
!

!

!

!

!

!

!

!

6.2 Applying reshape repeatedly 115

6.2 Applying reshape repeatedly

The problem: are your data the wrong shape?4 That is, are they not organized in
the structure that you need to conduct the analysis you have in mind? Data sources
often provide the data in a structure quite suitable for presentation but very clumsy for
statistical analysis. One of the key data management tools Stata provides is reshape
([D] reshape). If you need to modify the structure of your data, you should surely
be familiar with reshape and its two functions: reshape wide and reshape long. In
some cases, you may have to apply reshape twice to solve a particularly knotty data
management problem.

As a first example, consider this question, posed on Statalist, by an individual who
has a dataset in the wide form:

country tradeflow Yr1990 Yr1991
Armenia imports 105 120
Armenia exports 90 100
Bolivia imports 200 230
Bolivia exports 80 115
Colombia imports 100 105
Colombia exports 70 71

He would like to reshape the data into the long form:

country year imports exports
Armenia 1990 105 90
Armenia 1991 120 100
Bolivia 1990 200 80
Bolivia 1991 230 115
Colombia 1990 100 70
Colombia 1991 105 71

We must exchange the roles of years and tradeflows in the original data to arrive at
the desired structure, suitable for analysis as xt data. This can be handled by two
successive applications of reshape:

. clear

. input str8 country str7 tradeflow Yr1990 Yr1991

country tradeflow Yr1990 Yr1991
1. Armenia imports 105 120
2. