ "\begin{tabular}{lrrrrr}" _newline "\hline" _newline

. file write ‘hh’ " Variable & Outside & Inside & & \multicolumn{2}{c}{P-value
> of Difference} \\" _newline

. file write ‘hh’ "& Directors & Directors & & \multicolumn{2}{c}{in Location}
> \\" _newline

. file write ‘hh’ "\hline & Mean & Mean & \$N\$ & t-test & Mann--Whitney \\" _n
> ewline

. file write ‘hh’ "\hline" _newline

. file write ‘hh’ "Observations (N) & " (t2aa[1, 1]) " & " (t2aa[1, 2]) " & " (
> t2aa[1, 3]) " \\" _newline

. file write ‘hh’ "\\{\it Involvement} \\" _newline

. file write ‘hh’ "CEO (0/1) & N/A & " %7.3f (t2aa[2, 2]) " & " (t2aa[2, 3]) "
> \\" _newline

. forv i = 1/2 {
2. file write ‘hh’ "‘inv‘i’’ & " %7.3f (t2bb[‘i’, 1]) " & " %7.3f (

> t2bb[‘i’, 2]) " & " (t2bb[‘i’, 3]) " & " %7.3f (t2bb[‘i’, 4]) " & " %7.3f (
> t2bb[‘i’, 5]) " \\" _newline
3. }

. file write ‘hh’ "\\{\it Outcome} \\" _newline

. local i 4

. file write ‘hh’ "Departed (0/1) & " %7.3f (t2bb[‘i’, 1]) " & " %7.3f (t2bb[
> ‘i’, 2]) " & " (t2bb[‘i’, 3]) " & " %7.3f (t2bb[‘i’, 4]) " & " %7.3f (t2bb[
> ‘i’, 5]) " \\" _newline

. file write ‘hh’ "\\{\it Demographics} \\" _newline

. forv i = 5/7 {
2. file write ‘hh’ "‘inv‘i’’ & " %7.3f (t2bb[‘i’, 1]) " & " %7.3f (

> t2bb[‘i’, 2]) " & " (t2bb[‘i’, 3]) " & " %7.3f (t2bb[‘i’, 4]) " & " %7.3f (
> t2bb[‘i’, 5]) " \\" _newline
3. }

. file write ‘hh’ "\hline" _n "\end{tabular}" "\medskip" _newline

. file write ‘hh’ "\end{table}" _newline

. file close ‘hh’

We are ready to view the finished product. We could readily add information to the
table, in the form of headings or notes, stored in separate LATEX files referenced in the
table environment.

i

i

i

i

i

i

i

i

196 Chapter 10 Cookbook: Do-file programming IV

Table 10.1: Director-Level Variables

Variable Outside Inside P-value of Difference
Directors Directors in Location

Mean Mean N t-test Mann–Whitney
Observations (N) 1736 984 2720

Involvement
CEO (0/1) N/A 0.278 984
Member Audit Committee (0/1) 0.499 0.141 2720 0.000 0.000
Defendant (0/1) 0.101 0.501 2694 0.000 0.000

Outcome
Departed (0/1) 0.387 0.495 2720 0.000 0.000

Demographics
Age (Years) 59.703 54.963 2720 0.000 0.000
Board Tenure (Years) 7.735 9.396 2720 0.000 0.000
Voting Share (%) 0.171 2.625 2720 0.000 0.000

10.4 Tabulating downloads from the SSC Archive

The problem: the webserver log of SSC Archive activity ([R] ssc) counts the number
of downloads of each ado-file. I want to present the number of package downloads,
rather than individual ado-file downloads, as many packages contain multiple ado-files.
Packages have one or more authors, so I would also like to present the download statistics
for each author, adjusting for multiple authorship.

The raw data are of the form:

1464: 1.38%: 51.428: 3.36%: Nov/ 1/07 5:11 AM: /repec/bocode/o/outreg.ado
1244: 1.17%: 96.083: 6.28%: Nov/ 1/07 4:34 AM: /repec/bocode/o/outreg2.ado
1173: 1.11%: 143.543: 9.38%: Nov/ 1/07 5:37 AM: /repec/bocode/e/estout.ado
1168: 1.10%: 47.396: 3.10%: Nov/ 1/07 5:37 AM: /repec/bocode/e/esttab.ado
1164: 1.10%: 0.915: 0.06%: Nov/ 1/07 5:37 AM: /repec/bocode/_/_eststo.ado

For each observation, the first variable gives the number of ado-file downloads, while the
last variable contains the name of the ado-file. I read those fields with infix ([D] infix;
see Section 2.7.1)) and save them as a Stata dataset, hits.dta:

. local mmyy oct2007

. infix nhit 1-5 str url 53-92 using "‘mmyy’.ssc.raw", clear

. format url %40s

. sort url

. drop if nhit == .

. save hits, replace

Separately, I have prepared another ASCII file, extrAU.raw, which contains five vari-

i

i

i

i

i

i

i

i

10.4 Tabulating downloads from the SSC Archive 197

ables: package, url, nmods, author and a sequence number. This file contains one
observation for each package/author combination, with nmods listing the number of
ado-files in the package. These data are of the form:

PEERS /repec/bocode/ / gpeers.ado 1 Amine Ouazad 1
XTMIS /repec/bocode/x/xtmis.ado 1 Minh Nguyen 2
FTEST /repec/bocode/f/ftest.ado 1 Maarten L. Buis 3
POWERQ /repec/bocode/p/powerq.ado 1 Nikolaos A Patsopoulos 4
POWERQ /repec/bocode/p/powerq.ado 1 Tiago V Pereira 4
A2REG /repec/bocode/a/a2reg.ado 2 Amine Ouazad 5
A2REG /repec/bocode/a/a2group.ado 2 Amine Ouazad 5

In this example, each package except A2REG contains one ado-file; that package contains
two. We read this file with insheet ([D] insheet; see Section 2.7.1):

. insheet using "extrAU.raw", clear

. gen module = reverse(substr(reverse(url), 1, strpos(reverse(url), "/") -1))

. sort url

. save authors, replace

This code fragment defines module as the last segment of the ado-file’s URL: for instance,
from /repec/bocode/a/acplot.ado we need just acplot.ado. The string manipula-
tion functions reverse(), substr() and strpos() are used to extract the desired
substring. This dataset is then saved as authors.dta. We are now ready to com-
bine the hits and authors datasets using merge ([D] merge; see Section 5.8) with the
uniqmaster option:

. use hits

. merge url using authors, uniqmaster

. drop if merge < 3

. drop merge

Any observations found in either file that are not matched in the merge may be dis-
carded, based on the value of the merge variable. Those with merge=2 are ado-files that
were not downloaded. If there are any with merge=1, problems with the extrAU.raw

file would be indicated.

The number of package hits can now be generated as the ratio of hits (downloads) to
modules, or ado-files, in the package. The number of package hits can be non-integer,
as a particular use of the ssc command may download only some of the ado-files in
the package (those which have been updated on the archive). Given the number of
package hits, the collapse ([D] collapse) command can generate a single record giving
the sum of downloads for each author/package combination. Unlike some tallies of
multiply-authored materials such as journal articles, the total number of package hits
are assigned to each author for a package with multiple authors.

. generate npkghit = nhit / nmods

. collapse (sum) npkghit, by(author package)

. gsort -npkghit

We may now list package downloads in descending order:

. list npkghit author package, noobs

i

i

i

i

i

i

i

i

198 Chapter 10 Cookbook: Do-file programming IV

producing a list like

npkghit author package
2187.00 Roy Wada OUTREG2
1149.00 John Luke Gallup OUTREG
1125.00 Ben Jann ESTOUT
914.33 Christopher F Baum IVREG2
914.33 Mark E Schaffer IVREG2
914.33 Steven Stillman IVREG2
900.75 David Roodman XTABOND2
835.67 Barbara Sianesi PSMATCH2
835.67 Edwin Leuven PSMATCH2
741.00 Sophia Rabe-Hesketh GLLAMM
481.50 Mark E Schaffer XTIVREG2

To produce a summary listing by authors, we can merely carry out another collapse
by author:

. collapse (sum) npkghit, by(author)

. gsort -npkghit

. list if author != "", noobs

producing a list like

author npkghit
Christopher F Baum 6620.70

Nicholas J. Cox 6610.82
Ben Jann 3044.17

Mark E Schaffer 2824.83
Roy Wada 2187.00

Steven Stillman 1886.33
David Roodman 1406.45

Stephen P. Jenkins 1268.32
Thomas Steichen 1201.66
John Luke Gallup 1168.00

Adrian Mander 1073.00
Vince Wiggins 1072.00
Roger Newson 1056.20

These statistics are saved in a Stata dataset for combination with two prior months’
values, underlying the values displayed by the ssc hot command help ssc).

i

i

i

i

i

i

i

i

10.5 Extracting data from graph files’ sersets 199

10.5 Extracting data from graph files’ sersets

The problem: to revise a paper submitted to a professional journal some time ago,
you must produce new graphs. You have the do-file that produced the graphs, its log
file and the graph (.gph) files themselves, but the Stata dataset was lost in a hard disk
crash (and was not backed up elsewhere—not a recommended practice!)

Fortunately, Stata graph (.gph) files are not merely bitmaps or lists of vector graph-
ics instructions: a graph (.gph) file is actually a program to reproduce the graph.10 This
program also contains the data series that appear on the graph, stored in one or more
sersets ([P] serset). Sersets are like datasets in that they contain information on one
or more variables. Each serset associated with a graph is assigned a sequential number
starting with zero. Your references to sersets use those numbers.

To illustrate the use of sersets to retrieve the data behind a graph file, let’s first
consider a do-file that creates the graph files:

. use airquality, clear

. drop if town == "Alburq"
(1 observation deleted)

. generate tabrv = upper(substr(town, 1, 3))

. summarize temp, meanonly

. generate hightemp = (temp > r(mean) & !missing(temp))

. label def tlab 0 "below mean temp" 1 "above mean temp"

. label values hightemp tlab

. scatter so2 temp, msize(tiny) mlabel(tabrv) mlabsize(vsmall) ///
> saving(fig10_4_1, replace) scheme(s2mono)
(file fig10_4_1.gph saved)

. scatter so2 precip, msize(tiny) mlabel(tabrv) mlabsize(vsmall) ///
> by(hightemp) saving(fig10_4_2, replace) scheme(s2mono)
(file fig10_4_2.gph saved)

. scatter so2 wind, msize(tiny) mlabel(tabrv) mlabsize(vsmall) ///
> by(hightemp) saving(fig10_4_3, replace) scheme(s2mono)
(file fig10_4_3.gph saved)

The airquality dataset was used in Section 5.4. For pedagogical purposes, we drop
one city (Albuquerque) so that all cities’ names may be distinctly abbreviated to three
letters. The do-file produces three figures. The first includes variables so2 and temp,
with points labeled by tabrv. The second includes so2 and precip, with hightemp

used as a by-variable. The third includes so2 and wind, also by(hightemp). Thus, the
three graphs contain the city names (tabrv) and four measures: so2, temp, precip

and wind. For illustration, we display the second graph as Figure 10.2.

We now imagine that the original airquality.dta dataset is no longer accessible,
but you have the three .gph files produced above. In the following do-file, graph use

10. Strictly speaking, this pertains only to live graph files. If the asis option is used in graph save,
or as a suboption to saving(), the file is “frozen” in its current state and can no longer be edited by
the Graph Editor.

i

i

i

i

i

i

i

i

200 Chapter 10 Cookbook: Do-file programming IV

DEN

HAR

WIL

CHI

IND

DES

LOU

BAL

DET

MIN

KANOMA

ALB

BUF

CIN

CLE

COL

PHI

PIT

PRO

SLC SEA
CHA

MIL

PHO
LROSFR

WAS

JAC
MIA

ATL

WIC NEW

STL

MEM

NAS

DAL HOU

NOR

RIC

0
50

10
0

0 20 40 60 0 20 40 60

below mean temp above mean temp
S

ul
ph

ur
 d

io
xi

de
, m

g/
m

3

Mean precipitation indices
Graphs by hightemp

Figure 10.2: Air quality in U.S. cities.

accesses one of the graph files. serset dir illustrates the available sersets from that
graph file: in this case, a single serset. serset use adds those variables to the dataset,
which we then save as f10 4 1.dta.

. clear

. serset clear

. graph use fig10_4_1

. serset dir

0. 40 observations on 3 variables
so2 temp tabrv

. serset use

. sort tabrv

. save f10_4_1, replace
file f10_4_1.dta saved

We then go through the same steps for the second and third graph files. In these files,
as there are two graph panels (see Figure 10.2), there are two sersets, numbered 0 and

i

i

i

i

i

i

i

i

10.5 Extracting data from graph files’ sersets 201

1. As the by() option has been used to separate the dataset, each serset contains a
subset of the original dataset. We access each serset and store its contents in a separate
Stata dataset:

. serset clear

. graph use fig10_4_2

. serset dir

0. 24 observations on 3 variables
so2 precip tabrv

1. 16 observations on 3 variables
so2 precip tabrv

. serset set 0

. serset use

. sort tabrv

. save f10_4_2, replace
file f10_4_2.dta saved

. serset set 1

. serset use

. sort tabrv

. save f10_4_2a, replace
file f10_4_2a.dta saved

.

. serset clear

. graph use fig10_4_3

. serset dir

0. 24 observations on 3 variables
so2 wind tabrv

1. 16 observations on 3 variables
so2 wind tabrv

. serset set 0

. serset use

. sort tabrv

. save f10_4_3, replace
file f10_4_3.dta saved

. serset set 1

. serset use

. sort tabrv

. save f10_4_3a, replace
file f10_4_3a.dta saved

We are now ready to combine all the series and reconstruct a significant chunk of the
missing Stata dataset. We use the first dataset, which contains observations for all cities,
and merge ([D] merge) datasets f10 4 2 and f10 4 3, which contain observations for a
subset of observations of the precip and wind variables: those related to hightemp = 0.
As two “using” datasets are being merged, three status variables are created: merge,

merge1 and merge2. We use the wildcard (*) to drop them all.

At this point, the dataset in memory contains complete information for all observa-

i

i

i

i

i

i

i

i

202 Chapter 10 Cookbook: Do-file programming IV

tions on so2, temp and tabrv, but only a subset of observations on precip and wind.
To incorporate the observations from the other subset (for which hightemp = 1), we
use merge with the update option. This causes the additional observations to replace
missing values in the precip and wind variables. At the end of this process, we have
complete information on all five variables:

. use f10_4_1, clear

. merge tabrv using f10_4_2 f10_4_3, unique

. drop _merge

. sort tabrv

. merge tabrv using f10_4_2a, update unique

. drop _merge

. sort tabrv

. merge tabrv using f10_4_3a, update unique

. drop _merge

. save f10_4_all, replace
file f10_4_all.dta saved

. describe

Contains data from f10_4_all.dta
obs: 40
vars: 7 6 Sep 2008 13:24
size: 1,160 (99.9% of memory free)

storage display value
variable name type format label variable label

so2 float %9.0g
temp float %9.0g
tabrv str3 %9s
precip float %9.0g
_merge1 byte %8.0g _merge representing f10_4_2
wind float %9.0g
_merge2 byte %8.0g _merge representing f10_4_3

Sorted by:

. summarize

Variable Obs Mean Std. Dev. Min Max

so2 40 30.525 23.56985 8 110
temp 40 55.7375 7.317864 43.5 75.5
tabrv 0

precip 40 37.494 10.9554 7.05 59.8
_merge1 40 .6 .4961389 0 1

wind 40 9.4575 1.444155 6 12.7
_merge2 40 .6 .4961389 0 1

We are now in a position to produce tables, statistics, or graphs for these data using
the reconstructed dataset f10 4 all.dta.

i

i

i

i

i

i

i

i

10.6 Constructing continuous price and returns series 203

10.6 Constructing continuous price and returns series

The problem: many important commodities and financial instruments trade on or-
ganized futures markets, where buyer and seller agree to exchange the commodity at a
future date by means of a futures contract. Futures contract prices are quoted just as
stock prices are quoted, but in the case of futures contracts, the price quotes refer to an
instrument with a specific expiration date. Contracts expire on a fixed schedule: for the
most heavily traded commodities, monthly. Many market participants never actually
take delivery of the underlying commodity—such as crude oil—but rather maintain a
continuous position in crude oil futures, “rolling over” that position when the nearest-
to-maturity contract approaches its expiration date. This complicates analysis of data
derived from futures prices, such as rates of return from maintaining a futures posi-
tion. We would like to produce a continuous price series and returns series from the set
of futures contract price quotations available, spanning the various contract maturity
dates.

Industry analysts have noted that to avoid market disruptions, the large participants
in the crude oil futures market roll over their positions from the near contract to the
next-near contract over several days before the near contract’s expiration date. We
can thus define a method of producing a continuous price series from a set of price
quotations on multiple months’ contracts. Consider the last five trading days before
expiration, and consider the midpoint of that interval the rollover date. Prior to the
rollover date, the price is taken from the near contract: that which will imminently
expire. On and after the rollover date, the price is taken from the next-near contract:
the contract expiring next month.

For all but the rollover date, the return is the log price relative: that is, the logarithm
of the ratio of price today to price yesterday, or log(Pt/Pt−1). For the rollover date,
we assume that the near-contract position is liquidated at the previous trading day’s
settlement price, and instantaneously rolled into the next-near contract. Thus the return
on the rollover date is the log price relative of the next-near contract for the rollover
day and the previous trading day.

To illustrate, we display an excerpt of the crude oil futures contract quotations.

. list in 1/51, sepby(qmdy)

qmdy cmdy settle contract qm cm

1. 02jan1985 01feb1985 25.92 CL1985G 300 301
2. 02jan1985 01mar1985 25.81 CL1985H 300 302
3. 02jan1985 01apr1985 25.69 CL1985J 300 303
4. 02jan1985 01may1985 25.63 CL1985K 300 304
5. 02jan1985 01jun1985 25.60 CL1985M 300 305
6. 02jan1985 01jul1985 25.59 CL1985N 300 306
7. 02jan1985 01aug1985 25.57 CL1985Q 300 307
8. 02jan1985 01sep1985 25.57 CL1985U 300 308
9. 02jan1985 01oct1985 25.57 CL1985V 300 309
10. 02jan1985 01nov1985 25.57 CL1985X 300 310
11. 02jan1985 01dec1985 25.57 CL1985Z 300 311

i

i

i

i

i

i

i

i

204 Chapter 10 Cookbook: Do-file programming IV

12. 02jan1985 01jan1986 25.57 CL1986F 300 312
13. 02jan1985 01feb1986 25.57 CL1986G 300 313
14. 02jan1985 01mar1986 25.57 CL1986H 300 314
15. 02jan1985 01apr1986 25.57 CL1986J 300 315
16. 02jan1985 01may1986 25.57 CL1986K 300 316
17. 02jan1985 01jun1986 25.57 CL1986M 300 317

18. 03jan1985 01feb1985 25.84 CL1985G 300 301
19. 03jan1985 01mar1985 25.79 CL1985H 300 302
20. 03jan1985 01apr1985 25.68 CL1985J 300 303
21. 03jan1985 01may1985 25.65 CL1985K 300 304
22. 03jan1985 01jun1985 25.59 CL1985M 300 305
23. 03jan1985 01jul1985 25.58 CL1985N 300 306
24. 03jan1985 01aug1985 25.56 CL1985Q 300 307
25. 03jan1985 01sep1985 25.56 CL1985U 300 308
26. 03jan1985 01oct1985 25.56 CL1985V 300 309
27. 03jan1985 01nov1985 25.56 CL1985X 300 310
28. 03jan1985 01dec1985 25.56 CL1985Z 300 311
29. 03jan1985 01jan1986 25.56 CL1986F 300 312
30. 03jan1985 01feb1986 25.56 CL1986G 300 313
31. 03jan1985 01mar1986 25.56 CL1986H 300 314
32. 03jan1985 01apr1986 25.56 CL1986J 300 315
33. 03jan1985 01may1986 25.56 CL1986K 300 316
34. 03jan1985 01jun1986 25.56 CL1986M 300 317

35. 04jan1985 01feb1985 25.18 CL1985G 300 301
36. 04jan1985 01mar1985 25.19 CL1985H 300 302
37. 04jan1985 01apr1985 25.16 CL1985J 300 303
38. 04jan1985 01may1985 25.13 CL1985K 300 304
39. 04jan1985 01jun1985 25.10 CL1985M 300 305
40. 04jan1985 01jul1985 24.90 CL1985N 300 306
41. 04jan1985 01aug1985 25.06 CL1985Q 300 307
42. 04jan1985 01sep1985 25.06 CL1985U 300 308
43. 04jan1985 01oct1985 25.06 CL1985V 300 309
44. 04jan1985 01nov1985 25.06 CL1985X 300 310
45. 04jan1985 01dec1985 25.06 CL1985Z 300 311
46. 04jan1985 01jan1986 25.06 CL1986F 300 312
47. 04jan1985 01feb1986 25.06 CL1986G 300 313
48. 04jan1985 01mar1986 25.06 CL1986H 300 314
49. 04jan1985 01apr1986 25.06 CL1986J 300 315
50. 04jan1985 01may1986 25.06 CL1986K 300 316
51. 04jan1985 01jun1986 25.06 CL1986M 300 317

In this listing of three days’ quotations, qm is the month number of the quote date and
cm is the month number in which the contract expires. Recall that Stata’s dates start
from 1 January 1960, so that month 300 is January 1985 and month 301 is February
1985. qmdy is the quote date and cmdy is the maturity month of the contract. That
is, contract CL1985G is the “Feb 85” contract which last traded on 18 January 1985,
as contracts expire in roughly the third week of the previous calendar month. That
contract was quoted at $25.92 (per barrel of crude oil) on 2 January 1985 and $25.84
on 3 January 1985.

We first must define the near contract (that closest to expiration) for each month:

. // identify last day of trading for near contract in each month

i

i

i

i

i

i

i

i

10.6 Constructing continuous price and returns series 205

. bysort qmdy (cmdy): generate near = contract if _n == 1
(155907 missing values generated)

We now can identify the rollover date and the prior trading date:11

. // qmdy is the first date when the near contract is no longer quoted

. // that minus 3 trading days is the target rollover date

. bysort cmdy (qmdy): generate rolldate = qmdy[_n-3] if near[_n] != near[_n-1]
(161354 missing values generated)

. bysort cmdy (qmdy): generate roll1date = qmdy[_n-4] if near[_n] != near[_n-1]
>
(161354 missing values generated)

. bysort cmdy (qmdy): generate nnear = contract if near[_n] != near[_n-1]
(161353 missing values generated)

. // fixup for first obs

. replace nnear = . in 1
(1 real change made, 1 to missing)

We use the egen mean() function to set the rolldate, roll1date and nnear values
into each trading day of the quote month:

. bysort qm: egen rollover = mean(rolldate)

. bysort qm: egen rollover1 = mean(roll1date)

. bysort qm: egen nextnear = mean(nnear)

With these variables defined, we are ready to calculate the continuous price and
returns series:

. // calculate price series as settle(near) for pre-rollover dates

. bysort qm: generate futprice = settle if contract == near & qmdy < rollover
(158572 missing values generated)

. // calculate price series as settle(nnear) for rollover date et seq.

. bysort qm: replace futprice = settle if contract==nextnear & qmdy >= rollover
(2665 real changes made)

. format futprice %9.2f

. // calculate return series for the rollover date

. bysort qm: generate settleprev = settle if contract == nextnear & qmdy == rol
> lover1
(161356 missing values generated)

. bysort qm: egen sprev = mean(settleprev)

. bysort qm: generate double futret = log(settle) - log(sprev) if qmdy == rollo
> ver
(153860 missing values generated)

. // drop obs no longer needed, flagged by missing settle

. drop if futprice == .
(155907 observations deleted)

. // calc returns for all non-settle dates

. sort qmdy

11. In the code below, note that references to near[n] could be replaced by near. We use the explicit
subscript to clarify the meaning of the code.

i

i

i

i

i

i

i

i

206 Chapter 10 Cookbook: Do-file programming IV

. replace futret = log(settle) - log(settle[_n-1]) if missing(futret)
(5449 real changes made)

We now verify that the proper series have been constructed:

. sort qmdy cmdy

. list qmdy contract futprice futret if !missing(futprice) in 1/62, noobs sepb
> y(qm)

qmdy contract futprice futret

02jan1985 CL1985G 25.92 .
03jan1985 CL1985G 25.84 -.00309119
04jan1985 CL1985G 25.18 -.02587364
07jan1985 CL1985G 25.56 .01497857
08jan1985 CL1985G 25.48 -.0031348
09jan1985 CL1985G 25.43 -.00196422
10jan1985 CL1985G 25.76 .01289332
11jan1985 CL1985G 25.77 .00038813
14jan1985 CL1985G 26.12 .01349029
15jan1985 CL1985G 25.91 -.00807235
16jan1985 CL1985H 25.57 -.01243699
17jan1985 CL1985H 25.69 .00468205
18jan1985 CL1985H 25.75 .0023328
21jan1985 CL1985H 25.97 .00850737
22jan1985 CL1985H 25.55 -.01630471
23jan1985 CL1985H 25.40 -.00588813
24jan1985 CL1985H 25.28 -.00473556
25jan1985 CL1985H 25.25 -.00118744
28jan1985 CL1985H 25.23 -.00079241
29jan1985 CL1985H 25.38 .00592768
30jan1985 CL1985H 25.67 .01136157
31jan1985 CL1985H 26.41 .02841972

01feb1985 CL1985H 26.74 .01241784
04feb1985 CL1985H 26.52 -.00826138
05feb1985 CL1985H 26.78 .00975618
06feb1985 CL1985H 27.07 .01077073
07feb1985 CL1985H 27.21 .00515843
08feb1985 CL1985H 27.59 .01386887
11feb1985 CL1985H 28.04 .0161787
12feb1985 CL1985H 27.36 -.02454998
13feb1985 CL1985J 27.06 .0186503
14feb1985 CL1985J 27.04 -.00073932
15feb1985 CL1985J 27.38 .0124955
19feb1985 CL1985J 27.29 -.00329242
20feb1985 CL1985J 27.18 -.00403895
21feb1985 CL1985J 27.14 -.00147279
22feb1985 CL1985J 26.76 -.01410039
25feb1985 CL1985J 26.44 -.01203021
26feb1985 CL1985J 26.79 .01315068
27feb1985 CL1985J 26.69 -.00373973
28feb1985 CL1985J 26.73 .00149753

01mar1985 CL1985J 27.20 .01743049
04mar1985 CL1985J 27.74 .01965841
05mar1985 CL1985J 27.55 -.0068729
06mar1985 CL1985J 27.77 .00795381

i

i

i

i

i

i

i

i

10.6 Constructing continuous price and returns series 207

07mar1985 CL1985J 28.08 .01110126
08mar1985 CL1985J 27.74 -.01218217
11mar1985 CL1985J 27.57 -.00614719
12mar1985 CL1985J 27.92 .01261507
13mar1985 CL1985J 28.06 .00500178
14mar1985 CL1985J 28.19 .00462227
15mar1985 CL1985J 28.32 .00460093
18mar1985 CL1985K 28.25 .02182948
19mar1985 CL1985K 28.19 -.00212613
20mar1985 CL1985K 27.99 -.00712003
21mar1985 CL1985K 28.32 .01172096
22mar1985 CL1985K 28.24 -.00282885
25mar1985 CL1985K 28.09 -.00532576
26mar1985 CL1985K 28.45 .01273454
27mar1985 CL1985K 28.16 -.01024566
28mar1985 CL1985K 28.25 .00319093
29mar1985 CL1985K 28.29 .00141496

You should note in this recipe how business-daily data have been handled: no use
has been made of the time series operators (such as L.), as the trading-day data are
not evenly spaced in calendar time. Also note that the multiple price quotations per
trading day have been transformed into simple time series of prices and returns in the
process.

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

11 Ado-file programming

11.1 Introduction

In this chapter, we discuss ado-file programming: creating your own Stata commands
to extend Stata’s functionality. We discussed some special-purpose ado-file programs
in presenting the simulate ([R] simulate) and bootstrap ([R] bootstrap) prefixes
in Section 7.2. We now turn to a more general use of Stata’s program command and
discuss the advantages of developing an ado-file rather than a set of do-files.

Stata’s design makes it quite easy for you to develop a new Stata command and
equip that command with all the standard elements of Stata syntax such as if exp and
in range qualifiers, weights and command options. Why should you consider writing
your own command? Many users find that they may want to automate a frequently-
executed procedure in your workflow, and that procedure may depend on items that
change. You could write a do-file that relies on global macros,1 but you would still have
to insert new values in those macros every time you ran the do-file. Writing a command
that implements this procedure may be a better approach.

Alternatively, you may want to implement a statistical, data management or graph-
ical technique not available in official Stata nor from user-contributed routines in the
Stata Journal, SSC Archive or elsewhere. New graphical procedures, statistical estima-
tion techniques and tests are continually appearing in the literature. You may decide
that it is easy enough to implement one of those techniques or tests as a Stata command,
and perhaps even share it with other Stata users.2

This chapter provides an overview of how to develop your own ado-file, or Stata
command, using the [P] program command. We consider both r-class and e-class pro-
grams, as well as programs for use with egen ([D] egen), ml ([R] ml), nl ([R] nl), nlsur
([R] nlsur) and prefix operators simulate, bootstrap and jackknife. If you want
to further develop your understanding of the mechanics of developing Stata commands
you might consider one of StataCorp’s NetCourses on programming techniques.3

11.1.1 What you should learn from this chapter

• How to develop a Stata command as an ado-file program

1. See Section 3.7.
2. See ssc ([R] ssc) and ssc describe sscsubmit.
3. http://stata.com/netcourse/

209

i

i

i

i

i

i

i

i

210 Chapter 11 Ado-file programming

• How to use the syntax and return statements

• How to provide program options and sample qualifiers

• How to write a SMCL help file

• How to make programs byable

• How to write an egen function

• How to write an e-class program

• How to certify your program’s reliability

• How to write programs for ml, nl, nlsur, simulate, bootstrap, jackknife

• How to follow good ado-file programming style

11.2 The structure of a Stata program

A Stata program follows a quite simple structure. You must declare the name of the
program, optionally specify its characteristics, and handle the program’s arguments.
When you invoke the program in Stata by typing its name, the arguments are the
items, separated by spaces, following the program name on the command line.4 You
then perform the steps that this program is to take (compute one or more quantities,
display some output, read or write a file, transform the data, or produce a graph) and,
optionally, return various items to the user (or to the program which calls this one). As
an example, we write the parrot command, which merely echoes whatever it is given
as an argument:

. type parrot.ado

program parrot
version 10.1
display "‘1’"

end

. parrot "This is Stata..."
This is Stata...

This program takes one argument. When you call a program, the arguments are assigned
to local macros 1, 2, . . . , 9 and so forth in order, while the local macro 0 contains
everything typed after the command name. Thus, within the program, local macro 1

refers to the string typed on the command line as the first (and only) argument. We
have placed the parrot command in an ado-file, parrot.ado, in a directory on the
adopath (see Section 2.2.2). If the name of the ado-file does not match the name of the
program defined, Stata will refuse to execute the program. Placing the ado-file in the
appropriate PERSONAL directory will make the program permanently available in your
copy of Stata.

4. If an argument is a string containing spaces as in the example below, it should be quoted on the
command line.

i

i

i

i

i

i

i

i

11.3 The program statement 211

The parrot program carries out one rudimentary step: it takes an argument and
operates on it (albeit trivially). It does not access Stata’s variables, nor does it return
any computed quantities. Nevertheless, it illustrates the notion: once you have defined
a Stata command with program, it becomes indistinguishable from any other Stata
command. You should, of course, ensure that your command’s name is not the same
as any existing command, either in official Stata or among the user-written programs
(including yours!) on your system. Before choosing a name, use the which ([R] which)
command to ensure that the program does not already exist on your system. You might
also want to use the findit command to ensure that the name has not been used by
a user-written routine (in the Stata Journal, SSC Archive or in user sites) in case you
install that routine at some later date.

In the next sections of this chapter, we first discuss the program statement, followed
by a discussion of handling the program’s arguments with the syntax statement and
managing the sample to be used in the program. Finally, we consider how to return
computed quantities to the calling program. We will develop a program, step-by-step,
to generate several percentile-based statistics of interest.

11.3 The program statement

Let us say that you want to compute several statistics from the percentiles p... of a
continuous variable. Researchers often use the interquartile range, (p75 − p25), as
an alternative to the standard deviation as a measure of a variable’s spread. Those
concerned with income distributions often use (p90− p10) as a measure of inequality. If
we are concerned about outliers, we might compute (p95−p5) or (p99−p1) to compare
the variable’s range (xmax − xmin) with these percentile ranges.

Computing these percentile ranges in a do-file is easy enough. You merely need to
use summarize, detail and access the appropriate percentiles in its return list. But
you might like to have a program that would calculate the ranges from these percentiles
and make them available for later use. What must you do to write one? The first step
is to choose a name. As suggested above, which and findit should be used to ensure
that the name is not already in use. Those commands indicate that pctrange is free
for your use, so fire up the Do-File Editor (or your favorite text editor)5 and create the
file pctrange.ado. Our first crack at the code:

. type pctrange.ado

*! pctrange v1.0.0 CFBaum 11aug2008
program pctrange

version 10.1
syntax varlist(max=1 numeric)
quietly summarize ‘varlist’, detail
scalar range = r(max) - r(min)
scalar p7525 = r(p75) - r(p25)
scalar p9010 = r(p90) - r(p10)
scalar p9505 = r(p95) - r(p5)

5. See ssc describe texteditors.

i

i

i

i

i

i

i

i

212 Chapter 11 Ado-file programming

scalar p9901 = r(p99) - r(p1)
display as result _n "Percentile ranges for ‘varlist’"
display as txt "75-25: " p7525
display as txt "90-10: " p9010
display as txt "95-05: " p9505
display as txt "99-01: " p9901
display as txt "Range: " range

end

You start with a capture program drop progname command. Once a program has
been loaded into Stata’s memory, it is usually retained for the duration of the session.
Since we will be repeatedly defining our program during its development, we want to
make sure that we’re working with the latest version. The following comment line
starting with *! (termed star-bang in geekish) is a special comment that will show up
if you issue the findfile ([P] findfile) or which commands. It is always a good idea
to document an ado-file with a sequence number, author name, and date.

The program ([P] program) statement identifies the program name as pctrange.
We define the program as rclass. Unless a program is defined as rclass or eclass, it
cannot return values with the return or ereturn statements, respectively (see Section
5.3). Although we do not have any return statements in the current version of the pro-
gram, we will want to add them in later versions. The following version ([P] version)
line states that the ado-file requires Stata 10.1 and ensures that the program will obey
Stata 10.1 syntax when executed by Stata 11 or Stata 12.

11.4 The syntax and return statements

The following line, syntax ([P] syntax), provides the ability for a Stata program to parse
its command line and extract the program’s arguments for use within the program. In
this simple example, we only use one element of syntax: specifying that the program
has a mandatory varlist with a maximum of one numeric variable. Stata will enforce
the constraint that a single name appears on the command line and that the name
refers to an existing numeric variable. In this case, we could have also used syntax

varname(numeric) to allow a single variable, but we would still refer to ‘varlist’ to
access its name.

To calculate percentiles of the variable given as pctrange’s argument, we must use
the detail option of summarize ([R] summarize). We use the quietly prefix to
suppress output. The following five lines define scalars6 containing the four percentile
ranges and the standard range. We display a header, list each range, and end the
program.

Let’s try out the first version of pctrange on the Stock–Watson mcas data.7 Vari-

6. See Section 3.9.
7. MCAS, the Massachusetts Comprehensive Assessment System, refers to the standard-

ized tests administered in that state to all primary and secondary school students. See
http://www.doe.mass.edu/mcas/.

i

i

i

i

i

i

i

i

11.4 The syntax and return statements 213

able tot day measures total spending per elementary-school pupil in each of 220 Mas-
sachusetts school districts.

. clear

. use mcas

. pctrange tot_day

Percentile ranges for tot_day
75-25: 1070
90-10: 2337.5
95-05: 3226
99-01: 4755
Range: 6403

. display p7525
1070

The scalars defined in the program have global scope (unlike local macros), so they are
accessible after the program has run. As shown above, we may display ([P] display)
them or use them in later computations.

One flaw in that logic, however: what if you already are using one of these names for
a scalar, or for a variable in your dataset? Must you remember all of the names of scalars
returned by various programs, and avoid reusing them? That’s not very convenient, so
let us name those scalars within the program with tempnames. A tempname is actually a
local macro, assigned automatically by Stata, which allows you to create the equivalent
of a local scalar or matrix. As the tempnames are local macros, we refer to their contents
just as we would a local macro with left and right single quotes.8

. type pctrange.ado

*! pctrange v1.0.1 CFBaum 11aug2008
program pctrange

version 10.1
syntax varlist(max=1 numeric)
local res range p7525 p9010 p9505 p9901
tempname ‘res’
display as result _n "Percentile ranges for ‘varlist’"
quietly summarize ‘varlist’, detail
scalar ‘range’ = r(max) - r(min)
scalar ‘p7525’ = r(p75) - r(p25)
scalar ‘p9010’ = r(p90) - r(p10)
scalar ‘p9505’ = r(p95) - r(p5)
scalar ‘p9901’ = r(p99) - r(p1)
display as txt "75-25: " ‘p7525’
display as txt "90-10: " ‘p9010’
display as txt "95-05: " ‘p9505’
display as txt "99-01: " ‘p9901’
display as txt "Range: " ‘range’

end

One of the important features of Stata commands is their ability to return results for use
in further computations. We now add that feature to the pctrange command by using

8. See Section 3.6.

i

i

i

i

i

i

i

i

214 Chapter 11 Ado-file programming

the return command to place the computed scalars in the return list. They will
be accessible after the program runs, but will not collide with any other objects. One
bit of trickery necessary with these tempnames: while the left-hand side of the return

scalar refers to the macro’s name, the right-hand side must dereference the macro one
further time to extract the value stored in that name. The modified code:

. type pctrange.ado

*! pctrange v1.0.2 CFBaum 11aug2008
program pctrange, rclass

version 10.1
syntax varlist(max=1 numeric)
local res range p7525 p9010 p9505 p9901
tempname ‘res’
display as result _n "Percentile ranges for ‘varlist’"
quietly summarize ‘varlist’, detail
scalar ‘range’ = r(max) - r(min)
scalar ‘p7525’ = r(p75) - r(p25)
scalar ‘p9010’ = r(p90) - r(p10)
scalar ‘p9505’ = r(p95) - r(p5)
scalar ‘p9901’ = r(p99) - r(p1)
display as txt "75-25: " ‘p7525’
display as txt "90-10: " ‘p9010’
display as txt "95-05: " ‘p9505’
display as txt "99-01: " ‘p9901’
display as txt "Range: " ‘range’
foreach r of local res {

return scalar ‘r’ = ‘‘r’’
}

end

To reduce a bit of typing (and to make the program easier to maintain) we have listed
the items to be created, and used a foreach ([P] foreach) loop to issue the return

statements. When we run the program and view the return list, we see:

. quietly pctrange tot_day

. return list

scalars:
r(p9901) = 4755
r(p9505) = 3226
r(p9010) = 2337.5
r(p7525) = 1070
r(range) = 6403

11.5 Implementing program options

In the last output, we used the quietly prefix to suppress output. But if you’re going
to use the pctrange command to compute (but not display) these ranges, perhaps you
should be able to produce the output as an option. Square brackets [] in [P] syntax
signify an optional component of the command. Our third version of the program adds
[, PRINT], indicating that the command has a print option, and that it is truly optional

i

i

i

i

i

i

i

i

11.5 Implementing program options 215

(you can define non-optional or required options on a Stata command).

