
Management and analysis of panel data in
economics and finance

Christopher F Baum

Boston College and DIW Berlin

January 2009



Panel or longitudinal data are widely available in many fields of
economics and finance. Econometric analysis using panel data
can make use of estimators which can yield results more
powerful than those available from pure cross-section or
time-series data.

However, with this power we face a number of challenges in
handling the data and dealing with additional econometric
issues—such as unobserved heterogeneity—that must be
properly handled to provide consistent estimates.

In this lecture, we will touch upon some of these issues, and
discuss hands-on solutions for some of the data management
issues that arise in the context of panel data.
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The discussion that follows is presented in much greater detail
in three sources:

I An Introduction to Modern Econometrics Using Stata,
Baum, C.F., Stata Press, 2006 (particularly Chapter 8).

I An Introduction to Stata Programming. Baum, C.F., Stata
Press, 2009.

I How to do xtabond2. Roodman, D. Forthcoming, Stata
Journal.
http://ideas.repec.org/p/boc/asug06/8.html
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Forms of panel data

To define the problems of data management, consider a
dataset in which we have k variables each with T time-series
observations. The second dimension of panel data need not be
calendar time, but many estimation techniques assume that it
can be treated as such, so that operations such as first
differencing make sense.

These data may be commonly stored in either the long form or
the wide form, in Stata parlance. In the long form, each
observation has both an i and t subscript.
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Long form data:

. list, noobs sepby(state)

state year pop

CT 1990 3291967
CT 1995 3324144
CT 2000 3411750

MA 1990 6022639
MA 1995 6141445
MA 2000 6362076

RI 1990 1005995
RI 1995 1017002
RI 2000 1050664



However, you often encounter data in the wide form, in which
different variables (or columns of the data matrix) refer to
different time periods.

Wide form data:

. list, noobs

state pop1990 pop1995 pop2000

CT 3291967 3324144 3411750
MA 6022639 6141445 6362076
RI 1005995 1017002 1050664

In a variant on this theme, the wide form data could also index
the observations by the time period, and have the same
measurement for different units stored in different variables.



However, you often encounter data in the wide form, in which
different variables (or columns of the data matrix) refer to
different time periods.

Wide form data:

. list, noobs

state pop1990 pop1995 pop2000

CT 3291967 3324144 3411750
MA 6022639 6141445 6362076
RI 1005995 1017002 1050664

In a variant on this theme, the wide form data could also index
the observations by the time period, and have the same
measurement for different units stored in different variables.



However, you often encounter data in the wide form, in which
different variables (or columns of the data matrix) refer to
different time periods.

Wide form data:

. list, noobs

state pop1990 pop1995 pop2000

CT 3291967 3324144 3411750
MA 6022639 6141445 6362076
RI 1005995 1017002 1050664

In a variant on this theme, the wide form data could also index
the observations by the time period, and have the same
measurement for different units stored in different variables.



The former kind of wide-form data, where time periods are
arrayed across the columns, is often found in spreadsheets or
on-line data sources.

These examples illustrate a balanced panel, where each unit is
represented in each time period. That is often not available, as
different units may enter and leave the sample in different
periods (companies may start operations or liquidate,
household members may die, etc.) In those cases, we must
deal with unbalanced panels. Stata’s data transformation
commands are uniquely handy in that context.
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Data management for panel data

The data management challenge: for most purposes of data
transformation, estimation and graphing, data are more easily
used in the long form. Stata constructs such as the by-group
require that we have the data stored that way. So if we have
wide form data, how do we get there from here?



The solution to this problem is Stata’s reshape command, an
immensely powerful tool for reformulating a dataset in memory
without recourse to external files. In statistical packages lacking
a data-reshape feature, common practice entails writing the
data to one or more external text files and reading it back in.
With the proper use of reshape, this is not necessary in Stata.
But reshape requires, first of all, that the data to be reshaped
are labelled in such a way that they can be handled by the
mechanical rules that the command applies. In situations
beyond the simple application of reshape, it may require some
experimentation to construct the appropriate command syntax.
This is all the more reason for enshrining that code in a do-file
as some day you are likely to come upon a similar application
for reshape.



The reshape command works with the notion of xi,j data. Its
syntax lists the variables to be stacked up, and specifies the i
and j variables, where the i variable indexes the rows and the j
variable indexes the columns in the existing form of the data. If
we have a dataset in the wide form, with time periods
incorporated in the variable names, we could use

. reshape long expp revpp avgsal math4score math7score, i(distid) j(year)
(note: j = 1992 1994 1996 1998)

Data wide -> long

Number of obs. 550 -> 2200
Number of variables 21 -> 7
j variable (4 values) -> year
xij variables:

expp1992 expp1994 ... expp1998 -> expp
revpp1992 revpp1994 ... revpp1998 -> revpp

avgsal1992 avgsal1994 ... avgsal1998 -> avgsal
math4score1992 math4score1994 ... math4score1998->math4score
math7score1992 math7score1994 ... math7score1998->math7score



You use reshape long because the data are in the wide form
and we want to place them in the long form. You provide the
variable names to be stacked without their common suffixes: in
this case, the year embedded in their wide-form variable
name. The i variable is distid and the j variable is year:
together, those variables uniquely identify each measurement.
Stata’s description of reshape speaks of i defining a unique
observation and j defining a subobservation logically related to
that observation. Any additional variables that do not vary over
j are not specified in the reshape statement, as they will be
automatically replicated for each j .



What if you wanted to reverse the process, and translate the
data from the long to the wide form?

. reshape wide expp revpp avgsal math4score math7score, i(distid) j(year)
(note: j = 1992 1994 1996 1998)

Data long -> wide

Number of obs. 2200 -> 550
Number of variables 7 -> 21
j variable (4 values) year -> (dropped)
xij variables:

expp -> expp1992 expp1994 ... expp1998
revpp -> revpp1992 revpp1994 ... revpp199

> 8
avgsal -> avgsal1992 avgsal1994 ... avgsal

> 1998
math4score -> math4score1992 math4score1994 ..

> . math4score1998
math7score -> math7score1992 math7score1994 ..

> . math7score1998
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This example highlights the importance of having appropriate
variable names for reshape. If our wide-form dataset
contained the variables expp1992, Expen94, xpend_96
and expstu1998 there would be no way to specify the
common stub labeling the choices. However, one common
case can be handled without the renaming of variables. Say
that we have the variables exp92pp, exp94pp, exp96pp,
exp98pp. The command

reshape long exp@pp, i(distid) j(year)

will deal with that case, with the @ as a placeholder for the
location of the j component of the variable name.



This discussion has only scratched the surface of reshape’s
capabilities. There is no substitute for experimentation with this
command after a careful perusal of help reshape, as it is
one of the most complicated elements of Stata.

When working with panel data, we also must consider
combining datasets, as often data are available for one panel at
a time (for instance, cross-sectional information on the 100
largest companies at each year-end). In this next section, we
take up that issue.
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Combining datasets

You may be aware that Stata can only work with one dataset at
a time. How, then, do you combine datasets in Stata? First of
all, it is important to understand that at least one of the datasets
to be combined must already have been saved in Stata format.
Second, you should realize that each of Stata’s commands for
combining datasets provides a certain functionality, which
should not confused with that of other commands.

For instance, consider the append command with two stylized
datasets:
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dataset1 :


id var1 var2

112
...

...

216
...

...

449
...

...



dataset2 :



id var1 var2

126
...

...

309
...

...

421
...

...

604
...

...





These two datasets contain the same variables, as they must
for append to sensibly combine them. If dataset2 contained
idcode, Var1, Var2 the two datasets could not sensibly be
appended without renaming the variables.1 Appending these
two datasets with common variable names creates a single
dataset containing all of the observations:

1Recall that in Stata var1 and Var1 are two separate variables.



combined :



id var1 var2

112
...

...

216
...

...

449
...

...

126
...

...

309
...

...

421
...

...

604
...

...



The rule for append, then, is that if datasets are to be
combined, they should share the same variable names and
datatypes (string vs. numeric). In the above example, if var1 in
dataset1 was a float while that variable in dataset2 was
a string variable, they could not be appended.
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It is permissible to append two datasets with differing variable
names in the sense that dataset2 could also contain an
additional variable or variables (for example, var3, var4).
The values of those variables in the observations coming from
dataset1 would then be set to missing.

While append combines datasets by adding observations to
the existing variables, the other key command, merge
combines variables for the existing observations.
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Consider these two stylized datasets:
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dataset3 :
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id var22 var44 var46
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...
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...

216
...

...
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...
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...
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We may merge these datasets on the common merge key: in
this case, the id variable:

combined :


id var1 var2 var22 var44 var46

112
...

...
...

...
...

216
...

...
...

...
...

449
...

...
...

...
...





The rule for merge, then, is that if datasets are to be combined
on one or more merge keys, they each must have one or more
variables with a common name and datatype (string vs.
numeric). In the example above, each dataset must have a
variable named id. That variable can be numeric or string, but
that characteristic of the merge key variables must match
across the datasets to be merged. Of course, we need not have
exactly the same observations in each dataset: if dataset3
contained observations with additional id values, those
observations would be merged with missing values for var1
and var2.

This is the simplest kind of merge: the one-to-one merge. Stata
supports several other types of merges. But the key concept
should be clear: the merge command combines datasets
“horizontally”, adding variables’ values to existing observations.
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The long-form dataset is very useful if you want to add
aggregate-level information to individual records. For instance,
we may have panel data for a number of companies for several
years. We may want to attach various macro indicators (interest
rate, GDP growth rate, etc.) that vary by year but not by
company. We would place those macro variables into a
dataset, indexed by year, and sort it by year.

We could then use the firm-level panel dataset and sort it by
year. A merge command can then add the appropriate macro
variables to each instance of year. This use of merge is
known as a one-to-many match merge, where the year
variable is the merge key.

Note that the merge key may contain several variables: we
might have information specific to industry and year that should
be merged onto each firm’s observations.
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By default, merge creates a new variable _merge, which takes
on integer values for each observation of 1 if that observation
was only found in the master dataset, 2 if it was only found in
the using dataset, or 3 if it was found in both datasets. In this
case, we expect that tab _merge should reveal that all values
equal 3. We can also use the uniqusing option to ensure that
there are no duplicate values of year in the using file, as a
duplicate value of distid must be a data entry error. If the
same year mistakenly appears on two records in the using file,
asserting uniqusing will cause merge to fail.

You may also use a uniqmaster option, where the master file
should contain only one record for the merge key (which may
include several variables), or the unique option in the case of
the one-to-one merge where there should be a perfect match
between the two files.
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In your particular application, you may find that _merge values
of 1 or 2 are appropriate. The key notion is that you should
always tabulate _merge and consider whether the results of
the merge are sensible in the context of your work. It is an
excellent idea to use the uniqmaster, uniqusing or unique
options on the merge command whenever those conditions
should logically be satisfied in your data.

In comparison with a lengthy and complicated do-file using a
set of replace statements, the merge technique is far better.
This technique proves exceedingly useful when working with
individual data and panel data where we have aggregate
information to be combined with the individual-level data.
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There are very good reasons to employ a one-to-many merge,
as we did above with macro variables, or its inverse: a
many-to-one merge, which would essentially reverse the roles
of the master and using datasets. But there is a great danger in
stumbling into the alternative to the one-to-many or one-to-one
merge: the many-to-many merge. This problem arises when
there are multiple observations in both datasets for some
values of the merge key variable(s).



The result of match-merging two datasets which both have
more than one value of the merge key variable(s) is
unpredictable, as it depends on the sort order of the datasets.
This leads to the seemingly illogical result that repeated
execution of the same do-file will most likely result in a different
number of cases in the result dataset without any error
indication. There is no unique outcome for a many-to-many
merge. When it is encountered it usually results from a coding
error in one of the files.

Stata’s duplicates command is very useful in tracking down
such errors. To prevent such difficulties in employing merge,
you should specify either the uniqmaster or the uniqusing
option in a match merge. If no uniq. . . option is used,
observations may be matched inappropriately.
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Estimation for panel data

We first consider estimation of models that satisfy the zero
conditional mean assumption for OLS regression: that is, the
conditional mean of the error process, conditioned on the
regressors, is zero. This does not rule out non-i .i .d . errors, but
it does rule out endogeneity of the regressors and, generally,
the presence of lagged dependent variables. We will deal with
these exceptions later.

The most commonly employed model for panel data, the fixed
effects estimator, addresses the issue that no matter how many
individual-specific factors you may include in the regressor list,
there may be unobserved heterogeneity in a pooled OLS
model. This will generally cause OLS estimates to be biased
and inconsistent.
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Given longitudinal data {y X }, each element of which has two
subscripts: the unit identifier i and the time identifier t , we may
define a number of models that arise from the most general
linear representation:

yit =
K∑

k=1

Xkitβkit + εit , i = 1, N, t = 1, T (1)

Assume a balanced panel of N × T observations. Since this
model contains K × N × T regression coefficients, it cannot be
estimated from the data. We could ignore the nature of the
panel data and apply pooled ordinary least squares,pooled
OLS which would assume that βkit = βk ∀ k , i , t , but that model
might be viewed as overly restrictive and is likely to have a very
complicated error process (e.g., heteroskedasticity across
panel units, serial correlation within panel units, and so forth).
Thus the pooled OLS solution is not often considered to be
practical.
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One set of panel data estimators allow for heterogeneity across
panel units (and possibly across time), but confine that
heterogeneity to the intercept terms of the relationship. These
techniques, the fixed effects and random effects models, we
consider below. They impose restrictions on the model above
of βkit = βk ∀i , t , k > 1, assuming that β1 refers to the constant
term in the relationship.



An alternative technique which may be applied to “small N,
large T ” panels is the method of seemingly unrelated
regressions or SURE. The “small N, large T ” setting refers to
the notion that we have a relatively small number of panel units,
each with a lengthy time series: for instance, financial variables
of the ten largest U.S. manufacturing firms, observed over the
last 40 calendar quarters. The SURE technique (implemented
in Stata as sureg) requires that the number of time periods
exceeds the number of cross-sectional units.



The general structure above may be restricted to allow for
heterogeneity across units without the full generality (and
infeasibility) that this equation implies. In particular, we might
restrict the slope coefficients to be constant over both units and
time, and allow for an intercept coefficient that varies by unit or
by time. For a given observation, an intercept varying over units
results in the structure:

yit =
K∑

k=2

Xkitβk + ui + εit (2)



There are two interpretations of ui in this context: as a
parameter to be estimated in the model (a so-called fixed
effect) or alternatively, as a component of the disturbance
process, giving rise to a composite error term [ui + εit ]: a
so-called random effect. Under either interpretation, ui is taken
as a random variable.

If we treat it as a fixed effect, we assume that the ui may be
correlated with some of the regressors in the model. The
fixed-effects estimator removes the fixed-effects parameters
from the estimator to cope with this incidental parameter
problem, which implies that all inference is conditional on the
fixed effects in the sample. Use of the random effects model
implies additional orthogonality conditions—that the ui are not
correlated with the regressors—and yields inference about the
underlying population that is not conditional on the fixed effects
in our sample.



There are two interpretations of ui in this context: as a
parameter to be estimated in the model (a so-called fixed
effect) or alternatively, as a component of the disturbance
process, giving rise to a composite error term [ui + εit ]: a
so-called random effect. Under either interpretation, ui is taken
as a random variable.

If we treat it as a fixed effect, we assume that the ui may be
correlated with some of the regressors in the model. The
fixed-effects estimator removes the fixed-effects parameters
from the estimator to cope with this incidental parameter
problem, which implies that all inference is conditional on the
fixed effects in the sample. Use of the random effects model
implies additional orthogonality conditions—that the ui are not
correlated with the regressors—and yields inference about the
underlying population that is not conditional on the fixed effects
in our sample.



We could treat a time-varying intercept term similarly: as either
a fixed effect (giving rise to an additional coefficient) or as a
component of a composite error term. We concentrate here on
so-called one-way fixed (random) effects models in which only
the individual effect is considered in the “large N, small T ”
context most commonly found in economic and financial
research. Stata’s set of xt commands include those which
extend these panel data models in a variety of ways. For more
information, see help xt.



One-way fixed effects: the within estimator

Rewrite the equation to express the individual effect ui as

yit = X ∗
it β

∗ + Ziα + εit (3)

In this context, the X ∗ matrix does not contain a units vector.
The heterogeneity or individual effect is captured by Z , which
contains a constant term and possibly a number of other
individual-specific factors. Likewise, β∗ contains β2 . . . βK from
the equation above, constrained to be equal over i and t . If Z
contains only a units vector, then pooled OLS is a consistent
and efficient estimator of [β∗ α]. However, it will often be the
case that there are additional factors specific to the individual
unit that must be taken into account, and omitting those
variables from Z will cause the equation to be misspecified.



The fixed effects model deals with this problem by relaxing the
assumption that the regression function is constant over time
and space in a very modest way. A one-way fixed effects model
permits each cross-sectional unit to have its own constant term
while the slope estimates (β∗) are constrained across units, as
is the σ2

ε . This estimator is often termed the LSDV
(least-squares dummy variable) model, since it is equivalent to
including (N − 1) dummy variables in the OLS regression of y
on X (including a units vector). The LSDV model may be
written in matrix form as:

y = Xβ + Dα + ε (4)

where D is a NT ×N matrix of dummy variables di (assuming a
balanced panel of N × T observations).



The model has (K − 1) + N parameters (recalling that the β∗

coefficients are all slopes) and when this number is too large to
permit estimation, we rewrite the least squares solution as

b = (X ′MDX )−1(X ′MDy) (5)

where
MD = I − D(D′D)−1D′ (6)

is an idempotent matrix which is block–diagonal in
M0 = IT − T−1ιι′ (ι a T –element units vector).

Premultiplying any data vector by M0 performs the demeaning
transformation: if we have a T–vector Zi , M0Zi = Zi − Z̄i ι. The
regression above estimates the slopes by the projection of
demeaned y on demeaned X without a constant term.
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The estimates ai may be recovered from ai = ȳi − b′X̄i , since
for each unit, the regression surface passes through that unit’s
multivariate point of means. This is a generalization of the OLS
result that in a model with a constant term the regression
surface passes through the entire sample’s multivariate point of
means.

The large-sample VCE of b is s2[X ′MDX ]−1, with s2 based on
the least squares residuals, but taking the proper degrees of
freedom into account: NT − N − (K − 1).
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This model will have explanatory power if and only if the
variation of the individual’s y above or below the individual’s
mean is significantly correlated with the variation of the
individual’s X values above or below the individual’s vector of
mean X values. For that reason, it is termed the within
estimator, since it depends on the variation within the unit.

It does not matter if some individuals have, e.g., very high y
values and very high X values, since it is only the within
variation that will show up as explanatory power. This is the
panel analogue to the notion that OLS on a cross-section does
not seek to “explain” the mean of y , but only the variation
around that mean.
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This has the clear implication that any characteristic which
does not vary over time for each unit cannot be included in the
model: for instance, an individual’s gender, or a firm’s
three-digit SIC (industry) code. The unit-specific intercept term
absorbs all heterogeneity in y and X that is a function of the
identity of the unit, and any variable constant over time for each
unit will be perfectly collinear with the unit’s indicator variable.



The one-way individual fixed effects model may be estimated
by the Stata command [XT] xtreg using the fe (fixed effects)
option. The command has a syntax similar to regress:

xtreg depvar indepvars, fe [options]

As with standard regression, options include robust and
cluster(). The command output displays estimates of σ2

u
(labeled sigma_u), σ2

ε (labeled sigma_e), and what Stata
terms rho: the fraction of variance due to ui . Stata estimates a
model in which the ui of Equation (2) are taken as deviations
from a single constant term, displayed as _cons; therefore
testing that all ui are zero is equivalent in our notation to testing
that all αi are identical. The empirical correlation between ui
and the regressors in X ∗ is also displayed as corr(u_i, Xb).
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The fixed effects estimator does not require a balanced panel.
As long as there are at least two observations per unit, it may
be applied. However, since the individual fixed effect is in
essence estimated from the observations of each unit, the
precision of that effect (and the resulting slope estimates) will
depend on Ni .

We wish to test whether the individual-specific heterogeneity of
αi is necessary: are there distinguishable intercept terms
across units? xtreg,fe provides an F -test of the null
hypothesis that the constant terms are equal across units. If
this null is rejected, pooled OLS would represent a misspecified
model. The one-way fixed effects model also assumes that the
errors are not contemporaneously correlated across units of the
panel. This hypothesis can be tested (provided T > N) by the
Lagrange multiplier test of Breusch and Pagan, available as the
author’s xttest2 routine (findit xttest2).
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We have considered one-way fixed effects models, where the
effect is attached to the individual. We may also define a
two-way fixed effect model, where effects are attached to each
unit and time period. Stata lacks a command to estimate
two-way fixed effects models. If the number of time periods is
reasonably small, you may estimate a two-way FE model by
creating a set of time indicator variables and including all but
one in the regression.

The joint test that all of the coefficients on those indicator
variables are zero will be a test of the significance of time fixed
effects. Just as the individual fixed effects (LSDV) model
requires regressors’ variation over time within each unit, a time
fixed effect (implemented with a time indicator variable) requires
regressors’ variation over units within each time period. If we
are estimating an equation from individual or firm microdata,
this implies that we cannot include a “macro factor” such as the
rate of GDP growth or price inflation in a model with time fixed
effects, since those factors do not vary across individuals.
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The between estimator

Another estimator that may be defined for a panel data set is
the between estimator, in which the group means of y are
regressed on the group means of X in a regression of N
observations. This estimator ignores all of the
individual-specific variation in y and X that is considered by the
within estimator, replacing each observation for an individual
with their mean behavior. This estimator is not widely used, but
has sometimes been applied where the time series data for
each individual are thought to be somewhat inaccurate, or
when they are assumed to contain random deviations from
long-run means. If you assume that the inaccuracy has mean
zero over time, a solution to this measurement error problem
can be found by averaging the data over time and retaining only
one observation per unit.



This could be done explicitly with Stata’s collapse command.
However, you need not form that data set to employ the
between estimator, since the command xtreg with the be
(between) option will invoke it. Use of the between estimator
requires that N > K . Any macro factor that is constant over
individuals cannot be included in the between estimator, since
its average will not differ by individual.

We can show that the pooled OLS estimator is a matrix
weighted average of the within and between estimators, with
the weights defined by the relative precision of the two
estimators. We might ask, in the context of panel data: where
are the interesting sources of variation? In individuals’ variation
around their means, or in those means themselves? The within
estimator takes account of only the former, whereas the
between estimator considers only the latter.
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The random effects estimator

As an alternative to considering the individual-specific intercept
as a “fixed effect” of that unit, we might consider that the
individual effect may be viewed as a random draw from a
distribution:

yit = X ∗
it β

∗ + [ui + εit ] (7)

where the bracketed expression is a composite error term, with
the ui being a single draw per unit. This model could be
consistently estimated by OLS or by the between estimator, but
that would be inefficient in not taking the nature of the
composite disturbance process into account.



A crucial assumption of this model is that ui is independent of
X ∗: individual i receives a random draw that gives her a higher
wage. That ui must be independent of individual i ’s measurable
characteristics included among the regressors X ∗. If this
assumption is not sustained, the random effects estimator will
yield inconsistent estimates since the regressors will be
correlated with the composite disturbance term.

If the individual effects can be considered to be strictly
independent of the regressors, then we might model the
individual-specific constant terms (reflecting the unmodeled
heterogeneity across units) as draws from an independent
distribution. This greatly reduces the number of parameters to
be estimated, and conditional on that independence, allows for
inference to be made to the population from which the survey
was constructed.
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In a large survey, with thousands of individuals, a random
effects model will estimate K parameters, whereas a fixed
effects model will estimate (K − 1) + N parameters, with the
sizable loss of (N − 1) degrees of freedom. In contrast to fixed
effects, the random effects estimator can identify the
parameters on time-invariant regressors such as race or
gender at the individual level.

Therefore, where its use can be warranted, the random effects
model is more efficient and allows a broader range of statistical
inference. The assumption of the individual effects’
independence is testable and should always be tested.
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To implement the one-way random effects formulation of
Equation (7), we assume that both u and ε are meanzero
processes, distributed independent of X ∗; that they are each
homoskedastic; that they are distributed independently of each
other; and that each process represents independent
realizations from its respective distribution, without correlation
over individuals (nor time, for ε). For the T observations
belonging to the i th unit of the panel, we have the composite
error process

ηit = ui + εit (8)

This is known as the error components model with conditional
variance

E [η2
it |X ∗] = σ2

u + σ2
ε (9)

and conditional covariance within a unit of

E [ηitηis|X ∗] = σ2
u, t 6= s. (10)
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The covariance matrix of these T errors may then be written as

Σ = σ2
ε IT + σ2

uιT ι′T . (11)

Since observations i and j are independent, the full covariance
matrix of η across the sample is block-diagonal in Σ: Ω = In ⊗Σ
where ⊗ is the Kronecker product of the matrices.



Generalized least squares (GLS) is the estimator for the slope
parameters of this model:

bRE = (X ∗′
Ω−1X ∗)−1(X ∗′

Ω−1y)

=

(∑
i

X ∗′

i Σ−1X ∗
i

)−1(∑
i

X ∗′

i Σ−1yi

)
(12)

To compute this estimator, we require Ω−1/2 = [In ⊗ Σ]−1/2,
which involves

Σ−1/2 = σ−1
ε [I − T−1θιT ι′T ] (13)

where
θ = 1− σε√

σ2
ε + Tσ2

u

(14)
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The quasi-demeaning transformation defined by Σ−1/2 is then
σ−1

ε (yit − θȳi): that is, rather than subtracting the entire
individual mean of y from each value, we should subtract some
fraction of that mean, as defined by θ. Compare this to the
LSDV model in which we define the within estimator by setting
θ = 1. Like pooled OLS, the GLS random effects estimator is a
matrix weighted average of the within and between estimators,
but in this case applying optimal weights, as based on

λ =
σ2

ε

σ2
ε + Tσ2

u
= (1− θ)2 (15)

where λ is the weight attached to the covariance matrix of the
between estimator. To the extent that λ differs from unity,
pooled OLS will be inefficient, as it will attach too much weight
on the between-units variation, attributing it all to the variation
in X rather than apportioning some of the variation to the
differences in εi across units.



The setting λ = 1 (θ = 0) is appropriate if σ2
u = 0, that is, if

there are no random effects; then a pooled OLS model is
optimal. If θ = 1, λ = 0 and the appropriate estimator is the
LSDV model of individual fixed effects. To the extent that λ
differs from zero, the within (LSDV) estimator will be inefficient,
in that it applies zero weight to the between estimator.

The GLS random effects estimator applies the optimal λ in the
unit interval to the between estimator, whereas the fixed effects
estimator arbitrarily imposes λ = 0. This would only be
appropriate if the variation in ε was trivial in comparison with
the variation in u, since then the indicator variables that identify
each unit would, taken together, explain almost all of the
variation in the composite error term.
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To implement the feasible GLS estimator of the model all we
need are consistent estimates of σ2

ε and σ2
u. Because the fixed

effects model is consistent its residuals can be used to estimate
σ2

ε . Likewise, the residuals from the pooled OLS model can be
used to generate a consistent estimate of (σ2

ε + σ2
u). These two

estimators may be used to define θ and transform the data for
the GLS model.

Because the GLS model uses quasi-demeaning, it is capable of
including variables that do not vary at the individual level (such
as gender or race). Since such variables cannot be included in
the LSDV model, an alternative estimator must be defined
based on the between estimator’s consistent estimate of
(σ2

u + T−1σ2
ε ).



To implement the feasible GLS estimator of the model all we
need are consistent estimates of σ2

ε and σ2
u. Because the fixed

effects model is consistent its residuals can be used to estimate
σ2

ε . Likewise, the residuals from the pooled OLS model can be
used to generate a consistent estimate of (σ2

ε + σ2
u). These two

estimators may be used to define θ and transform the data for
the GLS model.

Because the GLS model uses quasi-demeaning, it is capable of
including variables that do not vary at the individual level (such
as gender or race). Since such variables cannot be included in
the LSDV model, an alternative estimator must be defined
based on the between estimator’s consistent estimate of
(σ2

u + T−1σ2
ε ).



The feasible GLS estimator may be executed in Stata using the
command xtreg with the re (random effects) option. The
command will display estimates of σ2

u, σ2
ε and what Stata calls

rho: the fraction of variance due to εi . Breusch and Pagan
have developed a Lagrange multiplier test for σ2

u = 0 which may
be computed following a random-effects estimation via the
command xttest0.

You can also estimate the parameters of the random effects
model with full maximum likelihood. The mle option on the
xtreg, re command requests that estimator. The application
of MLE continues to assume that X ∗ and u are independently
distributed, adding the assumption that the distributions of u
and ε are Normal. This estimator will produce a likelihood ratio
test of σ2

u = 0 corresponding to the Breusch–Pagan test
available for the GLS estimator.
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A Hausman test may be used to test the null hypothesis that
the extra orthogonality conditions imposed by the random
effects estimator are valid. The fixed effects estimator, which
does not impose those conditions, is consistent regardless of
the independence of the individual effects. The fixed effects
estimates are inefficient if that assumption of independence is
warranted. The random effects estimator is efficient under the
assumption of independence, but inconsistent otherwise.

Therefore, we may consider these two alternatives in the
Hausman test framework, estimating both models and
comparing their common coefficient estimates in a probabilistic
sense. If both fixed and random effects models generate
consistent point estimates of the slope parameters, they will not
differ meaningfully. If the assumption of independence is
violated, the inconsistent random effects estimates will differ
from their fixed effects counterparts.
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To implement the Hausman test, you estimate each form of the
model, using the commands estimates store set after each
estimation, with set defining that set of estimates: for instance,
set might be fix for the fixed effects model. Then the
command hausman setconsist seteff will invoke the Hausman
test, where setconsist refers to the name of the fixed effects
estimates (which are consistent under the null and alternative)
and seteff referring to the name of the random effects
estimates, which are only efficient under the null hypothesis of
independence. This test is based on the difference of the two
estimated covariance matrices (which is not guaranteed to be
positive definite) and the difference between the fixed effects
and random effects vectors of slope coefficients.



The Hausman–Taylor estimator

If the Hausman test indicates that the random effects ui cannot
be considered orthogonal to the individual level error, an
instrumental variables estimator may be utilized to generate
consistent estimates of the coefficients on the time-invariant
variables. The Hausman–Taylor estimator (1981) assumes that
some of the regressors in X are correlated with u, but that none
are correlated with ε. This estimator is available in Stata as
xthtaylor.



Their approach is based on dividing the regressors into four
categories: the interaction of time varying (X ) / time invariant
(Z ) and uncorrelated with ui (1) / correlated with ui (2). For
example, X2 are those time-varying regressors that are thought
to be correlated with ui . Identification of the parameters
requires that K1 (the number of X1 variables) be at least as
large as L2 (the number of Z2 variables).

The application of the Hausman–Taylor estimator circumvents
the problem of X2 and Z2 variables being potentially correlated
with ui , but requires that we can identify variables of type 1 that
are surely not correlated with the random effects.
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The IV estimator for panel data

Stata also provides an instrumental variables estimator for the
fixed effects and random effects models in which some of the X
variables are correlated with the idiosyncratic error ε. These are
quite different assumptions about the nature of any suspected
correlation between regressor and the composite error term
from those underlying the Hausman–Taylor estimator. The
xtivreg command also supports fixed effects, between
effects, and first-differenced estimators in an instrumental
variables context.



Considering our discussion of instrumental variables estimation
via ivreg2, the features of ivreg2 are also available for panel
data in xtivreg2, which is a “wrapper” for ivreg2. This
routine of Mark Schaffer’s extends Stata’s xtivreg’s support
for the fixed effect (fe) and first difference (fd) estimators. The
xtivreg2 routine is available from ssc.

Just as ivreg2 may be used to conduct a Hausman test of IV
vs. OLS, Schaffer and Stillman’s xtoverid routine may be
used to conduct a Hausman test of random effects vs. fixed
effects after xtreg, re and xtivreg, re. This routine can
also calculate tests of overidentifying restrictions after those
two commands as well as xthtaylor. The xtoverid routine
is also available from ssc.
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The first difference estimator

The within transformation used by fixed effects models removes
unobserved heterogeneity at the unit level. The same can be
achieved by first differencing the original equation (which
removes the constant term). In fact, if T = 2, the fixed effects
and first difference estimates are identical. For T > 2, the
effects will not be identical, but they are both consistent
estimators of the original model. Stata’s xtreg does not
provide the first difference estimator, but xtivreg2 provides
this option as the fd model.

The ability of first differencing to remove unobserved
heterogeneity also underlies the family of estimators that have
been developed for dynamic panel data (DPD) models. These
models contain one or more lagged dependent variables,
allowing for the modeling of a partial adjustment mechanism.
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A serious difficulty arises with the one-way fixed effects model
in the context of a dynamic panel data (DPD) model particularly
in the “small T , large N" context. As Nickell (1981) shows, this
arises because the demeaning process which subtracts the
individual’s mean value of y and each X from the respective
variable creates a correlation between regressor and error.

The mean of the lagged dependent variable contains
observations 0 through (T − 1) on y , and the mean
error—which is being conceptually subtracted from each
εit—contains contemporaneous values of ε for t = 1 . . . T . The
resulting correlation creates a bias in the estimate of the
coefficient of the lagged dependent variable which is not
mitigated by increasing N, the number of individual units.
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The demeaning operation creates a regressor which cannot be
distributed independently of the error term. Nickell
demonstrates that the inconsistency of ρ̂ as N →∞ is of order
1/T , which may be quite sizable in a “small T " context. If ρ > 0,
the bias is invariably negative, so that the persistence of y will
be underestimated. For reasonably large values of T , the limit
of (ρ̂− ρ) as N →∞ will be approximately −(1 + ρ)/(T − 1): a
sizable value, even if T = 10. With ρ = 0.5, the bias will be
-0.167, or about 1/3 of the true value. The inclusion of
additional regressors does not remove this bias. Indeed, if the
regressors are correlated with the lagged dependent variable to
some degree, their coefficients may be seriously biased as well.



Note also that this bias is not caused by an autocorrelated error
process ε. The bias arises even if the error process is i .i .d . If
the error process is autocorrelated, the problem is even more
severe given the difficulty of deriving a consistent estimate of
the AR parameters in that context.

The same problem affects the one-way random effects model.
The ui error component enters every value of yit by
assumption, so that the lagged dependent variable cannot be
independent of the composite error process.
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A solution to this problem involves taking first differences of the
original model. Consider a model containing a lagged
dependent variable and a single regressor X :

yit = β1 + ρyi,t−1 + Xitβ2 + ui + εit (16)

The first difference transformation removes both the constant
term and the individual effect:

∆yit = ρ∆yi,t−1 + ∆Xitβ2 + ∆εit (17)

There is still correlation between the differenced lagged
dependent variable and the disturbance process (which is now
a first-order moving average process, or MA(1)): the former
contains yi,t−1 and the latter contains εi,t−1.



