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What are instrumental variables (IV) methods? Most widely
known as a solution to endogenous regressors: explanatory
variables correlated with the regression error term, IV methods
provide a way to nonetheless obtain consistent parameter
estimates.

However, as Cameron and Trivedi point out in
Microeconometrics (2005), this method, “widely used in
econometrics and rarely used elsewhere, is conceptually
difficult and easily misused.” (p.95)

My goal today is to present an overview of IV estimation and lay
out the benefits and pitfalls of the IV approach. I will discuss the
latest enhancements to IV methods available in Stata 9.2 and
10, including the latest release of Baum, Schaffer, Stillman’s
widely used ivreg2, available for Stata 9.2 or better, and Stata
10’s ivregress.



What are instrumental variables (IV) methods? Most widely
known as a solution to endogenous regressors: explanatory
variables correlated with the regression error term, IV methods
provide a way to nonetheless obtain consistent parameter
estimates.

However, as Cameron and Trivedi point out in
Microeconometrics (2005), this method, “widely used in
econometrics and rarely used elsewhere, is conceptually
difficult and easily misused.” (p.95)

My goal today is to present an overview of IV estimation and lay
out the benefits and pitfalls of the IV approach. I will discuss the
latest enhancements to IV methods available in Stata 9.2 and
10, including the latest release of Baum, Schaffer, Stillman’s
widely used ivreg2, available for Stata 9.2 or better, and Stata
10’s ivregress.



What are instrumental variables (IV) methods? Most widely
known as a solution to endogenous regressors: explanatory
variables correlated with the regression error term, IV methods
provide a way to nonetheless obtain consistent parameter
estimates.

However, as Cameron and Trivedi point out in
Microeconometrics (2005), this method, “widely used in
econometrics and rarely used elsewhere, is conceptually
difficult and easily misused.” (p.95)

My goal today is to present an overview of IV estimation and lay
out the benefits and pitfalls of the IV approach. I will discuss the
latest enhancements to IV methods available in Stata 9.2 and
10, including the latest release of Baum, Schaffer, Stillman’s
widely used ivreg2, available for Stata 9.2 or better, and Stata
10’s ivregress.



The discussion that follows is presented in much greater detail
in three sources:

I Enhanced routines for instrumental variables/GMM
estimation and testing. Baum, C.F., Schaffer, M.E.,
Stillman, S., Stata Journal 7:4, 2007. Boston College
Economics working paper no. 667.

I An Introduction to Modern Econometrics Using Stata,
Baum, C.F., Stata Press, 2006 (particularly Chapter 8).

I Instrumental variables and GMM: Estimation and testing.
Baum, C.F., Schaffer, M.E., Stillman, S., Stata Journal
3:1–31, 2003. Boston College Economics working paper
no. 545.
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First let us consider a path diagram illustrating the problem
addressed by IV methods. We can use ordinary least squares
(OLS) regression to consistently estimate a model of the
following sort.

Standard regression: y = xb + u
no association between x and u; OLS consistent
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However, OLS regression breaks down in the following
circumstance:

Endogeneity: y = xb + u
correlation between x and u; OLS inconsistent

x - y

u
���

���
��*

6

The correlation between x and u (or the failure of the zero
conditional mean assumption E [u|x ] = 0) can be caused by
any of several factors.
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We have stated the problem as that of endogeneity: the notion
that two or more variables are jointly determined in the
behavioral model. This arises naturally in the context of a
simultaneous equations model such as a supply-demand
system in economics, in which price and quantity are jointly
determined in the market for that good or service.

A shock or disturbance to either supply or demand will affect
both the equilibrium price and quantity in the market, so that by
construction both variables are correlated with any shock to the
system. OLS methods will yield inconsistent estimates of any
regression including both price and quantity, however specified.
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As a different example, consider a cross-sectional regression of
public health outcomes (say, the proportion of the population in
various cities suffering from a particular childhood disease) on
public health expenditures per capita in each of those cities.
We would hope to find that spending is effective in reducing
incidence of the disease, but we also must consider the reverse
causality in this relationship, where the level of expenditure is
likely to be partially determined by the historical incidence of
the disease in each jurisdiction.

In this context, OLS estimates of the relationship will be biased
even if additional controls are added to the specification.
Although we may have no interest in modeling public health
expenditures, we must be able to specify such an equation in
order to identify the relationship of interest, as we discuss
henceforth.
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Although IV methods were first developed to cope with the
problem of endogeneity in a simultaneous system, the
correlation of regressor and error may arise for other reasons.