. type pctrange.ado

*! pctrange v1.0.3 CFBaum 11aug2008
program pctrange, rclass

version 10.1
syntax varlist(max=1 numeric) [, PRINT]
local res range p7525 p9010 p9505 p9901
tempname ‘res’
quietly summarize ‘varlist’, detail
scalar ‘range’ = r(max) - r(min)
scalar ‘p7525’ = r(p75) - r(p25)
scalar ‘p9010’ = r(p90) - r(p10)
scalar ‘p9505’ = r(p95) - r(p5)
scalar ‘p9901’ = r(p99) - r(p1)
if "‘print’" == "print" {

display as result _n "Percentile ranges for ‘varlist’"
display as txt "75-25: " ‘p7525’
display as txt "90-10: " ‘p9010’
display as txt "95-05: " ‘p9505’
display as txt "99-01: " ‘p9901’
display as txt "Range: " ‘range’

}
foreach r of local res {

return scalar ‘r’ = ‘‘r’’
}

end

If you now execute the program with pctrange tot day, print, its output is printed.
We might also want to make the command print by default, and allow an option to
suppress printing. We do this with a noprint option, as shown in this next version of
the command:

. type pctrange.ado

*! pctrange v1.0.4 CFBaum 11aug2008
program pctrange, rclass

version 10.1
syntax varlist(max=1 numeric) [, noPRINT]
local res range p7525 p9010 p9505 p9901
tempname ‘res’
quietly summarize ‘varlist’, detail
scalar ‘range’ = r(max) - r(min)
scalar ‘p7525’ = r(p75) - r(p25)
scalar ‘p9010’ = r(p90) - r(p10)
scalar ‘p9505’ = r(p95) - r(p5)
scalar ‘p9901’ = r(p99) - r(p1)
if "‘print’" != "noprint" {

display as result _n "Percentile ranges for ‘varlist’"
display as txt "75-25: " ‘p7525’
display as txt "90-10: " ‘p9010’
display as txt "95-05: " ‘p9505’
display as txt "99-01: " ‘p9901’
display as txt "Range: " ‘range’

}
foreach r of local res {

return scalar ‘r’ = ‘‘r’’

i

i

i

i

i

i

i

i

216 Chapter 11 Ado-file programming

}
end

Notice that to test the value of the option, we examine whether the local macro print

contains the word noprint: that is, the name of the option is print. You can add
many other types of options to a Stata program, some of which we will present below.

11.6 Including a subset of observations

All well and good, but a statistical command should accept if exp and in range qual-
ifiers if it is to be useful. It turns out that very little work is needed to add these
features to our program. The definition of if exp and in range qualifiers and program
options is all handled by the syntax statement. In the improved program, [if] and
[in] denote that each of these qualifiers may be used.

With an if exp or in range qualifier something less than the full sample will be
analyzed. Before doing any computations on the subsample, we must ensure that the
subsample is not empty. Accordingly, we calculate r(N) to indicate the sample size used
in the computations, check to see that it is not zero, and add it to the display header.

The marksample touse command uses the information provided in a if exp or
in range qualifier operative if one or both were given on the command line. The
marksample command marks those observations which should enter the computations
in an indicator variable ‘touse’, equal to 1 for the desired observations and 0 other-
wise. The ‘touse’ variable is a temporary variable, or tempvar, which will disappear
when the ado-file ends, like a local macro. After defining this indicator variable, we use
count if ‘touse’ to calculate the number of observations after applying the qualifiers
and display an error if there are no observations (see Cox (2007b)). We must add if

‘touse’ to each statement in the program which works with the input varlist. In this
case, we need only modify the summarize statement to include if ‘touse’. The new
version of the program is:

. type pctrange.ado

*! pctrange v1.0.5 CFBaum 11aug2008
program pctrange, rclass

version 10.1
syntax varlist(max=1 numeric) [if] [in] [, noPRINT]
marksample touse
quietly count if ‘touse’
if ‘r(N)’ == 0 {

error 2000
}
local res range p7525 p9010 p9505 p9901
tempname ‘res’
quietly summarize ‘varlist’ if ‘touse’, detail
scalar ‘range’ = r(max) - r(min)
scalar ‘p7525’ = r(p75) - r(p25)
scalar ‘p9010’ = r(p90) - r(p10)
scalar ‘p9505’ = r(p95) - r(p5)

i

i

i

i

i

i

i

i

11.7 Generalizing the command to handle multiple variables 217

scalar ‘p9901’ = r(p99) - r(p1)
if "‘print’" != "noprint" {

display as result _n "Percentile ranges for ‘varlist’, N = ‘r(N
>)’"

display as txt "75-25: " ‘p7525’
display as txt "90-10: " ‘p9010’
display as txt "95-05: " ‘p9505’
display as txt "99-01: " ‘p9901’
display as txt "Range: " ‘range’

}
foreach r of local res {

return scalar ‘r’ = ‘‘r’’
}
return scalar N = r(N)
return local varname ‘varlist’

end

We might want to compare the percentile ranges in communities with above-average
per capita incomes those from the overall sample. The variable percap measures per
capita income in each school district. We compute its statistics from a subsample of
communities with above-average percap:

. summarize percap, meanonly

. pctrange tot_day if percap > r(mean) & !missing(percap)

Percentile ranges for tot_day, N = 78
75-25: 1271
90-10: 2572
95-05: 3457
99-01: 5826
Range: 5826

11.7 Generalizing the command to handle multiple variables

Perhaps by this time you’re pleased with the pctrange command, but realize that it
would be really handy to run it for a number of variables with a single command.
You could always loop over those variables with a foreach ([P] foreach) loop, but
assembling the output afterward might be a bit of work. As the program produces five
statistics for each variable, perhaps a nicely-formatted table would be useful—and that
will require some rethinking about how the command’s results are to be displayed and
returned.

First, you must tell the syntax ([P] syntax) statement that more than one numeric
variable is allowed. The program will perform as it does now for a single variable, or
produce a table if given several variables. As we are constructing a table, a Stata matrix9

is a useful device to store the results we generate from [R] summarize. Rather than
placing the elements in scalars, we declare a matrix with the J() function, calculating the
number of rows needed with the macro extended function word count.10 The foreach

9. See Section 3.10 and Section 9.2.
10. See Section 3.8.

i

i

i

i

i

i

i

i

218 Chapter 11 Ado-file programming

loop then cycles through the varlist, placing the percentile ranges for each variable into
one row of the matrix. The local macro rown is used to build up the list of row names,
applied with matrix rownames.

We have added two additional options in the syntax statement for this version: a
format() option, which allows you to specify the Stata format11 used to display the
matrix elements, and the mat option, discussed below.

. type pctrange.ado

*! pctrange v1.0.6 CFBaum 11aug2008
program pctrange, rclass byable(recall)

version 10.1
syntax varlist(min=1 numeric ts) [if] [in] [, noPRINT FORmat(passthru)

> MATrix(string)]
marksample touse
quietly count if ‘touse’
if ‘r(N)’ == 0 {

error 2000
}
local nvar : word count ‘varlist’
if ‘nvar’ == 1 {

local res range p7525 p9010 p9505 p9901
tempname ‘res’
quietly summarize ‘varlist’ if ‘touse’, detail
scalar ‘range’ = r(max) - r(min)
scalar ‘p7525’ = r(p75) - r(p25)
scalar ‘p9010’ = r(p90) - r(p10)
scalar ‘p9505’ = r(p95) - r(p5)
scalar ‘p9901’ = r(p99) - r(p1)
if "‘print’" != "noprint" {

display as result _n "Percentile ranges for ‘varlist’,
> N = ‘r(N)’"

display as txt "75-25: " ‘p7525’
display as txt "90-10: " ‘p9010’
display as txt "95-05: " ‘p9505’
display as txt "99-01: " ‘p9901’
display as txt "Range: " ‘range’

}
foreach r of local res {

return scalar ‘r’ = ‘‘r’’
}
return scalar N = r(N)

}
else {

tempname rmat
matrix ‘rmat’ = J(‘nvar’,5,.)
local i 0
foreach v of varlist ‘varlist’ {

local ++i
quietly summarize ‘v’ if ‘touse’, detail
matrix ‘rmat’[‘i’,1] = r(max) - r(min)
matrix ‘rmat’[‘i’,2] = r(p75) - r(p25)
matrix ‘rmat’[‘i’,3] = r(p90) - r(p10)
matrix ‘rmat’[‘i’,4] = r(p95) - r(p5)
matrix ‘rmat’[‘i’,5] = r(p99) - r(p1)
local rown "‘rown’ ‘v’"

11. See [D] format.

i

i

i

i

i

i

i

i

11.8 Making commands byable 219

}
matrix colnames ‘rmat’ = Range P75-P25 P90-P10 P95-P05 P99-P01
matrix rownames ‘rmat’ = ‘rown’
if "‘print’" != "noprint" {

local form ", noheader"
if "‘format’" != "" {

local form "‘form’ ‘format’"
}
matrix list ‘rmat’ ‘form’

}
if "‘matrix’" != "" {

matrix ‘matrix’ = ‘rmat’
}
return matrix rmat = ‘rmat’

}
return local varname ‘varlist’

end

You may now invoke the program on a set of variables, and optionally specify a
format for the output of matrix elements:

. pctrange regday specneed bilingua occupday tot_day tchratio, form(%9.2f)

Range P75-P25 P90-P10 P95-P05 P99-P01
regday 5854.00 918.50 2037.00 2871.00 4740.00

specneed 49737.01 2282.78 4336.76 5710.46 10265.45
bilingua 295140.00 0.00 6541.00 8817.00 27508.00
occupday 15088.00 0.00 5291.50 8096.00 11519.00
tot_day 6403.00 1070.00 2337.50 3226.00 4755.00
tchratio 15.60 3.25 5.55 7.55 10.60

The mat option allows the matrix to be automatically saved as a Stata matrix with that
name. This is useful if you are running pctrange several times (perhaps in a loop) and
want to avoid having to rename the result matrix r(rmat) each time. If we use this
feature, we may use Baum and Azevedo’s outtable routine (available from the SSC
Archive) to convert the matrix into LATEX:

. pctrange regday specneed bilingua occupday tot_day tchratio, mat(MCAS) noprin
> t

. outtable using MCAS, mat(MCAS) caption("MCAS percentile ranges") format(%9.2f
>) nobox replace

Other SSC routines could be used to produce a table in tab-delimited, RTF or HTML
formats.

11.8 Making commands byable

As a final touch, you might want the pctrange command to be byable: to permit
its use with a by varlist: prefix. Since we are not creating any new variables with this
version of the program, this can be done by just adding byable(recall) to the program

i

i

i

i

i

i

i

i

220 Chapter 11 Ado-file programming

Table 11.1: MCAS percentile ranges

P75-P25 P90-P10 P95-P05 P99-P01 Range
regday 918.50 2037.00 2871.00 4740.00 5854.00
specneed 2282.78 4336.76 5710.46 10265.45 49737.01
bilingua 0.00 6541.00 8817.00 27508.00 295140.00
occupday 0.00 5291.50 8096.00 11519.00 15088.00
tot day 1070.00 2337.50 3226.00 4755.00 6403.00
tchratio 3.25 5.55 7.55 10.60 15.60

statement.12 The new program statement becomes:

program pctrange, rclass byable(recall)

The other enhancement you might consider is allowing the varlist to contain variables
with time series operators such as L.gdp or D.income. We can easily incorporate that
feature by changing the [P] syntax statement to add the ts suboption:

syntax varlist(min=1 numeric ts) [if] [in] [, noPRINT FORmat(passthru) MATrix(string)]

With these modifications, we may apply pctrange using the by prefix or employ time
series operators in the varlist. As an illustration of the byable nature of the program,
let us generate an indicator for teachers’ average salaries above and below the mean and
calculate the pctrange statistics for those categories:

. summarize avgsalry, meanonly

. generate byte highsal = avgsalry > r(mean) & !missing(avgsalry)

. label define sal 0 low 1 high

. label val highsal sal

. tabstat avgsalry, by(highsal) stat(mean N)

Summary for variables: avgsalry
by categories of: highsal

highsal mean N

low 33.5616 101
high 38.60484 94

Total 35.9927 195

. bysort highsal: pctrange regday specneed bilingua occupday tot_day tchratio

-> highsal = low

Range P75-P25 P90-P10 P95-P05 P99-P01
regday 4858 703 1740 2526 3716

specneed 49737.008 2030.8198 3997.9497 5711.2104 11073.81
bilingua 295140 0 6235 8500 13376
occupday 11519 0 5490 7095 11286

12. See [P] byable for details. You may also use byable(onecall), but that option requires more work
on your part. byable(recall) is usually suitable.

i

i

i

i

i

i

i

i

11.9 Documenting your program 221

tot_day 5214 780 1770 2652 4597
tchratio 11.6 3.1999989 6.2999992 7.8000002 9.3999996

-> highsal = high

Range P75-P25 P90-P10 P95-P05 P99-P01
regday 5433 1052 2189 2807 5433

specneed 8570.4004 2486.3604 4263.9702 5620.54 8570.4004
bilingua 33968 0 8466 11899 33968
occupday 15088 0 5068 8100 15088
tot_day 5928 1179 2572 3119 5928
tchratio 15.6 2.4000006 4.7000008 6.2999992 15.6

We see that average salaries in low-salary school districts are over $5,000 less than those
in high-salary school districts. These differences carry over into the percentile ranges,
where the ranges of tot day, total spending per pupil, are much larger in the high-salary
districts than in the low-salary districts.

Program properties

User-written programs may also have properties associated with them. Some of Stata’s
prefix commands use these properties for command validation. If you are interested
in writing programs for use with nestreg ([R] nestreg), svy ([SVY] svy) or stepwise
([R] stepwise) you should read [P] program properties.

Separately, several prefix commands (bootstrap ([R] bootstrap), jackknife ([R] jack-
knife) and svy ([SVY] svy)) can report exponentiated coefficients, such as hazard ratios
or odds ratios, when the eform() option is used. To make this feature available in your
own program, it must have the associated properties defined (for instance, hr for the
hazard ratio or or for the odds ratio). See [P] program properties for details. The
extended macro function properties will report on the properties of any ado-file: for
instance,

local logitprop: properties logit

will provide a list of properties associated with the logit ([R] logit) command.

11.9 Documenting your program

Stata’s development tools make it easy for you to both write a useful program and
document it in the way Stata users expect: as readily accessible on-line help. Even if
the program is solely for your use, producing a help file is straightforward and useful.
You need not resort to scrutinizing the code to remember how the program is called
if you document it now, and keep that documentation up to date as the program is
modified or enhanced. Just create a text file, for example, pctrange.sthlp,13 with

13. Before version 10.1, Stata’s help files were suffixed .hlp. Unless you are writing a program that
must be compatible with earlier versions of Stata, you should use the .sthlp suffix.

i

i

i

i

i

i

i

i

222 Chapter 11 Ado-file programming

your favorite text editor.14

The best way to document a Stata program is to learn a bit of SMCL, Stata’s Markup
and Control Language. Writing the help file in SMCL allows you to produce on-line
help indistinguishable from that of official commands and other user-written programs.
It also wraps properly when you resize the Viewer, or use a different size font in that
window. A bare-bones help file for our pctrange program can be constructed with the
following SMCL code:

{smcl}

{* *! version 1.0.0 31jul2007}{...}

{cmd:help pctrange}

{hline}

{title:Title}

{phang}

{bf: pctrange {c -} Calculate percentile ranges}

{title:Syntax}

{p 8 17 2}

{cmd:pctrange}

{it:varlist}

[{cmd:if} {it:exp}]

[{cmd:in} {it:range}]

[

{cmd:,}

{cmdab:noPRINT}

{cmdab:FOR:mat(}{it:string}{cmd:)}

{cmdab:MAT:rix(}{it:string}{cmd:)}

]

{p 4 6 2}

{cmd:by} is allowed; see {manhelp by D}.{p_end}

{p 4 6 2}

{cmd:time series operators} are allowed; see {help varlist}.{p_end}

{title:Description}

{pstd}{cmd:pctrange} computes four percentile ranges of the specified

variable(s): the 75-25 (interquartile) range, the 90-10, 95-05 and 99-01

ranges as well as the conventional range. These ranges are returned as scalars.

If multiple variables are included in the {it:varlist},

the results are returned as a matrix.

{title:Options}

{phang}{opt noprint} specifies that the results are to be returned

but not printed.

{phang}{opt format(string)} specifies the format to be used

in displaying the matrix of percentile ranges for multiple variables.

{phang}{opt mat(string)} specifies the name of the Stata matrix

14. See ssc describe texteditors.

i

i

i

i

i

i

i

i

11.9 Documenting your program 223

to be created for multiple variables.

{title:Examples}

{phang}{stata "sysuse auto" : . sysuse auto}{p_end}

{phang}{stata "pctrange mpg" : . pctrange mpg}{p_end}

{phang}{stata "pctrange price mpg turn, format(%9.2f)" :. pctrange price mpg turn, format(%9.2f)}{p_end}

{title:Author}

{phang}Christopher F. Baum, Boston College{break}

baum@bc.edu{p_end}

{title:Also see}

{psee}

On-line: help for {help summarize}, {help pctile}

As you can see, the left and right braces ({,}) are the key markup characters in
SMCL, playing the role of the angle brackets (<,>) in HTML web-page markup. There
are many similarities between SMCL and HTML (and LATEX, for that matter).15 As
in LATEX, blank lines in SMCL influence vertical spacing, but in SMCL multiple blank
lines are taken literally. The formatted help for pctrange may now be viewed:

help pctrange

Title
pctrange -- Calculate percentile ranges

Syntax
pctrange varlist [if exp] [in range] [, noPRINT FORmat(string)

MATrix(string)]

by is allowed; see [D] by.
time series operators are allowed; see varlist.

Description

pctrange computes four percentile ranges of the specified variable(s):
the 75-25 (interquartile) range, the 90-10, 95-05 and 99-01 ranges as
well as the conventional range. These ranges are returned as scalars. If
multiple variables are included in the varlist, the results are returned
as a matrix.

Options

noprint specifies that the results are to be returned but not printed.

format(string) specifies the format to be used in displaying the matrix
of percentile ranges for multiple variables.

mat(string) specifies the name of the Stata matrix to be created for
multiple variables.

Examples

. sysuse auto

. pctrange mpg

. pctrange price mpg turn, format(%9.2f)

Author
Christopher F Baum, Boston College

15. Mechanical translation of SMCL logfiles into HTML is quite reliably performed by the log2html

package of Baum, Cox and William Rising, available from [R] ssc.

i

i

i

i

i

i

i

i

224 Chapter 11 Ado-file programming

baum@bc.edu

Also see

On-line: help for summarize, pctile

For full details on the construction of SMCL help files (and SMCL output in general),
see [P] smcl and [U] 18.11.6 Writing online help.

11.10 egen function programs

As we discussed in Section 3.4, the egen ([D] egen) (Extended Generate) command is
open-ended, in that any Stata user may define an additional egen function by writing
a specialized ado-file program.The name of the program (and of the file in which it
resides) must start with g: that is, gcrunch.ado will define the crunch() function for
egen.

To illustrate egen functions, let us create a function to generate one of the pctrange
values, the 90–10 percentile range. The program follows the same pattern as our stand-
alone command pctrange with one important difference. In an egen function, you must
deal with the new variable to be created. The syntax for egen is:

egen
[

type
]

newvar = fcn(arguments)
[

if
][

in
] [

, options
]

The egen command, like generate, may specify a data type. The syntax command
indicates that a newvarname must be provided, followed by an equals sign and an fcn,
or function, with arguments. egen functions may also handle if exp and in range
qualifiers and options.

The computation for our egen function is the same as that of pctrange, using
summarize with the detail option. On the last line of the function, we generate the
new variable, of the appropriate type if specified,16 under the control of the ‘touse’

temporary indicator variable, limiting the sample as specified.

. type _gpct9010.ado

*! _gpct9010 v1.0.0 CFBaum 11aug2008
program _gpct9010
version 10.1
syntax newvarname =/exp [if] [in]
tempvar touse
mark ‘touse’ ‘if’ ‘in’
quietly summarize ‘exp’ if ‘touse’, detail
quietly generate ‘typlist’ ‘varlist’ = r(p90) - r(p10) if ‘touse’

end

This function works perfectly well, but it creates a new variable containing a single scalar

16. When newvarname or newvarlist is specified on syntax, the macro typlist is filled with the data
type(s) to be used for the new variable(s).

i

i

i

i

i

i

i

i

11.11 Writing an e-class program 225

value. As noted earlier, that is a very profligate use of Stata’s memory (especially for
large N) and often can be avoided by retrieving the single scalar which is conveniently
stored by our pctrange command. To be useful, we would like the egen function to be
byable, so that it could compute the appropriate percentile range statistics for a number
of groups defined in the data.

The changes to the code are relatively minor. We add an options clause to the
syntax statement, as egen will pass the by prefix variables as a by option to our pro-
gram. Rather than using summarize, we use egen’s own pctile() function, which is
documented as allowing the by prefix, and pass the options to this function. The revised
function reads:

. type _gpct9010.ado

*! _gpct9010 v1.0.1 CFBaum 11aug2008
program _gpct9010
version 10.1
syntax newvarname =/exp [if] [in] [, *]
tempvar touse p90 p10
mark ‘touse’ ‘if’ ‘in’
quietly {

egen double ‘p90’ = pctile(‘exp’) if ‘touse’, ‘options’ p(90)
egen double ‘p10’ = pctile(‘exp’) if ‘touse’, ‘options’ p(10)
generate ‘typlist’ ‘varlist’ = ‘p90’ - ‘p10’ if ‘touse’

}
end

These changes permit the function to produce a separate percentile range for each group
of observations defined by the by-list. To illustrate, we use auto.dta:

. sysuse auto, clear
(1978 Automobile Data)

. bysort rep78 foreign: egen pctrange = pct9010(price)

Now, if we want to compute a summary statistic (such as the percentile range) for each
observation classified in a particular subset of the sample, we may use the pct9010()

function to do so.

11.11 Writing an e-class program

The ado-file programs we have discussed in earlier sections are all r-class programs:
that is, they provide results in the return list.17 Many statistical procedures involve
estimating a model (rather than computing one or more statistics) and are thus termed
estimation commands, or e-class commands. One of Stata’s great strengths derives from
the common nature of its estimation commands, which follow a common syntax, leave
behind the same objects, and generally support the same postestimation tools such as
test ([R] test), lincom ([R] lincom), mfx ([R] mfx) to compute marginal effects and

17. With one exception: an egen program such as gpct9010 cannot return results in the return list.

i

i

i

i

i

i

i

i

226 Chapter 11 Ado-file programming

predict ([R] predict) to compute predicted values, residuals and similar quantities.
Although e-class commands are somewhat more complicated than r-class commands,
it is reasonably simple for you to implement an estimation command as an ado-file.
Many of the programming concepts discussed in earlier sections are equally useful in
e-class commands. The additional features needed generally relate to postestimation
capabilities.

As spelled out in [U] 18.9 Accessing results calculated by estimation com-
mands there are a number of conventions that an e-class command must follow:

1. The command must save its results in e(), accessed by ereturn list, rather
than r().

2. It should save its name in e(cmd).

3. It should save the contents of the command line in e(cmdline).

4. It should save the number of observations in e(N) and identify the estimation
sample by setting the indicator variable (or “function”) e(sample).

5. It must save the entire coefficient vector as Stata matrix e(b) and the variance-
covariance matrix of the estimated parameters as Stata matrix e(V).

Correct capitalization of these result names is important. The coefficient vector is
saved as a 1 × k row vector for single-equation estimation commands, with additional
rows added for multiple-equation estimators. The variance-covariance matrix is saved
as a k × k symmetric matrix. The presence of e(b) and e(V) in standardized locations
enables Stata’s postestimation commands (including those you write) to work properly.
Estimation commands may set other e() scalars, macros or matrices.

Whereas a r-class program such as pctrange uses the return ([P] return) com-
mand to return its results in r(), an e-class program uses the ereturn command. The
command ereturn name = exp returns a scalar value, while ereturn local name
value and ereturn matrix name matname return a macro and a Stata matrix, re-
spectively. Note that you do not use ereturn for the coefficient vector or estimated
variance-covariance matrix, as we now discuss.

The ereturn post command posts the estimates of b and V to their official locations.
In order to return the coefficient vector and its variance-covariance matrix, you need to
create the coefficient vector, say ‘beta’ and its variance-covariance matrix, say ‘vce’,
and pass them back in the following fashion. We also can define the estimation sample
flagged by the sample indicator temporary variable ‘touse’:

ereturn post ‘beta’ ‘vce’, esample(‘touse’)

You may now save anything else in e(), using the ereturn scalar, ereturn local

or ereturn matrix commands as described above. It is best to use the commonly-
employed names for various quantities. For instance, e(df m) and e(df r) are com-
monly used to denote the numerator (model) and denominator (residual) degrees of
freedom. e(F) commonly refers to the test against the null (constant-only) model for

i

i

i

i

i

i

i

i

11.12 Certifying your program 227

non-asymptotic results, while e(chi2) is used for an asymptotic estimator. e(r2) or
e(r2 p) refer to the R2 or pseudo-R2, respectively. Although you are free to choose
other names for your ereturn values, it is most helpful if they match those used in
common Stata commands. See [U] 18.10.2 Saving results in e() for more details.

11.11.1 Defining subprograms

If a user-written Stata command is to be executed, the file defining that command must
be on the adopath18. However, a single ado-file can contain more than one program.
The subsequent programs are local in the sense that they cannot be called independently.
So, for instance, one.ado could contain

program one
...
end
program two
...
end
program three
...
end

Presumably the one command calls the two and three programs in the course of its
execution. Those subprogram names are not visible to other commands, but may only
be used by one. Using subprograms allows you to isolate sections of your program that
are used repeatedly, or separate sections that perform quite distinct tasks within your
command. We make use of this facility in Section 11.13.

11.12 Certifying your program

All computer programs have the potential to misbehave. Some will crash when presented
with certain input values; some will never stop running; some will generate output
that turns out to be incorrect. If you are writing your own Stata programs, how can
you guard against these types of misbehavior, and be reasonably satisfied with your
program’s reliability? You may use the same tools that StataCorp developers use to
certify official Stata’s reliability by constructing and running a certification script.

In the very first issue of the Stata Journal, chief software developer William Gould
formally discussed Stata’s certification tools (Gould (2001)) and illustrated how they
could be used to certify the performance of a user-written Stata program. Stata’s assert
([D] assert) command, discussed in Section 5.2 in the context of data validation, is the
key component of a certification script. The result of a computation is compared with
a known value, or with the result of another routine known to be correct.

Gould describes the certification test script as a collection of do-files, executed in

18. Or the program must be loaded into memory from a do-file or entered interactively. We do not
consider those possibilities.

i

i

i

i

i

i

i

i

228 Chapter 11 Ado-file programming

turn by a master do-file. If no errors are detected by any of the do-files, the script will
run to completion. However, at the first error, the do-file will abort. To illustrate, he
presents a fragment of a typical test script (op.cit., p. 37):

cscript summarize
which summarize
use auto
summarize mpg
assert r(N) == 74 & r(sum_w) == 74 & r(min) == 12 & r(max) == 41 & r(sum) == 1576
assert reldif(r(mean), 21.29729729729730) < 1e-14
assert reldif(r(Var), 33.47204738985561) < 1e-14
assert r(sd) == sqrt(r(Var))
summarize mpg if foreign
assert r(N) == 22 & r(sum_w) == 22 & r(min) == 14 & r(max) == 41 & r(sum) == 545
...

The assert commands in this fragment of the script all ensure that results left behind in
the return list from summarize match known values and are internally consistent (for
instance, that the computed standard deviation r(sd) is the square root of the computed
variance r(Var). Note the use of the reldif() function to compare a constant with
the computed value. As mentioned in Section 2.4 in the context of finite-precision
arithmetic, we cannot perform exact comparisons against non-integer values (see Gould
(2006b) and Cox (2006a).).

The certification script should not only test against known values, but test that
error messages are correctly produced when they should be. For instance, in the auto

dataset, applying summarize outside of the defined observation range should produce
an error 198:

summarize price in 75/99

How may we test this statement, given that its execution will cause an error and stop
the do-file? With the rcof command. Coupled with the noisily prefix, we may use

rcof "noisily summarize price in 75/99" == 198

to ensure that an error (with the proper error code) is produced. If no error is produced,
or if an error with another error code is produced, the certification script will fail. You
may also test for appropriate syntax:

rcof "noisily summarize mpg, detail meanonly" != 0

tests whether the summarize command properly rejects the combination of the detail

and meanonly options, which should be mutually exclusive.

As another example of certification practices, Baum, Schaffer and Stillman’s ivreg2
routine for instrumental variables estimation is an extension of Stata’s earlier ivreg

command, and parallels the current ivregress command. We trust that Stata’s devel-
opers have fully certified the behavior of official ivregress and its predecessor ivreg,
as well as that of regress and newey (ivreg2 can estimate ordinary least squares (OLS)
and “Newey–West” regressions). Therefore, we have constructed a certification script
for ivreg2, available as an ancillary do-file of the ivreg2 package, which conducts a

i

i

i

i

i

i

i

i

11.13 programs for ml, nl, nlsur, simulate, bootstrap and jackknife 229

number of tests to ensure that the computed values are correct. Many of those tests
rely on comparing the detailed results generated by ivreg2 with those from ivregress,
ivreg, regress and newey. See ssc describe ivreg2, Chapter 8 of Baum (2006a),
Baum et al. (2003) and Baum et al. (2007).

In summary: best practices in Stata programming involve setting up a certification
script for your program. The script should evolve, as every flaw in the program that
is corrected should translate into an additional check against that condition. Every
time the program is enhanced by adding features, additional certification tests should
be added to ensure that those features work properly under all conditions, including
conditions that may seem implausible. Just as the documentation of a program is as
important as the code, validation of the program’s reliability should be automated and
redone whenever changes are made to the code.

11.13 programs for ml, nl, nlsur, simulate, bootstrap

and jackknife

The ado-file programming techniques discussed in earlier sections carry over to those
Stata commands and prefix operators which involve writing a program. For instance,
maximum likelihood estimation, performed with the ml ([R] ml) command, requires
that you write a likelihood function evaluator.19 This is a quite formulaic program that
calculates either one term of the log-likelihood function or its total over the estimation
sample. In this context, you need only follow the template established for the particular
form of ml you choose to specify the parameters to be estimated and the way in which
they enter the log-likelihood function (LLF). Stata’s ml routines support four methods
of coding the LLF: the linear form (lf) method and methods d0, d1 and d2. The
linear form is the easiest to work with, but requires that the statistical model meets
the linear form restrictions (see [R] ml). Methods d0, d1 and d2 require coding the
LLF, the LLF and its first derivatives or the LLF and its first and second derivatives,
respectively.

For example, here is a LLF linear-form evaluator for a linear regression model with
normally distributed errors:

. type mynormal_lf.ado

*! mynormal_lf v1.0.0 CFBaum 11aug2008
program mynormal_lf
version 10.1
args lnf mu sigma
quietly replace ‘lnf’ = ln(normalden($ML_y1, ‘mu’, ‘sigma’))

end

In this program we use the args ([P] args) command20 to retrieve the three items which

19. An essential reference for maximum likelihood programming in Stata is Gould et al. (2006).
20. In the ml context, we only need a subset of the capabilities of the syntax command. The args

i

i

i

i

i

i

i

i

230 Chapter 11 Ado-file programming

are passed to the LLF evaluator: a variable lnf whose values are to be computed in the
routine and the two parameters to be estimated, the conditional mean of the dependent
variable (referred to as $ML y1), mu and its variance sigma. The linear-form restrictions

imply that we need not explicitly work with the elements of the conditional mean Xβ̂.
To invoke the LLF evaluator using the auto.dta dataset, we can use the command

ml model lf mynormal_lf (mpg = weight displacement) /sigma

which estimates the regression of mpg on weight and displacement with a constant
term under the assumption of homoskedasticity (a constant error variance, estimated
as sigma). The flexibility of this approach is evident if we considered a heteroskedastic
regression model in which σi = γ0 + γ1 pricei.

21 We could estimate that model with
the command

ml model lf mynormal_lf (mpg = weight displacement turn) (price)

where the second ‘equation’ refers to the specification of the σi term. The ado-file need
not be modified, even though we have changed the list of regressors and made a different
assumption on the distribution of the errors.

Writing a ml-based command

The ado-file above can be used interactively with the ml command. What if you wanted
to create a new Stata estimation command that implemented this particular maximum
likelihood estimator? You merely need to write an additional ado-file, mynormal.ado:

. type mynormal.ado

*! mynormal v1.0.0 CFBaum 11aug2008
program mynormal

version 10.1
if replay() {

if ("‘e(cmd)’" != "mynormal") error 301
Replay ‘0’

}
else Estimate ‘0’

end

program Replay
syntax [, Level(cilevel)]
ml display, level(‘level’)

end

program Estimate, eclass sortpreserve
syntax varlist [if] [in] [, vce(passthru) Level(cilevel) *]
mlopts mlopts, ‘options’
gettoken lhs rhs: varlist
marksample touse
ml model lf mynormal_lf (mu: ‘lhs’ = ‘rhs’) /sigma ///
if ‘touse’, ‘vce’ ‘mlopts’ maximize
ereturn local cmd "mynormal"
Replay, level(‘level’)

command is better suited for use in a function evaluator program. Its syntax when used with ml is
defined by that command; see [R] ml.
21. For a discussion of homoskedasticity and heteroskedasticity, see Baum (2006a), Chapter 6.

i

i

i

i

i

i

i

i

11.13 programs for ml, nl, nlsur, simulate, bootstrap and jackknife 231

end

The mynormal program is a wrapper for two subprograms: Replay and Estimate,
as discussed in Section 11.11.1. The Replay program permits our mynormal command
to emulate all Stata estimation commands in supporting the replay feature. After you
use a standard estimation command, you may always replay the estimation results if
you have not issued another estimation command in the interim by merely giving the
estimation command’s name (for example, regress). The mynormal program checks
to see that the previous estimation command was indeed mynormal before executing
Replay.

The Estimate command does the work of setting the stage to call ml in its non-
interactive mode, as signalled by the maximize option. We use the sortpreserve option
to specify that the sort order of the dataset should be preserved and restored after our
program has ended. The syntax command parses the variable list given to mynormal

into the left-hand side (dependent) and right-hand side (covariates). In this example,
only the homoskedastic case of a fixed parameter /sigma is supported. The mlopts

command allows you to specify one or more of the maximum likelihood options (see
[P] mlopts and Gould et al. (2006), pp. 180–183).

To illustrate mynormal, we use auto.dta:

. mynormal price mpg weight turn

initial: log likelihood = -<inf> (could not be evaluated)
feasible: log likelihood = -814.40522
rescale: log likelihood = -731.80124
rescale eq: log likelihood = -701.88231
Iteration 0: log likelihood = -701.88231
Iteration 1: log likelihood = -693.55438
Iteration 2: log likelihood = -678.01692
Iteration 3: log likelihood = -677.74653
Iteration 4: log likelihood = -677.74638
Iteration 5: log likelihood = -677.74638

Number of obs = 74
Wald chi2(3) = 46.26

Log likelihood = -677.74638 Prob > chi2 = 0.0000

price Coef. Std. Err. z P>|z| [95% Conf. Interval]

mu
mpg -72.86501 79.0677 -0.92 0.357 -227.8348 82.10482

weight 3.524339 .7947479 4.43 0.000 1.966661 5.082016
turn -395.1902 119.2837 -3.31 0.001 -628.9819 -161.3985
_cons 12744.24 4629.664 2.75 0.006 3670.269 21818.22

sigma
_cons 2298.005 188.8948 12.17 0.000 1927.778 2668.232

We may use the replay feature, change the level of significance reported for confidence
intervals, and invoke test ([R] test), just as we could with any Stata estimation com-

i

i

i

i

i

i

i

i

232 Chapter 11 Ado-file programming

mand:

. mynormal, level(90)

Number of obs = 74
Wald chi2(3) = 46.26

Log likelihood = -677.74638 Prob > chi2 = 0.0000

price Coef. Std. Err. z P>|z| [90% Conf. Interval]

mu
mpg -72.86501 79.06771 -0.92 0.357 -202.9198 57.18979

weight 3.524339 .7947481 4.43 0.000 2.217094 4.831583
turn -395.1902 119.2837 -3.31 0.001 -591.3944 -198.986
_cons 12744.24 4629.665 2.75 0.006 5129.123 20359.37

sigma
_cons 2298.005 188.8949 12.17 0.000 1987.301 2608.709

. test weight = 5

(1) [mu]weight = 5

chi2(1) = 3.45
Prob > chi2 = 0.0633

. predict double pricehat, xb

. summarize price pricehat

Variable Obs Mean Std. Dev. Min Max

price 74 6165.257 2949.496 3291 15906
pricehat 74 6165.257 1829.306 1988.606 10097.71

We also may use predict ([R] predict) to compute the fitted values from our maximum
likelihood estimation and summarize to compare them with the original series.

11.13.1 Programs for the nl and nlsur commands

A similar set of issues arise when performing nonlinear least squares estimation for
either a single equation (nl, [R] nl) or a set of equations (nlsur, [R] nlsur). Although
these commands may be used interactively or in terms of “programmed substitutable
expressions,” most serious use is likely to involve your writing a function evaluator
program. That program will compute the dependent variable(s) as a function of the
parameters and variables specified.

The techniques used for a maximum likelihood function evaluator, as described
above, are quite similar to those used by nl and nlsur function evaluator programs.
For instance, we might want to estimate a constant elasticity of substitution (CES)
production function

lnQi = β0 −
1

ρ
ln

(

δK−ρ
i + (1 − δ)L−ρ

i

)

+ ǫi

which relates a firm’s output Qi to its use of capital, or machinery Ki and labor Li (see

i

i

i

i

i

i

i

i

11.13.1 Programs for the nl and nlsur commands 233

Greene (2008), p. 119). The parameters in this highly nonlinear relationship are β0, ρ
and δ.

We store the function evaluator program nlces.ado, as nl requires a program name
that starts with the letters nl. As described in [R] nl, the syntax statement must
specify a varlist, allow for an if exp, and an option at(name). The parameters to
be estimated are passed to your program in the row vector at. In our CES example,
the varlist must contain exactly three variables, which are extracted from the varlist by
the args ([P] args) command. This command assigns its three arguments to the three
variable names provided in the varlist. For ease of reference, we assign tempnames to
the three parameters to be estimated. The generate and replace statements make use
of the if exp clause. The function evaluator program must replace the observations of
the dependent variable: in this case, the first variable passed to the program, referenced
within as logoutput.

. type nlces.ado

*! nlces v1.0.0 CFBaum 11aug2008
program nlces

version 10.1
syntax varlist(numeric min=3 max=3) if, at(name)
args logoutput K L
tempname b0 rho delta
tempvar kterm lterm
scalar ‘b0’ = ‘at’[1, 1]
scalar ‘rho’ = ‘at’[1, 2]
scalar ‘delta’ = ‘at’[1, 3]
gen double ‘kterm’ = ‘delta’ * ‘K’^(-(‘rho’)) ‘if’
gen double ‘lterm’ = (1 - ‘delta’) *‘L’^(-(‘rho’)) ‘if’
replace ‘logoutput’ = ‘b0’ - 1 / ‘rho’ * ln(‘kterm’ + ‘lterm’) ‘if’

end

We invoke the estimation process with the nl command using Stata’s production

dataset.22 You specify the name of your likelihood function evaluator by including
only the unique part of its name (that is, ces, not nlces), followed by @. The order in
which the parameters appear in the parameters() and initial() options defines their
order in the at vector.23 The initial() option is not required, but is recommended.

. use production, clear

. nl ces @ lnoutput capital labor, parameters(b0 rho delta) ///
> initial(b0 0 rho 1 delta 0.5)
(obs = 100)

Iteration 0: residual SS = 29.38631
Iteration 1: residual SS = 29.36637
Iteration 2: residual SS = 29.36583
Iteration 3: residual SS = 29.36581
Iteration 4: residual SS = 29.36581
Iteration 5: residual SS = 29.36581
Iteration 6: residual SS = 29.36581

22. This dataset may be accessed with webuse production.

23. Alternatively, you may use the nparameters(#) option, and merely specify the number of param-
eters. They are then named b1, b2,

i

i

i

i

i

i

i

i

234 Chapter 11 Ado-file programming

Iteration 7: residual SS = 29.36581

Source SS df MS
Number of obs = 100

Model 91.1449924 2 45.5724962 R-squared = 0.7563
Residual 29.3658055 97 .302740263 Adj R-squared = 0.7513

Root MSE = .5502184
Total 120.510798 99 1.21728079 Res. dev. = 161.2538

lnoutput Coef. Std. Err. t P>|t| [95% Conf. Interval]

/b0 3.792158 .099682 38.04 0.000 3.594316 3.989999
/rho 1.386993 .472584 2.93 0.004 .4490443 2.324941

/delta .4823616 .0519791 9.28 0.000 .3791975 .5855258

Parameter b0 taken as constant term in model & ANOVA table

After execution, you have access to all of Stata’s postestimation commands. For in-
stance, the elasticity of substitution σ = 1/(1 + ρ) of the CES function is not directly
estimated, but is rather a nonlinear function of the estimated parameters. We may use
Stata’s nlcom ([R] nlcom) command to generate point and interval estimates of σ using
the delta method:24

. nlcom (sigma: 1 / (1 + [rho]_b[_cons]))

sigma: 1 / (1 + [rho]_b[_cons])

lnoutput Coef. Std. Err. t P>|t| [95% Conf. Interval]

sigma .4189372 .0829424 5.05 0.000 .2543194 .583555

This value, falling below unity in point and interval form, indicates that in the firms
studied the two factors of production (capital and labor) are not very substitutable for
one another.

The programming techniques illustrated here for nl carry over to the nlsur ([R] nl-
sur) command (new in Stata version 10), which allows you to apply nonlinear least
squares to a system of non-simultaneous (or seemingly unrelated) equations. Likewise,
you could write a wrapper for nlces, just as we illustrated above in the case of maximum
likelihood, in order to create a new Stata command.

11.13.2 Programs for the simulate, bootstrap and jackknife com-
mands

The simulate ([R] simulate), bootstrap ([R] bootstrap) and jackknife ([R] jack-
knife) commands may be used with many Stata commands, but often entail writing
your own command to specify the quantities to be simulated, or the statistic for which

24. See [R] predictnl.

i

i

i

i

i

i

i

i

11.13.2 Programs for the simulate, bootstrap and jackknife commands 235

bootstrap or jackknife standard errors are required.25

simulate is used to perform Monte Carlo simulations of a random process. The
command or program to be simulated is executed many times, or reps(). Each time
it is executed, a new random draw is performed and one or more quantities calculated.
Monte Carlo simulation is often used to analyze the properties of a particular estimator
or test procedure. In this context, the command or program called by simulate will
generate a new value of the estimator or test statistic in each replication, and return one
or more quantities to the simulate command. simulate then constructs a new dataset
in which each observation corresponds to one replication. That artificial dataset may
then be used to compute various statistics of interest relating to the estimator or test
statistic being studied.

As an example, we consider a simulation of the power of a standard t-test for sample
mean under homoskedastic and groupwise-heteroskedastic errors.26 The test statistic
is computed under the former assumption: that the error distribution has a common
variance σ2. To set up a simulation experiment, we use Stata’s census2 dataset,27

which contains 50 U.S. states’ data on a number of demographic variables, as well as a
region indicator that takes on integer values 1, 2, 3, 4 for four U.S. regions. We create
a groupwise heteroskedastic error from the region indicator.

The simulation program, mcsimul.ado, takes a varname of an existing variable that
is to be used in the simulation experiment. Optionally, a value mu(#) may be provided
to be used in the null hypothesis of the t-test. If no value is provided, a default value
of 75 is used.28

The simulation program expects to find two variables, zmu and zfactor, defined for
each observation. It creates two temporary random variables, y1 and y2, as normally
distributed with means of varname+0.20 zmu and varname+0.20 zfactor respectively.
The simulation program performs t-tests with the null hypothesis that the mean of the
variable is mu. We record the p-value with which that null may be rejected: that is,
the significance level of the test. The two return scalar statements indicate that the
program produces two return values: the p-values for the two ttests.

. type mcsimul.ado

*! mcsimul v1.0.0 CFBaum 11aug2008
program mcsimul, rclass

version 10.1
syntax varname(numeric) [, mu(real 75)]
tempvar y1 y2

generate ‘y1’ = ‘varlist’ + invnorm(uniform()) * 0.20 * zmu
generate ‘y2’ = ‘varlist’ + invnorm(uniform()) * 0.20 * z_factor

25. This should not be confused with the calculation of bootstrap or jackknife standard errors in many
Stata estimation commands via specification of the vce() option. We consider here computation of
bootstrap (jackknife) standard errors for a statistic that cannot be computed by executing a single
Stata command.
26. See the robvar command ([R] sdtest) and Baum (2006c).
27. This dataset can be accessed with webuse census2.
28. Hard-coding this value as a default value for a numeric option is done for pedagogical purposes.

i

i

i

i

i

i

i

i

236 Chapter 11 Ado-file programming

ttest ‘y1’ = ‘mu’
return scalar p1 = r(p)
ttest ‘y2’ = ‘mu’
return scalar p2 = r(p)

end

We now must set up the simulation experiment and execute the simulate ([R] simulate)
command. The set seed command will cause the pseudo-random number generator
to generate the same sequence of values each time this program is executed, which
is useful for debugging purposes. We generate the z factor variable as 10×region

and compute the scalar zmu to have the same value as the mean of z factor. We
now can invoke simulate, storing the two return values in new variables p1 and p2.
The saving() option indicates that a new dataset, mcsimul.dta, should be produced,
and reps(1000) defines the experiment’s number of replications. The argument of the
simulate prefix command is merely the name of the simulation program, mcsimul,
followed by the required varname. We execute the simulation for the variable drate,
the death rate for each state, expressed as the number of deaths per 10,000 population.
It has a sample mean of 84.3 and a range from 40 to 107.29 We use a hypothesized
value of 80 in the mu() option.

. set seed 20070731

. use census2, clear
(1980 Census data by state)

. generate z_factor = 10 * region

. summarize z_factor, meanonly

. scalar zmu = r(mean)

. quietly simulate p1=r(p1) p2=r(p2), ///
> saving(mcsimul,replace) nodots reps(1000): mcsimul drate, mu(80)

Following the simulation, we may examine the resulting dataset.

. use mcsimul, clear
(simulate: mcsimul)

. generate R5pc_1 = (p1 < 0.05)

. generate R5pc_2 = (p2 < 0.05)

. summarize

Variable Obs Mean Std. Dev. Min Max

p1 1000 .0484347 .044073 .0009723 .3428818
p2 1000 .0572194 .0607124 .0007912 .4788797

R5pc_1 1000 .642 .479652 0 1
R5pc_2 1000 .597 .4907462 0 1

As expected, the power of the test (which is based on the assumption of normally
distributed, homoskedastic errors) varies when heteroskedastic errors are encountered,

29. Analysis of these state-level descriptive statistics should be performed using weights. For pedagog-
ical purposes, we treat them as raw data.

i

i

i

i

i

i

i

i

11.14.1 Presentation 237

with the average p-value almost one per cent larger in the latter case. The R5pc 1 and
R5 pc2 series, which flag the p-values below 0.05, indicate that the heteroskedastic case
actually demonstrates slightly lower power (597 out of 1000 rejections at five per cent,
versus 642 for the homoskedastic case).

These same programming techniques apply to writing programs for the bootstrap

or jackknife prefix operators. In contrast to Monte Carlo simulation, which is used
to analyze an artificial dataset, bootstrap techniques (and the closely related jackknife)
make use of the empirical distribution of the errors in an estimated model. This is
performed by resampling with replacement from the existing estimation results for a
specified number of replications. Most commonly, bootstrap standard errors are com-
puted by specifying vce(bootstrap) on an estimation command. However, if you want
to compute bootstrap standard errors for a quantity that cannot be directly estimated
by an existing Stata command, you must write a program to implement the estimation
procedure you wish to study. Like simulate, bootstrap and jackknife create new
datasets with one observation for each replication.

11.14 Guidelines for Stata ado-file programming style

To highlight the importance of good programming style practices in writing ado-files,
we present here an edited excerpt from Nicholas J. Cox’s excellent essay on “Suggestions
on Stata programming style” (Cox (2005f)). The remainder of this section is quoted
from that essay, other parts of which appear above as Section 2.8.

11.14.1 Presentation

In this subsection, I give a list of basic guidelines for formal Stata programs.

1. Always include a comment containing the version number of your program, your
name or initials, and the date the program was last modified above the program

line, for example,

*! 1.0.0 Tom Swift 21jan2006
program myprog

(As said, this line is indeed just a comment line; it bears no relation to the Stata
version command. However, which myprog will echo this comment line back
to you whenever this myprog is visible to Stata along your ado-path. Both this
comment and a version command should be used.)

2. Use sensible, intelligible names where possible for programs, variables, and macros.

3. Choose a name for your program that does not conflict with anything already
existing. Suppose that you are contemplating newname. If typing either which

newname or which newname.class gives you a result, StataCorp is already using
the name. Similarly, if ssc type newname.ado gives you a result, a program
with your name is already on SSC. No result from either does not guarantee that

i

i

i

i

i

i

i

i

238 Chapter 11 Ado-file programming

the program is not in use elsewhere: findit newname may find such a program,
although often it will also find much that is irrelevant to this point.

4. Brevity of names is also a virtue. However, no platform on which Stata is currently
supported requires an 8-character limit. Tastes are in consequence slowly shifting:
an intelligible long name for something used only occasionally would usually be
considered preferable to something more cryptic.

5. Note that actual English words for program names are supposedly reserved for
StataCorp.

6. Use the same names and abbreviations for command options that are in common
use in official Stata’s commands. Try to adopt the same conventions for options’
syntax; for example, allow a numlist where similar commands use a numlist. Im-
plement sensible defaults wherever possible.

7. Group tempname, tempvar, and tempfile declarations.

8. Use appropriate display styles for messages and other output. All error messages
(and no others) should be displayed as err; that is, type di as err. In addition,
attach a return code to each error message; 198 (syntax error) will often be fine.

11.14.2 Helpful Stata features

Stata has a number of features that makes programming easier. Examples of ways a
programmer can use these features are as follows:

1. Stata is very tolerant through version control of out-of-date features, but that
does not mean that you should be. To maximize effectiveness and impact and to
minimize problems, write programs using the latest version of Stata and exploit
its features.

2. Make yourself familiar with all the details of syntax. It can stop you from rein-
venting little wheels. Use wildcards for options to pass to other commands when
appropriate.

3. Support if exp and in range where applicable. This is best done using marksample
touse (or occasionally mark and markout). Have touse as a temporary variable
if and only if marksample or a related command is used. See help marksample.

4. Make effective use of information available in e() and r(). If your program is
to run in a context that implies that results or estimates are available (say, after
regress), make use of the stored information from the prior command.

5. Where appropriate, ensure that your command returns the information that it
computes and displays so that another user may employ it quietly and retrieve
that information.

6. Ensure that programs that focus on time series or panel data work with time-series
operators if at all possible. In short, exploit tsset.

i

i

i

i

i

i

i

i

11.14.4 Speed and efficiency 239

7. Familiarize yourself with the built-in material revealed by creturn list. Scrolling
right to the end will show several features that may be useful to you.

8. SMCL is the standard way to format Stata output.

11.14.3 Respect for datasets

In general, make no change to the data unless that is the direct purpose of your program
or that is explicitly requested by the user.

1. Your program should not destroy the data in memory unless that is essential for
what it does.

2. You should not create new permanent variables on the side unless notified or
requested.

3. Do not use variables, matrices, scalars, or global macros whose names might al-
ready be in use. There is absolutely no need to guess at names that are unlikely
to occur, as temporary names can always be used (type help macro for details
on tempvar, tempname, and tempfile).

4. Do not change the variable type unless requested.

5. Do not change the sort order of data; use sortpreserve.

11.14.4 Speed and efficiency

Here is a list of basic ways to increase speed and efficiency:

1. foreach and forvalues are cleaner and faster than most while loops and much
faster than the old for that still satisfies some devotees. Within programs, avoid
for like the plague. (Note to new Mata users: this does not refer to Mata’s for.)

2. Avoid egen within programs; it is usually slower than a direct attack.

3. Try to avoid looping over observations, which is very slow. Fortunately, it can
usually be avoided.

4. Avoid preserve if possible. preserve is attractive to the programmer but can be
expensive in time for the user with large data files. Programmers should learn to
master marksample.

5. Specify the type of temporary variables to minimize memory overhead. If a byte

variable can be used, specify generate byte ‘myvar’ rather than letting the
default type be used, which would waste storage space.

6. Temporary variables will be automatically dropped at the end of a program, but
also consider dropping them when they are no longer needed to minimize memory
overhead and to reduce the chances of your program stopping because there is no
room to add more variables.

i

i

i

i

i

i

i

i

240 Chapter 11 Ado-file programming

11.14.5 Reminders

In this section, I describe a few general procedures that will improve one’s code:

1. Remember to think about string variables as well as numeric variables. Does the
task carried out by your program make sense for string variables? If so, will it
work properly? If not, do you need to trap input of a string variable as an error,
say, through syntax?

2. Remember to think about making your program support by varlist: when this is
natural. See help byable.

3. Remember to think about weights and implement them when appropriate.

4. The job is not finished until the .sthlp is done. Use SMCL to set up your help
files. Old-style help files, while supported, are not documented, while help files
not written in SMCL cannot take advantage of its paragraph mode, which allows
lines to autowrap to fit the desired screen width. For an introduction to the SMCL

required to write a basic help file, see [U] 18.11.6 Writing online help or help
examplehelpfile.

11.14.6 Style in the large

Style in the large is difficult to prescribe, but here are some vague generalities:

1. Before writing a program, check that it has not been written already! findit is
the broadest search tool.

2. The best programs do just one thing well. There are exceptions, but what to a
programmer is a Swiss army knife with a multitude of useful tools may look to
many users like a confusingly complicated command.

3. Get a simple version working first before you start coding the all-singing, all-
dancing version that you most desire.

4. Very large programs become increasingly difficult to understand, build, and main-
tain, roughly as some power of their length. Consider breaking such programs
into subroutines or using a structure of command and subcommands.

5. More general code is often both shorter and more robust. Sometimes programmers
write to solve the most awkward case, say, to automate a series of commands that
would be too tedious or error-prone to enter interactively. Stepping back from the
most awkward case to the more general one is often then easier than might be
thought.

6. Do not be afraid to realize that at some point you may be best advised to throw
it all away and start again from scratch.

i

i

i

i

i

i

i

i

11.14.7 Use the best tools 241

11.14.7 Use the best tools

Find and use a text editor that you like and that supports programming directly. A
good editor, for example, will be smart about indenting and will allow you to search for
matching braces. Some editors even show syntax highlighting. For much more detailed
comments on various text editors for Stata users, see ssc describe texteditors.

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

12 Cookbook: Ado-file programming

This cookbook chapter presents a number of recipes for Stata ado-file programmers
using the programming features described in the previous chapter. Each recipe poses a
problem and a worked solution. Although you may not encounter this precise problem,
you may be able to recognize its similarities to a task that you would like to automate
in an ado-file.

12.1 Retrieving results from rolling:

The problem: as posed by a question on Statalist, the rolling: prefix (see Section
7.2.4) will allow you to save the estimated coefficients (b) and standard errors (se)
from a moving-window regression. What if you want to compute a quantity that depends
on the full variance-covariance matrix of the regression (vce)? Those quantities cannot
be saved by rolling:. For instance, the regression

. regress y L(1/4).x

estimates the effects of the last four periods’ values of x on y.1 We might naturally be
interested in the sum of the lag coefficients, as it provides the steady-state effect of x on
y. This computation is readily performed with lincom ([R] lincom). If this regression
is run over a moving window, how might we access the information needed to perform
this computation?

A solution is available in the form of a wrapper program which may then be called by
rolling:. We write our own r-class program, myregress, which returns the quantities
of interest: the estimated sum of lag coefficients and its standard error. The program
takes as arguments the varlist of the regression and two required options: lagvar(), the
name of the distributed lag variable, and nlags(), the highest-order lag to be included
in the lincom.2 We build up the appropriate expression for the lincom command and
return its results to the calling program.

. type myregress.ado

*! myregress v1.0.0 CFBaum 11aug2008
program myregress, rclass
version 10.1
syntax varlist(ts) [if] [in], LAGVar(string) NLAGs(integer)
regress ‘varlist’ ‘if’ ‘in’

1. See Section 2.4.3 for a discussion of Stata’s time-series operators.
2. This logic assumes that the current value of the regressor is not included in the lincom computation.

That could easily be modified by using L(0/4).

243

i

i

i

i

i

i

i

i

244 Chapter 12 Cookbook: Ado-file programming

local nl1 = ‘nlags’ - 1
forvalues i = 1/‘nl1’ {

local lv "‘lv’ L‘i’.‘lagvar’ + "
}
local lv "‘lv’ L‘nlags’.‘lagvar’"
lincom ‘lv’
return scalar sum = ‘r(estimate)’
return scalar se = ‘r(se)’
end

As with any program to be used under the control of a prefix operator, it is a good idea
to execute the program directly to test it to ensure that its results are those you could
calculate directly with lincom.

. use wpi1, clear

. myregress wpi L(1/4).wpi t, lagvar(wpi) nlags(4)

Source SS df MS Number of obs = 120
F(5, 114) =41601.52

Model 108199.912 5 21639.9823 Prob > F = 0.0000
Residual 59.2997117 114 .520172909 R-squared = 0.9995

Adj R-squared = 0.9994
Total 108259.211 119 909.741272 Root MSE = .72123

wpi Coef. Std. Err. t P>|t| [95% Conf. Interval]

wpi
L1. 1.43324 .0947574 15.13 0.000 1.245526 1.620954
L2. -.3915563 .1648926 -2.37 0.019 -.7182073 -.0649053
L3. .1669584 .1693717 0.99 0.326 -.1685657 .5024825
L4. -.2276451 .0960385 -2.37 0.019 -.4178967 -.0373936

t .0184368 .0071336 2.58 0.011 .0043052 .0325684
_cons .2392324 .1641889 1.46 0.148 -.0860246 .5644894

(1) L.wpi + L2.wpi + L3.wpi + L4.wpi = 0

wpi Coef. Std. Err. t P>|t| [95% Conf. Interval]

(1) .9809968 .0082232 119.30 0.000 .9647067 .9972869

. return list

scalars:
r(se) = .0082232176260432
r(sum) = .9809968042273991

. lincom L.wpi+L2.wpi+L3.wpi+L4.wpi

(1) L.wpi + L2.wpi + L3.wpi + L4.wpi = 0

wpi Coef. Std. Err. t P>|t| [95% Conf. Interval]

(1) .9809968 .0082232 119.30 0.000 .9647067 .9972869

Having validated the wrapper program by comparing its results with those from lincom,
we may now invoke it with rolling:

i

i

i

i

i

i

i

i

12.1 Retrieving results from rolling: 245

. rolling sum=r(sum) se=r(se) ,window(30) : ///
> myregress wpi L(1/4).wpi t, lagvar(wpi) nlags(4)
(running myregress on estimation sample)

Rolling replications (95)
1 2 3 4 5

.. 50

...

We may graph the resulting series and its approximate 95% standard error bands with
twoway rarea ([G] graph twoway rarea) and tsline ([TS] tsline):

. tsset end, quarterly
time variable: end, 1967q2 to 1990q4

delta: 1 quarter

. label var end Endpoint

. g lo = sum - 1.96 * se

. g hi = sum + 1.96 * se

. twoway rarea lo hi end, color(gs12) title("Sum of moving lag coefficients, ap
> prox. 95% CI") ///
> || tsline sum, legend(off) scheme(s2mono)

i

i

i

i

i

i

i

i

246 Chapter 12 Cookbook: Ado-file programming

.5
1

1.
5

2

1965q1 1970q1 1975q1 1980q1 1985q1 1990q1
Endpoint

Sum of moving lag coefficients, approx. 95% CI

Figure 12.1: Rolling lincom estimates.

12.2 Generalization of egen function pct9010() to support
all pairs of quantiles

The problem: in Section 11.10, we developed a useful egen function that will produce
a percentile range for a specified variable. It may operate under the control of a by-list,
juxtaposing the percentile range for each subset of the data specified in the by-list with
those observations. It is a one-trick pony, though, as the 90th and 10th percentiles are
wired into the function.

It might be useful to take advantage of the egen pctile() function’s ability to com-
pute any percentiles of the specified variable. To achieve this, we modify gpct9010.ado

to the more general gpctrange.ado. We add two options to the egen function, lo()
and hi(). If not specified, those options take on 25 and 75, respectively, and compute
the interquartile range. If specified, they must be checked for validity.

. type _gpctrange.ado

*! _gpctrange v1.0.0 CFBaum 11aug2008

i

i

i

i

i

i

i

i

12.2 Generalization of egen function pct9010() to support all pairs of quantiles 247

program _gpctrange
version 10.1
syntax newvarname =/exp [if] [in] [, LO(integer 25) HI(integer 75) *]

if ‘hi’ > 99 | ‘lo’ < 1 {
display as error "Percentiles ‘lo’ ‘hi’ must be between 1 and 9

> 9."
error 198

}
if ‘hi’ <= ‘lo’ {

display as error "Percentiles ‘lo’ ‘hi’ must be in ascending or
> der."

error 198
}
tempvar touse phi plo
mark ‘touse’ ‘if’ ‘in’
quietly {

egen double ‘phi’ = pctile(‘exp’) if ‘touse’, ‘options’ p(‘hi’)
egen double ‘plo’ = pctile(‘exp’) if ‘touse’, ‘options’ p(‘lo’)
generate ‘typlist’ ‘varlist’ = ‘phi’ - ‘plo’ if ‘touse’

}
end

The computations are then generalized by merely passing the contents of the lo() and
hi() options to egen pctile().3

. sysuse auto, clear
(1978 Automobile Data)

. bysort rep78: egen iqr = pctrange(price) if inrange(rep78, 3, 5)
(15 missing values generated)

. bysort rep78: egen p8020 = pctrange(price) if inrange(rep78, 3, 5), ///
> hi(80) lo(20)
(15 missing values generated)

. tabstat iqr if inrange(rep78, 3, 5), by(rep78)

Summary for variables: iqr
by categories of: rep78 (Repair Record 1978)

rep78 mean

3 2108
4 2443
5 1915

Total 2174.22

. tabstat p8020 if inrange(rep78, 3, 5), by(rep78)

Summary for variables: p8020
by categories of: rep78 (Repair Record 1978)

rep78 mean

3 6231.5
4 3328
5 1915

3. Although we have suggested avoiding the use of egen within ado-files, its pctile() function is not
easily replicated in ado-file code.

i

i

i

i

i

i

i

i

248 Chapter 12 Cookbook: Ado-file programming

Total 4540.915

This version of the egen function is much more generally useful, and more likely to find
a place in your toolbox.

i

i

i

i

i

i

i

i

12.3 Constructing a certification script 249

12.3 Constructing a certification script

The problem: you would like to establish that an ado-file you have written is pro-
viding the correct results, and that any further modifications to the program will not
harm its reliability. The best way to do that is to use Stata’s certification script proce-
dures ([P] cscript). Our solution draws heavily on the excellent discussion of statistical
software certification in Gould (2001).

We will develop a certification script for the last version of pctrange, the ado-file we
developed in the previous chapter. That version of the program (as modified in Section
11.8) is:

. type pctrange.ado

*! pctrange v1.0.6 CFBaum 11aug2008
program pctrange, rclass byable(recall)

version 10.1
syntax varlist(min=1 numeric ts) [if] [in] [, noPRINT FORmat(passthru)

> MATrix(string)]
marksample touse
quietly count if ‘touse’
if ‘r(N)’ == 0 {

error 2000
}
local nvar : word count ‘varlist’
if ‘nvar’ == 1 {

local res range p7525 p9010 p9505 p9901
tempname ‘res’
quietly summarize ‘varlist’ if ‘touse’, detail
scalar ‘range’ = r(max) - r(min)
scalar ‘p7525’ = r(p75) - r(p25)
scalar ‘p9010’ = r(p90) - r(p10)
scalar ‘p9505’ = r(p95) - r(p5)
scalar ‘p9901’ = r(p99) - r(p1)
if "‘print’" != "noprint" {

display as result _n "Percentile ranges for ‘varlist’,
> N = ‘r(N)’"

display as txt "75-25: " ‘p7525’
display as txt "90-10: " ‘p9010’
display as txt "95-05: " ‘p9505’
display as txt "99-01: " ‘p9901’
display as txt "Range: " ‘range’

}
foreach r of local res {

return scalar ‘r’ = ‘‘r’’
}
return scalar N = r(N)

}
else {

tempname rmat
matrix ‘rmat’ = J(‘nvar’,5,.)
local i 0
foreach v of varlist ‘varlist’ {

local ++i
quietly summarize ‘v’ if ‘touse’, detail
matrix ‘rmat’[‘i’,1] = r(max) - r(min)
matrix ‘rmat’[‘i’,2] = r(p75) - r(p25)

i

i

i

i

i

i

i

i

250 Chapter 12 Cookbook: Ado-file programming

matrix ‘rmat’[‘i’,3] = r(p90) - r(p10)
matrix ‘rmat’[‘i’,4] = r(p95) - r(p5)
matrix ‘rmat’[‘i’,5] = r(p99) - r(p1)
local rown "‘rown’ ‘v’"

}
matrix colnames ‘rmat’ = Range P75-P25 P90-P10 P95-P05 P99-P01
matrix rownames ‘rmat’ = ‘rown’
if "‘print’" != "noprint" {

local form ", noheader"
if "‘format’" != "" {

local form "‘form’ ‘format’"
}
matrix list ‘rmat’ ‘form’

}
if "‘matrix’" != "" {

matrix ‘matrix’ = ‘rmat’
}
return matrix rmat = ‘rmat’

}
return local varname ‘varlist’

end

Following Gould (op. cit., 35), we create a directory in our current working directory
called /bench to hold certification scripts, and a subdirectory for this script called
/pctrange. In the bench directory, we create testall.do:

clear
discard
set more off
cd first
quietly log using pctrange, replace
do test1
quietly log close

We begin our certification process by copying auto.dta into the pctrange direc-
tory. As Gould suggests (op. cit., 45), certification scripts should be self-contained, not
referring to files outside the directory in which they reside.

A certification script should run to normal completion if no errors are encountered.
A script that aborts provides an indication that one or more tests in the script have
failed. We first want to test the syntax of the program, and verify that appropriate
error messages are produced if the program is called incorrectly. We can trigger errors
without aborting our do-file by using the rcof ([P] rcof) command. For instance,
pctrange requires at least one numeric variable and cannot handle string variables. It
makes no sense to call the program without some observations in the data. We can test
these conditions with

. cd bench/pctrange
/Users/baum/doc/ITSP/dof.8824/bench/pctrange/

. do test1

. cscript "test script for ITSP:" pctrange
BEGIN test script for ITSP: pctrange

. use auto

i

i

i

i

i

i

i

i

12.3 Constructing a certification script 251

(1978 Automobile Data)

. rcof "pctrange" != 0

. rcof "pctrange price make" != 0

. drop _all

. rcof "pctrange price mpg" != 0

.
end of do-file

Let’s now check that if exp and in range conditions are handled properly. To do this, we
must compare the output of the program (as provided in return list using the assert
([P] assert) command and the matrix function mreldif(). We test for absolute equality
of the matrices produced, as there should be no possibility for rounding error in the two
methods of computing the same quantities if our program is working properly. Note
that pctrange only produces matrix r(rmat) when more than one variable appears in
its varlist. We create a new script, test2, which incorporates the tests applied above.

. cd bench/pctrange
/Users/baum/doc/ITSP/dof.8824/bench/pctrange/

. do test2

. cscript "test script for ITSP:" pctrange
BEGIN test script for ITSP: pctrange

. use auto
(1978 Automobile Data)

. rcof "pctrange" != 0

. rcof "pctrange price make" != 0

. drop _all

. rcof "pctrange" != 0

. use auto
(1978 Automobile Data)

. quietly pctrange price mpg if foreign

. matrix check1 = r(rmat)

. keep if foreign
(52 observations deleted)

. quietly pctrange price mpg

. mat check2 = r(rmat)

. scalar checka = mreldif(check1, check2)

. assert checka == 0

. use auto, clear
(1978 Automobile Data)

. quietly pctrange price mpg in 22/55

. matrix check3 = r(rmat)

. keep in 22/55
(40 observations deleted)

. quietly pctrange price mpg

. mat check4 = r(rmat)

. scalar checkb = mreldif(check3, check4)

. assert checkb == 0

i

i

i

i

i

i

i

i

252 Chapter 12 Cookbook: Ado-file programming

. use auto, clear
(1978 Automobile Data)

. generate t = _n

. tsset t
time variable: t, 1 to 74

delta: 1 unit

. generate dp = D.price
(1 missing value generated)

. generate lmpg = L.mpg
(1 missing value generated)

. quietly pctrange dp lmpg

. mat check5 = r(rmat)

. quietly pctrange D.price L.mpg

. mat check6 = r(rmat)

. scalar checkc = mreldif(check5, check6)

. assert checkc == 0

.

.
end of do-file

We have also included a check of the program’s ability to handle time-series (ts) oper-
ators.

We now want to check some of the program’s calculations against those produced
by summarize, detail. We may do this with a single variable, in which case pctrange
returns a set of scalars. We now use the scalar function reldif(), which allows us to
check to see that computations from summarize results are appropriately close to those
of pctrange. We do not check for equality due to the limitations of finite-precision
arithmetic given that we are comparing the results of two different commands. The
value of 10−13 is chosen to ensure that the two computed measures are sufficiently
close. A larger value might have to be used on a different computing platform.

. cd bench/pctrange
/Users/baum/doc/ITSP/dof.8824/bench/pctrange/

. do test3

. cscript "test script for ITSP:" pctrange
BEGIN test script for ITSP: pctrange

. // (earlier tests omitted)

. use auto, clear
(1978 Automobile Data)

. quietly pctrange price

. scalar enn = r(N)

. scalar p9901 = r(p9901)

. scalar p9505 = r(p9505)

. scalar p9010 = r(p9010)

. scalar p7525 = r(p7525)

. scalar range = r(range)

. assert "‘r(varname)’" == "price"

i

i

i

i

i

i

i

i

12.3 Constructing a certification script 253

. quietly summarize price, detail

. assert reldif(r(p99) - r(p1), p9901) < 1e-13

. assert reldif(r(p95) - r(p5), p9505) < 1e-13

. assert reldif(r(p90) - r(p10), p9010) < 1e-13

. assert reldif(r(p75) - r(p25), p7525) < 1e-13

. assert reldif(r(max) - r(min), range) < 1e-13

.
end of do-file

Finally, we should check whether pctrange produces the same results under the control
of a by-prefix. Like most Stata commands, pctrange only returns results from the last
by-group. We add tests that verify that results from this by-group (where foreign =
1) are identical to those generated by limiting the sample to those observations.

. cd bench/pctrange
/Users/baum/doc/ITSP/dof.8824/bench/pctrange/

. do test4

. cscript "test script for ITSP:" pctrange
BEGIN test script for ITSP: pctrange

. // (earlier tests omitted)

. use auto, clear
(1978 Automobile Data)

. quietly by foreign: pctrange price mpg

. matrix check7 = r(rmat)

. keep if foreign
(52 observations deleted)

. quietly pctrange price mpg

. mat check8 = r(rmat)

. scalar checkd = mreldif(check7, check8)

. assert checkd == 0

.

.
end of do-file

We did not use tempnames or tempvars in these scripts due to their simplicity. For
a more complicated certification process, those tools might be useful to prevent the
possibility of name collisions.

A certification script is a work in progress. As Gould (op. cit, p. 38) suggests, it
need not be elegant, but it should be complete. As you think of additional conditions
to be tested (or fix bugs in the ado-file), add them to the test script. The certification
script should be run again every time a change is made to the code. If that change adds
new features, tests should be added to the script putting them through their paces.

The savedresults command ([P] savedresults) allows you to compare the results
of two commands’ return values for both r-class and estimation (e-class) commands.
This capability is very useful when you have a validated version of a command and a
new version with additional features and you want to ensure that all of the saved results

i

i

i

i

i

i

i

i

254 Chapter 12 Cookbook: Ado-file programming

produced by the new version match those of the old version.

If you are considering sharing your program with the Stata user community (for
instance, by placing it in the SSC Archive ([R] ssc), or making it available from your
website) you might want to include the certification script (and any datasets it refer-
ences) as ancillary files in the package. Demonstrating that a user-written program
passes a number of certification tests provides reassurance to other users that they can
rely on the program’s results.

i

i

i

i

i

i

i

i

12.4 Estimating means and variances using the ml command 255

12.4 Estimating means and variances using the ml command

The problem: a Statalist user posed a question about the estimation of means and
variances from subsamples of a normally distributed variable. He wanted to compute
two nonlinear combinations of those estimates:

β =
σ1 − σ2

σ1 + σ2

(12.1)

and

α = 2π
√

3

(

µ1 − µ2

σ1 + σ2

)

(12.2)

The user would also like to estimate the quantity α given the assumption of a common
variance, σ = σ1 = σ2.

This may readily be accomplished by ml as long as the user is willing to make a
distributional assumption. We set up a variant of mynormal lf.ado4 that allows for
separate means and variances, depending on the value of an indicator variable, which
we access with global macro subsample:

. type meanvar.ado

*! meanvar v1.0.1 CFBaum 11aug2008
program meanvar

version 10.1
args lnf mu1 mu2 sigma1 sigma2
qui replace ‘lnf’ = ln(normalden($ML_y1, ‘mu1’, ‘sigma1’)) ///

if $subsample == 0
qui replace ‘lnf’ = ln(normalden($ML_y1, ‘mu2’, ‘sigma2’)) ///

if $subsample == 1
end

We now may set up the estimation problem. As we do not have the user’s data, we use
auto.dta and consider foreign as the binary indicator:

. sysuse auto, clear
(1978 Automobile Data)

. global subsample foreign

. generate byte iota = 1

. ml model lf meanvar (mu1: price = iota) (mu2: price = iota) /sigma1 /sigma2
note: iota dropped because of collinearity
note: iota dropped because of collinearity

. ml maximize, nolog
initial: log likelihood = -<inf> (could not be evaluated)
feasible: log likelihood = -879.18213
rescale: log likelihood = -705.93677
rescale eq: log likelihood = -701.24251

Number of obs = 74
Wald chi2(0) = .

Log likelihood = -695.14898 Prob > chi2 = .

4. See Section 11.13.

i

i

i

i

i

i

i

i

256 Chapter 12 Cookbook: Ado-file programming

Coef. Std. Err. z P>|z| [95% Conf. Interval]

mu1
_cons 6072.423 425.3414 14.28 0.000 5238.769 6906.077

mu2
_cons 6384.682 546.1422 11.69 0.000 5314.263 7455.101

sigma1
_cons 3067.18 300.7618 10.20 0.000 2477.698 3656.662

sigma2
_cons 2561.634 386.1808 6.63 0.000 1804.733 3318.534

. estimates store unconstr

For use below, we use estimates store ([R] estimates) to save the results of estimation
under the name unconstr.

We can verify that these maximum likelihood estimates of the subsample means and
variances are correct by estimating the subsamples with ivreg2 (Baum et al. (2007)),
available from the SSC Archive:

. ivreg2 price if !foreign

. ivreg2 price if foreign

Estimates of the desired quantities may be readily computed, in point and interval form,
with nlcom ([R] nlcom):

. nlcom ([sigma1]_b[_cons] - [sigma2]_b[_cons]) / ///
> ([sigma1]_b[_cons] + [sigma2]_b[_cons])

_nl_1: ([sigma1]_b[_cons] - [sigma2]_b[_cons]) / ([sigma1]_b[_cons] + [
> sigma2]_b[_cons])

Coef. Std. Err. z P>|z| [95% Conf. Interval]

_nl_1 .089814 .089195 1.01 0.314 -.0850049 .2646329

.

. nlcom 2*_pi*sqrt(3) * (([mu1]_b[_cons] - [mu2]_b[_cons]) / ///
> ([sigma1]_b[_cons] + [sigma2]_b[_cons]))

_nl_1: 2*_pi*sqrt(3) * (([mu1]_b[_cons] - [mu2]_b[_cons]) / ([sigma1]_b
> [_cons] + [sigma2]_b[_cons]))

Coef. Std. Err. z P>|z| [95% Conf. Interval]

_nl_1 -.6037236 1.339398 -0.45 0.652 -3.228896 2.021449

i

i

i

i

i

i

i

i

12.4.1 Applying equality constraints in ml estimation 257

12.4.1 Applying equality constraints in ml estimation

The second task in the problem statement is the computation of α subject to the
constraint of equal variances in the two subsamples.5 Define the constraint ([R] con-
straint), and include the constraints() option on ml model. As the output shows,
the two sigma parameters are now forced to be equal. Given the nature of maximum
likelihood estimation, this does not alter the point estimates of the mu parameters, but
it alters their standard errors. We now can recompute the estimated quantity α:

. constraint 1 [sigma1]_cons = [sigma2]_cons

. ml model lf meanvar (mu1: price = iota) (mu2: price = iota) /sigma1 /sigma2,
> ///
> constraints(1)
note: iota dropped because of collinearity
note: iota dropped because of collinearity

. ml maximize, nolog
initial: log likelihood = -<inf> (could not be evaluated)
feasible: log likelihood = -910.93346
rescale: log likelihood = -725.86354
rescale eq: log likelihood = -708.1301

Number of obs = 74
Wald chi2(0) = .

Log likelihood = -695.62494 Prob > chi2 = .

(1) [sigma1]_cons - [sigma2]_cons = 0

Coef. Std. Err. z P>|z| [95% Conf. Interval]

mu1
_cons 6072.423 405.766 14.97 0.000 5277.136 6867.71

mu2
_cons 6384.682 623.8296 10.23 0.000 5161.998 7607.365

sigma1
_cons 2926.02 240.5172 12.17 0.000 2454.615 3397.425

sigma2
_cons 2926.02 240.5172 12.17 0.000 2454.615 3397.425

. estimates store constr

. nlcom 2*_pi*sqrt(3) * (([mu1]_b[_cons] - [mu2]_b[_cons]) / ///
> ([sigma1]_b[_cons] + [sigma2]_b[_cons]))

_nl_1: 2*_pi*sqrt(3) * (([mu1]_b[_cons] - [mu2]_b[_cons]) / ([sigma1]_b
> [_cons] + [sigma2]_b[_cons]))

Coef. Std. Err. z P>|z| [95% Conf. Interval]

_nl_1 -.5806946 1.38475 -0.42 0.675 -3.294756 2.133366

5. In this form, the desired quantity could be calculated from a regression of price on the indicator
variable. We use ml with constraints for pedagogical purposes.

i

i

i

i

i

i

i

i

258 Chapter 12 Cookbook: Ado-file programming

We use estimates store to save the results of this constrained maximization under
the name constr. As we have estimated an unconstrained and constrained form of the
same model, we may use a likelihood ratio test (lrtest, [R] lrtest) to evaluate whether
the constraints are rejected by the data:

. lrtest unconstr constr

Likelihood-ratio test LR chi2(1) = 0.95
(Assumption: constr nested in unconstr) Prob > chi2 = 0.3292

The large p-value on the χ2 statistic indicates that the data do not reject the constraint
of equal error variances for domestic and foreign automobiles.

i

i

i

i

i

i

i

i

12.5 Applying inequality constraints in ml estimation 259

12.5 Applying inequality constraints in ml estimation

The problem: certain parameters in a maximum likelihood estimation should obey
inequality restrictions. For instance, the σ parameter should be strictly positive, as it is
derived from the estimated variance of the error process. How can we ensure that these
constraints are satisfied?

Consider the mynormal lf program presented in Section 11.13. As Gould et al.
(2006), p. 56 suggest, a more numerically stable form of the likelihood function for
linear regression estimates log σ rather than σ itself to allow the parameter to take on
values on the entire real line. The likelihood function evaluator then becomes

. type mynormal_lf.ado

*! mynormal_lf v1.0.1 CFBaum 11aug2008
program mynormal_lf
version 10.1
args lnf mu lnsigma
quietly replace ‘lnf’ = ln(normalden($ML_y1, ‘mu’, exp(‘lnsigma’)))

end

As we still want to take advantage of the three-argument form of the normalden()

function, we pass the parameter exp(‘lnsigma’) to the function, which expects to
receive σ itself as its third argument. But as the optimization takes place with respect
to parameter lnsigma, difficulties with the zero boundary are avoided.

To apply the same logic to the ado-file version, mynormal.ado, we must consider
one issue: when the Replay routine is invoked, the parameter displayed will be lnsigma
rather than sigma. We can deal with this issue by using the diparm() option of ml
model. We modify mynormal.ado accordingly:

. type mynormal.ado

*! mynormal v1.0.1 CFBaum 11aug2008
program mynormal

version 10.1
if replay() {

if ("‘e(cmd)’" != "mynormal") error 301
Replay ‘0’

}
else Estimate ‘0’

end

program Replay
syntax [, Level(cilevel)]
ml display, level(‘level’)

end

program Estimate, eclass sortpreserve
syntax varlist [if] [in] [, vce(passthru) Level(cilevel) *]
mlopts mlopts, ‘options’
gettoken lhs rhs: varlist
marksample touse
local diparm diparm(lnsigma, exp label("sigma"))
ml model lf mynormal_lf (mu: ‘lhs’ = ‘rhs’) /lnsigma ///
if ‘touse’, ‘vce’ ‘mlopts’ maximize ‘diparm’

i

i

i

i

i

i

i

i

260 Chapter 12 Cookbook: Ado-file programming

ereturn local cmd "mynormal"
ereturn scalar k_aux = 1
Replay, level(‘level’)

end

Now, when the model is estimated, the ancillary parameter lnsigma is displayed and
transformed into the original parameter space as sigma.

. sysuse auto, clear
(1978 Automobile Data)

. mynormal price mpg weight turn

initial: log likelihood = -<inf> (could not be evaluated)
feasible: log likelihood = -811.54531
rescale: log likelihood = -811.54531
rescale eq: log likelihood = -808.73926
Iteration 0: log likelihood = -808.73926
Iteration 1: log likelihood = -729.21876 (not concave)
Iteration 2: log likelihood = -708.48511 (not concave)
Iteration 3: log likelihood = -702.39976
Iteration 4: log likelihood = -678.51799
Iteration 5: log likelihood = -677.74671
Iteration 6: log likelihood = -677.74638
Iteration 7: log likelihood = -677.74638

Number of obs = 74
Wald chi2(3) = 46.26

Log likelihood = -677.74638 Prob > chi2 = 0.0000

price Coef. Std. Err. z P>|z| [95% Conf. Interval]

mpg -72.86501 79.06769 -0.92 0.357 -227.8348 82.10481
weight 3.524339 .7947479 4.43 0.000 1.966661 5.082016

turn -395.1902 119.2837 -3.31 0.001 -628.9819 -161.3985
_cons 12744.24 4629.664 2.75 0.006 3670.27 21818.22

/lnsigma 7.739796 .0821995 94.16 0.000 7.578688 7.900904

sigma 2298.004 188.8948 1956.062 2699.723

This same technique may be used to constrain a regression parameter to be strictly
positive (or strictly negative).6 Imagine that we believe that the first slope parameter
in a particular regression model must be negative. We can no longer use the lf (linear
form) method, but must switch to one of the more complicated methods d0, d1 or
d2. In the linear form method, your likelihood function evaluator only calculates one
term of the likelihood function. Using the d. . . methods, you must calculate the total
likelihood within your routine. In these methods, you must use the mleval command
([R] ml) to evaluate the coefficient vector passed to the likelihood function evaluation,
and the mlsum command to sum the likelihood over the available observations.7 We

6. For an explanation of how this can be done in an OLS regression context, see Isabel
Cañette’s Stata FAQ, “How do I fit a linear regression with interval constraints in Stata?”
http://www.stata.com/support/faqs/stat/intconst.html

7. See Gould et al. (2006) for full details.

i

i

i

i

i

i

i

i

12.5 Applying inequality constraints in ml estimation 261

start with the simple mynormal d0 routine from Gould et al. (2006), p. 98:

. type mynormal_lf_d0.ado

*! mynormal_lf_d0 v1.0.0 CFBaum 11aug2008
program mynormal_lf_d0

version 10.1
args todo b lnf
tempvar mu
tempname lnsigma
mleval ‘mu’ = ‘b’, eq(1)
mleval ‘lnsigma’ = ‘b’, eq(2) scalar
quietly {

mlsum ‘lnf’ = ln(normalden($ML_y1,‘mu’, exp(‘lnsigma’)))
}

end

and invoke it with ml model:

. ml model d0 mynormal_lf_d0 (mu: price = mpg weight turn) /lnsigma, ///
> maximize nolog diparm(lnsigma, exp label("sigma"))
initial: log likelihood = -<inf> (could not be evaluated)
feasible: log likelihood = -811.54531
rescale: log likelihood = -811.54531
rescale eq: log likelihood = -808.73926

. ml display

Number of obs = 74
Wald chi2(3) = 46.26

Log likelihood = -677.74638 Prob > chi2 = 0.0000

price Coef. Std. Err. z P>|z| [95% Conf. Interval]

mu
mpg -72.86507 79.06768 -0.92 0.357 -227.8349 82.10474

weight 3.524333 .7947475 4.43 0.000 1.966656 5.082009
turn -395.1891 119.2836 -3.31 0.001 -628.9807 -161.3974
_cons 12744.22 4629.664 2.75 0.006 3670.244 21818.19

lnsigma
_cons 7.739795 .0821994 94.16 0.000 7.578688 7.900903

sigma 2298.002 188.8945 1956.06 2699.72

We now break out the first slope coefficient from the linear combination and give it its
own “equation”. To refer to the variable mpg within the likelihood function evaluator, we
must use a global macro8 to impose the constraint of negativity on the mpg coefficient,
we need only specify that the mean equation (for mu) is adjusted by subtracting the
exponential of the parameter a:

. type mynormal_lf_d0_c1.ado

*! mynormal_lf_d0_c1 v1.0.0 CFBaum 11aug2008
program mynormal_lf_d0_c1

8. See Section 3.7.

i

i

i

i

i

i

i

i

262 Chapter 12 Cookbook: Ado-file programming

version 10.1
args todo b lnf
tempvar xb mu
tempname a lnsigma
mleval ‘a’ = ‘b’, eq(1) scalar
mleval ‘xb’ = ‘b’, eq(2)
mleval ‘lnsigma’ = ‘b’, eq(3) scalar
quietly {

generate double ‘mu’ = ‘xb’ - exp(‘a’)* $x1
>

mlsum ‘lnf’ = ln(normalden($ML_y1,‘mu’, exp(‘lnsigma’)))
}

end

We can now estimate the model subject to the inequality constraint imposed by the
exp() function:

. global x1 mpg

. ml model d0 mynormal_lf_d0_c1 (a:) (mu: price = weight turn) /lnsigma, ///
> maximize nolog diparm(lnsigma, exp label("sigma"))
initial: log likelihood = -<inf> (could not be evaluated)
feasible: log likelihood = -985.47034
rescale: log likelihood = -985.47034
rescale eq: log likelihood = -984.97671
numerical derivatives are approximate
nearby values are missing

. ml display

Number of obs = 74
Wald chi2(0) = .

Log likelihood = -677.74638 Prob > chi2 = .

price Coef. Std. Err. z P>|z| [95% Conf. Interval]

a
_cons 4.288597 1.085138 3.95 0.000 2.161765 6.415429

mu
weight 3.524343 .7947491 4.43 0.000 1.966664 5.082023

turn -395.1901 119.284 -3.31 0.001 -628.9825 -161.3977
_cons 12744.21 4629.673 2.75 0.006 3670.214 21818.2

lnsigma
_cons 7.739796 .0821995 94.16 0.000 7.578688 7.900904

sigma 2298.004 188.8948 1956.062 2699.723

The nlcom ([R] nlcom) command is used to transform the estimated coefficient back
to its original space:

. nlcom -exp([a]_cons)

_nl_1: -exp([a]_cons)

price Coef. Std. Err. z P>|z| [95% Conf. Interval]

i

i

i

i

i

i

i

i

12.5 Applying inequality constraints in ml estimation 263

_nl_1 -72.86415 79.06769 -0.92 0.357 -227.834 82.10568

We have estimated − exp(βmpg); nlcom back-transforms the estimated coefficient to
βmpg in point and interval form.

Variations on this technique are used throughout Stata’s maximum likelihood esti-
mation commands to ensure that coefficients take on appropriate values. For instance,
the bivariate probit command ([R] biprobit) estimates a coefficient ρ, the correlation
between two error processes. It must lie within (−1, +1). Stata’s biprobit routine es-
timates the hyperbolic arctangent (atanh()) of ρ, which constrains the parameter itself
to lie within the appropriate interval when back-transformed. A similar transformation
could be used to constrain a slope parameter to lie within a certain interval of the real
line.

i

i

i

i

i

i

i

i

264 Chapter 12 Cookbook: Ado-file programming

12.6 Generating a dataset containing the single longest spell
for each unit in panel data

The problem: in panel (longitudinal) data, many datasets contain unbalanced panels,
with differing numbers of observations for different units in the panel. Some estimators
commonly employed in a panel-data context can work with unbalanced panels, but
expect to find a single spell for each unit: that is, a time-series without gaps. Finding and
retaining the single longest spell for each unit within the panel is quite straightforward
in the case of a single variable. However, for our purposes, we want to apply this logic
listwise, and delete shorter spells if any of the variables in a specified varlist are missing.
The solution will entail creation of a new, smaller dataset in which only panel units
with single spells are present.

To motivate this form of data organization, note that the Arellano–Bond dynamic
panel data estimator and its descendants (see [TS] xtabond and the user-written
xtabond2),9 consider that each spell of observations represents a panel unit.

We present a solution to this problem here in the context of an ado-file, onespell.ado.
Dealing with this problem—finding and retaining the single longest spell for each unit
within the panel—is quite straightforward in the case of a single variable. However, we
want to apply this logic listwise, and delete shorter spells if any of the variables in a
specified varlist are missing.

The program builds upon Nicholas J. Cox’s excellent tsspell command.10 The
command examines a single variable, optionally given a logical condition that defines
a spell,11 and creates three new variables: spell, indicating distinct spells (taking on
successive integer values); seq, giving the sequence of each observation in the spell
(taking on successive integer values); and end, indicating the end of spells. If applied
to panel data rather than a single timeseries, the routine automatically performs these
observations for each unit of a panel.

In this first part of the program, we define the syntax of the ado-file. The program
accepts a varlist of any number of numeric variables, if exp and in range options, and
requires that the user provide a filename in the saving() option in which the resulting
edited dataset will be stored. Optionally, the user may specify a replace option (which,
as is usual in Stata, must be spelled out). The noisily option is provided for debugging
purposes. The preserve ([P] preserve) command allows us to modify the data and
return to the original dataset.

The tsset ([TS] tsset) command allows us to retrieve the names of the panel variable
and time variable. If the data are not tsset, the program will abort. The tsfill

([TS] tsfill) command fills any gaps in the time variable with missing observations. We
then use marksample touse to apply any qualifiers on the set of observations and define
a number of tempvars.

9. findit xtabond2.
10. findit tsspell.
11. See Sections 4.4 and 8.4.

i

i

i

i

i

i

i

i

12.6 Generating a dataset containing the single longest spell for each unit in panel data265

For ease of exposition, I do not list the entire ado-file here. Rather, the first piece of
the code is displayed (as a text file), and the remainder (also as a text file) as a separate
listing below a discussion of its workings.

. type onespell_part1.txt

*! onespell 1.1.1 CFBaum 13jan2005
* locate units with internal gaps in varlist and zap all but longest spell
program onespell, rclass

version 10.1
syntax varlist(numeric) [if] [in], Saving(string) [REPLACE NOIsily]
preserve
quietly tsset
local pv "‘r(panelvar)’"
local tv "‘r(timevar)’"
summarize ‘pv’, meanonly
local n1 = r(N)
tsfill
marksample touse
tempvar testgap spell seq end maxspell keepspell wantspell
local sss = cond("‘noisily’" != "", "noisily", "quietly")

The real work is performed in the second half of the program. The temporary variable
testgap is generated with the cond() function to define each observation as either
its value of the panel variable (pv) or missing. Cox’s tsspell is then invoked on
the testgap variable with the logical condition that the variable is non-missing. We
explicitly name the three variables created by tsspell as temporary variables spell,
seq and end.

In the first step of pruning the data, we note that any observation for which spell =

0 may be discarded, along with any observations not defined in the touse restrictions.
Now, for each panel unit, we consider how many spells exist. If spell > 1, there are
gaps in the usable data. The longest spell for each panel unit is stored in temporary
variable maxspell, produced by egen max() from the seq counter. Now, for each panel
unit, we generate a temporary variable keepspell, identified by the longest observed
spell (maxspell) for that unit. We then can calculate temporary variable wantspell

with egen max(), which places the keepspell value in each observation of the desired
spell. What if there are two (or more) spells of identical length? By convention, the
latest spell is chosen by this logic.

We can now apply keep to retain only those observations, for each panel unit,
associated with that unit’s longest spell: those for which wantspell equals the spell

number. The resulting data are then saved to the file specified in the saving() option,
optionally employing replace, and the original data are restored.

. type onespell_part2.txt

‘sss’ {
* testgap is panelvar if obs is usable, 0 otherwise

generate ‘testgap’ = cond(‘touse’, ‘pv’, .)
tsspell ‘testgap’ if !missing(‘testgap’), spell(‘spell’) seq(‘s

> eq’) end(‘end’)

i

i

i

i

i

i

i

i

266 Chapter 12 Cookbook: Ado-file programming

drop if ‘spell’ == 0 | ‘touse’ == 0
* if ‘spell’ > 1 for a unit, there are gaps in usable data
* calculate max length spell for each unit and identify
* that spell as the one to be retained

egen ‘maxspell’ = max(‘seq’), by(‘pv’)
generate ‘keepspell’ = cond(‘seq’==‘maxspell’, ‘spell’, 0)
egen ‘wantspell’ = max(‘keepspell’), by(‘pv’)

* in case of ties, latest spell of max length is selected
list ‘pv’ ‘tv’ ‘spell’ ‘seq’ ‘maxspell’ ‘keepspell’ ‘wantspell’

> , sepby(‘pv’)
summarize ‘spell’ ‘wantspell’
keep if ‘wantspell’ == ‘spell’
summarize ‘pv’, meanonly
local n2 = r(N)
drop __*

}
display _n "Observations removed: " ‘n1’-‘n2’
save ‘saving’, ‘replace’
restore

end

To illustrate, we modify the grunfeld dataset. The original dataset is a balanced panel
of 20 years’ observations on 10 firms. We remove observations from different variables
in firms 2, 3 and 5, creating two spells in firms 2 and 3 and three spells in firm 5. We
then apply onespell:

. webuse grunfeld, clear

. quietly replace invest = . in 28

. quietly replace mvalue = . in 55

. quietly replace kstock = . in 87

. quietly replace kstock = . in 94

. onespell invest mvalue kstock, saving(grun1) replace

Observations removed: 28
file grun1.dta saved

A total of 28 observations are removed. The tabulation shows that firms 2, 3 and 5 now
have longest spells of 12, 14 and 6 years, respectively.

. use grun1, clear

. tab company

company Freq. Percent Cum.

1 20 11.63 11.63
2 12 6.98 18.60
3 14 8.14 26.74
4 20 11.63 38.37
5 6 3.49 41.86
6 20 11.63 53.49
7 20 11.63 65.12
8 20 11.63 76.74
9 20 11.63 88.37
10 20 11.63 100.00

i

i

i

i

i

i

i

i

12.6 Generating a dataset containing the single longest spell for each unit in panel data267

Total 172 100.00

Although this routine meets a specialized need, the logic that it employs may be useful
in a number of circumstances for data management.

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

13 Mata functions for ado-file
programming

13.1 Mata: first principles

Mata is a full-fledged programming language that operates in the Stata environment.
You can start Stata, enter Mata with the mata command, and work interactively in that
environment. You may even leave Mata with the end command, issue Stata commands,
and return to Mata’s workspace, which will be unchanged until you issue the command
mata: mata clear or exit Stata. But Mata is useful in another context: that of non-
interactive programming. You may write Mata functions, callable from Stata do-files
or ado-files, that perform useful tasks. The functions may make use of Mata’s facility
with matrices and vectors or they may use other elements of Mata’s environment. For
instance, Mata can be used for file input and output (with functions much like those
in the C programming language) and is an excellent environment for string processing.
Unlike some matrix programming languages, Mata matrices can contain either numeric
or string elements (but not both).

For matrix programming, Mata is a more useful environment than Stata’s older
matrix ([P] matrix) commands. All versions of Stata have limits on matrix size (for
instance, 800 rows or columns in Stata/IC), and these limits can be quite constraining.
Creating a sizable matrix from Stata variables will at least double the amount of memory
needed to work with those two representations of the data. In contrast, Mata can work
with views, or what might be considered virtual matrices, containing Stata variables’
data but not requiring additional storage beyond a trivial amount of overhead. The
suite of matrix functions available in Mata is also much broader than that available
in Stata’s matrix language. Additionally, Mata explicitly supports complex arithmetic
and datatypes.

Most importantly, Mata code is automatically compiled into bytecode.1 If you write
an ado-file program that involves many explicit loops (such as those referencing the
subscripts of matrices), the commands within the loop must be interpreted each time
through the loop. The equivalent Mata code is compiled once, “on-the-fly”, so that
subsequent passes through the code are executing machine instructions rather than
reinterpreting your code. If you write a Mata function, you can store it in object
module form or place it in a library of object modules. The net effect is a considerable
speed advantage for many routines coded in Mata rather than in the ado-file language.

1. http://en.wikipedia.org/wiki/Bytecode.

269

i

i

i

i

i

i

i

i

270 Chapter 13 Mata functions for ado-file programming

The integration between Mata and Stata’s elements (variables, local and global
macros, scalars and matrices) is complete. Within Mata, you may access Stata’s ob-
jects and alter them. When using Mata’s view matrices, alterations to the Mata matrix
automatically modify the Stata observations and variables that comprise the view ma-
trix.

In this chapter, I discuss how you may use Mata functions as adjuncts to your ado-
file programs. The techniques developed in earlier chapters remain useful. For instance,
you still use Stata’s syntax and marksample statements to parse a user’s command and
prepare the appropriate sample for Mata. After calling a Mata function, you will use
Stata’s return and ereturn facilities to return computed quantities to the user. The
best candidates for translation to Mata code are the heavily computational aspects of
your routine, particularly if their logic can be readily expressed in matrix algebra.

13.1.1 What you should learn from this chapter

• Understanding of Mata’s operators, subscripts, loop functions and conditionals

• How the components of a Mata function are defined

• How to call a Mata function from an ado-file

• How to use Mata’s st functions to exchange data with Stata

• How to construct arrays of temporary objects in Mata

• How to use Mata structures

• How to create compiled Mata functions or a Mata function library

• How to use user-contributed Mata functions

13.2 Mata fundamentals

Before delving into writing Mata functions, we must understand Mata’s elements of
syntax and several of its operators. Note that Mata’s command prompt is the colon (:)
rather than Stata’s full stop (.).

13.2.1 Operators

The comma (,) is Mata’s column-join operator, so

: r1 = (1, 2, 3)

creates a three-element row vector. We could also construct this vector using the row
range operator (..) as

: r1 = (1..3)

The backslash (\) is Mata’s row-join operator, so

i

i

i

i

i

i

i

i

13.2.1 Operators 271

: c1 = (4 \ 5 \ 6)

creates a three-element column vector. We could also construct this vector using the
column range operator (::) as

: c1 = (4::6)

We may combine the column-join and row-join operators:

: m1 = (1, 2, 3 \ 4, 5, 6 \ 7, 8, 9)

creates a 3 × 3 matrix. The matrix could also be constructed with the row-range
operator:

: m1 = ((1..3) \(4..6) \(7..9))

The prime or apostrophe (’) is Mata’s transpose operator, so

: r2 = (1 \ 2 \ 3)’

is a row vector.2 Numeric matrix elements can be real or complex, so 2 - 3i refers to
the complex number 2− 3×

√
−1. The comma and backslash operators can be used on

vectors and matrices as well as scalars, so

: r3 = r1, c1’

will produce a six-element row vector, and

: c2 = r1’ \ c1

which is a six-element column vector.

The standard algebraic operators plus (+), minus (-) and multiply (*) work on
scalars or matrices:

: g = r1’ + c1
: h = r1 * c1
: j = c1 * r1

In this example h will be the 1 × 1 dot product3 or inner product of row vector r1 and
column vector c1 while j is their 3 × 3 outer product.4

Mata’s algebraic operators, including the forward slash (/) for division, can also be
used in element-by-element computations when preceded by a colon:

: k = r1’ :* c1

will produce the three-element column vector, with elements as the product of the
respective elements.

2. Note that the transpose operator applied to a complex matrix produces the conjugate transpose,
so that (a + b i)’ = (a − b i).

3. http://en.wikipedia.org/wiki/Dot product.
4. http://en.wikipedia.org/wiki/Outer product.

i

i

i

i

i

i

i

i

272 Chapter 13 Mata functions for ado-file programming

Mata’s colon operator is very powerful in that it will work on nonconformable objects
as long as the expression can be interpreted sensibly. For example:

: r4 = (1, 2, 3)
: m2 = (1, 2, 3 \ 4, 5, 6 \ 7, 8, 9)
: m3 = r4 :+ m2
: m4 = m1 :/ r1

adds the row vector r4 to each row of the 3× 3 matrix m2 to form m3, then divides each
row of matrix m1 by the corresponding elements of row vector r1 to form m4.

Mata’s scalar functions will also operate on elements of matrices:

: m5 = sqrt(m4)

will take the element-by-element square root of the 3 × 3 matrix m4, returning missing
values where appropriate.

The matrix operator A # B produces the Kronecker or direct product of matrices A
and B.5

13.2.2 Relational and logical operators

As in Stata, the equality relational operators are a == b and a != b. They will work
whether or not a and b are conformable or even of the same type: a could be a vector
and b a matrix. They return 0 or 1. Unary not ! returns 1 if a scalar equals zero,
0 otherwise, and may be applied in a vector or matrix context, returning a vector or
matrix of 0 and 1 values.

The remaining relational comparison operators (>, >=, <, <=) can only be used on
objects that are conformable and of the same general type (numeric or string). They
return 0 or 1. The logical operators and (&), or (|), as in Stata, can only be applied to
real scalars. If preceded by the colon operator (:), they may be applied to matrices.

13.2.3 Subscripts

Subscripts in Mata use square brackets and may appear on either the left or the right
of an algebraic expression. There are two forms: list subscripts and range subscripts.

With list subscripts, you can reference a single element of an array as x[i, j]. The
i or j references can also be vectors, such as x[i, jvec], where jvec = (4, 6, 8)

references those three columns of x. Missingness (signalled by full stops (.)) references
all rows or columns, so x[i, .] or x[i,] extracts row i, and x[., .] or x[,]

references the whole matrix.

You may also use the row range and column range operators described above to avoid
listing each consecutive element: x[(1..4), .] and x[(1::4), .] both reference the
first four rows of x. The double-dot range creates a row vector, while the double-colon

5. http://en.wikipedia.org/wiki/Kronecker product.

i

i

i

i

i

i

i

i

13.2.4 Populating matrix elements 273

range creates a column vector. Either may be used in a subscript expression. Ranges
may also decrement, so x[(3::1), .] returns the first three rows of x in reverse order.

Range subscripts use the notation [| |]. They can reference single elements of
matrices, but are not useful for that. More useful is the ability to say x[| i, j \
m, n |], which creates a submatrix starting at x[i, j] and ending at x[m, n]. The
arguments may be specified as missing (full stop), so x[| 1, 2 \ 4, .|] will specify
the submatrix ending in the last column and x[| 4, 4 \ ., .|] will discard the first
three rows and columns of x. They also may be used on the left hand side of an
expression, or to extract a submatrix:

: v = invsym(xx)[| 2, 2 \ ., .|]

discards the first row and column of the inverse of xx.

You need not use range subscripts, as even the specification of a submatrix can be
handled with list subscripts and range operators, but they are more convenient for sub-
matrix extraction (and faster in terms of execution time). Mata’s interpretation of ex-
pressions will involve much less computation where range subscripts are used effectively.
As Gould (2007a), p. 115 suggests, “Never code x[5::1000] or x[5..1000]. Code x[|5
\ 1000|]. . . . Never code X[5::100, 3..20]. Code X[|5, 3 \ 100, 20|].” These
admonitions arise because range subscripts allow Stata to identify a submatrix to be
accessed, and the contents of that submatrix can be accessed more efficiently when it is
known that they are contiguous.

13.2.4 Populating matrix elements

The Mata standard function J() provides the same capability as its Stata counterpart:
J(nrows, ncols, value) creates a matrix of nrows × ncols with each element set to
value. However, in an update of February 2008, this function was enhanced. It can now
generate a matrix with a pattern in its rows or columns.6 For example:

. version 10.1

. mata:
mata (type end to exit)

: m1 = J(7, 3, (0.25, 0.50, 0.75))

: m1
1 2 3 4 5 6 7 8 9

1 .25 .5 .75 .25 .5 .75 .25 .5 .75
2 .25 .5 .75 .25 .5 .75 .25 .5 .75
3 .25 .5 .75 .25 .5 .75 .25 .5 .75
4 .25 .5 .75 .25 .5 .75 .25 .5 .75
5 .25 .5 .75 .25 .5 .75 .25 .5 .75
6 .25 .5 .75 .25 .5 .75 .25 .5 .75
7 .25 .5 .75 .25 .5 .75 .25 .5 .75

: end

6. See Cox (2008).

i

i

i

i

i

i

i

i

274 Chapter 13 Mata functions for ado-file programming

Notice in this example that the second argument, 3, does not define the number of
columns in the result matrix, but the number of replicates or copies of the row vector
to be produced.

Other Mata functions have similar functionality when a vector takes the place of a
matrix. For instance, the rnormal() function takes four arguments: r, c, m, s, where
m and s can be scalars, vectors or matrices. rnormal(5, 5, 0, 1) returns a 5 × 5
matrix of draws from the standard Normal distribution, defined by m=0 and s=1. But
those two arguments need not be scalars:

. mata:
mata (type end to exit)

: m2 = rnormal(3, 2, (1, 5, 10), 1)

: m2
1 2 3 4 5

1 1.127679588 6.993281523 9.201610313 1.44491133 6.018139269
2 -.2659044268 4.640042947 9.496285076 .8234787212 9.089975386
3 2.395392041 5.429020732 10.68722028 1.254825584 5.144066489

6

1 11.28016579
2 11.25508169
3 10.70177392

: end

In this example, the function call produces a 3 × 6 matrix of Normal draws, with the
mean vector of (1, 5, 10) repeated twice, with a scalar s of 1.

13.2.5 Mata loop commands

Several constructs support loops in Mata. As in any matrix language, explicit loops
should not be used where matrix operations can be substituted. The most common
loop construct resembles that of the C programming language:

: for (starting_value; ending_value; incr) {
: ...
: }

where the three elements define the starting value, an ending value or bound, and an
increment or decrement. The increment (++) and decrement (--) operators7 can be
used to manage counters. Note that these operators are available in two forms: pre-
increment and post-increment. The pre-increment operator ++i performs the operation

7. See [M-2] op increment.

i

i

i

i

i

i

i

i

13.2.6 Conditional statements 275

before the evaluation of the expression in which it appears, while the post-increment
operator i++ performs the operation after the evaluation of the expression in which it
appears. The pre-decrement and post-decrement operators are defined similarly. Thus,
given a vector x,

: i = 1
: x[++i] = 42
: i = 1
: x[i++] = 42

yield different results; the former places the constant 42 in the second element of x,
while the latter places the constant in the first element of x. After either command, the
value of i is 2.

To apply the increment and decrement operators in the context of the for loop,

: for (i = 1; i <= 10; i++) {
: printf("%g squared is %g \n", i, i^2)
: }

We could also write

: for (i = 10; i >0 ; i = i - 2) {
: printf("%g squared is %g \n", i, i^2)
: }

If only a single statement will be executed by the for loop, it may be included on the
same line as the for command without enclosing curly braces ({}).

As an alternative to the for statement, you may also use do to specify a loop, which
follows the syntax

: do {
: ...
: } while (exp)

which will execute the statements at least once. As a third alternative, you may use
while:

: while (exp) {
: ...
: }

which could be used, for example, to loop until convergence with an exp of (sse >

1.0e-5).

13.2.6 Conditional statements

To execute certain Mata statements conditionally, you use if and else:

: if (exp) statement

or

: if (exp) statement1

i

i

i

i

i

i

i

i

276 Chapter 13 Mata functions for ado-file programming

: else statement2

or

: if (exp1) {
: statements1
: }
: else if (exp2) {
: statements2
: }
: else {
: statements3
: }

You may also use the conditional a ? b : c , where a is a real scalar. If a

evaluates to true (nonzero), the result is set to b, otherwise c.8,9 For instance,

: if (k == 0) dof = n-1
: else dof = n-k

can be written as

: dof = (k==0 ? n-1 : n-k)

For compatibility with old-style Fortran, there is a goto statement which condition-
ally branches control to a statement elsewhere in the program:

: label: statement
: ...
: if (exp) goto label

The goto statement is generally not necessary, as such a construct can be rewritten in
terms of do:

: do {
: ...
: } while (exp)

The goto statement is most useful when a program being translated from Fortran code.

13.3 Function components

Mata code that is to be called from an ado-file must be defined as a Mata function which
is the equivalent of a Stata program. Unlike a Stata program, a Mata function has an
explicit return type and set of arguments. A function may be of return type void if it
does not need a return statement. Otherwise, a function may be typed in terms of two
characteristics: the nature of its elements, or the element type, and their organization
type. For instance,

: real scalar calcsum(real vector x)

8. This function plays the same role as Stata’s cond() function; see Section 3.3.2.
9. Although the conditional operator only operates on real scalars, Ben Jann’s generalization of it,

mm cond(), can operate on matrices. It is available in his moremata package (findit moremata).

i

i

i

i

i

i

i

i

13.3.1 Arguments 277

defines the function calcsum as a real scalar function. Its element type is real

and its organization is scalar, so that the function will return a real number. There
are six element types: real, complex, numeric, string, pointer and transmorphic.
numeric encompasses either real or complex. I discuss the pointer element type in
Section 13.8. transmorphic allows for any of the other types: that is, a transmorphic

object may be filled with any of the other element types.

There are five organization types: matrix, vector, rowvector, colvector and
scalar. Strictly speaking, the latter four are special cases of the matrix type. In
Stata’s matrix language, all matrices have two subscripts, neither of which can be zero.
In Mata, all but the scalar organization type may have zero rows and/or columns (see
[M-2] void).

If you do not declare a function’s element type or organization type, its return type
is by default the transmorphic matrix. That return type may be transmuted into
any type of object. Although function definitions are not always necessary, it is good
programming practice to make them explicit in case you mistakenly attempt to return a
different kind of object than that declared. Explicit declarations also serve to document
the function and lead to more efficient code. More importantly, they help to prevent
errors, because they ensure that the returned object is of the proper return type.

13.3.1 Arguments

The Mata function declaration includes an argument list. In the example above, there
is a single argument: real vector x. To call this function you must provide one (and
only one) argument, and that argument must be typed as a real vector, or an error
will occur. Inside the calcsum function, the contents of the vector will be known as x

regardless of their representation elsewhere in Mata. Items whose types are defined as
arguments should not be included in declaration statements within the function.

The names of arguments are required and arguments are positional. That is, the
order of arguments in the calling sequence must match that in the Mata function. It
is good programming practice to specify the arguments’ element type and organization
explicitly, for then Mata will detect an error if the arguments’ characteristics do not
match. Explicit declarations also serve to document the function and lead to more
efficient code. The list of arguments may include a vertical bar (|) which indicates that
all following arguments are optional:

: function mynorm(real matrix A, | real scalar power)

may be called with one matrix or with a matrix followed by a scalar. The optional
arguments will generally be given missing values in the function. It is possible for all
the arguments of a function to be optional.

i

i

i

i

i

i

i

i

278 Chapter 13 Mata functions for ado-file programming

13.3.2 Variables

Within each Mata function, variables may be explicitly declared. Unlike some pro-
gramming languages, Mata does not require you to declare variables before use unless
matastrict is set as the default. However, it is good programming practice to explic-
itly declare variables, just as we suggested above that functions’ arguments should be
declared. Once variables are declared, they cannot be misused. For instance, variables
declared as one of the numeric types cannot be used to store string contents, and vice
versa.

Variables within a Mata function have local scope. They cannot be accessed outside
that function, so that their names cannot conflict with other objects elsewhere in Mata.10

As with functions, Mata variables may be declared with each of the six element types
and five organization types: for example,

: real scalar sum
: complex matrix lambda

A number of reserved words may not be used as the names of Mata variables. They are
listed in [M-2] reswords.

13.3.3 Returns

Unlike a Stata ado-file program, which may return any number of scalars, macros and
matrices through the return list or ereturn list, a Mata function can only return
one object in its return statement. If the function is to return multiple objects, you
should use Mata’s st ... functions to return scalars, macros, matrices or Stata vari-
ables, as we demonstrate below.11

13.4 Calling Mata functions

To illustrate using a Mata function within a Stata ado-file program, let’s imagine that
we did not have an easy way of computing the minimum and maximum of the elements
of a Stata variable12 and wanted to do so with Mata, returning the two scalar results
to Stata. Let’s define the Stata command varextrema:

. type varextrema.ado

*! varextrema v1.0.0 CFBaum 11aug2008
program varextrema, rclass

version 10.1

10. You can use the external declaration to indicate that a variable in a Mata function has global

scope and is visible within any other Mata function. This is the same distinction that exists between
local and global macros in Stata’s do- and ado-files. One use of external variables in Mata is to allow a
function to remember something from one call to the next (for instance, whether the function has been
initialized). See [M-5] findexternal() for more details.
11. Mata functions can also modify one or more of their arguments. I do not further discuss that
method.
12. summarize, meanonly or egen’s min() and max() functions could be used for this purpose.

i

i

i

i

i

i

i

i

13.4 Calling Mata functions 279

syntax varname(numeric) [if] [in]
marksample touse
mata: calcextrema("‘varlist’", "‘touse’")
display as txt " min (‘varlist’) = " as res r(min)
display as txt " max (‘varlist’) = " as res r(max)
return scalar min = r(min)
return scalar max = r(max)

end

The elements of this ado-file should be familiar to you with the exception of the mata:

statement. This r-class program takes a single numeric variable as an argument and
allows the sample to be limited by if exp and in range qualifiers as defined in Sec-
tion 11.6. The marksample touse statement, also described in that section, creates a
tempvar which marks the observations to be included in further computations.

We then invoke Mata. Instead of the simple command mata, which would place Mata
into interactive mode, we tell Mata to execute a function named calcextrema with the
syntax mata:function(). The calcextrema function takes two arguments. From the
code above, they are the name of the Stata variable passed to varsum and the name
of the tempvar ‘touse’. Both arguments are of type string, as we are only passing
the names of Stata variables, as strings, not their values. The file varextrema.mata

contains the Mata code. For presentation purposes, we have placed the Mata code in a
separate file. In practice, we would include the lines below in varextrema.ado, or place
the line include varextrema.mata after the end statement in varextrema.ado.13

. type calcextrema.mata
version 10.1
mata:
mata set matastrict on
// calcextrema 1.0.0 CFBaum 11aug2008
void calcextrema(string scalar varname, ///

string scalar touse)
{
real colvector x, cmm
st_view(x, ., varname, touse)
cmm = colminmax(x)
st_numscalar("r(min)", cmm[1])
st_numscalar("r(max)", cmm[2])

}
end

We give the version 10.1 statement to define to Stata that it is to invoke Mata under
version control for version 10.1. After invoking Mata’s interpreter with mata:,14 we use
mata set matastrict on to invoke Mata’s strict mode, which will catch various errors
in our code as it requires that we explicitly declare all variables in the Mata function.

13. See [P] include.
14. Note the distinction between mata and mata: on Stata’s command line. The former accepts Mata
commands and stays in Mata mode regardless of errors. The latter accepts Mata commands but exits
Mata at the first error (similar to the default behavior of a do-file). In programming Mata functions,
you should always use mata: to ensure that an error will abort the ado-file.

i

i

i

i

i

i

i

i

280 Chapter 13 Mata functions for ado-file programming

If a variable’s name is misspelled, it will be flagged in Mata’s strict mode.

As we will be returning two scalars to Stata, we must either return them in a vector
(using Mata’s return statement) or use Stata’s st functions. We choose to do the latter
and declare the function as return type void. Two arguments are defined: the string

scalars named varname and touse. These names are arbitrary as they are local to the
function. They are defined as arguments, and need not be defined again. We define
two items: real colvector x which will hold the view of the Stata variable,15 and
a vector cmm. The st view() function defines the column vector x as the contents of
varname, with the optional fourth argument applying the touse indicator to reflect any
if or in qualifiers. Thus, Mata’s column vector x contains the subset of observations of
varname for which touse == 1. The second argument of st view, set to missing (.) in
this example, indicates which observations are to be retrieved. When set to missing, all
observations are specified. We are using the touse argument to perform that selection.

The st numscalar() function can be used to retrieve or set a Stata scalar. In
its two-argument form, it sets the value of its first argument to the value of its second
argument. Mata’s colminmax() function computes the column minima and maxima of
a vector or matrix; when applied to a vector, it returns a two-element vector containing
the minimum and maximum, respectively. We create the Stata scalars named r(min)

and r(max) by defining them as elements of the vector cmm.

We may now return to the last lines of varextrema.ado. Back in Stata, the scalars
r(min) and r(max) are now defined, and may be included in display ([P] display)
statements. The varextrema command displays the variable name and the extrema of
the selected elements and returns those scalars to the user in the return list:

. sysuse auto, clear
(1978 Automobile Data)

. varextrema price if foreign
min (price) = 3748
max (price) = 12990

. return list

scalars:
r(max) = 12990
r(min) = 3748

13.5 Mata’s st interface functions

The example above made use of two of Mata’s st interface functions: st view() and
st numscalar(). These functions are among the most important Mata components if
you are using Mata in conjunction with ado-file programming. They provide full access
to any object accessible in Stata and support a seamless interchange of computations be-
tween Stata and Mata. They are usefully summarized in [M-4] Stata interface functions.

15. I discuss view matrices in Section 13.5.

i

i

i

i

i

i

i

i

13.5.1 Data access 281

13.5.1 Data access

The first category of st interface functions provide access to data. The st nobs() and
st nvar() functions return the scalars corresponding to the number of observations and
variables in the current Stata dataset, respectively: the same information is provided by
describe ([D] describe) as r(N) and r(k). The functions st data() and st view()

allow you to access any rectangular subset of Stata’s numeric variables (including the
entire dataset) within Mata. You may access string variables with st sdata() and
st sview().

Although both st data() and st view() provide access to Stata’s numeric variables,
they differ in important ways. The st data() function copies the specified data into
a Mata matrix, while st view() creates a view matrix: a virtual construct that allows
you to use and update the specified data. The view matrix, as it does not involve a
copy of the data, has a trivial overhead in terms of memory requirements. In contrast,
the Mata matrix created by st data() can require from 1 to 8 times as much memory
([D] memory) as the underlying variables use.16 For a large dataset, that can make
a tremendous difference if a sizable chunk of the dataset is selected. Views do involve
a minor computational overhead, but it is likely to be offset by the memory savings in
most cases. If you do not use views but employ st data() to access Stata variables
within Mata, you may still return the contents of the Mata matrix to Stata using the
st store() function, as described below.

A major advantage of views must be handled with care: altering the contents of a
view matrix actually changes the values of the underlying Stata variables. This may be
exactly what you want to do, or it may not.17 As we will see, a very useful technique
to generate the contents of a set of Stata variables involves creating those variables (as
missing) in Stata, then calling Mata, creating a view on those variables (call it matrix
V) and defining the contents of that matrix:

V[. , .] = result of computation

It is essential in this instance that you specify V as shown. If you merely place V on the
left hand side of the expression, it would create a new Mata matrix V and break the link
to the existing contents of the view matrix. For a thorough discussion of these issues,
see Gould (2005).

The view matrix makes it possible to change the values of Stata variables within
Mata, but requires that you create those variables (as placeholders, at least) before
invoking Mata. If you would like to generate results in Mata and return them to
Stata, but the number of result variables may depend upon the computations, there is
another way to approach the problem. In that case, you may want to use st addvar()

16. This range exists because the underlying variables could all be stored as doubles in Stata, requiring
eight bytes per observation. All Mata numeric matrices require eight bytes per observation. On the
other hand, the Stata data could all be byte variables which would each require much more storage in
Mata.
17. For instance, consider when you might employ preserve and restore (see Section 2.5) in ado-file
programming to protect the current dataset’s contents.

i

i

i

i

i

i

i

i

282 Chapter 13 Mata functions for ado-file programming

([M-4] Stata interface functions) to create new variables in the Stata dataset from
within Mata. The function call

varnums = st addvar(type, name)

allows you to specify the names of one or more new variables (name may be a quoted
string or a vector of quoted string names), and for each new variable specify its type: for
instance, "float", "int", "str5". The function returns the variable numbers in the
row vector varnums and creates the new variables with missing contents. To fill them
in, we could use st store():

newvarnum = st addvar("int", "idnr")
st store(., newvarnum, values)

where values is the name of a column vector computed in Mata. If you are working
with string data, you would use st sstore() instead.

We may also combine the view matrix and st addvar() techniques:

st view(z, ., st addvar(("int", "float"), ("idnr", "bpmax")))
z[., .] = ...

which would create a view matrix, z, for two new variables, idnr and bpmax. We
may then compute values for those variables within Mata and alter the contents of z,
which will in turn fill in the new variables in Stata. For a thorough discussion of these
techniques, see Gould (2006a).

There are situations where you may not choose to use views. For instance, if you
are going to explicitly loop through observations in the dataset, and every use you will
make of the view matrix involves scalar calculations, views provide no advantage. The
variant st data(), which returns a single observation, may be used. You should also
take care not to make copies of views in your Mata code, as they more than double the
memory requirements of the underlying data.

Mata matrices must contain either all numeric or all string elements. Therefore, you
cannot create a view that mixes these element types. If you loaded the auto dataset and
created a view matrix of the entire dataset, it would have missing columns corresponding
to string variables (in the case of auto.dta, only the first column, make). The functions
st sview(), st sdata() and st sstore() allow you to create view matrices or regular
matrices of string variables or return the contents of a Mata string matrix to Stata,
respectively. You must be careful to ensure that the rows of a numeric matrix and string
matrix (created by st sview() or st sdata()) are properly aligned. In particular, you
should use the same touse indicator to specify the observations that are to be transferred
to Mata in each function call. An additional interface function is very useful in this
regard: st subview(). As [M-5] st subview() discusses, this function can be used
to ensure that missing values are handled properly across variables, or within a panel
context.18

18. There are also specialized Mata functions available for the handling of panel data: see
[M-5] panelinfo and [M-5] panelsubmatrix and their illustration in Section 14.3.

i

i

i

i

i

i

i

i

13.5.3 Access to Stata variables’ attributes 283

13.5.2 Access to locals, globals, scalars and matrices

The interface functions st local(), st global(), st numscalar(), st strscalar()

and st matrix() allow you to access Stata’s objects. In their single-argument form,
they copy the object into Mata. For instance,

mylocal = st local("macroname")

will return the contents of local macroname to the string scalar mylocal. Access to
global macros, Stata’s numeric scalars, string scalars and matrices works in the same
manner. You may also access Stata’s characteristics (see Section 9.7) and r(), e(),
s() and c() results. The functions st rclear(), st eclear() and st sclear() can
be used to delete all entries in the first three of those lists. A useful summary of these
interface routines is provided in [M-5] st global.

Keep in mind that in Stata, local macros and global macros are strings, even if they
contain a single number. Mata distinguishes between numeric scalars and string scalars.
If you define a macro in Stata:

scalar year 2008
global theanswer 42

and want to access those objects in Mata, you must use

theyear = st numscalar("year")
theanswer = strtoreal(st global("theanswer"))

Unless the global is cast to real with strtoreal(), it cannot be used in a computation
within Mata.

These same interface functions may be used to set or replace the contents of Stata
objects. In the two-argument form,

st local("macroname", newvalue)

will create a local macro of that name in the scope of the calling program, or replace
the contents of an existing macro of that name, with contents of newvalue. In the code
example above, we used st numscalar() to create the Stata scalar r(sum) and define
its value.

13.5.3 Access to Stata variables’ attributes

Additional interface functions provide the ability to check Stata variables’ types, rename
Stata variables, and obtain (or set) variables’ formats, variable labels, or value labels.
You may add (or drop) observations (or variables) to or from the Stata dataset from
within Mata, and create temporary variables or filenames.

The interface functions st varindex() and st varname() allow you to map Stata
variables’ names to and from variable indices, respectively. In some cases, you may
need to make use of variable indices in Mata. This is a concept generally alien to Stata
users: the number of the variable in the current dataset. We recognize that the order

i

i

i

i

i

i

i

i

284 Chapter 13 Mata functions for ado-file programming

of variables in the dataset matters when using a hyphenated varlist (see Section 3.2.1),
but do not usually consider that “rep78 is the 4th variable in auto.dta.” Unlike Stata
matrices (see Section 3.10), whose rows and columns have both numbers and names,
Mata matrices’ rows and columns are only numbered. In some cases, it is useful to write
Mata code stepping through a number of variables by their indices, or positions within
the Stata dataset.

13.6 Example: st interface function usage

As a second example of ado-file programming using a Mata function, imagine that you
would like to center a number of numeric variables on their means, creating a new set
of transformed variables. Surprisingly, official Stata does not contain a command that
performs this function. Ben Jann’s center command (findit center) plays this role
and works in version 7 or higher, as it does not employ Mata. We can address this
problem with an ado-file program:

. type centervars.ado

*! centervars 1.0.0 CFBaum 11aug2008
program centervars, rclass

version 10.1
syntax varlist(numeric) [if] [in], GENerate(string) [DOUBLE]
marksample touse
quietly count if ‘touse’
if ‘r(N)’ == 0 error 2000
foreach v of local varlist {

confirm new var ‘generate’‘v’
}
foreach v of local varlist {

qui generate ‘double’ ‘generate’‘v’ = .
local newvars "‘newvars’ ‘generate’‘v’"

}
mata: centerv("‘varlist’", "‘newvars’", "‘touse’")

end

The syntax of this wrapper program is quite simple. It is called with a numeric varlist,
supports if and in qualifiers and has a mandatory generate(string) option specifying a
stub for new variable names, along the same lines as tabulate rep78, gen(repair).19.
The program ensures that a positive number of observations are available after the
marksample command. We must do some work with these new variables. First of all,
we must ensure that all of the names created by the option are valid Stata new variable
names and not already in use. We do this with confirm new var ([P] confirm), which
will return an error if that is not so. In a second loop over the varlist, we construct each
name, create the variable of the specified type with generate, and build up the local
macro newvars as the list of the new variable names.20 We then call the Mata function
with three arguments: the list of variables to be centered, the list of result variables and

19. See Section 7.2.2.
20. We use two loops to ensure that no new variables are created if any of the new variable names are
faulty.

i

i

i

i

i

i

i

i

13.7 Example: matrix operations 285

the touse indicator. The Mata function, stored in centerv.mata, reads as:

. type centerv.mata
version 10.1
mata:
mata set matastrict on
// centerv 1.0.0 CFBaum 11aug2008
void centerv(string scalar varlist, ///

string scalar newvarlist,
string scalar touse)

{
real matrix X, Z
st_view(X=., ., tokens(varlist), touse)
st_view(Z=., ., tokens(newvarlist), touse)
Z[., .] = X :- mean(X)

}
end

We use the st view() interface function to define matrix X as containing the specified
variables and observations, while matrix Z refers to the corresponding newvars. As
the varlist and newvarlist arguments are lists of variable names, we must use the
tokens() ([M-5] tokens) function to split it into its components for use in st view().21

Recalling that changes to Z will alter the underlying Stata variables’ values, the
following statement uses Mata’s colon operator to subtract the row vector produced by
mean(X) from each row of X.22 This example of Mata’s extended definition of conforma-
bility illustrates how the colon operator can be used to perform an operation that would
be a bit tricky in terms of matrix algebra. We invoke the centervars command, using
the stubs c and cf to prefix the new variables created:

. sysuse auto, clear
(1978 Automobile Data)

. centervars price mpg, gen(c_)

. centervars price mpg if foreign, gen(cf_) double

. summarize c*

Variable Obs Mean Std. Dev. Min Max

c_price 74 -.0000154 2949.496 -2874.257 9740.743
c_mpg 74 -4.03e-08 5.785503 -9.297297 19.7027

cf_price 22 1.65e-13 2621.915 -2636.682 6605.318
cf_mpg 22 -6.46e-16 6.611187 -10.77273 16.22727

13.7 Example: matrix operations

In this section, we outline the construction of a Stata command that uses Mata to achieve
a useful task with time-series data: constructing averages of p consecutive values of a

21. Mata’s tokens() function performs the same function as Stata’s tokenize command, discussed
above.
22. Mata’s mean() function generates column means from a matrix.

i

i

i

i

i

i

i

i

286 Chapter 13 Mata functions for ado-file programming

variable as consecutive observations. For instance, you may want to combine quarterly
national income data with the average inflation rate during the quarter, with inflation
reported monthly. Likewise, you may want to convert monthly data to annual format,
quarterly data to annual format, or business-daily data to weekly data.23 In some cases
(for instance, for graphical or tabular presentation) we may want to retain the original
(high-frequency) data and add the lower-frequency series to the dataset.

To address these tasks, we might consider using various egen functions. For instance,
assuming that we have monthly data with variable t as the month counter,

. generate qtr = qofd(dofm(t))

. bysort qtr: egen avgx = mean(x)

would create the quarterly average of the monthly series x. However, that value will be
repeated for each month of the quarter. We could easily remove all but one value per
quarter with

. replace avgx = . if mod(t, 3) != 0

but that would intersperse the lower-frequency data values with missing values. Such a
listing would be quite awkward for tabular or graphical presentation.

As a more straightforward solution, we design a Stata command, avgper, which takes
a single variable and optional if exp or in range conditions along with a mandatory
option per(), the number of periods to be averaged into a lower-frequency series. We
could handle multiple variables or alternative transformations (for example, sums over
the periods rather than averages) with an expanded version of this routine.

The Stata ado-file defines the program and then validates the per() argument. We
require that the number of high-frequency observations is a multiple of per.

. type avgper.ado
capture program drop avgper

*! avgper 1.0.0 CFBaum 08oct2007
program avgper, rclass

version 10.1
syntax varlist(max=1 numeric) [in], per(integer)
marksample touse
quietly count if ‘touse’
if ‘r(N)’ == 0 {

error 2000
}

* validate per versus selected sample
if ‘per’ <= 0 | ‘per’ >= ‘r(N)’ {

display as error "per must be > 0 and < N of observations."
error 198

}
if mod(‘r(N)’,‘per’ != 0) {

display as error "N of observations must be a multiple of per."

23. For the Stata date frequencies of monthly, quarterly or half-yearly, this problem has already been
solved by the author’s tscollap routine (Baum (2000)). However, that routine (like collapse ([D] col-
lapse)) destroys the original higher-frequency data, requiring an additional merge step to emulate the
Mata routine developed below.

i

i

i

i

i

i

i

i

13.7 Example: matrix operations 287

error 198
}

* validate the new varname
local newvar = "‘varlist’A‘per’"
quietly generate ‘newvar’ = .

* pass the varname and newvarname to Mata
mata: avgper("‘varlist’", "‘newvar’", ‘per’, "‘touse’")
end

We attempt to create a new variable named vnameAn, where vname is the specified
variable and n is the value of per(). If that variable name is already in use, the routine
exits with error. The variable is created with missing values as it is only a placeholder.
With successful validation, we pass the arguments to the Mata function avgper.

After these checks have been passed, we turn to the heart of the computation.
The solution to the problem is a type of reshape. The N -element column vector into
which vname has been copied may be reshaped into a matrix v3 with q rows and per

columns. q = N / per is the number of averaged observations that will result from
the computation. If we postmultiply the transpose of matrix v3 by a per-element
column vector of ones, ι, we would compute the sum over the per values for each new
observation. The average would be 1/per times that vector. Thus, we define the column
vector’s elements as divisor = 1/per. The resulting column vector, v3, is our averaged
series of length q. To illustrate, let x be the N elements of the Stata variable. Each per

consecutive elements become a column of the reshaped matrix:





























































x1

x2

...
xper

xper+1

xper+2

...
x2per

x 2per+1

x 2per+2

...

...
xN





























































=⇒











x1,1 x1,2 · · · x1,q

x2,1 x2,2 · · · x2,q

...
. . .

...
xper,1 xper,2 · · · xper,q











We then transpose the reshaped matrix and postmultiply by a per-element column

i

i

i

i

i

i

i

i

288 Chapter 13 Mata functions for ado-file programming

vector to construct the per-period average:











x1,1 x2,1 · · · xper,1

x1,2 x2,2 · · · xper,2

...
. . .

...
x1,q x2,q · · · xper,q





















1
per
1

per

...
1

per











=











x∗

1

x∗

2

...
x∗

q











The column vector x∗, labelled as v3 in the Mata function, contains the averages of
each per elements of the original Stata variable. The Mata function to achieve this task
is quite succinct.

. type avgper.mata
version 10.1
mata:

void avgper(string scalar vname,
string scalar newvname,

real scalar per,
string scalar touse)

{
real matrix v1, v2, v3

st_view(v1=., ., vname, touse)
st_view(v2=., ., newvname)
v3 = colshape(v1’, per) * J(per, 1, 1/per)
v2[(1::rows(v3)),] = v3
}

end

We make use of view matrices to access the contents of vname (the existing variable
name specified in the avgper command) and to access newvarname in Mata, which is our
newly-created ‘newvar’ in the Stata code. The colshape() function creates a matrix
which is q×per, where q is the number of low-frequency observations to be created.
Postmultiplying that matrix by a per-element column vector of 1/per produces the
desired result of a q−element column vector. That object, v3 in Mata, is then written
to the first q rows of view matrix v2, which corresponds to the Stata variable ‘newvar’.

To test the avgper command, we use the Time Series Manual dataset urates which
contains monthly unemployment rates for a number of U.S. states. We apply avgper to
one variable, tenn (the Tennessee unemployment rate), using both per(3) and per(12)

to calculate quarterly and annual averages, respectively.

. use urates, clear

. tsset
time variable: t, 1978m1 to 2003m12

delta: 1 month

. avgper tenn, per(3) // calculate quarterly averages

. avgper tenn, per(12) // calculate annual averages

. summarize tenn*

Variable Obs Mean Std. Dev. Min Max

tenn 312 6.339744 2.075308 3.7 12.8
tennA3 104 6.339744 2.078555 3.766667 12.56667

i

i

i

i

i

i

i

i

13.7 Example: matrix operations 289

tennA12 26 6.339744 2.078075 3.908333 11.83333

The summarize command shows that the original series and two new series have identical
means, which they must. To display how the new variables appear in the Stata data
matrix, we construct two date variables with the tsmktim command (Baum and Wiggins
(2000)) and list the first twelve observations of Tennessee’s data. As you can verify, the
routine is computing the correct quarterly and annual averages.

. tsmktim quarter, start(1978q1) // create quarterly calendar var
time variable: quarter, 1978q1 to 2055q4

delta: 1 quarter

. tsmktim year, start(1978) // create annual calendar var
time variable: year, 1978 to 2289

delta: 1 year

. list t tenn quarter tennA3 year tennA12 in 1/12, sep(3)

t tenn quarter tennA3 year tennA12

1. 1978m1 5.9 1978q1 5.966667 1978 5.8
2. 1978m2 5.9 1978q2 5.766667 1979 5.791667
3. 1978m3 6.1 1978q3 5.733333 1980 7.3

4. 1978m4 5.9 1978q4 5.733333 1981 9.083333
5. 1978m5 5.8 1979q1 5.733333 1982 11.83333
6. 1978m6 5.6 1979q2 5.7 1983 11.45833

7. 1978m7 5.7 1979q3 5.733333 1984 8.55
8. 1978m8 5.7 1979q4 6 1985 7.983334
9. 1978m9 5.8 1980q1 6.166667 1986 8.041667

10. 1978m10 5.9 1980q2 7.066667 1987 6.591667
11. 1978m11 5.7 1980q3 8 1988 5.775
12. 1978m12 5.6 1980q4 7.966667 1989 5.108333

How might we perform this transformation for a whole set of variables? Rather than
generalizing avgper to handle multiple variables, we just use a foreach loop over the
variables:

. foreach v of varlist tenn-arkansas {
2. avgper ‘v’, per(3)
3. }

. summarize tenn-arkansasA3, sep(6)

Variable Obs Mean Std. Dev. Min Max

tenn 312 6.339744 2.075308 3.7 12.8
missouri 312 5.78109 1.591313 2.9 10.6
kentucky 312 6.867949 2.029192 3.8 12.6
indiana 312 6.106731 2.413917 2.8 12.7
illinois 312 6.865064 1.965563 4.1 12.9
arkansas 312 6.833974 1.676967 4.2 10.5

tennA3 104 6.339744 2.078555 3.766667 12.56667

i

i

i

i

i

i

i

i

290 Chapter 13 Mata functions for ado-file programming

missouriA3 104 5.78109 1.590077 3 10.46667
kentuckyA3 104 6.867949 2.029395 3.9 12.36667
indianaA3 104 6.106731 2.416999 2.9 12.4
illinoisA3 104 6.865064 1.964652 4.2 12.76667
arkansasA3 104 6.833974 1.679908 4.266667 10.46667

By using Mata and a simple matrix expression, we have considerably simplified the
computation of the lower-frequency series, and may apply the routine to any combina-
tion of data frequencies (for example, business-daily data to weekly) without concern
for Stata’s support of a particular timeseries frequency.

13.7.1 Extending the command

It is straightforward to generalize the avgper command to handle several algebraic
operations. Rather than averaging the series over per observations, we might want to
sum the series over those observations. Alternatively, we might want to construct a new
low-frequency series composed of the first (or last) observations within each interval.
This will require an option in the ado-file, which we now rename aggreg.ado, to permit
the user to specify the desired operation. The Stata ado-file code is now:

. type aggreg.ado

*! aggreg 1.0.0 CFBaum 11aug2008
program aggreg, rclass

version 10.1
syntax varlist(max=1 numeric) [if] [in], per(integer) [func(string)]
marksample touse
quietly count if ‘touse’
if ‘r(N)’ == 0 {

error 2000
}

* validate per versus selected sample
if ‘per’ <= 0 | ‘per’ >= ‘r(N)’ {

display as error "per must be > 0 and < N of observations."
error 198

}
if mod(‘r(N)’,‘per’ != 0) {

display as error "N of observations must be a multiple of per."
error 198

}
* validate func option; default is average (code A)

local ops A S F L
local opnames average sum first last
if "‘func’" == "" {

local op "A"
}
else {

local nop : list posof "‘func’" in opnames
if !‘nop’ {

display as err "Error: func must be chosen from ‘opnames’"
error 198

}
local op : word ‘nop’ of ‘ops’

}

i

i

i

i

i

i

i

i

13.7.1 Extending the command 291

* validate the new varname
local newvar = "‘varlist’‘op’‘per’"

quietly generate ‘newvar’ = .
* pass the varname and newvarname to Mata

mata: aggreg("‘varlist’", "‘newvar’", ‘per’, "‘op’", "‘touse’")
end

We add the func() option, which takes the default of average. We add code to validate
the other choices: sum, first and last. We use the macro list function list posof

to determine whether the value of func is in the list of supported operations; if not, an
error is generated. The chosen function, op, is designated by a letter from local ops and
passed to the Mata routine.

. type aggreg.mata
version 10.1
mata: mata set matastrict on
mata:
// aggreg 1.0.0 CFBaum 11aug2008
void aggreg(string scalar vname,

string scalar newvname,
real scalar per,
string scalar op,
string scalar touse)

{
real colvector mult, v1, v2
real matrix v3
if (op=="A") {

mult = J(per, 1, 1/per)
}
else if (op=="S") {

mult = J(per, 1, 1)
}
else if (op=="F") {

mult = J(per, 1, 0)
mult[1] = 1

}
else if (op=="L") {

mult = J(per, 1, 0)
mult[per] = 1

}
st_view(v1=., ., vname, touse)
st_view(v2=., ., newvname)
v3 = colshape(v1’, per) * mult
v2[(1::rows(v3)),] = v3
}

end

In the Mata routine, we need only modify the Mata avgper() code by altering the per-
element column vector that multiplies the reshaped data. As shown above, the average
is computed by setting elements of that vector to 1/per. We create a colvector named
mult. For the average operation, we define it as before. For the sum, it is merely defined
as ι, a vector of ones. For the first (last) operation, it is defined as a null vector with 1
in the first (last) position. With that change, the Mata function aggreg() can perform

i

i

i

i

i

i

i

i

292 Chapter 13 Mata functions for ado-file programming

any of these four functions on the timeseries.

We may readily verify that this extended program generates the proper series for
each of its four operations:

. use urates

. aggreg tenn, per(3) // calculate quarterly averages

. aggreg tenn, per(3) func(sum) // calculate quarterly sum

. aggreg tenn, per(3) func(first) // extract first month’s value

. aggreg tenn, per(3) func(last) // extract first month’s value

. tsmktim quarter, start(1978q1) // create quarterly calendar var
time variable: quarter, 1978q1 to 2055q4

delta: 1 quarter

. list t tenn quarter tennA3 tennS3 tennF3 tennL3 in 1/12, sep(3)

t tenn quarter tennA3 tennS3 tennF3 tennL3

1. 1978m1 5.9 1978q1 5.966667 17.9 5.9 6.1
2. 1978m2 5.9 1978q2 5.766667 17.3 5.9 5.6
3. 1978m3 6.1 1978q3 5.733333 17.2 5.7 5.8

4. 1978m4 5.9 1978q4 5.733333 17.2 5.9 5.6
5. 1978m5 5.8 1979q1 5.733333 17.2 5.8 5.7
6. 1978m6 5.6 1979q2 5.7 17.1 5.7 5.6

7. 1978m7 5.7 1979q3 5.733333 17.2 5.7 5.8
8. 1978m8 5.7 1979q4 6 18 5.9 6.1
9. 1978m9 5.8 1980q1 6.166667 18.5 6 6.3

10. 1978m10 5.9 1980q2 7.066667 21.2 6.7 7.5
11. 1978m11 5.7 1980q3 8 24 8 8
12. 1978m12 5.6 1980q4 7.966667 23.9 8 8

13.8 Creating arrays of temporary objects with pointers

In Stata’s ado-file language, it is common to create a set of temporary objects: tempo-
rary variables, local macros, or matrices. Sometimes it is necessary to create a different
number of temporary items each time we run the program. That is a simple task in
Stata’s ado-file language, as we have seen in several examples. In Mata, however, the
solution is not immediately clear: we need to declare variables, but the number of vari-
ables is not fixed. In this section, we consider that problem, using an example from the
econometric literature.

Why might we need such a facility? Consider a Stata program that accepts a pos-
itive integer argument of lags(), which could take on any number of values, and then
computes a matrix from several Stata variables for each lag. In some applications,
such as the computation of a heteroskedastic- and autocorrelation-consistent (HAC)

i

i

i

i

i

i

i

i

13.8 Creating arrays of temporary objects with pointers 293

covariance matrix,24 two temporary objects will suffice, as the logic of that computa-
tion accumulates the matrices computed for each lag. We create one matrix in which
to compute each term in the series and a second to hold the accumulation. In other
contexts, however, we might need to use the values contained in each of those matrices
in some formula. In ado-file code, we might write:

forvalues i = 1/‘lags’ {
tempname phi‘i’
matrix ‘phi‘i’’ = exp

}

which would define and compute the contents of a sequence of temporary matrices phi1,
phi2, . . . , phi‘lags’. What would we need to do to perform this same task in a Mata
context?

The solution involves the use of the sixth element type in Mata: the pointer. A
pointer, as defined in [M-2] pointer, is an object that contains the address of another
object. Pointers are commonly used to put a collection of items under one name and to
pass functions to functions. A pointer to matrix X contains the address, or location in
the computer’s memory, of X. We do not really care to know what that number might
be. It suffices to know that if we dereference the pointer, we are referring to the contents
of the underlying object to which it points.25 The dereferencing operator in Mata is *,
so that if p is a pointer variable, *p refers to the underlying object.

How do we create a pointer variable? With the operator &, which instructs Mata to
store the address (rather than the contents) of its argument in a pointer variable:

: X = (1, 2 \ 3, 4)
: p = &X

creates a pointer variable p which contains the address of matrix X. If we then refer to
the variable:

: Z = *p

matrix Z will now be set equal to matrix X. Likewise,

: r = (*p)[2, .]

will cause r to be created as a row vector equal to the second row of X. Note that we use
parentheses around *p to clarify that we refer to the second row of the object defined by
dereferencing the pointer. Also note that the contents of p itself are not very useful:26

: p
0x2823b10c

Why then are pointers an important programming tool? If pointer variables could

24. See newey ([TS] newey).
25. Note the similarity to Stata’s macros: regardless of the name of the macro, when we dereference
it, we access its contents.
26. You are unlikely to get this same value if you use the same sequence of commands, as it depends
on the state of Stata’s memory at a particular time.

i

i

i

i

i

i

i

i

294 Chapter 13 Mata functions for ado-file programming

only be real scalars, they would not be very useful. But like other Mata objects, pointer
variables may be arrayed in vectors or matrices. That now gives us the tools necessary
to deal with the problem laid out above. We would like to set up a set of matrices, phi1,
. . . , phi‘lags’, within Mata where the Mata function will be called with the argument
of lags. Within Mata, we now know how many matrices are to be created, and for ease
of computation we want them to be named sequentially as phi1, phi2. . . . We need to
set up an array of pointers that will contain the addresses of each of these matrices. As
with other Mata objects, we may fully declare the type of object we create, and it is
recommended that you do so:27

: pointer(real matrix) rowvector ap
: ap = J(1, nlag, NULL)

We declare a vector of pointers, named ap, to real matrices. We then declare the vector
as having nlag elements, each NULL. The keyword NULL is the equivalent of a missing
value for a pointer variable. It indicates that it currently points to nothing. Having set
up this array, we may now fill in each of its elements:

: for(i = 1; i <= nlag; i++) {
: ap[i] = &(matrix expression)
: }

Within the loop, we compute some matrix expression, enclose it in parentheses, and
store its address in the ith element of the ap array. This matrix is anonymous in that it
is not given a name; we merely record its address in the appropriate pointer variable.
When we want to make use of that matrix, we refer to it as *ap[i].

With the same technique, we could define a two-dimensional array of pointers such
as

: pointer(real vector) matrix p2

which might be useful for associating a vector of coordinates with each point on a two-
dimensional grid. Any other element type may be specified as the target of pointers,
including pointers themselves:

: mata:
: void point2point(real scalar bar1, real scalar bar2)
: {
: pointer(pointer(real matrix) rowvector) rowvector pp
: pp = J(1, bar2, NULL)

This function declares an array of pointers, pp, of length bar2. Each element of pp
points to a rowvector of pointers to real matrices. We could create those real matrices
as anonymous, bar1 in number for each element of pp, with the code:

: for(j = 1; j <= bar2; j++) {
: pp[j] = &(J(1, bar1, NULL))
: for(i = 1; i <= bar1; i++) {
: (*pp[j])[i] = &(J(i , j, i*j + j^2))
: }

27. See [M-2] Pointers.

i

i

i

i

i

i

i

i

13.9 Structures 295

: }

Within the loop over j, we define the jth element of the pp pointer array as the address
of an anonymous rowvector of length bar1. Within the loop over i, we define the
contents of each element of that anonymous rowvector as the address of a matrix. The
matrix takes on different dimensions based on the values of i and j, illustrating that
an array of pointers to objects need not refer to objects of the same dimension (only
the same type, in this case, given our declaration). At this point, we have filled in the
lowest-level objects, the real matrices themselves, and have established a hierarchy of
pointers that address each of those objects.

We may now examine the contents of these arrays with the statements

: for(k = 1; k <= bar2; k++) {
: for(l = 1; l <= bar1; l++) {
: printf("j=%5.2f, i=%5.2f\n", k, l)
: *(*pp[k])[l]
: }
: }
: }
: end

As there are two levels of pointers in the data structure, we must dereference twice with
the * operator: once to recover the value held in pp[k], giving us the kth vector of
anonymous objects, and a second time (working outward) to retrieve the ℓth element of
that vector, which is the matrix stored at that location. If we execute the function with
bar1 = 2, bar2 = 3, we are specifying that there should be three elements in the pp

array, each of which points to a two-element vector. Each of those elements points to a
real matrix:

. type gbpval.mata
version 10.1
mata:
real scalar function gbpval(real scalar dollar)
{

real scalar usdpergbp
usdpergbp = 2.08
return(dollar / usdpergbp)

}
end

Pointer variables also may be used to refer to functions, permitting a routine to
specify that alternative functions may be invoked depending on user input. We present
additional examples of the usefulness of pointer variables in the following Cookbook
chapter.

13.9 Structures

An additional useful tool available to the Mata programmer is the structure. For an
extended discussion of Mata structures, see Gould (2007b). Structures may not be used

i

i

i

i

i

i

i

i

296 Chapter 13 Mata functions for ado-file programming

interactively. Structures allow you to organize several scalars, vectors and matrices (po-
tentially of different types) and pass them to other routines as a single structure. For
instance, we might consider a linear regression routine that would return a structure
consisting of the coefficient vector e(b), the covariance matrix e(V), and several scalars
such as R-squared, N, k and Root MSE. Rather than referring to each of those quantities
individually, we could group them into a structure and pass the structure. This would
make it easy to write a number of computational routines—each of which would pro-
duce a structure—and a single output routine that would display the contents of that
structure, with minimal overhead.

As an example, consider a routine that generates graphical elements in the form of
vectors in 2-space. Each vector has an origin at a (x-coord, y-coord) pair, a length and
an angle, where 0 and 360 refer to east, 90 to north, and so on. Let us also imagine that
each vector has a color associated with it when it is to be graphed. Mata structures are
defined outside of functions, and must be defined before any reference appears to them:

. type myvecstr.mata

mata: mata clear
mata: mata set matastrict on

version 10.1
mata:
struct mypoint {

real vector coords
}

struct myvecstr {
struct mypoint scalar pt
real scalar length, angle
string scalar color

}
end

The myvecstr structure contains an instance of the mypoint structure, so we must
define the latter first. Structure mypoint merely contains a real vector of undefined
length. Structure myvecstr includes an instance of mypoint named pt as well as two
real scalars (length, angle) and a string scalar color.

We may now define a function that makes use of the structure. It will take five
arguments, and reference an instance of the myvecstr structure named v. As the
xcoord, ycoord) arguments are to be stored as a vector in mypoint, we place them in
v.pt.coords. Note that the v and pt references refer to instances of the structure, while
coords refers to the definition of mypoint’s contents. We also store the function’s len,
ang, color arguments in the v structure. We may then pass the entire v structure to
a subroutine function myvecsub.

. type makevec.mata

version 10.1
mata:
function makevec(real scalar xcoord,

real scalar ycoord,
real scalar len,

i

i

i

i

i

i

i

i

13.9 Structures 297

real scalar ang,
string scalar color)

{
struct myvecstr scalar v
v.pt.coords = (xcoord, ycoord)
v.length = len
v.angle = ang
v.color = color
myvecsub(v)

}
end

The myvecsub function takes the structure as an argument named e, as it can access
the elements of the structure. Likewise, a function defined as type struct can return a
structure to the calling function. myvecsub extracts the x- and y-coordinates from the
elements of the e.pt.coords vector and uses them to compute the dist from origin

scalar.

. type myvecsub.mata

version 10.1
mata:
function myvecsub(struct myvecstr scalar e)
{

real scalar dist_from_origin, xx, yy, ll, ang
string scalar clr
xx = e.pt.coords[1]
yy = e.pt.coords[2]
dist_from_origin = sqrt(xx^2 + yy^2)
printf("\n The %s vector begins %7.2f units from the origin at (%f, %f)

> ", ///
e.color, dist_from_origin, xx, yy)

printf("\n It is %7.2f units long, at an angle of %5.2f degrees\n", e.l
> ength, e.angle)
}
end

We can now execute the function:

. mata:
mata (type end to exit)

: makevec(42, 30, 12, 45, "red")

The red vector begins 51.61 units from the origin at (42, 30)
It is 12.00 units long, at an angle of 45.00 degrees

: end

Some additional things to note about structures: first, structures are compiled into
functions of the same name, so the examples above have created functions mypoint()

and myvecstr(). If you are saving your Mata functions in compiled form, these func-
tions should be saved as well. Also, although an instance of a structure is named (as
is v in makevec() above), you cannot examine the structure’s contents using its name

i

i

i

i

i

i

i

i

298 Chapter 13 Mata functions for ado-file programming

(as you can with Mata scalars, vectors and matrices). A reference to the structure’s
name will only print its address in memory. If you want to examine the contents of a
structure, use the liststruct() function.

Structures have many uses in Mata. You can program without them, but they will
often make it much easier to write complicated code. For instance, you can test two
structures for equality, which will be satisfied if and only if their members are equal.
You can create vectors or matrices of structures, and use pointers to structures. For full
details of the capabilities of Mata structures, see [M-2] Structures and the excellent
discussion in Gould (2007b).

13.10 Additional Mata features

13.10.1 Macros in Mata functions

Stata’s local macros (see Section 3.6) can be used to advantage in Mata functions, but
with a very important caveat. Macro evaluation takes place in Mata as it does in Stata
commands with one significant difference. When a Mata function is first defined, it is
compiled into bytecode. In that compilation process, the values of any local (or global)
macros are substituted for their names: the macros are evaluated. However, once the
function is compiled, those values are hard-coded into the Mata function, just as any
other definition would be. For example,

. type gbpval.mata
version 10.1
mata:
real scalar function gbpval(real scalar dollar)
{

real scalar usdpergbp
usdpergbp = 2.08
return(dollar / usdpergbp)

}
end

would define a function which converts US dollars to British pounds sterling at a fixed
exchange rate of US$2.08 per pound sterling. Rather than placing that constant in the
Mata function, we could write

. type gbpval2.mata

local usdpergbp 2.08
mata:
real scalar function gbpval2(real scalar dollar)
{

return(dollar / ‘usdpergbp’)
}
end

We can invoke the function with

i

i

i

i

i

i

i

i

13.10.2 Compiling Mata functions 299

. mata: gbpval2(100)
48.07692308

What happens if we change the local macro?

. local usdpergbp 2.06

. mata: gbpval2(100)
48.07692308

Why does Mata ignore the new value of the macro? Unlike Stata commands, which
would use the current value of the local macro, the macro’s value has been compiled
into the gbpval2 function, and can only be changed by recompiling that function. This
is an important distinction, and explains why you cannot use local macros as counters
within Mata functions as you can in ado-files or do-files.

Local macros in Mata functions serve to define objects, either numeric values or
string values, that should be constants within the function. One useful task that they
can serve is the replacement of a lengthy string—such as the URL of a filename on
the internet—with a symbol. The value of that symbol is the URL. If the filename
changes, you need only update the local macro’s definition rather than change it in
several places in the Mata function. Local macros may also be used to good advantage
to define abbreviations for commonly used words or phrases. For instance, we may use
the abbreviation RS to avoid repeatedly typing real scalar:

. type gbpval3.mata
version 10.1
local RS real scalar
mata:
‘RS’ function gbpval3(‘RS’ dollar)
{

‘RS’ usdpergbp
usdpergbp = 2.08
return(dollar / usdpergbp)

}
end

In summary, local macros can be used in Mata functions, but you must take care to
remember that they are only expanded when the function is first compiled by Mata.

13.10.2 Compiling Mata functions

We have illustrated Mata functions in conjunction with ado-files by placing the Mata
code in-line, that is, within the ado-file. If placed in-line, the Mata code will be compiled
“just-in-time” the first time that the ado-file is called in your Stata session. Subsequent
calls to the ado-file will not require compilation of the Mata function (or functions). An
exchange on Statalist28 suggests that if the Mata functions amount to fewer than 2,000
lines of code, incorporating them in-line will be quite acceptable in terms of performance.

28. http://stata.com/statalist/archive/2005-08/msg00358.html

i

i

i

i

i

i

i

i

300 Chapter 13 Mata functions for ado-file programming

There is one disadvantage of the in-line strategy, though. What if you have multiple
ado-files that all reference the same Mata function, but may be called independently?
Then you should consider saving a compiled version of the function which can then be
accessed by all ado-files. Copying the Mata code into each ado-file works as a short-term
solution, but will create persistent problems if you update the Mata functions and fail
to remember to update each ado-file. As a better solution, you should place the Mata
functions into a separate .mata file and create a .mo object file. Say that you write
Mata function crunch, and store the code defining that function in crunch.mata. You
may then issue the Mata command

: mata mosave crunch(), [, dir(path) replace]

This will create the object file crunch.mo, by default in the current working directory.
That has its disadvantages (as described in Section 2.2.2). You may want to specify
the option dir(PERSONAL) or dir(PLUS) on the mata mosave command, which will
write the .mo file to those directories, respectively. The routine will then be found by
a calling ado-file regardless of your current working directory. To implement creation
of the object file for the function, you could include the mata mosave line in the .mata

file. For example, crunch.mata might contain

version 10.1
mata:
real scalar crunch(...)
{
...
}
end
mata: mata mosave crunch(), dir(PERSONAL) replace

You could then define the function and create the object file with the Stata command

. do crunch.mata

which would create crunch.mo in your PERSONAL directory.

13.10.3 Building and maintaining an object library

Creating a separate .mo file for each Mata function in your PERSONAL directory will
make those functions available to any ado-file. But if you have developed a large number
of Mata functions, or want to provide those functions to other users in a convenient way,
you should know about Mata function libraries. A function library, or .mlib, can hold
up to 500 compiled functions. You create a function library with the Mata command

: mata mlib create libname [, dir(path) replace]

By convention, function libraries’ names should start with the letter l. As with mata

mosave, it is important to locate the library on the adopath, which you may do with
the dir() option.

To include a Mata function in the library, you must first compile it by loading it
into Mata’s memory. Following the strategy above, you could rewrite the last line of

i

i

i

i

i

i

i

i

13.10.4 A useful collection of Mata routines 301

crunch.mata to be

mata: mata mlib add libname fcnname()

where libname refers to your existing library and fcnname is the Mata function name
or names. Using wildcards, you may add a number of functions with a single command
(for example, by referring to cr*(), you specify all functions with names starting with
cr. The trailing parens are required. Then, the Stata command do crunch.mata will
compile the function and store it in the library.

One limitation exists, though. With mata mlib add you may add new functions
to a library. However, you cannot update functions stored in the library. If you must
remove a function, or replace it with a newer version, you must delete and recreate the
library and load all of its previous contents. Accordingly, it is a very good idea to avoid
altering a library with interactive commands, but instead write do-files that create and
load all functions in the library as suggested in the last section of [M-2] mata mlib.

When you start Stata and first enter the Mata environment, Mata searches the stan-
dard adopath for all available Mata libraries. If you make changes to a library during a
Stata session or download a package that contains a Mata library, those libraries’ con-
tents will not be immediately available. You must then refresh Mata’s list of available
libraries with the command

: mata mlib index

which will trigger the automatic search for Mata libraries on your machine.29

You should also note that Mata compiled functions (.mo files) and object libraries
(.mlib files) are not backward-compatible. A function compiled in Stata 10, or a library
constructed under Stata 10, cannot be used by Stata 9.x even though Mata was available
in that version of Stata. To generate an object library usable in both Stata 9 and Stata
10 (and later versions), you must compile the functions and produce the library in Stata
9. As a number of functions and capabilities were added to Mata in Stata 10, you may
not be able to execute the same Mata code in Stata 9.x.

13.10.4 A useful collection of Mata routines

Presently, the largest and most useful collection of user-written Mata routines is Ben
Jann’s moremata package, available from the SSC Archive. The package contains a
function library, lmoremata, as well as full documentation of all included routines (in
the same style as Mata’s on-line function descriptions). Very importantly, the package
also contains the full source code for each Mata routine, accessible with viewsource

([P] viewsource). You should note that Mata authors need not distribute the Mata
code for their routines. Unlike ado-file code, which is accessible by its very nature, Mata
functions may be distributed in object code (or function library) form.

Routines in moremata currently include kernel functions; statistical functions for

29. Quitting and restarting Stata will have the same effect, but is not necessary.

i

i

i

i

i

i

i

i

302 Chapter 13 Mata functions for ado-file programming

quantiles, ranks, frequencies, means, variances and correlations; functions for sampling;
density and distribution functions; root finders; matrix utility and manipulation func-
tions; string functions; and input-output functions. Many of these functions provide
functionality as yet missing from official Mata, and ease the task of various program-
ming chores. Once you have downloaded the package from the SSC Archive, be sure to
issue the command mata mlib index to ensure that its components may immediately
be located by Mata.

i

i

i

i

i

i

i

i

14 Cookbook: Mata function
programming

This cookbook chapter presents a number of recipes for Stata do-file programmers us-
ing the programming features described in the previous chapter. Each recipe poses a
problem and a worked solution. Although you may not encounter this precise problem,
you may be able to recognize its similarities to a task that you would like to automate
in an ado-file and Mata function.

14.1 Reversing the rows or columns of a Stata matrix

The problem: Mata’s built-in function list contains many useful matrix operations, but
I recently came upon one I needed: the ability to flip a matrix along its row or column
dimensions.1 Either of these operations can readily be done as a Mata statement, but
I’d rather not remember the syntax—nor remember what it is meant to do when I reread
the code. So I wrote a simple Mata function to perform this task and wrapped it in an
ado-file.2

To define the Stata command, the program flipmat takes the name of an existing
Stata matrix. Optionally, you may specify horiz to reverse the order of the matrix’s
columns. By default, the command reverses the order of the matrix’s rows. We use the
name option of the syntax ([P] syntax) command, an abbreviation for namelist. The
name option specifies that a single name must be provided. The confirm ([P] confirm)
command comes in handy to ensure that the name provided is indeed that of a matrix.
The command operates on the matrix in place, updating its contents.

. type flipmat.ado

capture program drop flipmat

*! flipmat 1.0.0 CFBaum 08oct2007
program flipmat

version 10.1
syntax name, [HORIZ]
confirm matrix ‘namelist’
mata: mf_flipmat("‘namelist’", "‘horiz’")

end

. set more off

1. This recipe is adapted from Stata Tip 37 (Baum (2006b)).
2. My thanks to Mata’s chief architect, Bill Gould, for improvements he suggested which make the

code more general.

303

i

i

i

i

i

i

i

i

304 Chapter 14 Cookbook: Mata function programming

.

We now consider the Mata code. The basic logic is a single line: we replace matrix
X with its own contents, with rows (columns) in reverse order depending on horiz.
One complication: unlike Mata matrices, Stata matrices have row and column stripes
which may contain two components labelling each row or column. For estimation re-
sults, for instance, the stripe element may include both an equation name and a vari-
able name.3 We do not want to wipe out these contents in the process, so we use
st matrixrowstripe() and st matrixcolstripe() functions to preserve the contents
of the stripes, and reorder them in line with the functioning of flipmat.

. type mf_flipmat.mata
version 10.1
mata:
void function mf_flipmat(string scalar name, string scalar horiz)
{

real matrix X, rs, cs
X = st_matrix(name)
rs = st_matrixrowstripe(name)
cs = st_matrixcolstripe(name)
if (horiz == "") {

X = (rows(X)>1 ? X[rows(X)..1, .] : X)
rs = (rows(rs)>1 ? rs[rows(rs)..1, .] : rs)

}
else {

X = (cols(X)>1 ? X[., cols(X)..1] : X)
cs = (rows(cs)>1 ? cs[rows(cs)..1, .] : cs)

}
st_matrix(name, X)
st_matrixcolstripe(name, cs)
st_matrixrowstripe(name, rs)

}
end

mata: mata mosave mf_flipmat(), dir(PERSONAL) replace

We follow the advice of Section 13.10.2 and store the compiled Mata function as a .mo

file in our PERSONAL directory.

As an example, imagine that you have a set of course grades for homework (hw,
midterm (mt, final exam (final and total points total stored in a matrix grades, with
the rows identifying the students’ ID numbers.

. mat list grades, noheader

hw mt final total
121 6 8 21 35
958 8 9 23 40
196 7 17 24 48
190 8 13 38 59
921 17 24 66 107
33 17 31 76 124
806 19 29 80 128

3. See [M-4] mf st matrix.

i

i

i

i

i

i

i

i

14.1 Reversing the rows or columns of a Stata matrix 305

514 21 51 71 143
526 22 40 96 158
340 26 59 105 190
101 30 49 119 198
661 30 62 124 216
856 32 66 128 226
581 34 57 135 226
276 34 64 133 231
287 33 64 137 234
703 35 63 136 234
210 37 78 134 249
81 37 79 142 258
366 40 82 160 282
705 42 85 167 294
66 43 85 173 301
424 45 87 177 309
964 47 86 190 323
345 54 106 223 383

The matrix is currently stored in ascending order of total points scored. If you’d like to
reverse that,

. flipmat grades

. mat list grades, noheader

hw mt final total
345 54 106 223 383
964 47 86 190 323
424 45 87 177 309
66 43 85 173 301
705 42 85 167 294
366 40 82 160 282
81 37 79 142 258
210 37 78 134 249
703 35 63 136 234
287 33 64 137 234
276 34 64 133 231
581 34 57 135 226
856 32 66 128 226
661 30 62 124 216
101 30 49 119 198
340 26 59 105 190
526 22 40 96 158
514 21 51 71 143
806 19 29 80 128
33 17 31 76 124
921 17 24 66 107
190 8 13 38 59
196 7 17 24 48
958 8 9 23 40
121 6 8 21 35

and to display with the total points as the first column,

. flipmat grades, horiz

. mat list grades, noheader

i

i

i

i

i

i

i

i

306 Chapter 14 Cookbook: Mata function programming

total final mt hw
345 383 223 106 54
964 323 190 86 47
424 309 177 87 45
66 301 173 85 43
705 294 167 85 42
366 282 160 82 40
81 258 142 79 37
210 249 134 78 37
703 234 136 63 35
287 234 137 64 33
276 231 133 64 34
581 226 135 57 34
856 226 128 66 32
661 216 124 62 30
101 198 119 49 30
340 190 105 59 26
526 158 96 40 22
514 143 71 51 21
806 128 80 29 19
33 124 76 31 17
921 107 66 24 17
190 59 38 13 8
196 48 24 17 7
958 40 23 9 8
121 35 21 8 6

Finally, we note that this Mata routine works only with a Stata matrix, and a Stata
matrix can only contain numeric (or missing) values. However, the technique used will
operate on any Mata matrix, including complex and string matrices. An example of its
application to a Mata string matrix is given in Baum (2006b).

i

i

i

i

i

i

i

i

14.2 Shuffling the elements of a string variable 307

14.2 Shuffling the elements of a string variable

The problem: you want to randomly shuffle the characters in each observation of a
Stata string variable.

Mata’s jumble() function fits the bill, using a very simple ado-file program to call
it:

. type shufstr.ado

*! shufstr 1.0.0 CFBaum 11aug2008
program shufstr
version 10.1
syntax varlist(string max=1)
mata: shufstr("‘varlist’")
end

The program takes a single string variable as an argument and passes its name to our
Mata function, shufstr(). The Mata code is equally simple:

. type shufstr.mata

version 10.1
mata: mata set matastrict on
mata: mata clear
// shufstr 1.0.0 CFBaum 11aug2008
mata:

void function shufstr(string vector vname)
{

string matrix S
real scalar i
st_sview(S, ., vname)
for(i = 1; i <= rows(S); i++) {

S[i, .] = char(jumble(ascii(S[i, .])’)’)
}

}
end

mata: mata mosave shufstr(), dir(PERSONAL) replace

We create a view matrix containing the string variable and define each row in turn as
the jumble() of its characters. As jumble() is designed to shuffle the rows of a matrix,4

we translate the string into a vector of ASCII codes5 using the ascii() function. This
is the simplest way in Mata to split a string into its characters. The char() function
translates the vector of shuffled ASCII codes back to a single character string.

To illustrate, we extract the second word of variable make in auto.dta for the first
15 automobiles, and shuffle that word:

. sysuse auto
(1978 Automobile Data)

4. As [M-5] sort() indicates, jumble(1::52) would shuffle a deck of cards.
5. The ASCII character codes express each character as a integer between 1 and 255. For instance,

the ASCII code for b is 42.

i

i

i

i

i

i

i

i

308 Chapter 14 Cookbook: Mata function programming

. generate model = ""
(74 missing values generated)

. quietly describe

. forvalues i = 1/‘=r(N)’ {
2. local temp = make[‘i’]
3. local model: word 2 of ‘temp’
4. qui replace model = "‘model’" in ‘i’
5. }

. keep in 1/15
(59 observations deleted)

. keep make model price

. generate shufmod = model

. set seed 20080906

. shufstr(shufmod)

. list, sep(0) noobs

make price model shufmod

AMC Concord 4,099 Concord oCndocr
AMC Pacer 4,749 Pacer cPera
AMC Spirit 3,799 Spirit rStpii
Buick Century 4,816 Century Cnetury
Buick Electra 7,827 Electra eaElrtc
Buick LeSabre 5,788 LeSabre ebaeSLr
Buick Opel 4,453 Opel eOlp
Buick Regal 5,189 Regal Raleg
Buick Riviera 10,372 Riviera Reivira
Buick Skylark 4,082 Skylark yakkrlS
Cad. Deville 11,385 Deville Deielvl
Cad. Eldorado 14,500 Eldorado oEldaord
Cad. Seville 15,906 Seville leSeliv
Chev. Chevette 3,299 Chevette eCethevt
Chev. Impala 5,705 Impala amplaI

i

i

i

i

i

i

i

i

14.3 Firm-level correlations with multiple indices with Mata 309

14.3 Firm-level correlations with multiple indices with Mata

The problem: we revisit the problem posed in Section 10.1, in which a user with
firm-level panel data would like to compute the correlations between firm returns and
a set of index fund returns, and determine which of those correlations is the highest
for each firm. In the earlier presentation, we solved this problem with do-file code and
Stata matrices. Here, we consider how it might be done more efficiently with Mata.

We first set up an ado-file to make the problem more general by allowing different
variable names to be specified for the index fund returns, firm returns and firm identifier.
The program, maxindcorr, takes a varlist of the names of index fund returns and three
required options: ret(), the name of the firm returns variable, firmid(), the firm
identifier variable, and gen(), a name which is used as a stub for four new variable
names. These four variables will contain, for each firm, the firm’s ID, its mean return,
the number of quotes available and the number of the index fund with which the highest
correlation appears. If the gen() option is given as foo, the variables created will be
foofirmid, foomu, foon and foomax. After setting up a trading day calendar, we are
ready to pass control to the Mata function indcorr().6

. type maxindcorr.ado

*! maxindcorr 1.0.0 CFBaum 11aug2008
program maxindcorr

version 10.1
syntax varlist(numeric), RET(varname numeric) FIRMid(varname) GEN(string)

* validate new variable names
confirm new variable ‘gen’‘firmid’
confirm new variable ‘gen’max
confirm new variable ‘gen’mu
confirm new variable ‘gen’n

tempvar trday
* establish trading day calendar using firmid variable

bysort ‘firmid’: gen ‘trday’ = _n
qui tsset ‘firmid’ ‘trday’
qui generate ‘gen’max = .
qui generate ‘gen’mu = .
qui generate ‘gen’n = .
qui generate ‘gen’‘firmid’ = .
qui levelsof ‘firmid’
local firms ‘r(levels)’
local nf : word count ‘r(levels)’
forv i = 1/‘nf’ {

local fid : word ‘i’ of ‘firms’
qui replace ‘gen’‘firmid’ = ‘fid’ in ‘i’

}
* create varlist of indices..ret

local vl "‘varlist’ ‘ret’"
* pass to Mata routine

mata: indcorr("‘firmid’", "‘vl’","‘gen’")
end

6. The quietly prefix could be used on a block of statements rather than the individual statements
below. However, that will suppress the listing of the statements in the block, which we avoid for
pedagogical reasons here.

i

i

i

i

i

i

i

i

310 Chapter 14 Cookbook: Mata function programming

The Mata routine sets up views for the firm identifier (ind) and the data matrix (pdata).
We then use the panelsetup() function to tell Mata that these are panel data, indexed
by the firm identifier: the first column of pdata. The resulting matrix info merely
contains, for each panel, the beginning and ending observation numbers of its elements.
We then create views for the three new variables to be created.

These panel data are in the long format,7 with nf firms’ time-series observations. The
heart of the routine is a loop over the nf panels found in eye. The panelsubmatrix()

function extracts the appropriate rows of eye for the ith panel, and Mata’s correlation()
function produces the correlation matrix. As the firm return variable is the last column
of eye, all but the last element of the last row of eye are the correlations of interest. In
the do-file code of Section 10.1, we stored those correlations in a matrix. As we only
want to keep track of the maximum correlation, we use maxindex() to locate that ele-
ment and store it directly in the result variable: the view highcorr. Likewise, we invoke
panelsubmatrix() to compute the firm’s mean return (with mean()) and number of
quotes, and store those in the result variables.

. type indcorr.mata
mata: mata clear
version 10.1
mata: mata set matastrict on
mata:
// indcorr 1.0.0 CFBaum 11aug2008
void function indcorr(string scalar ind,

string scalar vn,
string scalar newvar)

{
real matrix pdata, info, highcorr, sigma, z, enn, w
real vector muret, ret
real scalar nf, nv, nv1, i, imax
string scalar mu, maxc, enname
st_view(ind, ., ind)
st_view(pdata, ., tokens(vn))
info = panelsetup(ind, 1)
nf = rows(info)
nv = cols(pdata)
nv1 = nv-1
maxc = newvar + "max"
st_view(highcorr, 1::nf, maxc)
mu = newvar + "mu"
st_view(muret, 1::nf, mu)
enname = newvar + "n"
st_view(enn, 1::nf, enname)

// compute correlations between index columns and last column (ret)
for(i = 1; i <= nf; i++) {

sigma = correlation(panelsubmatrix(pdata, i, info))
ret = sigma[nv, 1::nv1]
maxindex(ret, 1, imax, w)
highcorr[i] = imax

// calculate mean return and number of quotes for this panel
z = panelsubmatrix(pdata[.,nv], i, info)

7. See Section 5.5.

i

i

i

i

i

i

i

i

14.3 Firm-level correlations with multiple indices with Mata 311

muret[i] = mean(z)
enn[i] = rows(z)

}
}
end

mata: mata mosave indcorr(), dir(PERSONAL) replace

We can now invoke the routine on the data used in Section 10.1:

. use ch14.3, clear

.

. maxindcorr index1-index9, ret(ret) firm(permno) gen(set1)

. summarize set1*

Variable Obs Mean Std. Dev. Min Max

set1max 291 4.917526 2.665243 1 9
set1mu 291 -.0005513 .0061444 -.0775419 .0080105
set1n 291 1071.261 369.9875 8 1259

set1permno 291 58499.78 26550.12 10051 92655

. gsort -set1mu

. label def ind 1 Kappa 2 Lambda 3 Nu 4 Xi 5 Tau 6 Upsilon 7 Phi 8 Chi 9 Psi

. label values set1max ind

. list set1permno set1mu set1n set1max in 1/50, noobs sep(0)

set1pe~o set1mu set1n set1max

23317 .0080105 8 Nu
53196 .0037981 465 Tau
67345 .0033149 459 Upsilon
90879 .0028613 1001 Psi
80439 .0027118 1259 Chi
64629 .0026724 1259 Upsilon
87165 .0025065 1259 Chi
76177 .002376 531 Nu
85073 .0023348 945 Chi
24441 .0023073 1259 Lambda
81063 .0022981 489 Chi
37284 .0021567 1259 Nu
14593 .0019581 1259 Kappa
80778 .0019196 941 Chi
68347 .0019122 85 Kappa
84827 .0018903 1259 Chi
84107 .0017555 987 Chi
22250 .0017191 1259 Lambda
76139 .0017182 1259 Phi
23819 .0016474 1259 Lambda
66384 .0016361 1259 Upsilon
38156 .001558 1259 Nu
88845 .0015497 1259 Lambda
85631 .0015028 1259 Chi
84788 .0015013 1259 Chi
77077 .0014899 1006 Phi
48653 .0014851 1259 Xi
92284 .0014393 1259 Psi
81877 .0014366 454 Chi

i

i

i

i

i

i

i

i

312 Chapter 14 Cookbook: Mata function programming

81178 .0014339 1186 Chi
81282 .0014084 1259 Phi
80114 .0014042 1259 Chi
56937 .0014028 1259 Tau
75819 .0013873 1259 Xi
22293 .0013792 1259 Chi
10085 .0013747 1072 Kappa
76712 .0013615 1259 Nu
77713 .0013607 127 Phi
12265 .0012653 858 Kappa
76779 .0012513 648 Lambda
83422 .0012314 1259 Chi
76224 .0012159 1259 Phi
47888 .0012045 1259 Xi
86569 .0011911 1259 Chi
77803 .0011858 1173 Phi
82272 .0011574 1259 Kappa
83976 .0011543 1259 Kappa
75510 .0011498 1259 Phi
15720 .0011436 1259 Lambda
90352 .0011411 1259 Psi

This more general routine illustrates how an ado-file and Mata subroutine may
be used to provide a more efficient solution which can immediately be applied to a
similar problem. Another consideration: the do-file routine of Section 10.1 may run
afoul of Stata’s matsize limits (help limits). There are no such limitations in Mata.
Memory requirements could be reduced in indcorr() by using panelsubview(), rather
than panelsubmatrix(). As those functions’ documentation indicates, the latter is
preferable if speed of execution is a greater concern than memory use.

i

i

i

i

i

i

i

i

14.4 Passing a function to a Mata function 313

14.4 Passing a function to a Mata function

The problem: you would like a Mata routine to apply a mathematical function, but
would like to specify that function when you call the Mata routine rather than having
every possible function coded in Mata. In sort, you would like to pass a function to a
function, as described in [M-2] ftof.

We illustrate by modifying the aggreg routine presented in Section 13.7.1 (as this
is a major change, we rename it aggreg2). We add one more optional argument to its
syntax: trans(function), indicating that the original variable should be transformed
before it is aggregated. The list of available transformations is defined in local macro
trops as abs exp log sqrt. If no transformation is specified, the default identity
transformation f(x) = x is applied.

Passing functions to functions makes use of pointers, as defined in Section 13.8.
Before we set that up, one wrinkle must be addressed. As [M-2] ftof states, you cannot
pass a built-in function to a function, and the mathematical functions are built-in. We
get around this problem by defining our own trivial versions of each math function: for
instance,

: function mf_abs(x) return(abs(x))

We now are ready to set up the passing mechanism. We parse the trans() option
and define the name of the function to be passed in local macro trfn. The call to
Mata function aggreg2 includes an argument &‘trfn’() which specifies the desired
transformation in terms of a pointer to the function.

. type aggreg2.ado

*! aggreg2 1.0.0 CFBaum 11aug2008
program aggreg2, rclass

version 10.1
syntax varname(numeric) [if] [in], per(integer) ///

[func(string) trans(string)]
marksample touse
quietly count if ‘touse’
if ‘r(N)’ == 0 {

error 2000
}

* validate per versus selected sample
if ‘per’ <= 0 | ‘per’ >= ‘r(N)’ {

display as error "per must be > 0 and < N of observations."
error 198

}
if mod(‘r(N)’,‘per’ != 0) {

display as error "N of observations must be a multiple of per."
error 198

}
* validate func option; default is average (code A)

local ops A S F L
local opnames average sum first last
if "‘func’" == "" {

local op "A"
}
else {

i

i

i

i

i

i

i

i

314 Chapter 14 Cookbook: Mata function programming

local nop : list posof "‘func’" in opnames
if !‘nop’ {

display as err "Error: func must be chosen from ‘opnames’"
error 198

}
local op : word ‘nop’ of ‘ops’

}
* validate trans option; default is none (identity)

local trops abs exp log sqrt
if "‘trans’" == "" {

local trfn "mf_iden"
}
else {

local ntr : list posof "‘trans’" in trops
if !‘ntr’ {

display as err "Error: trans must be chosen from ‘trops’"
error 198

}
local trfn "mf_‘trans’"

}
* validate the new varname

local newvar = "‘varlist’‘op’‘trans’‘per’"
quietly generate ‘newvar’ = .

* pass the varname and newvarname to Mata
mata: aggreg2("‘varlist’", "‘newvar’", ‘per’, "‘op’", ///

&‘trfn’(), "‘touse’")
end

In the Mata function, the argument defining the name of the function is specified as

: pointer(real scalar function) scalar f

and invoked to transform the raw data in vector v1 into vector v1t:

: v1t = (*f)(v1)

The Mata code reads:

. type aggreg2.mata
version 10.1
mata: mata clear
mata: mata set matastrict on
mata:
function mf_abs(x) return(abs(x))
function mf_exp(x) return(exp(x))
function mf_log(x) return(log(x))
function mf_sqrt(x) return(sqrt(x))
function mf_iden(x) return(x)

// aggreg2 1.0.0 CFBaum 11aug2008
void aggreg2(string scalar vname,

string scalar newvname,
real scalar per,
string scalar op,
pointer(real scalar function) scalar f,
string scalar touse)

{
real matrix v1, v1t, v2, v3

i

i

i

i

i

i

i

i

14.4 Passing a function to a Mata function 315

real colvector mult
if (op == "A") {

mult = J(per, 1, 1/per)
}
else if (op == "S") {

mult = J(per, 1, 1)
}
else if (op == "F") {

mult = J(per, 1, 0)
mult[1] = 1

}
else if (op == "L") {

mult = J(per, 1, 0)
mult[per] = 1

}
st_view(v1=., ., vname, touse)
v1t = (*f)(v1)
st_view(v2=., ., newvname)
v3 = colshape(v1t’, per) * mult
v2[(1::rows(v3)),] = v3

}
end

mata: mata mosave aggreg2(), dir(PERSONAL) replace

We can now test our routine on the urates data used in Section 13.7.1 and verify that
it is applying the correct transformations:

. use urates, clear

. aggreg2 tenn, per(3) trans(log) // calculate quarterly averages of log(tenn)

. aggreg2 tenn, per(3) func(sum) trans(sqrt) // calculate quarterly sum of sqrt
> (tenn)

. tsmktim quarter, start(1978q1) // create quarterly calendar var
time variable: quarter, 1978q1 to 2055q4

delta: 1 quarter

. list t tenn quarter tennAlog3 tennSsqrt3 in 1/12, sep(3)

t tenn quarter tennAl~3 tennSs~3

1. 1978m1 5.9 1978q1 1.786065 7.327801
2. 1978m2 5.9 1978q2 1.751859 7.203743
3. 1978m3 6.1 1978q3 1.746263 7.183253

4. 1978m4 5.9 1978q4 1.746062 7.182891
5. 1978m5 5.8 1979q1 1.746263 7.183253
6. 1978m6 5.6 1979q2 1.740364 7.162218

7. 1978m7 5.7 1979q3 1.746263 7.183253
8. 1978m8 5.7 1979q4 1.791667 7.348299
9. 1978m9 5.8 1980q1 1.818953 7.44945

10. 1978m10 5.9 1980q2 1.954307 7.9728
11. 1978m11 5.7 1980q3 2.079442 8.485281
12. 1978m12 5.6 1980q4 2.075249 8.467548

i

i

i

i

i

i

i

i

316 Chapter 14 Cookbook: Mata function programming

14.5 Using subviews in Mata

The problem: you make use of view matrices in Mata to avoid making copies of
Stata’s variables in Mata in your large dataset. You want to create subsets of those
view matrices and minimize memory usage in doing so.

The solution involves the use of subviews in Mata. Like a view matrix, a subview is
merely a reference to the specified components of another matrix. That matrix may be
a view matrix or a regular matrix in Mata. In either case, you do not want to make a
copy of the original matrix. You create subviews with Mata function st subview().

Let’s say you want to form matrices within Mata for two sets of variables in your
dataset. You could use st view commands, specifying lists of variable names to be
included:

. sysuse auto
(1978 Automobile Data)

. generate en = _n

. mata:
mata (type end to exit)

: st_view(Z1=., ., ("en", "price", "mpg", "turn"), 0)

: st_view(Z2=., ., ("en", "weight", "length", "rep78"), 0)

: Z1[6, .]
1 2 3 4

1 6 5788 18 43

: Z2[6, .]
1 2 3 4

1 8 3280 200 3

: end

In this example, view matrices Z1 and Z2 do not have the same number of rows due to the
presence of five missing values in rep78. The fourth argument to st view() ensures
that missing values in any of the variables cause those observations to be excluded.
But what if the observations are no longer properly aligned after removing those with
missing values? In this case, the matrices Z1 and Z2 will be misaligned in terms of the
original observation numbers. As you can see, the sixth row of Z1 contains the sixth
observation of auto.dta, but the sixth row of Z2 contains the eighth observation of this
Stata dataset.

You can avoid this difficulty by building a single view matrix of all needed variables:

: st view(Z, ., ("en", "price", "mpg", "turn", "weight", "length", "rep78"), 0)

and creating the desired subsets as subviews:

: st subview(Z1, Z, ., (1, 2, 3, 4))

i

i

i

i

i

i

i

i

14.5 Using subviews in Mata 317

: st subview(Z2, Z, ., (1, 5, 6, 7))

In this syntax, the row vector of indices specifies that columns 1, 2, 3 and 4 of Z are to
be included in view matrix Z1, and that columns 1, 5, 6 and 7 of Z are to be included
in view matrix Z2. The st view matrix Z will exclude any observation with missing
values on any of the variables, and the subview matrices Z1 and Z2 require no overhead
(beyond a few bytes) as they are only references to the appropriate columns of Z. The
subviews could even overlap, as above: the Stata variable en (the observation number)
is included as the first column of each subview matrix.

There is also a specialized version of subview() for use with panel data: panelsubview().
See Section 14.3.

i

i

i

i

i

i

i

i

318 Chapter 14 Cookbook: Mata function programming

14.6 Storing and retrieving country-level data with Mata
structures

The problem: you would like to store a collection of country-level data and be able
to retrieve it by using Mata structures effectively.8

We set up a structure, country, which holds several string scalars, two numeric
scalars and a vector of geographic coordinates for its capital city. Each element of the
structure must be declared by type.

. type country.mata

version 10.1
mata: mata set matastrict on
mata:
// country 1.0.0 CFBaum 11aug2008
struct country {

string scalar isocode
string scalar name
real scalar population
real scalar gdppc
string scalar capital
real vector latlong

}
end

We now can define a Mata function, loadcty, which inserts data into the structure.
It is defined as a pointer function so that it returns the address of that instance of the
structure.

. type loadcty.mata

version 10.1
mata: mata set matastrict on
mata:
// loadcty 1.0.0 CFBaum 11aug2008
pointer(real scalar) loadcty(

string scalar isocode,
string scalar name,
real scalar population,
real scalar gdppc,
string scalar capital,
real scalar latitudeD,
real scalar latitudeM,
real scalar longitudeD,
real scalar longitudeM)

{
struct country scalar c
c.isocode = isocode
c.name = name
c.population = population
c.gdppc = gdppc
c.capital = capital
c.latlong = (latitudeD, latitudeM, longitudeD, longitudeM)
return(&c)

8. See Section 13.9. For an extended discussion of Mata structures, see Gould (2007b).

i

i

i

i

i

i

i

i

14.6 Storing and retrieving country-level data with Mata structures 319

}
end

To use the structure data, we define a Mata function compcty which compares a
pair of countries, taking as arguments their respective structures. We would like to
compute the airline distance between capital cities. This measure is often used in so-
called gravity models of international trade. The computation is available in Stata from
Bill Rising’s sphdist command, available in the SSC Archive. His command expects
four variables, giving latitude and longitude values for two locations,9 and generates
a new variable containing the computed distances. We only want to call this routine
for a single observation, and receive a single value in return. We use Mata’s stata()

function to give the Stata command that runs sphdist, and st view() to move data
back and forth between Mata and Stata.

. type compcty.mata

version 10.1
mata: mata set matastrict on
mata:
// compcty 1.0.0 CFBaum 11aug2008
void compcty(struct country scalar a,

struct country scalar b)
{

real scalar poprat, gdprat,dist
real matrix latlong
printf("\nComparing %15s and %-15s\n\n", a.name, b.name)
poprat = a.population / b.population
printf("Ratio of population: %9.2f\n", poprat)
gdprat = a.gdppc / b.gdppc
printf("Ratio of per capita GDP: %9.2f\n", gdprat)
printf("\nCapital of %15s: %-15s\n Lat. %5.2f deg. Long. %5.2f deg.\n"

> , ///
a.name, a.capital, a.latlong[1] + a.latlong[2] / 100, a.latlong[

> 3] + a.latlong[4] / 100)
printf("\nCapital of %15s: %-15s\n Lat. %5.2f deg. Long. %5.2f deg.\n"

> , ///
b.name, b.capital, b.latlong[1] + b.latlong[2] / 100, b.latlong[

> 3] + b.latlong[4] / 100)
// store the latitude/longitude coordinates, reversing long. signs per sphdist
> convention

st_view(latlong=., ., ("lat1","long1","lat2","long2"))
latlong[1, 1] = a.latlong[1] + a.latlong[2]/60
latlong[1, 2] = -1 * (a.latlong[3] + a.latlong[4]/60)
latlong[1, 3] = b.latlong[1] + b.latlong[2]/60
latlong[1, 4] = -1 * (b.latlong[3] + b.latlong[4]/60)
stata("capture drop __dist")

// call Bill Rising’s sphdist routine to compute the distance
stata("sphdist, gen(__dist) lat1(lat1) lon1(long1) lat2(lat2) lon2(long

> 2)")
st_view(dist=., .,("__dist"))

9. The sphdist convention codes east longitude (east of Greenwich) as negative and west longitude
as positive. Although it is an arbitrary convention, It is more common to code longitude in the same
manner as time zones. For instance, for most of the year Boston is UCT−5, five hours behind London,
and Berlin is UCT+1, one hour later than London. In the compcty routine, we reverse the sign of
longitude values.

i

i

i

i

i

i

i

i

320 Chapter 14 Cookbook: Mata function programming

printf("\nDistance between capitals: %9.2f km.\n",dist[1])
}
end

We now can load the data structure with several countries’ data.10 Each invocation
of the loadcty() function returns a pointer to that instance of the structure. We also set
up the Stata variables lat1, long1, lat2, long2 that will be accessed by sphdist.

. mata:
mata (type end to exit)

: addr1 = loadcty("US", "United States", 301.139947, 43800,"Washington DC", 38,
> 53, -77, -02)

: addr2 = loadcty("CA", "Canada", 33.390141, 35700, "Ottawa", 45, 24, -75, -43)

: addr3 = loadcty("TR", "Turkey", 71.158647, 9100, "Ankara", 39, 55, 32, 55)

: addr4 = loadcty("AR", "Argentina", 40.301927, 15200, "Buenos Aires", -34, -35
> , 58, 22)

: addr5 = loadcty("JP", "Japan", 127.433494, 33100, "Tokyo", 35, 40, 139, 45)

: end

. clear

. set obs 1
obs was 0, now 1

. generate lat1 = .
(1 missing value generated)

. generate long1 = .
(1 missing value generated)

. generate lat2 = .
(1 missing value generated)

. generate long2 = .
(1 missing value generated)

Now, we can invoke the compcty() function for any pair of countries that we have
loaded into the data structure:

. mata:
mata (type end to exit)

: compcty(*addr1, *addr2)

Comparing United States and Canada

Ratio of population: 9.02
Ratio of per capita GDP: 1.23

Capital of United States: Washington DC
Lat. 38.53 deg. Long. -77.02 deg.

Capital of Canada: Ottawa
Lat. 45.24 deg. Long. -75.43 deg.

Distance between capitals: 732.12 km.

: compcty(*addr1, *addr3)

Comparing United States and Turkey

10. Population, per capita GDP (PPP) values and geographic coordinates are taken from the CIA

World Factbook, https://www.cia.gov/library/publications/the-world-factbook/.

i

i

i

i

i

i

i

i

14.6 Storing and retrieving country-level data with Mata structures 321

Ratio of population: 4.23
Ratio of per capita GDP: 4.81

Capital of United States: Washington DC
Lat. 38.53 deg. Long. -77.02 deg.

Capital of Turkey: Ankara
Lat. 39.55 deg. Long. 32.55 deg.

Distance between capitals: 8724.01 km.

: compcty(*addr3, *addr4)

Comparing Turkey and Argentina

Ratio of population: 1.77
Ratio of per capita GDP: 0.60

Capital of Turkey: Ankara
Lat. 39.55 deg. Long. 32.55 deg.

Capital of Argentina: Buenos Aires
Lat. -34.35 deg. Long. 58.22 deg.

Distance between capitals: 8679.35 km.

: compcty(*addr1, *addr5)

Comparing United States and Japan

Ratio of population: 2.36
Ratio of per capita GDP: 1.32

Capital of United States: Washington DC
Lat. 38.53 deg. Long. -77.02 deg.

Capital of Japan: Tokyo
Lat. 35.40 deg. Long. 139.45 deg.

Distance between capitals: 10897.34 km.

