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When working with time-series data, we must be concerned
with two attributes: stationarity and stability. The former
property applies to a single time series: is the series
covariance stationary, or does its autoregressive representation
contain one or more unit roots?

The latter property refers to a bivariate or multivariate
relationship: is the relationship temporally stable? The latter
issue may relate to the conditional mean of a series, or indeed
to its variance or autocorrelation function. In this lecture, we
consider several aspects of these two time-series properties,
and present software tools that may be used in their evaluation.
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Unit root tests

The “first generation” unit root tests, such as the Dickey–Fuller,
Augmented Dickey–Fuller and Phillips–Perron tests have been
shown to have relatively low power to reject their null
hypothesis: that the series is non-stationary (I(1)) rather than
stationary (I(0)). In particular, any sort of structural break in the
series is likely to cause a failure to reject, even if the series is
stationary before and after the structural break.



To deal with the well-known low power of these tests,
researchers have devised more powerful tests such as the
DF-GLS test of Elliott, Rothenberg, Stock (Econometrica,1996).
The standard Dickey–Fuller test is essentially an OLS
regression: in the simplest form, of the difference of the series
(∆Xt ) on the lagged level of the series (Xt−1). The “Augmented"
Dickey-Fuller or ADF test adds a number of lagged differences
to the specification. The DF-GLS test makes use of generalized
least squares (GLS) rather than OLS, and has been shown to
have considerably higher power in many circumstances.



The dfgls command is now part of official Stata. Its original
implementation was provided by Baum (STB-57, 2000) and
Baum and Sperling (STB-58, 2000). dfgls performs the
Elliott–Rothenberg–Stock (ERS) efficient test for an
autoregressive unit root. This test is similar to an (augmented)
Dickey-Fuller t test, as performed by dfuller, but has the best
overall performance in terms of small-sample size and power,
dominating the ordinary Dickey-Fuller test. The dfgls test
“has substantially improved power when an unknown mean or
trend is present” (ERS, p. 813).



The dfgls varname command applies a generalized least
squares (GLS) detrending (demeaning) step to the varname:

yd
t = yt − β̂

′
zt

For detrending, zt = (1, t)
′

and β̂0, β̂1 are calculated by
regressing [y1, (1− ᾱL) y2, ..., (1− ᾱL) yT ] onto
[z1, (1− ᾱL) z2, ..., (1− ᾱL) zT ] where ᾱ = 1 + c̄/T with
c̄ = −13.5, and L is the lag operator. For demeaning, zt = (1)′

and the same regression is run with c̄ = −7.0.

The values of c̄ are chosen so that “the test achieves the power
envelope against stationary alternatives (is asymptotically MPI
(most powerful invariant)) at 50 percent power” (Stock,
Handbook of Econometrics, 1994, p. 2769).
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The augmented Dickey-Fuller regression is then computed
using the yd

t series:

∆yd
t = α + γt + ρyd

t−1 +
m∑

i=1

δi∆yd
t−i + εt

where m =maxlag. The notrend option suppresses the time
trend in this regression.

Approximate critical values for the GLS detrended test are
taken from ERS, Table 1 (p. 825). Approximate critical values
for the GLS demeaned test are identical to those applicable to
the no-constant, no-trend Dickey-Fuller test, and are computed
using the dfuller code.
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The maxlag(p) option specifies the maximum lag order to be
considered. The test statistics will be calculated for each lag up
to the maximum lag order (which may be zero). If not specified,
the maximum lag order for the test is by default calculated from
the sample size using a rule provided by Schwert (JBES, 1989)
using c=12 and d=4 in his terminology. Whether the maximum
lag is explicitly specified or computed by default, the sample
size is held constant over lags at the maximum available
sample.

The dfgls routine includes a very powerful lag selection
criterion, the “modified AIC” (MAIC) criterion proposed by Ng
and Perron (Econometrica, 2000). They have established that
use of this MAIC criterion may provide “huge size
improvements” (2000, abstract) in the dfgls test. The
criterion, indicating the appropriate lag order, is printed on
dfgls’ output, and may be used to select the test statistic from
which inference is to be drawn.
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It should be noted that all of the lag length criteria employed by
dfgls (the sequential t test of Ng and Perron, the Schwarz
Criterion (SC), and the MAIC) are calculated, for various lags,
by holding the sample size fixed at that defined for the longest
lag. These criteria cannot be meaningfully compared over lag
lengths if the underlying sample is altered to use all available
observations. That said, if the optimal lag length (by whatever
criterion) is found to be much less than that picked by the
Schwert criterion, it would be advisable to rerun the test with
the maxlag option specifying that optimal lag length, especially
when using samples of modest size.



The KPSS test

As an alternative to the Dickey–Fuller style tests for stationarity,
we may consider the KPSS test of Kwiatkowski, Phillips,
Schmidt and Shin (J. Econometrics, 1992). This test (and those
derived from it) have the more “natural” null hypothesis of
stationarity (I(0)), where a rejection indicates non-stationarity
(I(1) or I(d)). The KPSS test may be used to confirm the
findings of a DF-GLS test; their verdicts will not necessarily
agree, but if they do, that is strong evidence in favor of
(non-)stationarity.



The kpss command (findit kpss to install) performs the
KPSS test for stationarity of a time series. The test may be
conducted under the null of either trend stationarity (the default)
or level stationarity. Inference from this test is complementary to
that derived from those based on the Dickey–Fuller distribution
(such as dfgls, dfuller and pperron). The KPSS test is
often used in conjunction with those tests to investigate the
possibility that a series is fractionally integrated (that is, neither
I(1) nor I(0)): see Lee and Schmidt (J. Econometrics, 1996).



The series is detrended (demeaned) by regressing y on
zt = (1, t)

′ (
zt = (1)′

)
, yielding residuals et . Let the partial sum

series of et be st . Then the zero-order KPSS statistic is

k0 =
T−2 ∑T

t=1 s2
t

T−1
∑T

t=1 e2
t

For maxlag> 0, the denominator is computed as the
Newey-West estimate of the long run variance of the series;
see [R] newey. Approximate critical values for the KPSS test
are taken from KPSS (1992).



The kpss routine has been enhanced to add two options
recommended by the work of Hobijn et al. (Econometric
Institute WP, Rotterdam, 1998). An automatic bandwidth
selection routine has been added, rendering it unnecessary to
evaluate a range of test statistics for various lags. An option to
weight the empirical autocovariance function by the Quadratic
Spectral kernel, rather than the Bartlett kernel employed by
KPSS, has also been introduced.

These options may be used separately or in conjunction. It is in
conjunction that Hobijn et al. found the greatest improvement in
the test: “Our Monte Carlo simulations show that the best small
sample results of the test in case the process exhibits a high
degree of persistence are obtained using both the automatic
bandwidth selection procedure and the Quadratic Spectral
kernel.” (1998, p.14)
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Covariate-augmented unit root tests

Returning to the DF-GLS unit root test, we now consider an
improved version of that test proposed by Elliott and Jansson
(J. Econometrics, 2003) that adds stationary covariates to gain
additional power.

As is well known in the applied economics literature, even a test
with DF-GLS’s favorable characteristics may still lack power to
distinguish between the null hypothesis of nonstationary
behavior (I(1)) and the stationary alternative (I(0)). In many
applications, using a longer time series is not feasible due to
known structural breaks, institutional changes, and the like.

Another potential alternative, the panel unit root test, brings its
own set of complications (do we assume all series are I(1)? or
that all are I(0)?).
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Elliott and Jansson addressed this issue by considering a
model in which there is one potentially nonstationary (I(1))
series, y , which potentially covaries with some available
stationary variables, x . This idea was first put forth by Bruce
Hansen in 1995 who proposed a covariate augmented D–F
test, or CADF test and showed that this test had greater power
than those which ignored the covariates.

The authors extended Hansen’s results to show that such a test
could be conducted in the presence of unknown nuisance
parameters, and with constants and trends in the model. Their
proposed test may be readily calculated by estimating a vector
autoregression (var) in the {y , x} variables and performing a
sequence of matrix manipulations.



Elliott and Jansson addressed this issue by considering a
model in which there is one potentially nonstationary (I(1))
series, y , which potentially covaries with some available
stationary variables, x . This idea was first put forth by Bruce
Hansen in 1995 who proposed a covariate augmented D–F
test, or CADF test and showed that this test had greater power
than those which ignored the covariates.

The authors extended Hansen’s results to show that such a test
could be conducted in the presence of unknown nuisance
parameters, and with constants and trends in the model. Their
proposed test may be readily calculated by estimating a vector
autoregression (var) in the {y , x} variables and performing a
sequence of matrix manipulations.



The model considered is:

zt = β0 + β1t + ut , t = 1, . . . , T

A(L)

(
(1− ρL)uy ,t

ux ,t

)
= et

with zt = {yt , x ′
t}′, xt an m × 1 vector,

β0 = {βy0, β
′
x0}′, β1 = {βy1, β

′
x1}′ and ut = {uy ,t , u′

x ,t}′.

A(L) is a stable matrix polynomial of finite order k in the lag
operator L.

This is a vector autoregression (VAR) in the model of x and the
quasi-difference of y . The relevant test is that the parameter ρ
is equal to unity, implying that y has a unit root, against
alternatives that ρ is less than one.
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The potential gain in this test depends on the R2 between y
and the set of x covariates. As Elliott and Pesavento (J. Money,
Credit, Banking 2006) point out, the relevant issue is the ability
of a unit root test to have power to distinguish between I(1) and
a local alternative. The local alternative is in terms of
c = T (ρ− 1) where ρ is the largest root in the AR
representation of y .

How far below unity must ρ fall to give a unit root test the ability
to discern stationary, mean-reverting behavior (albeit with
strong persistence, with ρ > 0.9) from nonstationary, unit root
behavior? The various tests in this literature differ in their power
against relevant local alternatives.
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The c parameter can be expressed in terms of the half-life (k )
of a shock, where a unit root implies an infinite half-life:
k = log(0.5)/ log(ρ). When related to the local alternative,
k/T = log(0.5)/c. For about 120 observations (30 years of
quarterly data), c = −5 corresponds to a half-life of 16.8 time
periods (over four years at a quarterly frequency). From Elliott,
Rothenberg, Stock (ERS, Econometrica, 1996), the standard
Dickey-Fuller test (dfuller)has 12% power to reject the
alternative. The ERS DF-GLS test (dfgls) has 32% power.

In contrast, with an R2 = 0.2, the Elliott–Jansson (EJ) test has
power of 42%. The power rises to 53% (69%) for R2 = 0.4
(0.6). For higher absolute values of c (shorter half-lives), the
gains are smaller. For c = −10, or a half-life of 8.4 periods, the
power of the D-F (DF-GLS) test is 31% (75%). The EJ test has
power of 88%, 94% and 99% for R2 = 0.2, 0.4, 0.6. One clear
conclusion: DF-GLS always has superior power compared to
dfuller.
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Like other unit root tests, you must specify the deterministic
model assumed for y . As in dfgls, you can specify that the
model contains no deterministic terms, a constant, or constant
and trend. But as the Elliott–Jansson model contains one or
more x variables as well, you may also specify that those
variables’ deterministic model contains no deterministic terms,
a constant, or constant and trend.

Five cases are defined:
1. No constant nor trend in model

2. Constant in y only
3. Constants in both {y , x}
4. Constant and trend in y , constant in x
5. No restrictions
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The urcovar Stata command implements the EJ test using
Mata to perform a complicated sequence of matrix
manipulations that produce the test statistic. EJ’s Table 1 of
asymptotic critical values is stored in the program and used to
produce a critical value corresponding to the R2 for your data.
The command syntax:

urcovar depvar varlist [if exp] [in range] [ , maxlag(#) case[#)
firstobs ]

where the case option specifies the deterministic model, with
default of case 1. The maxlag option specifies the number of
lags to be used in computing the VAR (default 1). The
firstobs option specifies that the first observation of depvar
should be used to define the first quasi-difference (rather than
zero). The urcovar command is available for Stata 9.2 or
Stata 10 via findit urcovar.