The presence of measurement error in a regressor will, in
general terms, cause the same correlation of regressor and
error in a model where behavior depends upon the true value of
x and the statistician observes only a inaccurate measurement
of x . Even if we assume that the magnitude of the
measurement error is independent of the true value of x (often
an inappropriate assumption) measurement error will cause
OLS to produce biased and inconsistent parameter estimates
of all parameters, not only that of the mismeasured regressor.
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Another commonly encountered problem involves
unobservable factors. Both y and x may be affected by latent
factors such as ability. Consider a regression of (log) earnings
(y ) on years of schooling (x). The error term u embodies all
other factors that affect earnings, such as the individual’s innate
ability or intelligence. But ability is surely likely to be correlated
with educational attainment, causing a correlation between
regressor and error. Mathematically, this is the same problem
as that caused by endogeneity or measurement error.

In a panel or longitudinal dataset, we could deal with this
unobserved heterogeneity with the first difference or individual
fixed effects transformations. But in a cross section dataset, we
do not have that luxury, and must resort to other methods such
as IV estimation.
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The solution provided by IV methods may be viewed as:

Instrumental variables regression: y = xb + u
z uncorrelated with u, correlated with x

z - x - y
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The additional variable z is termed an instrument for x . In
general, we may have many variables in x , and more than one
x correlated with u. In that case, we shall need at least that
many variables in z.



To deal with the problem of endogeneity in a supply-demand
system, a candidate z will affect (e.g.) the quantity supplied of
the good, but not directly impact the demand for the good. An
example for an agricultural commodity might be temperature or
rainfall: clearly exogenous to the market, but likely to be
important in the production process.

For the public health example, we might use per capita income
in each city as an instrument or z variable. It is likely to
influence public health expenditure, as cities with a larger tax
base might be expected to spend more on all services, and will
not be directly affected by the unobserved factors in the primary
relationship.
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For the problem of measurement error in a regressor, a
common choice of instrument (z) is the rank of the
mismeasured variable. Although the mismeasured variable
contains an element of measurement error, if that error is
relatively small, it will not alter the rank of the observation in the
distribution.

In the case of latent factors, such as a regression of log
earnings on years of schooling, we might be able to find an
instrument (z) in the form of the mother’s or father’s years of
schooling. More educated parents are more likely to produce
more educated children; at the same time, the unobserved
factors influencing the individual’s educational attainment
cannot affect prior events, such as their parent’s schooling.
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What if we do not have data on parents’ educational
attainment? In a seminal (and highly criticized) 1991 paper in
the Quarterly Journal of Economics, Angrist and Krueger (AK)
used quarter of birth as an instrument for educational
attainment, defining an indicator variable for those born in the
first calendar quarter. Although arguably independent of innate
ability, how could this factor be correlated with educational
attainment?

AK argue that compulsory school attendance laws in the U.S.
(and varying laws across states) cause some individuals to
attend school longer than others depending on when they enter
primary school, which is in turn dependent on their birth date.
We can test whether this relationship holds by regressing years
of schooling on the indicator variable.

Example: OLS vs IV
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An interesting example is provided by Paul Grootendorst in his
research paper “A review of instrumental variables estimation in
the applied health sciences." He suggests that IV methods
were developed in 1855 by John Snow in On the Mode of
Communication of Cholera.
[http://www.ph.ucla.edu/EPI/snow/snowbook.html].
I excerpt from his paper below.

Snow hypothesized that cholera was waterborne. But he could
not merely examine water purity and its correlation with the
incidence of cholera, for those who drank impure water were
more likely to be poor, to live in crowded tenements and to live
in an environment contaminated in many ways. What could
serve as an instrument?
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The instrument Snow proposed: the identity of the water
company supplying households with drinking water. Londoners
received water directly from the Thames. The Lambeth water
company drew water from the river upstream of the main
sewage discharge; the Southwark and Vauxhall company drew
water just below the main discharge.

Snow mentions that “The pipes of each Company go down all
the streets, and into nearly all the courts and alleys. ... No
fewer than 300,000 people ... of every rank and station, from
gentlefolks down to the very poor, were divided into two groups
without their choice and, in most cases, without their
knowledge; one group supplied with water containing the
sewage of London...the other group having water quite free
from such impurity."
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Demonstrably, the identity of the water suppliers (and the lack
of public perception of their relative quality) is correlated with
water purity and through that mechanism influences the
incidence of waterborne disease. It is likely to be uncorrelated
with other factors influencing cholera (such as the health status
of those living in certain neighborhoods) given that the
suppliers competed throughout the city.

Although econometricians may believe that IV methods were
the product of Sewall Wright’s analysis of agricultural supply
and demand in the 1920s, or the work of the Cowles
Commission in the 1950s, they may have far predated that era!
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But why should we not always use IV?

It may be difficult to find variables that can serve as valid
instruments. Many variables that have an effect on included
endogenous variables also have a direct effect on the
dependent variable.

IV estimators are innately biased, and their finite-sample
properties are often problematic. Thus, most of the justification
for the use of IV is asymptotic. Performance in small samples
may be poor.

The precision of IV estimates is lower than that of OLS
estimates (least squares is just that). In the presence of weak
instruments (excluded instruments only weakly correlated with
included endogenous regressors) the loss of precision will be
severe, and IV estimates may be no improvement over OLS.
This suggests we need a method to determine whether a
particular regressor must be treated as endogenous.
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Instruments may be weak: satisfactorily exogenous, but only
weakly correlated with the endogenous regressors. As Bound,
Jaeger, Baker (NBER TWP 1993, JASA 1995) argue “the cure
can be worse than the disease.”

Staiger and Stock (Econometrica, 1997) formalized the
definition of weak instruments. Many researchers conclude
from their work that if the first-stage F statistic exceeds 10, their
instruments are sufficiently strong. This criterion does not
necessarily establish the absence of a weak instruments
problem.

Stock and Yogo (Camb. U. Press festschrift, 2005) further
explore the issue and provide useful rules of thumb for
evaluating the weakness of instruments. ivreg2 and Stata
10’s ivregress now present Stock–Yogo tabulations based
on the Cragg–Donald statistic.
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IV estimation as a GMM problem

Before discussing further the motivation for various weak
instrument diagnostics, we define the setting for IV estimation
as a Generalized Method of Moments (GMM) optimization
problem. Economists consider GMM to be the invention of Lars
Hansen in his 1982 Econometrica paper, but as Alistair Hall
points out in his 2005 book, the method has its antecedents in
Karl Pearson’s Method of Moments [MM] (1895) and Neyman
and Egon Pearson’s minimum Chi-squared estimator [MCE]
(1928). Their MCE approach overcomes the difficulty with MM
estimators when there are more moment conditions than
parameters to be estimated. This was recognized by Ferguson
(Ann. Math. Stat. 1958) for the case of i .i .d . errors, but his
work had no impact on the econometric literature.



We consider the model

y = Xβ + u, u ∼ (0,Ω)

with X (N × k) and define a matrix Z (N × `) where ` ≥ k . This
is the Generalized Method of Moments IV (IV-GMM) estimator.
The ` instruments give rise to a set of ` moments:

gi(β) = Z ′i ui = Z ′i (yi − xiβ), i = 1, N

where each gi is an `-vector. The method of moments
approach considers each of the ` moment equations as a
sample moment, which we may estimate by averaging over N:

ḡ(β) =
1
N

N∑
i=1

zi(yi − xiβ) =
1
N

Z ′u

The GMM approach chooses an estimate that solves
ḡ(β̂GMM) = 0.



If ` = k , the equation to be estimated is said to be exactly
identified by the order condition for identification: that is, there
are as many excluded instruments as included right-hand
endogenous variables. The method of moments problem is
then k equations in k unknowns, and a unique solution exists,
equivalent to the standard IV estimator:

β̂IV = (Z ′X )−1Z ′y

In the case of overidentification (` > k ) we may define a set of k
instruments:

X̂ = Z ′(Z ′Z )−1Z ′X = PZ X

which gives rise to the two-stage least squares (2SLS)
estimator

β̂2SLS = (X̂ ′X )−1X̂ ′y = (X ′PZ X )−1X ′PZ y

which despite its name is computed by this single matrix
equation.
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In the 2SLS method with overidentification, the ` available
instruments are “boiled down" to the k needed by defining the
PZ matrix. In the IV-GMM approach, that reduction is not
necessary. All ` instruments are used in the estimator.
Furthermore, a weighting matrix is employed so that we may
choose β̂GMM so that the elements of ḡ(β̂GMM) are as close to
zero as possible. With ` > k , not all ` moment conditions can
be exactly satisfied, so a criterion function that weights them
appropriately is used to improve the efficiency of the estimator.

The GMM estimator minimizes the criterion

J(β̂GMM) = N ḡ(β̂GMM)′W ḡ(β̂GMM)

where W is a `× ` symmetric weighting matrix.
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Solving the set of FOCs, we derive the IV-GMM estimator of an
overidentified equation:

β̂GMM = (X ′ZWZ ′X )−1X ′ZWZ ′y

which will be identical for all W matrices which differ by a factor
of proportionality. The optimal weighting matrix, as shown by
Hansen (1982), chooses W = S−1 where S is the covariance
matrix of the moment conditions to produce the most efficient
estimator:

S = E [Z ′uu′Z ] = limN→∞ N−1[Z ′ΩZ ]

With a consistent estimator of S derived from 2SLS residuals,
we define the feasible IV-GMM estimator as

β̂FEGMM = (X ′Z Ŝ−1Z ′X )−1X ′Z Ŝ−1Z ′y

where FEGMM refers to the feasible efficient GMM estimator.
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The derivation makes no mention of the form of Ω, the
variance-covariance matrix (vce) of the error process u. If the
errors satisfy all classical assumptions are i .i .d ., S = σ2

uIN and
the optimal weighting matrix is proportional to the identity
matrix. The IV-GMM estimator is merely the standard IV (or
2SLS) estimator.