: end

Of course, the distance computation, a matter of spherical trigonometry imple-
mented in sphdist, can be done directly in Mata. We construct a one-line function
deg2rad() that converts a measurement in degrees into radians, and implement the
trigonometric formulas from sphdist in a Mata function, compcty2:

. type compcty2.mata

version 10.1
mata:
real scalar deg2rad(real scalar deg)
{

return(deg * pi() / 180)
}

void compcty2(struct country scalar a, struct country scalar b)
{

real scalar poprat, gdprat, lat1, lat2, lon1, lon2, costhet, res
printf("\nComparing %15s and %-15s\n\n", a.name, b.name)
poprat = a.population / b.population
printf("Ratio of population: %9.2f\n", poprat)
gdprat = a.gdppc / b.gdppc
printf("Ratio of per capita GDP: %9.2f\n", gdprat)
printf("\nCapital of %15s: %-15s\n Lat. %5.2f deg. Long. %5.2f deg.\n"

> , ///
a.name, a.capital, a.latlong[1] + a.latlong[2] / 100, a.latlong

i

i

i

i

i

i

i

i

322 Chapter 14 Cookbook: Mata function programming

> [3] + a.latlong[4] /100)
printf("\nCapital of %15s: %-15s\n Lat. %5.2f deg. Long. %5.2f deg.\n"

> , ///
b.name, b.capital, b.latlong[1] + b.latlong[2] / 100, b.latlong[

> 3] + b.latlong[4] / 100)
// convert the latitude/longitude coordinates to radians

lat1 = deg2rad(a.latlong[1] + a.latlong[2]/60)
lon1 = deg2rad(a.latlong[3] + a.latlong[4]/60)
lat2 = deg2rad(b.latlong[1] + b.latlong[2]/60)
lon2 = deg2rad(b.latlong[3] + b.latlong[4]/60)
costhet = sin(lat1) * sin(lat2) + cos(lat1) * cos(lat2) * cos(lon2 - lo

> n1)
if (costhet == 1 | (lat1 == lat2 & lon1 == lon2)) {

res = 0
}
else if (costhet == 1) {

res = 20000
}
else {

res = (pi() / 2 - atan(costhet / sqrt(1 - costhet^2))) * 20000
> / pi()

}
printf("\nDistance between capitals: %9.2f km.\n",res)

}
end

Selected results from the pure-Mata-based distance computation may be compared
with those from the routine invoking sphdist:

. mata:
mata (type end to exit)

: compcty2(*addr1, *addr3)

Comparing United States and Turkey

Ratio of population: 4.23
Ratio of per capita GDP: 4.81

Capital of United States: Washington DC
Lat. 38.53 deg. Long. -77.02 deg.

Capital of Turkey: Ankara
Lat. 39.55 deg. Long. 32.55 deg.

Distance between capitals: 8724.01 km.

: compcty2(*addr3, *addr4)

Comparing Turkey and Argentina

Ratio of population: 1.77
Ratio of per capita GDP: 0.60

Capital of Turkey: Ankara
Lat. 39.55 deg. Long. 32.55 deg.

Capital of Argentina: Buenos Aires
Lat. -34.35 deg. Long. 58.22 deg.

Distance between capitals: 8679.35 km.

: end

i

i

i

i

i

i

i

i

14.7 Locating nearest neighbors with Mata 323

14.7 Locating nearest neighbors with Mata

The problem: a Statalist user wanted to know how to find “nearest neighbors” in geo-
graphical terms: that is, which observations are spatially proximate to each observation
in the dataset? This can be generalized to a broader problem: which observations are
closest in terms of similarity of a number of variables? This might be recognized as a
problem of calculating a propensity score (see Leuven and Sianesi’s psmatch2 on the
SSC Archive) but we would like to approach it from first principles with a Mata routine.

In response to the original posting in which the user had latitude and longitude
coordinates for each observation, David M. Drukker proposed a Mata-based solution
making use of the minindex() function.11 We modify his solution below to allow a
match to be defined in terms of a set of variables on which a close match will be defined.
The quality of the match can then be evaluated by calculating the correlation between
the original variable’s observations and its values of the identified “nearest neighbor.”
That is, if we consider two units (patients, cities, firms, households) with similar values
of x1, . . . , xm, how highly correlated are their values of y?

Although the original example is geographical, the underlying task is found in many
disciplines where a control group of observations is to be identified, each of which is
the closest match to one of the observations of interest. For instance, in finance, you
may have a sample of firms that underwent a takeover. For each firm, you would like to
find a “similar” firm (based on several characteristics) that did not undergo a takeover.
Those pairs of firms are nearest neighbors. In our application, we will compute the
Euclidian distance (L2-norm) between the standardized values of pairs of observations.

To implement the solution, we first construct a Stata ado-file defining program
nneighbor which takes a varlist of one or more measures that are to be used in the
match.12 In our application, we may use any number of variables as the basis for defin-
ing the nearest neighbor. The user must specify y, a response variable; matchobs, a
variable to hold the observation numbers of the nearest neighbor; and matchval, a
variable to hold the values of y belonging to the nearest neighbor.

After validating any if exp or in range conditions with marksample, the program
confirms that the two new variable names are valid, then generates those variables with
missing values. The latter step is necessary as we construct view matrices in the Mata
function related to those variables, which must already exist. We then call the Mata
function, mf nneighbor(), and compute one statistic from its results: the correlation
between the y() variable and the matchvals() variable, measuring the similarity of
these y() values between the observations and their nearest neighbors.

. type nneighbor.ado

*! nneighbor 1.0.1 CFBaum 11aug2008
program nneighbor

version 10.1

11. http://stata.com/statalist/archive/2007-10/msg00365.html
12. In the case above, that could be two variables: latitude and longitude, as in Section 14.6, where
we measured distance between capital cities.

i

i

i

i

i

i

i

i

324 Chapter 14 Cookbook: Mata function programming

syntax varlist(numeric) [if] [in], ///
Y(varname numeric) MATCHOBS(string) MATCHVAL(string)

marksample touse
qui count if ‘touse’
if r(N) == 0 {

error 2000
}

// validate new variable names
confirm new variable ‘matchobs’
confirm new variable ‘matchval’
qui generate long ‘matchobs’ = .
qui generate ‘matchval’ = .
mata: mf_nneighbor("‘varlist’", "‘matchobs’", "‘y’", ///

"‘matchval’", "‘touse’")
summarize ‘y’ if ‘touse’, meanonly
display _n "Nearest neighbors for ‘r(N)’ observations of ‘y’"
display "Based on L2-norm of standardized vars: ‘varlist’"
display "Matched observation numbers: ‘matchobs’"
display "Matched values: ‘matchval’"
qui correlate ‘y’ ‘matchval’ if ‘touse’
display "Correlation[‘y’, ‘matchval’] = " %5.4f ‘r(rho)’

end

We now construct the Mata function. The function uses a view on the varlist, con-
structing view matrix X. As the scale of those variables affects the Euclidian distance
(L2-norm) calculation, the variables are standardized in matrix Z using Ben Jann’s
mm meancolvar() function from the moremata package (see Section 13.10.4).13 Views
are then established for the matchobs variable (C), the response variable (y) and the
matchvals variable (ystar).

For each observation and variable in the normalized varlist, the L2-norm of distances
between that observation and the entire vector is computed as d. The heart of the
function is the call to minindex().14 As David Drukker stated in his Statalist posting,
this function is a fast, efficient calculator of the minimum values of a variable. Its fourth
argument can deal with ties; for simplicity we do not handle ties here. We request the
closest two values, in terms of the distance d, to each observation, recognizing that each
observation is its own nearest neighbor. The observation numbers of the two nearest
neighbors are stored in vector ind. Therefore, the observation number desired is the
second element of the vector, and y[ind[2]] is the value of the nearest neighbor’s
response variable. Those elements are stored in C[i] and ystar[i], respectively.

. type mf_nneighbor.mata
mata: mata clear
mata: mata set matastrict on
version 10.1
mata:
// mf_nneighbor 1.0.0 CFBaum 11aug2008
void function mf_nneighbor(string scalar matchvars,

string scalar closest,
string scalar response,

13. The mm meancolvar() function avoids the overhead of computing the full covariance matrix of X.
14. There is also a maxindex() function. See Section 14.3.

i

i

i

i

i

i

i

i

14.7 Locating nearest neighbors with Mata 325

string scalar match,
string scalar touse)

{
real matrix X, Z, mc, C, y, ystar
real colvector ind
real colvector w
real colvector d
real scalar n, k, i, j
string rowvector vars, v
st_view(X, ., tokens(matchvars), touse)

// standardize matchvars with mm_meancolvar from moremata
mc = mm_meancolvar(X)
Z = (X :- mc[1, .]) :/ sqrt(mc[2, .])
n = rows(X)
k = cols(X)
st_view(C, ., closest, touse)
st_view(y, ., response, touse)
st_view(ystar, ., match, touse)

// loop over observations
for(i = 1; i <= n; i++) {

// loop over matchvars
d = J(n, 1, 0)
for(j = 1; j <= k; j++) {

d = d + (Z[., j] :- Z[i, j]) :^2
}

minindex(d, 2, ind, w)
C[i] = ind[2]
ystar[i] = y[ind[2]]
}

}
end

mata: mata mosave mf_nneighbor(), dir(PERSONAL) replace

We now can try out the routine. We employ the usairquality dataset used in earlier
examples. It contains statistics for 41 U.S. cities’ air quality (so2, or sulphur dioxide
concentration) as well as several demographic factors. To test our routine, we first apply
it to a single variable: population (pop). Examining the result, we can see that it is
properly selecting the city with the closest population value as the nearest neighbor:

. use usairquality, clear

. sort pop

. nneighbor pop, y(so2) matchobs(mo1) matchval(mv1)

Nearest neighbors for 41 observations of so2
Based on L2-norm of standardized vars: pop
Matched observation numbers: mo1
Matched values: mv1
Correlation[so2, mv1] = 0.0700

. list pop mo1 so2 mv1, sep(0)

pop mo1 so2 mv1

1. 71 2 31 36
2. 80 1 36 31
3. 116 4 46 13

i

i

i

i

i

i

i

i

326 Chapter 14 Cookbook: Mata function programming

4. 132 3 13 46
5. 158 6 56 28
6. 176 7 28 94
7. 179 6 94 28
8. 201 7 17 94
9. 244 10 11 8
10. 277 11 8 26
11. 299 12 26 31
12. 308 11 31 26
13. 335 14 10 14
14. 347 13 14 10
15. 361 14 9 14
16. 448 17 18 23
17. 453 16 23 18
18. 463 17 11 23
19. 497 20 24 14
20. 507 21 14 17
21. 515 22 17 61
22. 520 21 61 17
23. 529 24 14 29
24. 531 23 29 14
25. 540 24 26 29
26. 582 27 10 30
27. 593 26 30 10
28. 622 29 56 10
29. 624 28 10 56
30. 716 31 12 16
31. 717 30 16 12
32. 744 33 29 28
33. 746 32 28 29
34. 751 33 65 28
35. 757 34 29 65
36. 844 37 9 47
37. 905 36 47 9
38. 1233 39 10 35
39. 1513 38 35 10
40. 1950 39 69 35
41. 3369 40 110 69

We must note, however, that the response variable’s values are very weakly correlated
with those of the matchvar. Matching cities on the basis of one attribute does not seem
to imply that they will have similar values of air pollution. We thus exercise the routine
on two broader sets of attributes: one adding temp and wind, and the second adding
precip and days, where days measures the mean number of days with poor air quality.

. nneighbor pop temp wind, y(so2) matchobs(mo3) matchval(mv3)

Nearest neighbors for 41 observations of so2
Based on L2-norm of standardized vars: pop temp wind
Matched observation numbers: mo3
Matched values: mv3
Correlation[so2, mv3] = 0.1769

. nneighbor pop temp wind precip days, y(so2) matchobs(mo5) matchval(mv5)

Nearest neighbors for 41 observations of so2
Based on L2-norm of standardized vars: pop temp wind precip days
Matched observation numbers: mo5

i

i

i

i

i

i

i

i

14.7 Locating nearest neighbors with Mata 327

Matched values: mv5
Correlation[so2, mv5] = 0.5286

We see that with the broader set of five attributes on which matching is based, there is
a much higher correlation between the so2 values for each city and those for its nearest
neighbor.

i

i

i

i

i

i

i

i

328 Chapter 14 Cookbook: Mata function programming

14.8 Computing the SUR estimator for an unbalanced panel

The problem: Stata’s seemingly unrelated regression (sur) estimator (sureg, [R] sureg)
estimates a set of equations, employing the matrix of residual correlations for each equa-
tion to produce a refined estimate of its parameter vector. The sureg estimator can be
considered as a panel-data estimator that operates in the wide form. It is common for
panel data to be unbalanced,15 and Stata’s xt ([XT] xt) commands handle unbalanced
panels without difficulty. However, sureg discards any observation that is missing in
any of its equations.16 We would like to use sureg without losing these observations. If
we use correlate varlist ([R] correlate), observations missing for any of the variables
in the varlist will be dropped from the calculation. In contrast, the pairwise correlation
command pwcorr varlist ([R] pwcorr) will compute correlations from all available ob-
servations for each pair of variables in turn. The logic of sureg is that of correlate;
but the correlations of residuals employed by sureg may be, as in pwcorr, calculated
on a pairwise basis, allowing the estimator to be applied to a set of equations which
may cover different time periods (as long as there is meaningful overlap).

A question posed on Statalist raised this issue and questioned whether sureg could
be used to work with an unbalanced panel. In this section, I illustrate how Mata may
be used to handle this quite sophisticated estimation problem. I worked with the code
of official Stata’s reg3 ([R] reg3) to extract the parsing commands that set up the
problem,17 and then wrote my own ado-file to perform the computations. It calls a
Mata function that produces the estimates.

For brevity, I do not reproduce the parsing code taken from reg3.ado. The syntax
of my program, suregub, is identical to that of sureg but does not support all of its
options. The basic syntax is

suregub (depvar1 varlist1) (depvar2 varlist2) ... (depvarN varlistN)

When the parsing code has executed, it has populated a local macro eqlist of equations
to be estimated and a set of local macros ind1 ...indN which contains the right-hand-
side variables for each of the N equations. We first generate the OLS residuals for
each equation by running regress ([R] regress) and predict, residual ([R] regress
postestimation). We find the maximum and minimum observation indices for each
set of residuals with the max() and min() functions, respectively.

Temporary matrix sigma will contain the pairwise correlations of the equations’
residuals. They are produced with calls to correlate ([R] correlate). We then invoke
the Mata function mm suregub, passing it the number of equations (neq), the list of
equations (eqlist) and the computed sigma matrix. The remainder of suregub.ado
is:

// generate residual series

15. See Section 5.3.
16. An alternative solution to this problem was provided (using Stata’s xtgee command) by McDowell
(2004).
17. Official Stata’s sureg.ado is essentially a wrapper for reg3.ado.

i

i

i

i

i

i

i

i

14.8 Computing the SUR estimator for an unbalanced panel 329

local minn = .
local maxn = 0
forvalues i = 1/‘neq’ {

local dv : word ‘i’ of ‘eqlist’
local eq‘i’ = "‘dv’ ‘ind‘i’’"
qui {
regress ‘dv’ ‘ind‘i’’
tempvar touse‘i’ es eps‘i’
predict double ‘eps‘i’’ if e(sample), resid
generate byte ‘touse‘i’’ = cond(e(sample), 1, .)
summarize ‘eps‘i’’, meanonly
local maxn = max(‘maxn’, r(N))
local minn = min(‘minn’, r(N))
}

}
tempname sigma
matrix ‘sigma’ = J(‘neq’, ‘neq’, 0)
// generate pairwise correlation matrix of residuals;
// for comparison with sureg, use divisor N
local neq1 = ‘neq’ - 1
forvalues i = 1/‘neq1’ {

forvalues j = 2/‘neq’ {
qui correlate ‘eps‘i’’ ‘eps‘j’’, cov
mat ‘sigma’[‘i’, ‘i’] = r(Var_1) * (r(N) - 1) / (r(N))
mat ‘sigma’[‘j’, ‘j’] = r(Var_2) * (r(N) - 1) / (r(N))
mat ‘sigma’[‘i’, ‘j’] = r(cov_12) * (r(N) - 1) / (r(N))
mat ‘sigma’[‘j’, ‘i’] = ‘sigma’[‘i’, ‘j’]

}
}
mata: mm_suregub(‘neq’, "‘eqlist’", "‘sigma’")
display _newline "Seemingly unrelated regression for an unbalanced panel"
display _newline "Minimum observations per unit = ‘minn’"
display "Maximum observations per unit = ‘maxn’"
mat b = r(b)
mat V = r(V)
ereturn clear
ereturn post b V
ereturn local cmd "suregub"
ereturn local minobs ‘minn’
ereturn local maxobs ‘maxn’
ereturn display
end

Following the Mata function’s execution, we retrieve the estimated coefficient vector
(returned as r(b)) and covariance matrix (returned as (r(V)) to Stata matrices b and
V, respectively. Those matrices are then posted to the ereturn values with ereturn

post ([P] ereturn). The ereturn display command triggers the standard estimation
output routine, which now presents the results of estimation from mm suregub().

The Mata function is more complicated than those we have seen in earlier examples.
As introduced in Section 13.8, I employ pointers: in this case, rowvectors of pointers
to real matrices. We also must work with the coefficient names and matrix stripes18

attached to Stata matrices so that the display of estimation results will work properly.
The first section of the function loops over equations, setting up the appropriate contents
of the dependent variable (yy[i]) and the right-hand-side variables (xx[i]) for each

18. See Section 14.1.

i

i

i

i

i

i

i

i

330 Chapter 14 Cookbook: Mata function programming

equation in turn.19

In the second loop over equations, the elements of the full X′X matrix are com-
puted as scalar multiples of an element of the inverse of sigma times the cross-product
([M-5] cross()) of the ith and jth equations’ regressor matrices. The full y′y vector is
built up from scalar multiples of an element of the inverse of sigma times the cross-
product of the ith equation’s regressors and the jth equation’s values of yy. When these
two matrices are assembled, the least squares solution is obtained with invsym(), and
the appropriate matrix row and column stripes are defined for the result matrices r(b)
and r(V).

. type mm_suregub.mata
version 10.1
mata: mata clear
mata: mata set matastrict on
mata:
// mm_suregub 1.0.0 CFBaum 11aug2008
void mm_suregub(real scalar neq,

string scalar eqlist,
string scalar ssigma)

{
real matrix isigma, tt, eqq, iota, XX, YY, xi, xj, yj, vee
real vector beta
real scalar nrow, ncol, i, ii, i2, jj, j, j2
string scalar lt, touse, le, eqname, eqv
string vector v, vars, stripe
pointer (real matrix) rowvector eq
pointer (real matrix) rowvector xx
pointer (real matrix) rowvector yy

eq = xx = yy = J(1, neq, NULL)
isigma = invsym(st_matrix(ssigma))
nrow = 0
ncol = 0
string rowvector coefname, eqn
string matrix mstripe

// equation loop 1
for(i = 1; i <= neq; i++) {

lt = "touse" + strofreal(i)
touse = st_local(lt)
st_view(tt, ., touse)
le = "eq" + strofreal(i)
eqv = st_local(le)
vars = tokens(eqv)
v = vars[|1, .|]

// pull in full matrix, including missing values
st_view(eqq, ., v)
eq[i] = &(tt :* eqq)

// matrix eq[i] is [y|X] for ith eqn
eqname = v[1]
stripe = v[2::cols(v)], "_cons"
coefname = coefname, stripe
eqn = eqn, J(1, cols(v), eqname)

// form X, assuming constant term
nrow = nrow + rows(*eq[i])

19. A constant term is assumed to be present in each equation.

i

i

i

i

i

i

i

i

14.8 Computing the SUR estimator for an unbalanced panel 331

iota = J(rows(*eq[i]), 1, 1)

xx[i] = &((*eq[i])[| 1,2 \ .,. |], iota)
ncol = ncol + cols(*xx[i])

// form y
yy[i] = &(*eq[i])[.,1]

}
XX = J(ncol, ncol, 0)
YY = J(ncol, 1, 0)
ii = 0

// equation loop 2
for(i=1; i<=neq; i++) {

i2 = cols(*xx[i])
xi = *xx[i]
jj = 0
for(j=1; j<=neq; j++) {

xj = *xx[j]
j2 = cols(*xx[j])
yj = *yy[j]
XX[| ii+1, jj+1 \ ii+i2, jj+j2 |] = isigma[i, j] :* cro

> ss(xi, xj)
YY[| ii+1, 1 \ ii+i2, 1 |] = YY[| ii+1, 1 \ ii+i2, 1 |]

> + ///
isigma[i, j] :* cross(xi,

> yj)
jj = jj + j2

}
ii = ii + i2

}
// compute SUR beta (X’ [Sigma^-1 # I] X)^-1 (X’ [Sigma^-1 # I] y)

vee = invsym(XX)
beta = vee * YY
st_matrix("r(b)", beta’)
mstripe=eqn’, coefname’
st_matrixcolstripe("r(b)", mstripe)
st_matrix("r(V)", vee)
st_matrixrowstripe("r(V)", mstripe)
st_matrixcolstripe("r(V)", mstripe)

}
end

mata: mata mosave mm_suregub(), dir(PERSONAL) replace

To validate the routine, we first apply it to a balanced panel, for which it should replicate
standard sureg results if it has been programmed properly. As we have verified that
suregub passes that test using the grunfeld.dta dataset, we modify that dataset to
create an unbalanced panel:

. use grunfeld, clear

. drop in 75/80
(6 observations deleted)

. drop in 41/43
(3 observations deleted)

. drop in 18/20
(3 observations deleted)

. keep if company <= 4
(120 observations deleted)

i

i

i

i

i

i

i

i

332 Chapter 14 Cookbook: Mata function programming

. drop time

. reshape wide invest mvalue kstock, i(year) j(company)
(note: j = 1 2 3 4)

Data long -> wide

Number of obs. 68 -> 20
Number of variables 5 -> 13
j variable (4 values) company -> (dropped)
xij variables:

invest -> invest1 invest2 ... invest4
mvalue -> mvalue1 mvalue2 ... mvalue4
kstock -> kstock1 kstock2 ... kstock4

. list year invest*, sep(0)

year invest1 invest2 invest3 invest4

1. 1935 317.6 209.9 . 40.29
2. 1936 391.8 355.3 . 72.76
3. 1937 410.6 469.9 . 66.26
4. 1938 257.7 262.3 44.6 51.6
5. 1939 330.8 230.4 48.1 52.41
6. 1940 461.2 361.6 74.4 69.41
7. 1941 512 472.8 113 68.35
8. 1942 448 445.6 91.9 46.8
9. 1943 499.6 361.6 61.3 47.4
10. 1944 547.5 288.2 56.8 59.57
11. 1945 561.2 258.7 93.6 88.78
12. 1946 688.1 420.3 159.9 74.12
13. 1947 568.9 420.5 147.2 62.68
14. 1948 529.2 494.5 146.3 89.36
15. 1949 555.1 405.1 98.3 .
16. 1950 642.9 418.8 93.5 .
17. 1951 755.9 588.2 135.2 .
18. 1952 . 645.5 157.3 .
19. 1953 . 641 179.5 .
20. 1954 . 459.3 189.6 .

We may then invoke suregub to generate point and interval estimates:

. suregub (invest1 mvalue1 kstock1) (invest2 mvalue2 kstock2) ///
> (invest3 mvalue3 kstock3) (invest4 mvalue4 kstock4)

Seemingly unrelated regressions for an unbalanced panel

Min obs per unit = 14
Max obs per unit = 20

Coef. Std. Err. z P>|z| [95% Conf. Interval]

invest1
mvalue1 .0787979 .0220396 3.58 0.000 .035601 .1219948
kstock1 .245538 .044413 5.53 0.000 .1584901 .3325858

_cons 64.69007 96.85787 0.67 0.504 -125.1479 254.528

invest2
mvalue2 .1729584 .0640754 2.70 0.007 .047373 .2985439

i

i

i

i

i

i

i

i

14.8 Computing the SUR estimator for an unbalanced panel 333

kstock2 .4150819 .1279443 3.24 0.001 .1643156 .6658482
_cons -53.8353 128.2932 -0.42 0.675 -305.2853 197.6147

invest3
mvalue3 .0522683 .0191105 2.74 0.006 .0148124 .0897243
kstock3 .1071995 .0287962 3.72 0.000 .0507599 .163639

_cons -39.32897 37.37061 -1.05 0.293 -112.574 33.91607

invest4
mvalue4 .0632339 .0142336 4.44 0.000 .0353364 .0911313
kstock4 .1487322 .0825525 1.80 0.072 -.0130678 .3105321

_cons 12.50393 11.02009 1.13 0.257 -9.09504 34.1029

A number of additional features could be added to suregub to more closely match
the behavior of sureg. That effort is left to the ambitious reader. The full code for
suregub.ado is available in the electronic supplement to this book.

i

i

i

i

i

i

i

i

334 Chapter 14 Cookbook: Mata function programming

14.9 A GMM-CUE estimator using Mata’s optimize() func-

tions (with Mark E. Schaffer)

The problem: We would like to implement the continuously-updated generalized
method of moments estimator (GMM-CUE) of Hansen et al. (1996)) in Mata.20 This
is an estimator of a linear instrumental variables model that requires numerical opti-
mization for its solution. We have implemented this estimator for ivreg2 in Stata’s
ado-file language using the maximum likelihood commands (ml, [R] ml). Although that
is a workable solution, it can be very slow for large datasets with many regressors and
instruments. In Stata version 10, a full-featured suite of optimization commands are
available in Mata as optimize() ([M-5] optimize). We implement a simple IV-GMM
estimator in Mata and use that as a model for implementing GMM-CUE.

The two-step GMM estimator for a linear instrumental variables regression model
reduces to standard IV if we assume an i.i.d. error process, or if the equation is ex-
actly identified with the number of instruments equal to the number of regressors.21

The following ado-file, mygmm2s.ado, accepts a dependent variable and three additional
optional variable lists: for endogenous variables, included instruments and excluded
instruments. A constant is automatically included in the regression and in the instru-
ment matrix. There is a single option, robust, which specifies whether we are assuming
i.i.d. errors or allowing for arbitrary heteroskedasticity. The routine calls Mata function
m mygmm2s() and receives results back in the return list. Estimation results are assem-
bled and posted to the official locations so that we may make use of Stata’s ereturn

display command and enable the use of post-estimation commands such as test and
lincom.

. type mygmm2s.ado
*! mygmm2s 1.0.2 MES/CFB 11aug2008
program mygmm2s, eclass

version 10.1
/*
Our standard syntax:
mygmm2s y, endog(varlist1) inexog(varlist2) exexog(varlist3) [robust]
where varlist1 contains endogenous regressors

varlist2 contains exogenous regressors (included instruments)
varlist3 contains excluded instruments

Without robust, efficient GMM is IV. With robust, efficient GMM is 2-step
efficient GMM, robust to arbitrary heteroskedasticity.
To accommodate time-series operators in the options, add the "ts"

*/
syntax varname(ts) [if] [in] [, endog(varlist ts) inexog(varlist ts) //

> /
exexog(varlist ts) robust]

local depvar ‘varlist’

/*
marksample handles the variables in ‘varlist’ automatically, but not the
variables listed in the options ‘endog’, ‘inexog’ and so on. -markout- sets
‘touse’ to 0 for any observations where the variables listed are missing.

20. The rationale for this estimator is presented in Baum et al. (2007), pp. 477–479.
21. See Baum et al. (2007), pp. 467–469.

i

i

i

i

i

i

i

i

14.9 A GMM-CUE estimator using Mata’s optimize() functions (with Mark E. Schaffer)335

*/
marksample touse
markout ‘touse’ ‘endog’ ‘inexog’ ‘exexog’

// These are the local macros that our Stata program will use
tempname b V omega

// Call the Mata routine. All results will be waiting for us in "r()" macros af
> terwards.

mata: m_mygmm2s("‘depvar’", "‘endog’", "‘inexog’", ///
"‘exexog’", "‘touse’", "‘robust’")

// Move the basic results from r() macros into Stata matrices.
mat ‘b’ = r(beta)
mat ‘V’ = r(V)
mat ‘omega’ = r(omega)

// Prepare row/col names.
// Our convention is that regressors are [endog included exog]
// and instruments are [excluded exog included exog]
// Constant is added by default and is the last column.

local vnames ‘endog’ ‘inexog’ _cons
matrix rownames ‘V’ = ‘vnames’
matrix colnames ‘V’ = ‘vnames’
matrix colnames ‘b’ = ‘vnames’
local vnames2 ‘exexog’ ‘inexog’ _cons
matrix rownames ‘omega’ = ‘vnames2’
matrix colnames ‘omega’ = ‘vnames2’

// We need the number of observations before we post our results.
local N = r(N)
ereturn post ‘b’ ‘V’, depname(‘depvar’) obs(‘N’) esample(‘touse’)

// Store remaining estimation results as e() macros accessible to the user.
ereturn matrix omega ‘omega’
ereturn local depvar = "‘depvar’"
ereturn scalar N = r(N)
ereturn scalar j = r(j)
ereturn scalar L = r(L)
ereturn scalar K = r(K)
if "‘robust’" != "" {

ereturn local vcetype "Robust"
}

display _newline "Two-step GMM results" _col(60) "Number of obs = " e(N
>)

ereturn display
display "Sargan-Hansen J statistic: " %7.3f e(j)
display "Chi-sq(" %3.0f e(L)-e(K) ") P-val = " ///

%5.4f chiprob(e(L)-e(K), e(j)) _newline

end

The Mata function receives the names of variables to be included in the regression and
creates view matrices for Y (the dependent variable), X1 (the endogenous variables), X2
(the exogenous regressors or included instruments) and Z1 (the excluded instruments).
The st tsrevar() ([M-5] st tsrevar()) function is used to deal with Stata’s time series
operators in any of the variable lists.

. type m_mygmm2s.mata
mata:mata clear
version 10.1

i

i

i

i

i

i

i

i

336 Chapter 14 Cookbook: Mata function programming

mata: mata set matastrict on
mata:
// m_mygmm2s 1.0.0 MES/CFB 11aug2008
void m_mygmm2s(string scalar yname,

string scalar endognames,
string scalar inexognames,
string scalar exexognames,
string scalar touse,
string scalar robust)

{
real matrix Y, X1, X2, Z1, X, Z, QZZ, QZX, W, omega, V
real vector cons, beta_iv, beta_gmm, e, gbar
real scalar K, L, N, j

// Use st_tsrevar in case any variables use Stata’s time-series operators.

st_view(Y, ., st_tsrevar(tokens(yname)), touse)
st_view(X1, ., st_tsrevar(tokens(endognames)), touse)
st_view(X2, ., st_tsrevar(tokens(inexognames)), touse)
st_view(Z1, ., st_tsrevar(tokens(exexognames)), touse)

// Our convention is that regressors are [endog included exog]
// and instruments are [excluded exog included exog]
// Constant is added by default and is the last column.

cons = J(rows(X2), 1, 1)
X2 = X2, cons
X = X1, X2
Z = Z1, X2

K = cols(X)
L = cols(Z)
N = rows(Y)

QZZ = 1/N * quadcross(Z, Z)
QZX = 1/N * quadcross(Z, X)

// First step of 2-step feasible efficient GMM: IV (2SLS). Weighting matrix
// is inv of Z’Z (or QZZ).

W = invsym(QZZ)
beta_iv = (invsym(X’Z * W * Z’X) * X’Z * W * Z’Y)

// By convention, Stata parameter vectors are row vectors
beta_iv = beta_iv’

// Use first-step residuals to calculate optimal weighting matrix for 2-step FE
> GMM

omega = m_myomega(beta_iv, Y, X, Z, robust)
// Second step of 2-step feasible efficient GMM: IV (2SLS). Weighting matrix
// is inv of Z’Z (or QZZ).

W = invsym(omega)
beta_gmm = (invsym(X’Z * W * Z’X) * X’Z * W * Z’Y)

// By convention, Stata parameter vectors are row vectors
beta_gmm = beta_gmm’

// Sargan-Hansen J statistic: first we calculate the second-step residuals
e = Y - X * beta_gmm’

// Calculate gbar = 1/N * Z’*e
gbar = 1/N * quadcross(Z, e)
j = N * gbar’ * W * gbar

// Sandwich var-cov matrix (no finite-sample correction)
// Reduces to classical var-cov matrix if Omega is not robust form.
// But the GMM estimator is "root-N consistent", and technically we do
// inference on sqrt(N)*beta. By convention we work with beta, so we adjust
// the var-cov matrix instead:

i

i

i

i

i

i

i

i

14.9 A GMM-CUE estimator using Mata’s optimize() functions (with Mark E. Schaffer)337

V = 1/N * invsym(QZX’ * W * QZX)

// Easiest way of returning results to Stata: as r-class macros.
st_matrix("r(beta)", beta_gmm)
st_matrix("r(V)", V)
st_matrix("r(omega)", omega)
st_numscalar("r(j)", j)
st_numscalar("r(N)", N)
st_numscalar("r(L)", L)
st_numscalar("r(K)", K)

}
end

mata: mata mosave m_mygmm2s(), dir(PERSONAL) replace

This function in turn calls an additional Mata function, m myomega(), to compute
the appropriate covariance matrix. This is a real matrix function, as it will re-
turn its result, the real matrix omega, to the calling function. Because we will reuse
the m myomega() function in our GMM-CUE program, we place it in a separate file,
m myomega.mata, with instructions to compile it into a .mo file (see Section 13.10.3).

. type m_myomega.mata

mata: mata clear
version 10.1
mata: mata set matastrict on
mata:
// m_myomega 1.0.0 MES/CFB 11aug2008
real matrix m_myomega(real rowvector beta,

real colvector Y,
real matrix X,
real matrix Z,
string scalar robust)

{
real matrix QZZ, omega
real vector e, e2
real scalar N, sigma2

// Calculate residuals from the coefficient estimates
N = rows(Z)
e = Y - X * beta’

if (robust=="") {
// Compute classical, non-robust covariance matrix

QZZ = 1/N * quadcross(Z, Z)
sigma2 = 1/N * quadcross(e, e)
omega = sigma2 * QZZ

}
else {

// Compute heteroskedasticity-consistent covariance matrix
e2 = e:^2
omega = 1/N * quadcross(Z, e2, Z)

}
_makesymmetric(omega)
return (omega)

}
end

mata: mata mosave m_myomega(), dir(PERSONAL) replace

i

i

i

i

i

i

i

i

338 Chapter 14 Cookbook: Mata function programming

This gives us a working Mata implementation of an instrumental variables estimator
and an IV-GMM estimator (accounting for arbitrary heteroskedasticity), and we can
verify that its results match those of ivregress ([R] ivregress) or our own ivreg2.

To implement the GMM-CUE estimator,22 we clone mygmm2s.ado to mygmmcue.ado.
The ado-file code is very similar:

. type mygmmcue.ado
*! mygmmcue 1.0.2 MES/CFB 11aug2008
program mygmmcue, eclass

version 10.1
syntax varname(ts) [if] [in] [, endog(varlist ts) ///

inexog(varlist ts) exexog(varlist ts) robust]
local depvar ‘varlist’

marksample touse
markout ‘touse’ ‘endog’ ‘inexog’ ‘exexog’
tempname b V omega

mata: m_mygmmcue("‘depvar’", "‘endog’", "‘inexog’", ///
"‘exexog’", "‘touse’", "‘robust’")

mat ‘b’ = r(beta)
mat ‘V’ = r(V)
mat ‘omega’=r(omega)

// Prepare row/col names
// Our convention is that regressors are [endog included exog]
// and instruments are [excluded exog included exog]

local vnames ‘endog’ ‘inexog’ _cons
matrix rownames ‘V’ = ‘vnames’
matrix colnames ‘V’ = ‘vnames’
matrix colnames ‘b’ = ‘vnames’
local vnames2 ‘exexog’ ‘inexog’ _cons
matrix rownames ‘omega’ = ‘vnames2’
matrix colnames ‘omega’ = ‘vnames2’

local N = r(N)
ereturn post ‘b’ ‘V’, depname(‘depvar’) obs(‘N’) esample(‘touse’)

ereturn matrix omega ‘omega’
ereturn local depvar = "‘depvar’"
ereturn scalar N = r(N)
ereturn scalar j = r(j)
ereturn scalar L = r(L)
ereturn scalar K = r(K)

if "‘robust’" != "" ereturn local vcetype "Robust"

display _newline "GMM-CUE estimates" _col(60) "Number of obs = " e(N)
ereturn display
display "Sargan-Hansen J statistic: " %7.3f e(j)
display "Chi-sq(" %3.0f e(L)-e(K) ") P-val = " ///

%5.4f chiprob(e(L)-e(K), e(j)) _newline

end

We now consider how the Mata function must be modified to incorporate the numerical
optimization routines. We must first make use of Mata’s external ([M-2] declarations)

22. See Baum et al. (2007), pp. 477–480.

i

i

i

i

i

i

i

i

14.9 A GMM-CUE estimator using Mata’s optimize() functions (with Mark E. Schaffer)339

declaration to specify that the elements needed within our objective function evaluator
are visible to that routine. We could also pass those arguments to the evaluation routine,
but treating them as external requires less housekeeping.23 As in the standard two-
step GMM routine, we derive first-step estimates of the regression parameters from a
standard GMM estimation.

We then use Mata’s optimize() functions to set up the optimization problem.
The optimize init() call, as described in Gould (2007b), sets up a Mata struc-
ture, in our case named S, containing all elements of the problem.24 In a call to
optimize init evaluator(), we specify that the evaluation routine is a Mata func-
tion, m mycuecrit(), by providing a pointer to the function (see Section 13.8). We call
optimize init which() to indicate that we are minimizing (rather than maximizing)
the objective function, and use optimize init evaluatortype() that our evaluation
routine is a type d0 evaluator. Finally, we call optimize init params() toprovide
starting values for the parameters from the instrumental variables coefficient vector
beta iv. The optimize() function invokes the optimization routine, returning its re-
sults in the parameter rowvector beta cue. The optimal value of the objective function
is retrieved with optimize result value().

. type m_mygmmcue.mata
mata: mata clear
version 10.1
mata: mata set matastrict on
mata:
// m_mygmmcue 1.0.0 MES/CFB 11aug2008
void m_mygmmcue(string scalar yname,

string scalar endognames,
string scalar inexognames,
string scalar exexognames,
string scalar touse,
string scalar robust)

{
real matrix X1, X2, Z1, QZZ, QZX, W, V
real vector cons, beta_iv, beta_cue
real scalar K, L, N, S, j

// In order for the optimization objective function to find various variables
// and data they have to be set as externals. This means subroutines can
// find them without having to have them passed to the subroutines as arguments
> .
// robustflag is the robust argument recreated as an external Mata scalar.

external Y, X, Z, e, omega, robustflag
robustflag = robust

st_view(Y, ., st_tsrevar(tokens(yname)), touse)
st_view(X1, ., st_tsrevar(tokens(endognames)), touse)
st_view(X2, ., st_tsrevar(tokens(inexognames)), touse)
st_view(Z1, ., st_tsrevar(tokens(exexognames)), touse)

// Our convention is that regressors are [endog included exog]
// and instruments are [excluded exog included exog]

23. As discussed in [M-5] optimize(), pp. 287–288, you may always pass up to nine extra arguments
to evaluators. However, you must then keep track of those arguments and their order.
24. See Section 13.9.

i

i

i

i

i

i

i

i

340 Chapter 14 Cookbook: Mata function programming

// The constant is added by default and is the last column.
cons = J(rows(X2), 1, 1)
X2 = X2, cons
X = X1, X2
Z = Z1, X2

K = cols(X)
L = cols(Z)
N = rows(Y)

QZZ = 1/N * quadcross(Z, Z)
QZX = 1/N * quadcross(Z, X)

// First step of CUE GMM: IV (2SLS). Use beta_iv as the initial values for
// the numerical optimization.

W = invsym(QZZ)
beta_iv = invsym(X’Z * W *Z’X) * X’Z * W * Z’Y

// Stata convention is that parameter vectors are row vectors, and optimizers
// require this, so must conform to this in what follows.

beta_iv = beta_iv’

// What follows is how to set out an optimization in Stata. First, initialize
// the optimization structure in the variable S. Then tell Mata where the
// objective function is, that it’s a minimization, that it’s a "d0" type of
// objective function (no analytical derivatives or Hessians), and that the
// initial values for the parameter vector are in beta_iv. Finally, optimize.