But with the individual fixed effects swept out, a straightforward
instrumental variables estimator is available. We may construct
instruments for the lagged dependent variable from the second
and third lags of y , either in the form of differences or lagged
levels. If ε is i .i .d ., those lags of y will be highly correlated with
the lagged dependent variable (and its difference) but
uncorrelated with the composite error process.

Even if we had reason to believe that ε might be following an
AR(1) process, we could still follow this strategy, “backing off”
one period and using the third and fourth lags of y (presuming
that the timeseries for each unit is long enough to do so).
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Dynamic panel data estimators

The DPD (Dynamic Panel Data) approach of Arellano and Bond
(1991) is based on the notion that the instrumental variables
approach noted above does not exploit all of the information
available in the sample. By doing so in a Generalized Method
of Moments (GMM) context, we may construct more efficient
estimates of the dynamic panel data model. The
Arellano–Bond estimator can be thought of as an extension of
the Anderson–Hsiao estimator implemented by xtivreg, fd.



Arellano and Bond argue that the Anderson–Hsiao estimator,
while consistent, fails to take all of the potential orthogonality
conditions into account. Consider the equations

yit = Xitβ1 + Witβ2 + vit

vit = ui + εit (18)

where Xit includes strictly exogenous regressors, Wit are
predetermined regressors (which may include lags of y ) and
endogenous regressors, all of which may be correlated with ui ,
the unobserved individual effect. First-differencing the equation
removes the ui and its associated omitted-variable bias. The
Arellano–Bond estimator sets up a generalized method of
moments (GMM) problem in which the model is specified as a
system of equations, one per time period, where the
instruments applicable to each equation differ (for instance, in
later time periods, additional lagged values of the instruments
are available).



The instruments include suitable lags of the levels of the
endogenous variables (which enter the equation in differenced
form) as well as the strictly exogenous regressors and any
others that may be specified. This estimator can easily
generate an immense number of instruments, since by period τ
all lags prior to, say, (τ − 2) might be individually considered as
instruments. If T is nontrivial, it is often necessary to employ
the option which limits the maximum lag of an instrument to
prevent the number of instruments from becoming too large.
This estimator is available in Stata as xtabond. A more
general version, allowing for autocorrelated errors, is available
as xtdpd.



A potential weakness in the Arellano–Bond DPD estimator was
revealed in later work by Arellano and Bover (1995) and
Blundell and Bond (1998). The lagged levels are often rather
poor instruments for first differenced variables, especially if the
variables are close to a random walk. Their modification of the
estimator includes lagged levels as well as lagged differences.

The original estimator is often entitled difference GMM, while
the expanded estimator is commonly termed System GMM.
The cost of the System GMM estimator involves a set of
additional restrictions on the initial conditions of the process
generating y . This estimator is available in Stata as xtdpdsys.
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An excellent alternative to Stata’s built-in commands is David
Roodman’s xtabond2, available from SSC (findit
xtabond2). It is very well documented in his paper, referenced
above. The xtabond2 routine handles both the difference and
system GMM estimators and provides several additional
features—such as the orthogonal deviations
transformation—not available in official Stata’s commands.

As any of the DPD estimators are instrumental variables
methods, it is particularly important to evaluate the
Sargan–Hansen test results when they are applied. Roodman’s
xtabond2 provides C tests (as discussed in re ivreg2) for
groups of instruments. In his routine, instruments can be either
“GMM-style" or “IV-style". The former are constructed per the
Arellano–Bond logic, making use of multiple lags; the latter are
included as is in the instrument matrix. For the system GMM
estimator (the default in xtabond2 instruments may be
specified as applying to the differenced equations, the level
equations or both.
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Another important diagnostic in DPD estimation is the AR test
for autocorrelation of the residuals. By construction, the
residuals of the differenced equation should possess serial
correlation, but if the assumption of serial independence in the
original errors is warranted, the differenced residuals should not
exhibit significant AR(2) behavior. These statistics are
produced in the xtabond and xtabond2 output. If a
significant AR(2) statistic is encountered, the second lags of
endogenous variables will not be appropriate instruments for
their current values.

A useful feature of xtabond2 is the ability to specify, for
GMM-style instruments, the limits on how many lags are to be
included. If T is fairly large (more than 7–8) an unrestricted set
of lags will introduce a huge number of instruments, with a
possible loss of efficiency. By using the lag limits options, you
may specify, for instance, that only lags 2–5 are to be used in
constructing the GMM instruments.
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Although the DPD estimators are linear estimators, they are
highly sensitive to the particular specification of the model and
its instruments. There is no substitute for experimentation with
the various parameters of the specification to ensure that your
results are reasonably robust to variations in the instrument set
and lags used. If you are going to work with DPD models, you
should study Roodman’s “How to do xtabond2” paper so that
you fully understand the nuances of this estimation strategy.
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