If there is heteroskedasticity of unknown form, we usually
compute robust standard errors in any Stata estimation
command to derive a consistent estimate of the vce. In this
context,

Ŝ =
1
N

N∑
i=1

û2
i Z ′i Zi

where û is the vector of residuals from any consistent estimator
of β (e.g., the 2SLS residuals). For an overidentified equation,
the IV-GMM estimates computed from this estimate of S will be
more efficient than 2SLS estimates.
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û2
i Z ′i Zi
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We must distinguish the concept of IV/2SLS estimation with
robust standard errors from the concept of estimating the same
equation with IV-GMM, allowing for arbitrary heteroskedasticity.
Compare an overidentified regression model estimated (a) with
IV and classical standard errors and (b) with robust standard
errors. Model (b) will produce the same point estimates, but
different standard errors in the presence of heteroskedastic
errors.

However, if we reestimate that overidentified model using the
GMM two-step estimator, we will get different point estimates
because we are solving a different optimization problem: one in
the `-space of the instruments (and moment conditions) rather
than the k -space of the regressors, and ` > k . We will also get
different standard errors, and in general smaller standard errors
as the IV-GMM estimator is more efficient. This does not imply,
however, that summary measures of fit will improve.

Example: IV and IV(robust) vs IV-GMM
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If errors are considered to exhibit arbitrary intra-cluster
correlation in a dataset with M clusters, we may derive a
cluster-robust IV-GMM estimator using

Ŝ =
M∑

j=1

û′j ûj

where
ûj = (yj − xj β̂)X ′Z (Z ′Z )−1zj

The IV-GMM estimates employing this estimate of S will be
both robust to arbitrary heteroskedasticity and intra-cluster
correlation, equivalent to estimates generated by Stata’s
cluster(varname) option. For an overidentified equation,
IV-GMM cluster-robust estimates will be more efficient than
2SLS estimates.



The IV-GMM approach may also be used to generate HAC
standard errors: those robust to arbitrary heteroskedasticity
and autocorrelation. Although the best-known HAC approach in
econometrics is that of Newey and West, using the Bartlett
kernel (per Stata’s newey), that is only one choice of a HAC
estimator that may be applied to an IV-GMM problem. ivreg2
and Stata 10’s ivregress provide several choices for kernels.
For some kernels, the kernel bandwidth (roughly, number of
lags employed) may be chosen automatically in both
commands.

In ivreg2 (but not in ivregress) you may also specify a vce
that is robust to autocorrelation while maintaining the
assumption of conditional homoskedasticity: that is, AC without
the H.



The estimators we have discussed are available from Baum,
Schaffer and Stillman’s ivreg2 package (ssc describe
ivreg2). The ivreg2 command has the same basic syntax
as Stata’s older ivreg command:

ivreg2 depvar [varlist1] (varlist2=instlist) ///
[if] [in] [, options]

The ` variables in varlist1 and instlist comprise Z , the
matrix of instruments. The k variables in varlist1 and
varlist2 comprise X . Both matrices by default include a
units vector.
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By default ivreg2 estimates the IV estimator, or 2SLS
estimator if ` > k . If the gmm2s option is specified in
conjunction with robust, cluster() or bw(), it estimates the
IV-GMM estimator.

With the robust option, the vce is heteroskedasticity-robust.

With the cluster(varname) option, the vce is cluster-robust.

With the robust and bw( ) options, the vce is HAC with the
default Bartlett kernel, or “Newey–West”. Other kernel( )
choices lead to alternative HAC estimators. In ivreg2, both
robust and bw( ) options must be specified for HAC.
Estimates produced with bw( ) alone are robust to arbitrary
autocorrelation but assume homoskedasticity.
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If and only if an equation is overidentified, we may test whether
the excluded instruments are appropriately independent of the
error process. That test should always be performed when it is
possible to do so, as it allows us to evaluate the validity of the
instruments.

A test of overidentifying restrictions regresses the residuals
from an IV or 2SLS regression on all instruments in Z . Under
the null hypothesis that all instruments are uncorrelated with u,
the test has a large-sample χ2(r) distribution where r is the
number of overidentifying restrictions.

Under the assumption of i .i .d . errors, this is known as a Sargan
test, and is routinely produced by ivreg2 for IV and 2SLS
estimates. It can also be calculated after ivreg estimation with
the overid command, which is part of the ivreg2 suite. After
ivregress, the command estat overid provides the test.
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If we have used IV-GMM estimation in ivreg2, the test of
overidentifying restrictions becomes J: the GMM criterion
function. Although J will be identically zero for any
exactly-identified equation, it will be positive for an
overidentified equation. If it is “too large”, doubt is cast on the
satisfaction of the moment conditions underlying GMM.