As an illustration of urcovar use, we consider an experiment
similar to that tested in EJ, who in turn refer to a
Blanchard–Quah model. The variable of interest is U.S.
personal income (PINCOME). The single stationary covariate to
be considered is the U.S. unemployment rate (UNRATE). Both
are acquired from the FRED database with the freduse
command (Drukker, Stata Journal, 2006) and have been
converted to the common quarterly frequency for
1950Q2–1987Q4 using tscollap (Baum, STB-57, 2000).

We first present a line plot of these two series, then the output
from a conventional DF-GLS test, followed by the output from
urcovar, cases 3 and 5. The maxlag considered in both the
dfgls and urcovar tests is set to eight quarters.
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. dfgls PINCOME, maxlag(8) trend

DF-GLS for PINCOME Number of obs = 142

DF-GLS tau 1% Critical 5% Critical 10% Critical
[lags] Test Statistic Value Value Value

8 -0.830 -3.519 -2.875 -2.593
7 -0.585 -3.519 -2.890 -2.607
6 -0.173 -3.519 -2.905 -2.620
5 -0.071 -3.519 -2.918 -2.633
4 -0.272 -3.519 -2.932 -2.645
3 -0.334 -3.519 -2.944 -2.656
2 0.332 -3.519 -2.955 -2.666
1 0.655 -3.519 -2.966 -2.676

Opt Lag (Ng-Perron seq t) = 8 with RMSE 11.44531
Min SC = 5.103851 at lag 3 with RMSE 11.96667
Min MAIC = 5.000489 at lag 7 with RMSE 11.56349



. urcovar PINCOME UNRATE, maxlag(8) case(3)

Elliott-Jansson unit root test for PINCOME 1950q2 - 1987q4
Number of obs: 143
Stationary covariates: UNRATE
Deterministic model: Case 3
Maximum lag order: 8

Estimated R-squared: 0.9950
H0: rho = 1 [ PINCOME is I(1) ]
H1: rho < 1 [ PINCOME is I(0) ]
Reject H0 if Lambda < critical value

Lambda: 11.8307
5% critical value: 17.9900

. urcovar PINCOME UNRATE, maxlag(8) case(5)

Elliott-Jansson unit root test for PINCOME 1950q2 - 1987q4
Number of obs: 143
Stationary covariates: UNRATE
Deterministic model: Case 5
Maximum lag order: 8

Estimated R-squared: 0.8407
H0: rho = 1 [ PINCOME is I(1) ]
H1: rho < 1 [ PINCOME is I(0) ]
Reject H0 if Lambda < critical value

Lambda: 17.1558
5% critical value: 29.1170



The DF-GLS test is unable to reject its null of I(1) at any
reasonable level of significance. When we augment the test
with the stationary covariate in the EJ test, quite different
results are forthcoming. Case 3 allows for constant terms (but
no trends) in both the quasi-difference of PINCOME and
UNRATE. The R2 in this system is over 0.99. Case 5 allows
constant terms and trends in both equations of the VAR, with
an R2 of 0.84.

Like the DF-GLS test, the EJ test has a null hypothesis of
nonstationarity (I(1)). The EJ test statistic, λ, must be
compared with the interpolated 5% critical value. A value of λ
smaller than the tabulated value leads to a rejection, and vice
versa. In both cases, we may reject the null hypothesis at the
95% level of confidence in favor of the alternative hypothesis of
stationarity.
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Unit root tests allowing for structural breaks

Unit root tests are particularly susceptible to breaks in the
structure of a relationship. For instance, the hypothesis of
purchasing power parity (PPP) in international trade implies
that real exchange rates should be stationary stochastic
processes. A vast literature contains numerous instances
lacking support for this hypothesis (e.g., Baum et al., J. Intl.
Money and Fin., 2001).

One rationale that has been put forth for rejection of the PPP
hypothesis is the existence of structural breaks. In this section,
we discuss how standard unit root tests may be modified to
allow for structural breaks.
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we discuss how standard unit root tests may be modified to
allow for structural breaks.