S = optimize_init()
optimize_init_evaluator(S, &m_mycuecrit())
optimize_init_which(S, "min")
optimize_init_evaluatortype(S, "d0")
optimize_init_params(S, beta_iv)
beta_cue = optimize(S)

// The last omega is the CUE omega, and the last evaluation of the GMM
// objective function is J.

W = invsym(omega)
j = optimize_result_value(S)

V = 1/N * invsym(QZX’ * W * QZX)

st_matrix("r(beta)", beta_cue)
st_matrix("r(V)", V)
st_matrix("r(omega)", omega)
st_numscalar("r(j)", j)
st_numscalar("r(N)", N)
st_numscalar("r(L)", L)
st_numscalar("r(K)", K)

}
end

mata: mata mosave m_mygmmcue(), dir(PERSONAL) replace

Let us now examine the evaluation routine. Given values for the parameter vector beta,
it computes a new value of the omega matrix (Ω, the covariance matrix of orthogonality
conditions) and a new set of residuals e, which are also a function of beta. The j

statistic, which is the minimized value of the objective function, is then computed,
depending on the updated residuals e and the weighting matrix W = Ω−1, a function of
the updated estimates of beta.

. type m_mycuecrit.mata
mata: mata clear

i

i

i

i

i

i

i

i

14.9 A GMM-CUE estimator using Mata’s optimize() functions (with Mark E. Schaffer)341

version 10.1
mata: mata set matastrict on
mata:

// GMM-CUE evaluator function.
// Handles only d0-type optimization; todo, g and H are just ignored.
// beta is the parameter set over which we optimize, and
// j is the objective function to minimize.

// m_mycuecrit 1.0.0 MES/CFB 11aug2008
void m_mycuecrit(todo, beta, j, g, H)
{

external Y, X, Z, e, omega, robustflag
real matrix W
real vector gbar
real scalar N

omega = m_myomega(beta, Y, X, Z, robustflag)
W = invsym(omega)
N = rows(Z)
e = Y - X * beta’

// Calculate gbar=Z’*e/N
gbar = 1/N * quadcross(Z,e)
j = N * gbar’ * W * gbar

}
end

mata: mata mosave m_mycuecrit(), dir(PERSONAL) replace

Our Mata-based GMM-CUE routine is now complete. To validate both the two-step
GMM routine and its GMM-CUE counterpart, we write a simple certification script
(see Section 11.12) for each routine. First, let’s check to see that our two-step routine
works for both i.i.d. and heteroskedastic errors:

. cscript mygmm2s adofile mygmm2s
BEGIN mygmm2s

-> which mygmm2s
./mygmm2s.ado
*! mygmm2s 1.0.2 MES/CFB 11aug2008

. set more off

.

. mata: mata clear

. program drop _all

. // use http://fmwww.bc.edu/ec-p/data/hayashi/griliches76.dta, clear

. use griliches76, clear
(Wages of Very Young Men, Zvi Griliches, J.Pol.Ec. 1976)

. quietly ivreg2 lw s expr tenure rns smsa (iq=med kww age mrt), gmm2s

. savedresults save ivhomo e()

. mygmm2s lw, endog(iq) inexog(s expr tenure rns smsa) ///
> exexog(med kww age mrt)

Two-step GMM results Number of obs = 758

lw Coef. Std. Err. z P>|z| [95% Conf. Interval]

iq -.0115468 .0052169 -2.21 0.027 -.0217717 -.001322
s .1373477 .0169631 8.10 0.000 .1041007 .1705947

i

i

i

i

i

i

i

i

342 Chapter 14 Cookbook: Mata function programming

expr .0338041 .007268 4.65 0.000 .019559 .0480492
tenure .040564 .0088553 4.58 0.000 .023208 .0579201

rns -.1176984 .0353037 -3.33 0.001 -.1868924 -.0485043
smsa .149983 .0314254 4.77 0.000 .0883903 .2115757
_cons 4.837875 .3448209 14.03 0.000 4.162038 5.513711

Sargan-Hansen J statistic: 61.137
Chi-sq(3) P-val = 0.0000

. savedresults compare ivhomo e(), include(macros: depvar scalar: N j matrix: b
> V) ///
> tol(1e-7) verbose
comparing macro e(depvar)
comparing scalar e(N)
comparing scalar e(j)
comparing matrix e(b)
comparing matrix e(V)

.

. quietly ivreg2 lw s expr tenure rns smsa (iq=med kww age mrt), gmm2s robust

. savedresults save ivrobust e()

. quietly mygmm2s lw, endog(iq) inexog(s expr tenure rns smsa) ///
> exexog(med kww age mrt) robust

. savedresults compare ivrobust e(), include(macros: depvar scalar: N j matrix:
> b V) ///
> tol(1e-7) verbose
comparing macro e(depvar)
comparing scalar e(N)
comparing scalar e(j)
comparing matrix e(b)
comparing matrix e(V)

Our mygmm2s routine returns the same results as ivreg2 (Baum et al. (2007)) for the
several objects included in the savedresults compare validation command.25 Now we
construct and run a similar script to validate the GMM-CUE routine:

. cscript mygmmcue adofile mygmmcue
BEGIN mygmmcue

-> which mygmmcue
./mygmmcue.ado
*! mygmmcue 1.0.2 MES/CFB 11aug2008

. set more off

. mata: mata clear

. program drop _all

. set rmsg on
r; t=0.00 9:39:34

. use griliches76, clear
(Wages of Very Young Men, Zvi Griliches, J.Pol.Ec. 1976)
r; t=0.00 9:39:34

.

. quietly ivreg2 lw s expr tenure rns smsa (iq=med kww age mrt), cue
r; t=7.18 9:39:41

. savedresults save ivreg2cue e()

25. These functions of ivreg2 have been certified against official Stata’s ivregress.

i

i

i

i

i

i

i

i

14.9 A GMM-CUE estimator using Mata’s optimize() functions (with Mark E. Schaffer)343

r; t=0.00 9:39:41

. mygmmcue lw, endog(iq) inexog(s expr tenure rns smsa) ///
> exexog(med kww age mrt)
Iteration 0: f(p) = 61.136598
Iteration 1: f(p) = 32.923655
Iteration 2: f(p) = 32.83694
Iteration 3: f(p) = 32.832195
Iteration 4: f(p) = 32.831616
Iteration 5: f(p) = 32.831615

GMM-CUE estimates Number of obs = 758

lw Coef. Std. Err. z P>|z| [95% Conf. Interval]

iq -.0755427 .0132447 -5.70 0.000 -.1015018 -.0495837
s .3296909 .0430661 7.66 0.000 .245283 .4140989

expr .0098901 .0184522 0.54 0.592 -.0262755 .0460558
tenure .0679955 .0224819 3.02 0.002 .0239317 .1120594

rns -.3040223 .0896296 -3.39 0.001 -.4796931 -.1283515
smsa .2071594 .0797833 2.60 0.009 .050787 .3635318
_cons 8.907018 .8754361 10.17 0.000 7.191194 10.62284

Sargan-Hansen J statistic: 32.832
Chi-sq(3) P-val = 0.0000

r; t=0.57 9:39:42

. savedresults compare ivreg2cue e(), include(macros: depvar scalar: N j matrix
> : b V) ///
> tol(1e-4) verbose
comparing macro e(depvar)
comparing scalar e(N)
comparing scalar e(j)
comparing matrix e(b)
comparing matrix e(V)
r; t=0.01 9:39:42

.

. quietly ivreg2 lw s expr tenure rns smsa (iq=med kww age mrt), cue robust
r; t=13.46 9:39:55

. savedresults save ivreg2cue e()
r; t=0.00 9:39:55

. mygmmcue lw, endog(iq) inexog(s expr tenure rns smsa) ///
> exexog(med kww age mrt) robust
Iteration 0: f(p) = 52.768916
Iteration 1: f(p) = 28.946591 (not concave)
Iteration 2: f(p) = 27.417939 (not concave)
Iteration 3: f(p) = 27.041838
Iteration 4: f(p) = 26.508996
Iteration 5: f(p) = 26.420853
Iteration 6: f(p) = 26.420648
Iteration 7: f(p) = 26.420637
Iteration 8: f(p) = 26.420637

GMM-CUE estimates Number of obs = 758

Robust
lw Coef. Std. Err. z P>|z| [95% Conf. Interval]

iq -.0770701 .0147825 -5.21 0.000 -.1060433 -.048097
s .3348492 .0469881 7.13 0.000 .2427542 .4269441

expr .0197632 .0199592 0.99 0.322 -.019356 .0588825

i

i

i

i

i

i

i

i

344 Chapter 14 Cookbook: Mata function programming

tenure .0857848 .0242331 3.54 0.000 .0382888 .1332807
rns -.3209864 .091536 -3.51 0.000 -.5003937 -.1415791
smsa .255257 .0837255 3.05 0.002 .091158 .419356
_cons 8.943698 .9742228 9.18 0.000 7.034257 10.85314

Sargan-Hansen J statistic: 26.421
Chi-sq(3) P-val = 0.0000

r; t=0.68 9:39:56

. savedresults compare ivreg2cue e(), include(macros: depvar scalar: N j matrix
> : b V) ///
> tol(1e-4) verbose
comparing macro e(depvar)
comparing scalar e(N)
comparing scalar e(j)
comparing matrix e(b)
comparing matrix e(V)
r; t=0.01 9:39:56

We find that the estimates produced by mygmmcue are reasonably close to those produced
by the different optimization routine employed by ivreg2. As we sought to speed up the
calculation of GMM-CUE estimates, we are pleased to see the timings displayed by set

rmsg on. For the non-robust estimates, ivreg2 took 6.07 seconds, while mygmmcue took
0.51 seconds: a twelve-fold speedup. For the robust CUE estimates, ivreg2 required
12.69 seconds, compared to 0.64 seconds for mygmmcue: an amazing twenty times faster.
Calculation of the robust covariance matrix using Mata’s matrix operations is apparently
much more efficient from a computational standpoint.

Although this Mata-based GMM-CUE routine for linear instrumental variables mod-
els is merely a first stab at taking advantage of Mata’s efficiency, it is evident that the
approach has great potential for the development of more readable and efficient code.

i

i

i

i

i

i

i

i

References

Baum, C. F. 2000. sts17. Compacting time series data. In Stata Technical Bulletin
Reprints, vol. 10, 369–370. College Station, TX: Stata Press.

———. 2006a. An Introduction to Modern Econometrics using Stata. College Station,
TX: Stata Press.

———. 2006b. Stata Tip 37: And the last shall be first. Stata Journal 6(4): 588–589.

———. 2006c. Stata Tip 38: Testing for groupwise heteroskedasticity. Stata Journal
6(4): 590–592.

———. 2007. Stata Tip 40: Taking care of business. Stata Journal 7(1): 137–139.

Baum, C. F., and N. J. Cox. 2007. Stata Tip 45: Getting those data into shape. Stata
Journal 7(2): 268–271.

Baum, C. F., M. E. Schaffer, and S. Stillman. 2003. Instrumental variables and GMM:
Estimation and testing. Stata Journal 3(1): 1–31.

———. 2007. Enhanced routines for instrumental variables/generalized method of mo-
ments estimation and testing. Stata Journal 7(4): 465–506.

Baum, C. F., and V. Wiggins. 2000. dm81. Utility for time series data. In Stata
Technical Bulletin Reprints, vol. 10, 29–30. College Station, TX: Stata Press.

Cook, R. D., and S. Weisberg. 1994. An Introduction to Regression Graphics. New
York: John Wiley & Sons, Inc.

Cox, N. J. 1999. dm70. Extensions to generate, extended. In Stata Technical Bulletin
Reprints, vol. 9, 34–45. College Station, TX: Stata Press.

———. 2000. dm70.1. Extensions to generate, extended: corrections. In Stata Technical
Bulletin Reprints, vol. 10, 9. College Station, TX: Stata Press.

———. 2002a. Speaking Stata: How to move step by: step. Stata Journal 2(1): 86–102.

———. 2002b. Speaking Stata: How to face lists with fortitude. Stata Journal 2(2):
202–222.

———. 2002c. Speaking Stata: On numbers and strings. Stata Journal 2(3): 314–329.

———. 2003a. Speaking Stata: Problems with lists. Stata Journal 3(2): 185–202.

i

i

i

i

i

i

i

i

346 References

———. 2003b. Speaking Stata: Problems with tables, Part II. Stata Journal 3(4):
420–439.

———. 2003c. Stata Tip 2: Building with floors and ceilings. Stata Journal 3(4):
446–447.

———. 2004a. Speaking Stata: Graphing distributions. Stata Journal 4(1): 66–88.

———. 2004b. Speaking Stata: Graphing categorical and compositional data. Stata
Journal 4(2): 190–213.

———. 2004c. Stata Tip 9: Following special sequences. Stata Journal 4(2): 223.

———. 2004d. Speaking Stata: Graphing agreement and disagreement. Stata Journal
4(3): 329–349.

———. 2004e. Speaking Stata: Graphing model diagnostics. Stata Journal 4(4): 449–
475.

———. 2005a. Stata Tip 17: Filling in the gaps. Stata Journal 5(1): 135–136.

———. 2005b. Speaking Stata: Density probability plots. Stata Journal 5(2): 259–273.

———. 2005c. Speaking Stata: The protean quantile plot. Stata Journal 5(3): 442–460.

———. 2005d. Speaking Stata: Smoothing in various directions. Stata Journal 5(4):
574–593.

———. 2005e. Stata Tip 27: Classifying data points on scatter plots. Stata Journal
5(4): 604–606.

———. 2005f. Suggestions on Stata programming style. Stata Journal 5(4): 560–566.

———. 2006a. Stata tip 33: Sweet sixteen: Hexadecimal formats and precision prob-
lems. Stata Journal 6(2): 282–283.

———. 2006b. Speaking Stata: Graphs for all seasons. Stata Journal 6(3): 397–419.

———. 2006c. Stata Tip 39: In a list or out? In a range or out? Stata Journal 6(4):
593–595.

———. 2007a. NJC STUFF: Stata module documenting Stata programs and help files
by Nicholas J. Cox. Statistical Software Components, Boston College Department of
Economics.

———. 2007b. Speaking Stata: Making it count. Stata Journal 7(1): 117–130.

———. 2007c. Stata Tip 43: Remainders, selections, sequences, extractions: Uses of
the modulus. Stata Journal 7(1): 143–145.

———. 2007d. Speaking Stata: Identifying spells. Stata Journal 7(2): 249–265.

i

i

i

i

i

i

i

i

References 347

———. 2007e. Stata Tip 50: Efficient use of summarize. Stata Journal 7(3): 438–439.

———. 2008. Stata tip 67: J() now has greater replicating powers. Stata Journal 8(3).

Cox, N. J., and J. Weesie. 2001. dm88. Renaming variables, multiply and systematically.
In Stata Technical Bulletin Reprints, vol. 10, 41–44. College Station, TX: Stata Press.

———. 2005. dm88 1. Update: Renaming variables, multiply and systematically. Stata
Journal 5(4): 607.

Delwiche, L. D., and S. J. Slaughter. 1998. The Little SAS Book. 2nd ed. Cary, NC:
SAS Institute Inc.

Drukker, D. M. 2006. Importing Federal Reserve economic data. Stata Journal 6(3):
384–386.

Franklin, C. H. 2006. Stata Tip 29: For all times and all places. Stata Journal 6(1):
147–148.

Gini, R., and J. Pasquini. 2006. Automatic generation of documents. Stata Journal
6(1): 22–39.

Gould, W. W. 2001. Statistical software certification. The Stata Journal 1(1): 29–50.

———. 2005. Mata Matters: Using views onto the data. Stata Journal 5(4): 567–573.

———. 2006a. Mata Matters: Creating new variables–sounds boring, isn’t. Stata
Journal 6(1): 112–123.

———. 2006b. Mata Matters: Precision. Stata Journal 6(4): 550–560.

———. 2007a. Mata Matters: Subscripting. Stata Journal 7(1): 106–116.

———. 2007b. Mata Matters: Structures. Stata Journal 7(4): 556–570.

Gould, W. W., J. Pitblado, and W. Sribney. 2006. Maximum Likelihood Estimation
with Stata. 3rd ed. StataCorp LP.

Greene, W. H. 2008. Econometric Analysis. 6th ed. Upper Saddle River, NJ: Prentice–
Hall.

Hand, D., F. Daly, A. Lunn, K. McConway, and E. Ostrowski. 1994. A Handbook of
Small Data Sets. London: Chapman and Hall.

Hansen, L., J. Heaton, and A. Yaron. 1996. Finite sample properties of some alternative
GMM estimators. Journal of Business and Economic Statistics 14(3): 262–280.

Jann, B. 2005. Making regression tables from stored estimates. Stata Journal 5(3):
288–308.

———. 2007. Making regression tables simplified. Stata Journal 7(2): 227–244.

i

i

i

i

i

i

i

i

348 References

Kantor, D., and N. J. Cox. 2005. Depending on conditions: a tutorial on the cond()
function. Stata Journal 5(3): 413–420.

Kernighan, B. W., and P. J. Plauger. 1978. The elements of programming style. New
York: McGraw-Hill.

Kolev, G. I. 2006. Stata Tip 31: Scalar or variable? The problem of ambiguous names.
Stata Journal 6(2): 279–280.

McDowell, A. 2004. From the help desk: Seemingly unrelated regression with unbal-
anced equations. Stata Journal 4(4): 442–448.

Merton, R. C. 1980. On estimating the expected return on the market: An exploratory
investigation. Journal of Financial Economics 8: 323–61.

Mitchell, M. 2008. A Visual Guide to Stata Graphics, Second Edition. 2nd ed. College
Station, TX: Stata Press.

Newson, R. 2004. Stata Tip 13: generate and replace use the current sort order. Stata
Journal 4(4): 484–485.

Rabe-Hesketh, S., and B. Everitt. 2006. Handbook of Statistical Analyses using Stata.
4th ed. Boca Raton, FL: Chapman and Hall/CRC.

Rising, W. 2007. Creating self-validating datasets. United Kingdom Stata Users’ Group
Meetings 2007 18, Stata Users Group.

Wooldridge, J. M. 2002. Econometric Analysis of Cross Section and Panel Data. Cam-
bridge, MA: The MIT Press.

———. 2006. Introductory Econometrics: A Modern Approach. 3rd ed. New York:
Thomson Learning.

i

i

i

i

i

i

i

i

Author index

A
Azevedo, J. P..59, 167, 219

B
Baum, C. F. 59, 115, 119, 129, 132,

157, 159, 167, 169, 219, 223,
228, 230, 235, 256, 303

Blasnik, M. 59, 167

C
Cañette, I. .260
Cook, R. D. 179
Cox, N. J.. . . .10, 29, 37, 39, 40, 42, 44,

51, 55, 59, 61, 66, 67, 71, 101,
108, 110, 114, 115, 154, 157,
159, 163, 169, 177, 179, 181,
192, 223, 228, 264, 273

Crow, K. 155

D
Drukker, D. M. 119, 323

E
Everitt, B. 56

F
Franklin, C. H. 108

G
Gini, R. 177, 181
Gould, W.. .10, 227–229, 249, 259, 273,

281, 295, 303, 318

H
Hansen, L.. .334
Heaton, J. 334

J
Jann, B. 50, 95, 125, 175, 276, 284,

301, 324

K
Kantor, D. .42
Kolev, G. I. .56

L
Leuven, E.. .323
Longton, G. 163

M
McDowell, A. 328
Mitchell, M. 177, 191

N
Newson, R. 66

P
Pasquini, J. 177, 181
Pitblado, J. 229, 259

R
Rabe-Hesketh, S. 56
Rising, W. 183, 223, 319

S
Schaffer, M. E. 228, 256, 334
Sianesi, B. 323
Sribney, W. 229, 259
Stillman, S. 228, 256

W
Wada, R. 95
Weesie, J. 101
Weisberg, S. 179
Wiggins, V. 129

i

i

i

i

i

i

i

i

350 Author index

Y
Yaron, A.. .334

i

i

i

i

i

i

i

i

Subject index

Symbols
LATEX . 192
.eps format . 180
.gph file suffix 180, 199
.mata file suffix.300
.mlib file suffix.300
.mo file suffix . 300
.out file suffix . 172
.pdf format . 180
.png format . 180
.raw file suffix . 172
.tif format . 180
D. 13
F. 12
J() (Mata) . 273
J() .166
L. 12
S. 13
b . 243
merge . 106
se . 243
adopath . 227
adoupdate . 4, 30
anova . 140
append .78, 102, 104
args . 229, 233
assert . 19, 227
atanh() . 263
avplot . 179
biprobit . 263
bom() . 47
bootstrap 146, 234, 237
bysort . 136
by . 136
capture . 13
ceil() . 44
center . 50, 284

char . 182
ckvar . 183
codebook . 20, 79
collapse14, 50, 64, 97, 131, 169,

197, 286
compress . 25
cond() . 42, 265
confirm . 284, 303
constraint . 257
contract 14, 64, 169
correlate35, 86, 147, 185, 328
correlation() . 310
creturn . 55, 76
cross() . 330
cross . 108
cscript . 249
decode . 37
describe 33, 84, 85
destring . 36
display . 30, 37
dofm() . 129
duplicates .82, 107
dyex . 175
e(b) .90
e(sample) . 87, 89
eform . 221
egen anycount() 61
egen bomd() . 47
egen corr() . 47
egen count() . 46
egen eom() . 47
egen eomd() . 47
egen ewma() . 47
egen filter() . 47
egen gmean() . 47
egen group() . 137
egen iqr() . 46

i

i

i

i

i

i

i

i

352 Subject index

egen kurt() . 46
egen mad() . 46
egen max() . 46
egen mdev() . 46
egen mean() 46, 205
egen median() . 46
egen min() . 46
egen mode() . 46
egen nvals() . 163
egen pc() .46
egen pctile() 46, 246
egen rank() . 46
egen record() . 47
egen rndint() . 47
egen rowfirst() 46
egen rowlast() . 46
egen rowmax() . 46
egen rowmean() . 45
egen rowmin() . 46
egen rowmiss() 45, 61
egen rownonmiss() 45, 61
egen rowsd() . 46
egen rowtotal() 46
egen sd() .46
egen semean() . 47
egen skew() . 46
egen std() . 46
egen tag() . 163
egen total() 46, 64
egen var() . 47
egenmore 47, 61, 163
egen 35, 45, 61, 246, 286
egen functions .224
ereturn display329, 334
ereturn list87, 90, 168
ereturn post . 329
estadd . 95, 125
estat ovtest . 90
estat vce .90
estimates for . 93
estimates notes 94
estimates replay 91
estimates save 91, 94
estimates stats 89
estimates store 91, 125, 256

estimates table 91, 125
estimates use . 91
estimates .91
estout .95, 125, 175
eststo . 175
esttab . 125, 175
external .339
eydx . 175
eyex . 175
fdasave . 172
fdause . 16
file open . 173
file read . 174
file write . 173
file . 172
fillin . 108
findexternal()278
findit . 4, 29, 211
floor() . 44
foreach 53, 149, 166
format . 37
forvalues . 149
freduse . 119
generate . 38
global 53, 73, 255, 261
graph combine . 180
graph display . 181
graph export . 180
graph save . 199
graph twoway connected 191
graph twoway rarea 245
graph twoway rline 191
graph twoway scatter 191
gsort .65, 186
hmean() . 47
if qualifier. .33, 34
include . 279
infile 17, 23, 112, 114
infix .22, 196
inlist() . 39, 81
inrange() 39, 62, 81
insheet .18, 35, 197
int() . 39, 44
invsym() .330
in qualifier . 33

i

i

i

i

i

i

i

i

Subject index 353

irecode() .44
ivreg2228, 256, 334, 342
ivregress . 338
jackknife . 234
joinby . 111
levelsof 74, 166, 185
lincom 91, 176, 226, 243
liststruct() . 298
local . 51
log2html . 223
logit . 127
ma() .47
makematrix . 192
marksample 216, 264
mat2txt . 59, 167
mata mlib add . 301
mata mlib create 300
mata mosave . 300
matrix accum . 58
matrix colnames59, 89, 167, 173,

304
matrix list 58, 90, 167
matrix rownames59, 89, 167, 173,

304
matrix . 58, 166
matsize . 312
max() . 66
maxbyte() .40
maxindex() . 310
maxint() . 40
maxlong() .40
mean() . 310
merge, update . 202
merge 78, 103, 105, 197, 201
mf nneighbor . 323
mfx, eyex . 189
mfx 125, 175, 189, 226
min() . 66
minindex() . 324
missing() .34
mkmat . 58
ml model diparm() 259
mlopts . 231
ml . 334
mm cond() . 276

mm meancolvar()324
mod() .40, 129
month() . 129
moremata 276, 301, 324
mreldif() . 251
mvcorr . 159
mvdecode . 35
mvencode . 35
mvsumm . 157
nestreg . 148
net install . 7
njcstuff .181
nlcom . 234, 256, 262
normalden() . 259
nullmat() . 168, 193
odbc .26
optimize() 334, 339
optimize init()339
optimize init evaluator() 339
optimize init evaluatortype()

. 339
optimize init params()339
optimize init which() 339
optimize result value() 339
order . 33, 151, 172
outfile . 172
outreg2 . 91, 95
outtable 59, 167, 219
panelsetup() . 310
panelsubmatrix() 310
panelsubview()312
pctile() .225
pctrange .249
permute . 146
postfile .170
postname .171
post . 170
predict 10, 226, 328
preserve 14, 169, 264
probit . 127
program . 212
psmatch2 .323
pwcorr . 35, 328
qofd() . 130
qreg . 142

i

i

i

i

i

i

i

i

354 Subject index

ranksum . 193
rc0 option. .137
rcof . 250
real() . 36
recode() . 43
recode . 43, 151
reg3 . 328
regress . 328
reldif() . 149, 252
rename . 101, 104
renvars . 101
replace . 38
reshape . 98, 287
restore 14, 169, 265
return list . 84
reverse() . 197
rnormal() (Mata) 274
robvar . 235
rolling: . 157, 243
rolling . 141
round() . 44
savedresults 253, 342
scalar .55, 56
search . 29
separate . 109, 179
serset . 199
set rmsg . 344
set seed . 144, 236
set trace .30
simulate . 143, 234
sortpreserve . 231
sort .48
sphdist . 319
ssc hot . 198
ssc . 7, 45, 196
st addvar() . 282
st data() . 281
st global() . 283
st local() .283
st matrix()283, 304
st matrixcolstripe() 304
st matrixrowstripe() 304
st nobs() . 281
st numscalar() 280, 283
st nvar() . 281

st sdata() 281, 282
st sstore() . 282
st store() .282
st strscalar() 283
st subview() 282, 316
st sview() 281, 282
st tsrevar() . 335
st varindex() . 283
st varname() . 283
st view() . 280, 319
stack . 109
stata() . 319
statsby . 140
statsmat . 59, 169
stepwise .148
string() . 37
strpos() .197
strtoreal() . 283
stset . 182
substr() .197
sum() .40, 163
summarize . 85, 185
sureg . 328
svmat . 186
svyset . 148, 182
svy .148
syntax 212, 224, 303
sysdir . 6
tabstat 42, 59, 64, 169, 192
tabulate . 82, 138
tempname . 170, 194
tempvar 189, 216, 264
test . 91, 226
texteditors . 16
tokenize .153
tokens() .285
tostring . 37
tscollap . 132, 286
tsfill 108, 157, 264
tsline 120, 157, 245
tsmktim . 129, 289
tsset 13, 47, 86, 119, 129, 182, 264
tsspell . 67, 264
ttest 87, 147, 193, 235
update . 6, 29

i

i

i

i

i

i

i

i

Subject index 355

vce(bootstrap) option 147
vce(jackknife) option 148
vce . 90
version . 212
veryshortlabel110
viewsource .84, 301
which . 30, 84, 211
while . 149
xi . 137
xpose . 111
xtabond2 . 264
xtabond . 264
xtile . 44
xtset 13, 86, 99, 175, 182
xt . 97, 328
2-norm . 323, 324

A
added-variable plot 179
adopath . 300
AIC criterion . 91
ASCII text file 16, 172
audit trail . 78
autocorrelation . 159
automated output 174

B
backslash . 73
BIC criterion . 91
binary file handling 173
Boolean condition 41
built-in commands 84
built-in function 313
business-daily data.119, 207
byable . 45, 219
byte data type . 89
bytecode . 269

C
calendar variable 86
casewise deletion 34, 89, 169
certification script.227, 249, 341
characteristics 182, 283
class programming 1
codebooks . 20

colon operator . 272
column range operator271
column-join operator 168, 192, 270
comma-delimited file18
comma-separated values file 172
compiled function 299
complex arithmetic 269
compound double quotes37
conditional statements 275
continuous price series 203
CRSP . 185
csv files . . . see comma-separated values

file

D
daily data . 119
data dictionary . 22
data validation . 78
decrement operator 274
delimiters .16
delta method . 234
dereferencing . 51
dialog programming.1
dictionary file. .172
difference operator see D.

directory separator 73
do-file editor . 8
dot product . 271
dynamic panel data264

E
e-class . 84
elasticity. .175, 188
element-wise operations272
embedded spaces 17
estimation commands 84
Euclidian distance 323
extended macro functions. .54, 154, 166

F
FAQs . 29
file handle . 172
finite-precision arithmetic 252
fixed format. .16, 20
free format . 16

i

i

i

i

i

i

i

i

356 Subject index

function arguments 277
function library . 300
futures contract 203

G
generalized method of moments 334
global macro 73, 150
GMM-CUE. .334
Graph Editor 181, 199
graphics . 177
groupwise heteroskedasticity 235

H
help files. .221
HTML. 95, 223

I
implied decimal . 24
increment operator 274
indicator variable 40, 179
inequality constraints 259
inner product .271
instrumental variables 334
integer division . 39
interaction terms 138
interval estimates 189

K
Kronecker product272

L
lag operator . see L.

latent variable . 127
LaTeX output 95, 167, 168, 175
lead operator see F.

likelihood function 88
limits .312
linear constraints 257
linear filter see filter()

list subscripts. .272
listwise deletion 169
local macro . 150
log price relative 203
long form . 97
longitudinal data 98

loop constructs 149, 274

M
Macintosh spreadsheet dates 20
macro . 51
macro evaluation 52
macro list functions 54, 74, 154
main effects . 139
Mann–Whitney test 193
many-to-many merge 107
marginal effects .188
Mata . 57, 269
match merge . 105
matrix language . 57
matrix programming.269
matrix stripes.304, 329
maximum likelihood 256, 259, 334
method d0. .261
missing string value 35
missing values . 41
moving correlation159
moving-window statistics 157

N
naturally coded indicator 137
nearest neighbor 323
nested loop 150, 152
nested macros . 51
null model . 89
null pointer .294
numlist . 33

O
object file . 300
object-oriented programming.1
ODBC. .26
one-to-many merge 105, 114
one-to-one merge 107
optional arguments 277
options . 215
outer join. .111
outer product. .271
overlapping subsamples 141

P
p-value . 193

i

i

i

i

i

i

i

i

Subject index 357

panel data 69, 98, 264
panel variable. .86
passing functions to functions313
percentiles . 189
point estimates . 189
pointer function 318
pointer variables 293
pointers . 313, 329
pointers to pointers 295
prefix operators.135
price deflator . 156
program properties 221
propensity score 323

R
r-class . 84, 86
range subscripts 272
record . 66
recursive estimation 141
relational operators 272
relative difference 149
replay feature. .231
reserved words .278
return types . 276
reverse recursive estimation 141
rich text format. .95
rolling-window estimation.141
root finders . 302
row range operator 270
row-join operator 168, 193, 270
row-wise functions 45

S
SAS XPORT Transport file 172
scalar. .252
scheme programming 1
Schwarz criterion 91
seasonal difference operator see S.

seemingly unrelated regression 328
semi-elasticity . 175
similarity . 323
SMCL . 95, 222
sort order .85
space-delimited files.16
spells . 67, 264

spreadsheet data . 19
SQL databases. .26
SSC Archive 29, 196, 254
standardized values see std()

stars, for significance.91
Stat/Transfer 25, 35, 172
Stata Journal . 7, 29
Stata Technical Bulletin 7, 29
Statalist . . . 30, 115, 122, 157, 162, 163,

185, 243
stock returns . 185
storage optimization 25
string missing values 35
structure . 295
subview matrix . 316

T
tab-delimited file 18, 172
tabulating results 91
temporary objects 292
temporary variable 216
text editors . 16
text files . 16
time series calendar129
time-series operators 12, 252
transmorphic matrix277
transpose . 111
transpose operator271
type d0 evaluator 339

U
unbalanced panel 108, 264, 328

V
variable indices . 283
varlist . 33
view matrices 269, 282, 316
void function . 276

W
wide form. 97, 328
wildcards .33, 45, 99
word processors .16
wrapper program 243

	List of Tables
	List of Figures
	Preface
	Notation and Typography
	Why should you become a Stata programmer?
	Do-file programming
	Ado-file programming
	Mata programming for ado-files

	Plan of the book
	Installing the necessary software

	Some elementary concepts and tools
	Introduction
	What you should learn from this chapter

	Navigation and organizational issues
	The current working directory and profile.do
	Locating important directories: sysdir and adopath
	Organization of do-, ado- and data files

	Editing Stata do- and ado-files
	Data types
	Storing data efficiently: the compress command
	Date and time handling
	Time-series operators

	Handling errors: the capture command
	Protecting the data in memory: the preserve and restore commands
	Getting your data into Stata
	Inputting data from ASCII text files and spreadsheets
	Handling text files
	Free format vs. fixed format
	 The insheet command
	Accessing data stored in spreadsheets
	Fixed format data files

	Importing data from other package formats

	Guidelines for Stata do-file programming style
	Basic guidelines for do-file writers
	Enhancing speed and efficiency

	How to seek help for Stata programming

	Do-file programming: functions, macros, scalars and matrices
	Introduction
	What you should learn from this chapter

	Some general programming details
	The varlist
	The numlist
	if exp and in range qualifiers
	Missing data handling
	Recoding missing values: the mvdecode and mvencode commands

	String to numeric conversion and vice versa
	Numeric to string conversion
	Working with quoted strings

	Functions for the generate command
	Use of if exp with indicator variables
	The cond() function
	Recoding discrete and continuous variables

	Functions for the egen command
	Official egen functions
	egen functions from the user community

	Computation for by-groups
	Observation numbering: _n and _N

	Local macros
	Global macros
	Extended macro functions and macro list functions
	System parameters, settings and constants: creturn

	Scalars
	Matrices

	Cookbook: Do-file programming I
	Tabulating a logical condition across a set of variables
	Computing summary statistics over groups
	Computing the extreme values of a sequence
	Computing the length of spells
	Summarizing group characteristics over observations
	Using global macros to set up your environment
	List manipulation with extended macro functions
	Using creturn values to document your work

	Do-file programming: validation, results and data management
	Introduction
	What you should learn from this chapter

	Data validation: the assert, count and duplicates commands
	Reusing computed results: the return and ereturn commands
	The ereturn list command

	Storing, saving and using estimated results
	Generating publication-quality tables from stored estimates

	Reorganizing datasets with the reshape command
	Combining datasets
	Combining datasets with the append command
	Combining datasets with the merge command
	The dangers of many-to-many merges

	Other data management commands
	The fillin command
	The cross command
	The stack command
	The separate command
	The joinby command
	The xpose command

	Cookbook: Do-file programming II
	Efficiently defining group characteristics and subsets
	Selecting a subset of observations using a complicated criterion

	Applying reshape repeatedly
	Handling time-series data effectively
	reshape to perform row-wise computation
	Adding computed statistics to presentation-quality tables
	Presenting marginal effects rather than coefficients

	Generating time series data at a lower frequency

	Do-file programming: prefixes, loops and lists
	Introduction
	What you should learn from this chapter

	Prefix operators
	The by operator
	The xi operator
	The statsby operator
	The rolling operator
	The simulate and permute operators
	The bootstrap and jackknife operators
	Other prefix operators

	The forvalues command
	The foreach command

	Cookbook: Do-file programming III
	Handling parallel lists
	Calculating moving-window summary statistics
	Producing summary statistics with rolling and merge
	Calculating moving-window correlations

	Computing monthly statistics from daily data
	Requiring at least n observations per panel unit
	Counting the number of distinct values per individual

	Do-file programming: other topics
	Introduction
	What you should learn from this chapter

	Storing results in Stata matrices
	The post and postfile commands
	Output: outsheet, outfile and the file command
	Automating estimation output
	Automating graphics
	Characteristics

	Cookbook: Do-file programming IV
	Computing firm-level correlations with multiple indices
	Computing marginal effects for graphical presentation
	Automating the production of LaTeX tables
	Tabulating downloads from the SSC Archive
	Extracting data from graph files' sersets
	Constructing continuous price and returns series

	Ado-file programming
	Introduction
	What you should learn from this chapter

	The structure of a Stata program
	The program statement
	The syntax and return statements
	Implementing program options
	Including a subset of observations
	Generalizing the command to handle multiple variables
	Making commands byable
	Program properties

	Documenting your program
	egen function programs
	Writing an e-class program
	Defining subprograms

	Certifying your program
	programs for ml, nl, nlsur, simulate, bootstrap and jackknife
	Writing a ml-based command
	Programs for the nl and nlsur commands
	Programs for the simulate, bootstrap and jackknife commands

	Guidelines for Stata ado-file programming style
	Presentation
	Helpful Stata features
	Respect for datasets
	Speed and efficiency
	Reminders
	Style in the large
	Use the best tools

	Cookbook: Ado-file programming
	Retrieving results from rolling:
	Generalization of egen function pct9010() to support all pairs of quantiles
	Constructing a certification script
	Estimating means and variances using the ml command
	Applying equality constraints in ml estimation

	Applying inequality constraints in ml estimation
	Generating a dataset containing the single longest spell for each unit in panel data

	Mata functions for ado-file programming
	Mata: first principles
	What you should learn from this chapter

	Mata fundamentals
	Operators
	Relational and logical operators
	Subscripts
	Populating matrix elements
	Mata loop commands
	Conditional statements

	Function components
	Arguments
	Variables
	Returns

	Calling Mata functions
	Mata's st_ interface functions
	Data access
	Access to locals, globals, scalars and matrices
	Access to Stata variables' attributes

	Example: st_ interface function usage
	Example: matrix operations
	Extending the command

	Creating arrays of temporary objects with pointers
	Structures
	Additional Mata features
	Macros in Mata functions
	Compiling Mata functions
	Building and maintaining an object library
	A useful collection of Mata routines

	Cookbook: Mata function programming
	Reversing the rows or columns of a Stata matrix
	Shuffling the elements of a string variable
	Firm-level correlations with multiple indices with Mata
	Passing a function to a Mata function
	Using subviews in Mata
	Storing and retrieving country-level data with Mata structures
	Locating nearest neighbors with Mata
	Computing the SUR estimator for an unbalanced panel
	A GMM-CUE estimator using Mata's optimize() functions (with Mark E. Schaffer)

	References
	Author index
	Subject index