The test in this context is known as the Hansen test or J test,
and is routinely calculated by ivreg2 when the gmm option is
employed.

The Sargan–Hansen test of overidentifying restrictions should
be performed routinely in any overidentified model estimated
with instrumental variables techniques. Instrumental variables
techniques are powerful, but if a strong rejection of the null
hypothesis of the Sargan–Hansen test is encountered, you
should strongly doubt the validity of the estimates.
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For instance, let’s rerun the last IV-GMM model we estimated
and focus on the test of overidentifying restrictions provided by
the Hansen J statistic. The model is overidentified by two
degrees of freedom, as there is one endogenous regressor and
three excluded instruments. We see that the J statistic strongly
rejects its null, casting doubts on the quality of these estimates.

Let’s reestimate the model excluding age from the instrument
list and see what happens. We will see that the sign and
significance of the key endogenous regressor changes as we
respecify the instrument list.

Example: Tests of overidentifying restrictions
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We may be quite confident of some instruments’ independence
from u but concerned about others. In that case a GMM
distance or C test may be used. The orthog( ) option of
ivreg2 tests whether a subset of the model’s overidentifying
restrictions appear to be satisfied.

This is carried out by calculating two Sargan–Hansen statistics:
one for the full model and a second for the model in which the
listed variables are (a) considered endogenous, if included
regressors, or (b) dropped, if excluded regressors. In case (a),
the model must still satisfy the order condition for identification.
The difference of the two Sargan–Hansen statistics, often
termed the GMM distance or C statistic, will be distributed χ2

under the null hypothesis that the specified orthogonality
conditions are satisfied, with d.f. equal to the number of those
conditions.

Example: C (GMM distance) test of a subset of overidentifying
restrictions
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A variant on this strategy is implemented by the endog( )
option of ivreg2, in which one or more variables considered
endogenous can be tested for exogeneity. The C test in this
case will consider whether the null hypothesis of their
exogeneity is supported by the data.

If all endogenous regressors are included in the endog( )
option, the test is essentially a test of whether IV methods are
required to estimate the equation. If OLS estimates of the
equation are consistent, they should be preferred. In this
context, the test is equivalent to a Hausman test comparing IV
and OLS estimates, as implemented by Stata’s hausman
command with the sigmaless option. Using ivreg2, you
need not estimate and store both models to generate the test’s
verdict.
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The weak instruments problem

Instrumental variables methods rely on two assumptions: the
excluded instruments are distributed independently of the error
process, and they are sufficiently correlated with the included
endogenous regressors. Tests of overidentifying restrictions
address the first assumption, although we should note that a
rejection of their null may be indicative that the exclusion
restrictions for these instruments may be inappropriate. That is,
some of the instruments have been improperly excluded from
the regression model’s specification.



The specification of an instrumental variables model asserts
that the excluded instruments affect the dependent variable
only indirectly, through their correlations with the included
endogenous variables. If an excluded instrument exerts both
direct and indirect influences on the dependent variable, the
exclusion restriction should be rejected. This can be readily
tested by including the variable as a regressor.

In our earlier example we saw that including age in the
excluded instruments list caused a rejection of the J test. We
had assumed that age could be treated as excluded from the
model. Is that assumption warranted?

Example: Test of exclusion of an instrument
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To test the second assumption—that the excluded instruments
are sufficiently correlated with the included endogenous
regressors—we should consider the goodness-of-fit of the “first
stage” regressions relating each endogenous regressor to the
entire set of instruments.

It is important to understand that the theory of single-equation
(“limited information”) IV estimation requires that all columns of
X are conceptually regressed on all columns of Z in the
calculation of the estimates. We cannot meaningfully speak of
“this variable is an instrument for that regressor” or somehow
restrict which instruments enter which first-stage regressions.
Stata’s ivregress or ivreg2 will not let you do that because
such restrictions only make sense in the context of estimating
an entire system of equations by full-information methods (for
instance, with reg3).
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The first and ffirst options of ivreg2 present several
useful diagnostics that assess the first-stage regressions. If
there is a single endogenous regressor, these issues are
simplified, as the instruments either explain a reasonable
fraction of that regressor’s variability or not. With multiple
endogenous regressors, diagnostics are more complicated, as
each instrument is being called upon to play a role in each
first-stage regression.

With sufficiently weak instruments, the asymptotic identification
status of the equation is called into question. An equation
identified by the order and rank conditions in a finite sample
may still be effectively unidentified.
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As Staiger and Stock (Econometrica, 1997) show, the weak
instruments problem can arise even when the first-stage t- and
F -tests are significant at conventional levels in a large sample.
In the worst case, the bias of the IV estimator is the same as
that of OLS, IV becomes inconsistent, and instrumenting only
aggravates the problem.