Perron and Vogelsang (JBES, 1992), building on work by
Perron (JBES, 1990), demonstrate that nonrejection of the
unit-root hypothesis may be “associated with an apparent
permanent change in the level of the series” (1992, p. 302). As
Perron demonstrated with a simulation experiment, “...if the
magnitude of the change is significant, one could hardly reject
the unit-root hypothesis even if the series would consist of i .i .d .
disturbances around a deterministic component (albeit one with
a shift in mean)...The problem is one of model
misspecification.” (1990, p.155)

To deal with this source of bias in unit-root tests, Perron and
Vogelsang propose a class of test statistics which allow for two
alternative forms of change: the additive outlier (AO) model,
capturing a sudden change, and the innovational outlier (IO)
model, appropriate for modeling a gradual shift in the mean of
the series.
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The test statistics do not require a priori knowledge of the
breakpoint, as their computation involves search over the
sample for a single break date. The breakpoint, should it occur,
is denoted by Tb, 1 < Tb < T , where T is the sample size. The
AO model considers the dynamics of yt to be given by

yt = δDTbt + yt−1 + wt , t = 2, ..., T (1)

with DTbt = 1 for t = Tb + 1, and 0 otherwise, under the null
hypothesis of a unit root. Under the alternative hypothesis,

yt = c + δDUt + vt , t = 2, ..., T (2)

where DUt = 1 for t > Tb, and 0 otherwise.



This more general specification nests the null hypothesis (1) in
the case that the distribution of vt may be factored into a unit
root and a stationary ARMA process. The test strategy is then
to estimate the regression

yt = µ + δDUt + ỹt (3)

the residuals of which (ỹt) are regressed on their lagged values,
lagged differences, and a set of dummy variables, the latter
needed to ensure that the distribution of the test statistic will be
manageable:

ỹt =
k∑

i=0

ωiDTbt−i +αỹt−1 +
k∑

i=1

θi∆ỹt−i +et , t = k +2, ..., T (4)



This regression, similar in nature to the common Augmented
Dickey–Fuller (ADF) model, yields an estimate of α which will
be significantly less than one in the presence of stationarity.
Perron and Vogelsang provide critical values and describe the
method by which they may be simulated.

The equivalent process for the innovational outlier (IO) model
expresses the shock (for instance, the effect of δ in (1) above)
as having the same effect on yt as any other shock, so that the
dynamic effects of DTb have the same ARMA representation as
do other shocks to the model.
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This formulation, when transformed, generates the finite AR
model

yt = µ+δDUt +ϑDTbt +αyt−1 +
k∑

i=1

θi∆yt−i +et , t = k +2, ..., T

(5)
which again yields a test of α differing from one in the presence
of stationarity. In both the AO and the IO models, the
appropriate values of Tb (the breakpoint) and k (the
autoregressive order) are unknown. This is resolved for Tb by
estimating the model for each feasible breakpoint, and following
one of several proposed rules to identify the optimal single
breakpoint. In our application, we search for the minimum
t-statistic on δ. Conditional on that Tb, the autoregressive order
k is chosen, as Perron (1990) suggests, by a sequence of pairs
of F-tests for the significance of lags, starting from an
appropriately large maximum order.



The unit-root test statistics forthcoming from the AO and IO
models will account for one-time level shifts which might
otherwise be identified as departures from stationarity.
However, the behavior of real exchange rate series over our
sample period may not be adequately characterized by a single
shift; as Lothian (JIMF, 1998) has noted, US dollar-based real
exchange rates appear to have exhibited two shifts in mean
over the 1980-1987 period, approximately reverting to their
pre-1980 level after 1987. In these circumstances, allowing for
a single level shift will not suffice.



The Perron–Vogelsang methodology has been extended to
double mean shifts by Clemente et al. (Econ.Letters, 1988),
who demonstrate that a two-dimensional grid search for
breakpoints (Tb1 and Tb2) may be used for either the AO or IO
models, and provide critical values for the tests. In this context,
the AO model involves the estimation of:

yt = µ + δ1DU1t + δ2DU2t + ỹt (6)

and subsequently searching for the minimal t−ratio for the
hypothesis α = 1 in the model:

ỹt =
k∑

i=0

ωiDTb1,t−i

k∑
i=0

ωiDTb2,t−i + αỹt−1 +
k∑

i=1

θi∆ỹt−i + et , (7)

t = k + 2, ..., T



For the IO model, the modified equation to be estimated
becomes:

yt = µ + δ1DU1t + δ2DU2t + ϑ1DTb1,t + ϑ2DTb2,t + (8)

αyt−1 +
k∑

i=1

θi∆yt−i + et , t = k + 2, ..., T

with a search for the minimal t−ratio for the hypothesis α = 1.
These tests customarily are applied to a trimmed sample; we
trimmed 5% of the sample from each end when searching for
the breakpoints.



In Baum et al. (JIFMIM, 1999), the results from these
two-mean-break models are quite consistent over 17 countries
and both CPI and WPI price series. In none of the 58 cases
considered do the unit-root test statistics surpass their
approximate 5% critical values, although the t-statistics for δ1
and δ2 generally indicate the presence of meaningful level shifts
in almost every instance.

Even with structural breaks taken into account, the evidence in
favor of nonstationarity is overwhelmingly strong and consistent
across countries for both CPI-based and WPI-based real
exchange rate series.
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Therefore, we may conclude that the inability to reject the
unit-root hypothesis for the post-Bretton Woods era using
standard univariate unit-root tests is not likely to be overturned
by allowing for one or two mean breaks in the series. Such
instability is quite apparent in a first-order Markov model of the
real exchange rate, but even when unit-root tests are adjusted
for its presence, the null hypothesis of nonstationarity cannot
be rejected in favor of mean reversion.

These routines for unit root tests in the presence of structural
breaks are available as Stata commands clemao1,
clemao2, clemio1, clemio2. To install, findit
clemao.



Therefore, we may conclude that the inability to reject the
unit-root hypothesis for the post-Bretton Woods era using
standard univariate unit-root tests is not likely to be overturned
by allowing for one or two mean breaks in the series. Such
instability is quite apparent in a first-order Markov model of the
real exchange rate, but even when unit-root tests are adjusted
for its presence, the null hypothesis of nonstationarity cannot
be rejected in favor of mean reversion.

These routines for unit root tests in the presence of structural
breaks are available as Stata commands clemao1,
clemao2, clemio1, clemio2. To install, findit
clemao.



A general test for structural stability: qll

Elliott and Müller’s 2006 paper in Review of Economic Studies
(EM) addresses the large literature on testing a time series
model for structural stability. They consider “tests of the null
hypothesis of a stable linear model

yt = X ′
t β̄ + Z ′

t γ + ε

against the alternative of a partially unstable model

yt = X ′
t βt + Z ′

t γ + ε

where the variation in βt is of the strong form” (p. 907), or
nontrivial.



Consideration of this alternative has led to a huge literature
based on the “diversity of possible ways {βt} can be
non-constant.” EM point out that optimal tests and their
asymptotic distributions have not been derived for many
particular models of the alternative.

Their approach develops a single unified framework, noting that
the “seemingly different approaches of ‘structural breaks’ and
‘random coefficients’ are in fact equivalent.” (p.908) EM unify
the approaches that describe a breaking process with a
number of non-random parameters with tests that specify
stochastic processes for {βt} without requiring to specify its
exact evolution.
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The processes considered include breaks that occur in a
random fashion, serial correlation in the changes of the
coefficients, a clustering of break dates, and so on. Under a
normality assumption on the disturbances, “small sample
efficient tests in this broad set are asymptotically equivalent”
and “leaving the exact breaking process unspecified (apart
from a scaling parameter) does not result in a loss of power in
large samples.” (p. 908)



The consequences of this approach to the problem of structural
stability are profound. “The equivalence of power over many
models means that there is little point in deriving further optimal
tests for particular processes in our set” (p. 908) and the
researcher can carry out (almost) efficient inference without
specifying the exact path of the breaking process.

Furthermore, the computation of EM’s Quasi-Local Level (qLL)
test statistic is straightforward, and it remains valid for very
general specifications of the error term and covariates. The
computation requires no more than (k + 1) OLS regressions for
a model with k covariates, in contrast to many approaches
which require T or T 2 regressions. No arbitrary trimming of the
data is required.
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In the structural break literature, a fixed number of N breaks at
τ1, . . . , τN are assumed. Much of the literature addresses
N = 1: e.g. the “Chow test”, cusums tests of
Brown–Durbin–Evans, Bai and Perron, Andrews and Ploberger,
etc.