Beyond the informal “rule-of-thumb” diagnostics such as
F > 10, ivreg2 computes several statistics that can be used
to critically evaluate the strength of instruments. We can write
the first-stage regressions as

X = ZΠ + v

With X1 as the endogenous regressors, Z1 the excluded
instruments and Z2 as the included instruments, this can be
partitioned as

X1 = [Z1Z2] [Π′11Π
′
12]
′ + v1

The rank condition for identification states that the L×K1 matrix
Π11 must be of full column rank.



We do not observe the true Π11, so we must replace it with an
estimate. Anderson’s (John Wiley, 1984) approach to testing
the rank of this matrix (or that of the full Π matrix) considers the
canonical correlations of the X and Z matrices. If the equation
is to be identified, all K of the canonical correlations will be
significantly different from zero.

The squared canonical correlations can be expressed as
eigenvalues of a matrix. Anderson’s CC test considers the null
hypothesis that the minimum canonical correlation is zero.
Under the null, the test statistic is distributed χ2 with
(L− K + 1) d.f., so it may be calculated even for an
exactly-identified equation. Failure to reject the null suggests
the equation is unidentified. ivreg2 routinely reports this
Lagrange Multiplier (LM) statistic.

Example: Analysis of first stage regressions
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The C–D statistic is a closely related test of the rank of a
matrix. While the Anderson CC test is a LR test, the C–D test is
a Wald statistic, with the same asymptotic distribution. The
C–D statistic plays an important role in Stock and Yogo’s work
(see below). Both the Anderson and C–D tests are reported by
ivreg2 with the first option.

Recent research by Kleibergen and Paap (KP) (J.
Econometrics, 2006) has developed a robust version of a test
for the rank of a matrix: e.g. testing for underidentification. The
statistic has been implemented by Kleibergen and Schaffer as
command ranktest. If non-i .i .d . errors are assumed, the
ivreg2 output contains the K–P rk statistic in place of the
Anderson canonical correlation statistic as a test of
underidentification.
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The canonical correlations may also be used to test a set of
instruments for redundancy by considering their statistical
significance in the first stage regressions. This can be
calculated, in robust form, as a K–P LM test. The redundant(
) option of ivreg2 allows a set of excluded instruments to be
tested for relevance, with the null hypothesis that they do not
contribute to the asymptotic efficiency of the equation.

In this example, we add mrt (marital status) to the equation,
and test it for redundancy. It barely rejects the null hypothesis.

Example: Test of redundancy of instruments
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Stock and Yogo (Camb. U. Press festschrift, 2005) propose
testing for weak instruments by using the F -statistic form of the
C–D statistic. Their null hypothesis is that the estimator is
weakly identified in the sense that it is subject to bias that the
investigator finds unacceptably large.

Their test comes in two flavors: maximal relative bias (relative
to the bias of OLS) and maximal size. The former test has the
null that instruments are weak, where weak instruments are
those that can lead to an asymptotic relative bias greater than
some level b. This test uses the finite sample distribution of the
IV estimator, and can only be calculated where the appropriate
moments exist (when the equation is suitably overidentified: the
mth moment exists iff m < (L− K + 1)). The test is routinely
reported in ivreg2 and ivregress output when it can be
calculated, with the relevant critical values calculated by Stock
and Yogo.



Stock and Yogo (Camb. U. Press festschrift, 2005) propose
testing for weak instruments by using the F -statistic form of the
C–D statistic. Their null hypothesis is that the estimator is
weakly identified in the sense that it is subject to bias that the
investigator finds unacceptably large.

Their test comes in two flavors: maximal relative bias (relative
to the bias of OLS) and maximal size. The former test has the
null that instruments are weak, where weak instruments are
those that can lead to an asymptotic relative bias greater than
some level b. This test uses the finite sample distribution of the
IV estimator, and can only be calculated where the appropriate
moments exist (when the equation is suitably overidentified: the
mth moment exists iff m < (L− K + 1)). The test is routinely
reported in ivreg2 and ivregress output when it can be
calculated, with the relevant critical values calculated by Stock
and Yogo.



The second test proposed by Stock and Yogo is based on the
performance of the Wald test statistic for the endogenous
regressors. Under weak identification, the test rejects too often.
The test statistic is based on the rejection rate r tolerable to the
researcher if the true rejection rate is 5%. Their tabulated
values consider various values for r . To be able to reject the
null that the size of the test is unacceptably large (versus 5%),
the Cragg–Donald F statistic must exceed the tabulated critical
value.

The Stock–Yogo test statistics, like others discussed above,
assume i .i .d . errors. The Cragg–Donald F can be robustified in
the absence of i .i .d . errors by using the Kleibergen–Paap rk
statistic, which ivreg2 reports in that circumstance.

Example: Stock–Yogo critical values for C–D or K–P test
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The Anderson–Rubin (Ann. Math. Stat., 1949) test for the
significance of endogenous regressors in the structural
equation is robust to the presence of weak instruments, and
may be “robustified” for non-i .i .d . errors if an alternative VCE is
estimated. The test essentially substitutes the reduced-form
equations into the structural equation and tests for the joint
significance of the excluded instruments in Z1.

If a single endogenous regressor appears in the equation,
alternative test statistics robust to weak instruments (under the
assumption of i .i .d . errors) are provided by Moreira and Poi
(Stata J., 2003) and Mikusheva and Poi (Stata J., 2006) as the
condivreg and condtest commands.
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LIML and GMM-CUE

OLS and IV estimators are special cases of k-class estimators:
OLS with k = 0 and IV with k = 1. Limited-information
maximum likelihood (LIML) is another member of this class,
with k chosen optimally in the estimation process. Like any ML
estimator, LIML is invariant to normalization. In an equation
with two endogenous variables, it does not matter whether you
specify y1 or y2 as the left-hand variable. One of the other
virtues of the LIML estimator is that it has been found to be
more resistant to weak instruments problems than the IV
estimator. On the down side, it makes the distributional
assumption of normally distributed (and i .i .d .) errors. ivreg2
produces LIML estimates with the liml option, and liml is a
subcommand for Stata 10’s ivregress.



If the i .i .d . assumption of LIML is not reasonable, you may use
the GMM equivalent: the continuously updated GMM estimator,
or CUE estimator. In ivreg2, the cue option combined with
robust, cluster and/or bw( ) options specifies that
non-i .i .d . errors are to be modeled. GMM-CUE requires
numerical optimization via Stata’s ml command, and may
require many iterations to converge.

ivregress provides an iterated GMM estimator, which is not
the same estimator as GMM-CUE.

Example: LIML and GMM-CUE



When you may (and may not!) use IV
You now know that you may only use IV methods when you can
plausibly specify the necessary instruments. Beyond that
important concern, two cases come to mind that are FAQs on
Statalist.

A common inquiry: what if I have an endogenous regressor that
is a dummy variable? Should I, for instance, fit a probit model to
generate the “hat values”, estimate the model with OLS
including those “hat values” instead of the 0/1 values, and
puzzle over what to do about the standard errors?

(An aside: you really do not want to do two-stage least squares
“by hand”, for one of the things that you must then deal with is
getting the correct VCE estimate. The VCE and RMSE
computed by the second-stage regression are not correct, as
they are generated from the “hat values”, not the original
regressors. But back to our question).
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important concern, two cases come to mind that are FAQs on
Statalist.

A common inquiry: what if I have an endogenous regressor that
is a dummy variable? Should I, for instance, fit a probit model to
generate the “hat values”, estimate the model with OLS
including those “hat values” instead of the 0/1 values, and
puzzle over what to do about the standard errors?
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Should I fit a probit model to generate the “hat values”, estimate
the model with OLS including those “hat values” instead of the
0/1 values, and puzzle over what to do about the standard
errors?

No, you should just estimate the model with ivreg2 or
ivregress, treating the dummy endogenous regressor like
any other endogenous regressor. This yields consistent point
and interval estimates of its coefficient. There are other
estimators (notably in the field of selection models or treatment
regression) that explicitly deal with this problem, but they
impose additional conditions on the problem. If you can use
those methods, fine. Otherwise, just run IV. This solution is also
appropriate for count data.



Another solution to the problem of an endogenous dummy (or
count variable), as discussed by Cameron and Trivedi, is due to
Basmann (Econometrica, 1957). Obtain fitted values for the
endogenous regressor with appropriate nonlinear regression
(logit or probit for a dummy, Poisson regression for a count
variable) using all the instruments (included and excluded).
Then do regular linear IV using the fitted value as an
instrument, but the original dummy (or count variable) as the
regressor. This is also a consistent estimator, although it has a
different asymptotic distribution than does that of straight IV.

Example: Regression on an endogenous dummy



A second FAQ: what if my equation includes a nonlinear
function of an endogenous regressor? For instance, from
Wooldridge, Econometric Analysis of Cross Section and Panel
Data (2002), p. 231, we might write the supply and demand
equations for a good as

log qs = γ12 log(p) + γ13[log(p)]2 + δ11z1 + u1

log qd = γ22 log(p) + δ22z2 + u2

where we have suppressed intercepts for convenience. The
exogenous factor z1 shifts supply but not demand. The
exogenous factor z2 shifts demand but not supply. There are
thus two exogenous variables available for identification.

This system is still linear in parameters, and we can ignore the
log transformations on p, q. But it is, in Wooldridge’s terms,
nonlinear in endogenous variables, and identification must be
treated differently.
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If we used these equations to obtain log(p) = y2 as a function
of exogenous variables and errors (the reduced form equation),
the result would not be linear. E [y2|z] would not be linear
unless γ13 = 0, assuming away the problem, and E [y2

2 |z] will
not be linear in any case. We might imagine that y2

2 could just
be treated as an additional endogenous variable, but then we
need at least one more instrument. Where do we find it?