In contrast, the time-varying parameter literature considers a
random process generating βt : often considered as a random
walk process. The approaches of Leybourne and McCabe,
Nyblom, and Saikkonen and Luukonen are based on classical
statistics, while Koop and Potter and Giordani et al. consider a
Bayesian approach. All of these approaches are very
analytically challenging.

EM argue that tests for one of these phenomena will have
power against the other, and vice versa. Therefore a single
approach will suffice.
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EM raise the interesting question: why do we test for parameter
constancy? They consider three motivations:

1. Stability relates to theoretical constructs such as the Lucas
critique of economic policymaking

2. Forecasting will depend crucially on a stable relationship
3. Standard inference on β̄ will be useless if {βt} varies in a

permanent fashion; persistent changes will render a fixed
model misleading

“The more pervasive these three motivations are, the more
persistent the changes in {β}.” (p. 912) Therefore, EM propose
that a useful test should maximize its power against persistent
changes in {βt}.
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The conditions underlying the EM test allow for diverse
breaking models, from relatively rare (including a single break)
to very frequent small breaks (such as breaks every period with
probability p). Breaks can also occur with a regular pattern,
such as every 16 quarters following U.S. presidential elections.

Computation of the qLL test statistic is straightforward, relying
only on OLS regressions and construction of an estimate of the
long-run covariance matrix of {Xtεt}. For uncorrelated εt , a
robust covariance matrix will suffice. For possibly
autocorrelated εt , a HAC (Newey–West) covariance matrix is
appropriate.

The null hypothesis of parameter stability is rejected for small
values of q̂LL: that is, values more negative than the critical
values. Asymptotic critical values are provided by EM for
k = 1, . . . , 10 and are independent of the dimension of Zt (the
set of covariates assumed to have stable coefficients).
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The qll Stata command implements the EM qLL test using
Mata to produce the test statistic. EM’s Table 1 of asymptotic
critical values is stored in the program and used to produce
10%, 5% and 1% critical values corresponding to number of
regressors with potentially unstable parameters. The command
syntax:

qll depvar varlist [if exp] [in range] [ , (zvarlist) rlag(#) ]

where the parenthesized zvarlist optionally specifies the list
of covariates assumed to have stable coefficients (none are
required). The rlag option specifies the number of lags to be
used in computing the long-run covariance matrix of {Xtεt}. If a
negative value is given, the optimal lag order is chosen by the
BIC criterion. The qll command is available for Stata 9.2 or
Stata 10; findit qll.



We consider a regression of inflation on the lagged
unemployment rate, the Treasury bill rate and the Treasury
bond rate. We assume the latter two coefficients are stable
over the period. We test over the full sample and a 1990–2000
subsample.
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. qll inf L.UR (TBILL TBON), rlag(8)

Elliott--Müller qLL test statistic for time varying coefficients
in the model of inf, 1960q1 - 2000q4
Allowing for time variation in 1 regressors
H0: all regression coefficients fixed over the sample period (N = 164)

Test stat. 1% Crit.Val. 5% Crit.Val. 10% Crit.Val.
-2.260 -11.05 -8.36 -7.14

Long-run variance computed with 8 lags.

. qll inf L.UR (TBILL TBON) if tin(1990q1,), rlag(8)

Elliott-Müller qLL test statistic for time varying coefficients
in the model of inf, 1990q1 - 2000q4
Allowing for time variation in 1 regressors
H0: all regression coefficients fixed over the sample period (N = 44)

Test stat. 1% Crit.Val. 5% Crit.Val. 10% Crit.Val.
-6.647 -11.05 -8.36 -7.14

Long-run variance computed with 8 lags.



In both samples, using eight lags to calculate the long-run
covariance matrix, the null hypothesis that the coefficients on
the lagged unemployment rate (L.UR) are stable cannot be
rejected at the 10% level of confidence. The Elliott–Müller qLL
test indicates that the stability of this regression model, allowing
for instability in the coefficient of the unemployment rate only,
cannot be rejected by the data.
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