Given the nonlinearity, other functions of z1 and z2 will appear
in a linear projection with y2

2 as the dependent variable. Under
linearity, the reduced form for y2 involves z1, z2 and
combinations of the errors. Square that reduced form, and
E [y2

2 |z] is a function of z2
1 , z2

2 and z1z2 (and the expectation of
the squared composite error). Given that this relation has been
derived under assumptions of linearity and homoskedasticity,
we should also include the levels of z1, z2 in the projection (first
stage regression).
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The supply equation may then be estimated with instrumental
variables using z1, z2, z2

1 , z2
2 and z1z2 as instruments. You could

also use higher powers of the exogenous variables.

The mistake that may be made in this context involves what
Hausman dubbed the forbidden regression: trying to mimic
2SLS by substituting fitted values for some of the endogenous
variables inside the nonlinear functions. Nether the conditional
expectation of the linear projection nor the linear projection
operator passes through nonlinear functions, and such
attempts “...rarely produce consistent estimators in nonlinear
systems.” (Wooldridge, p. 235)



The supply equation may then be estimated with instrumental
variables using z1, z2, z2

1 , z2
2 and z1z2 as instruments. You could

also use higher powers of the exogenous variables.

The mistake that may be made in this context involves what
Hausman dubbed the forbidden regression: trying to mimic
2SLS by substituting fitted values for some of the endogenous
variables inside the nonlinear functions. Nether the conditional
expectation of the linear projection nor the linear projection
operator passes through nonlinear functions, and such
attempts “...rarely produce consistent estimators in nonlinear
systems.” (Wooldridge, p. 235)



In our example above, imagine regressing y2 on exogenous
variables, saving the predicted values, and squaring them. The
“second stage” regression would then regress log(q) on
ŷ , ŷ2, z1.

This two-step procedure does not yield the same results as
estimating the equation by 2SLS, and it generally cannot
produce consistent estimates of the structural parameters. The
linear projection of the square is not the square of the linear
projection, and the “by hand” approach assumes they are
identical.
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We illustrate the forbidden regression with a variation on the log
wage model estimated in earlier examples. Although the
second-stage OLS regression will yield the wrong standard
errors (as any 2SLS “by hand" estimates will) we find that the
forbidden regression appears to produce significant coefficients
for the nonlinear relationship. Unfortunately, those estimates
are inconsistent, and as you can see quite far from the NL-IV
estimates generated by the proper instrumenting procedure.

Example: The forbidden regression



Testing for i .i .d . errors in IV

In the context of an equation estimated with instrumental
variables, the standard diagnostic tests for heteroskedasticity
and autocorrelation are generally not valid.

In the case of heteroskedasticity, Pagan and Hall (Econometric
Reviews, 1983) showed that the Breusch–Pagan or
Cook–Weisberg tests (estat hettest) are generally not
usable in an IV setting. They propose a test that will be
appropriate in IV estimation where heteroskedasticity may be
present in more than one structural equation. Mark Schaffer’s
ivhettest, part of the ivreg2 suite, performs the
Pagan–Hall test under a variety of assumptions on the indicator
variables. It will also reproduce the Breusch–Pagan test if
applied in an OLS context.
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In the same token, the Breusch–Godfrey statistic used in the
OLS context (estat bgodfrey) will generally not be
appropriate in the presence of endogenous regressors,
overlapping data or conditional heteroskedasticity of the error
process. Cumby and Huizinga (Econometrica, 1992) proposed
a generalization of the BG statistic which handles each of these
cases.

Their test is actually more general in another way. Its null
hypothesis of the test is that the regression error is a moving
average of known order q ≥ 0 against the general alternative
that autocorrelations of the regression error are nonzero at lags
greater than q. In that context, it can be used to test that
autocorrelations beyond any q are zero. Like the BG test, it can
test multiple lag orders. The C–H test is available as Baum and
Schaffer’s ivactest routine, part of the ivreg2 suite.
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Panel data IV estimation

The features of ivreg2 are also available in the routine
xtivreg2, which is a “wrapper” for ivreg2. This routine of
Mark Schaffer’s extends Stata’s xtivreg’s support for the
fixed effect (fe) and first difference (fd) estimators. The
xtivreg2 routine is available from ssc.

Just as ivreg2 may be used to conduct a Hausman test of IV
vs. OLS, Schaffer and Stillman’s xtoverid routine may be
used to conduct a Hausman test of random effects vs. fixed
effects after xtreg, re and xtivreg, re. This routine can
also calculate tests of overidentifying restrictions after those
two commands as well as xthtaylor. The xtoverid routine
is also available from ssc.
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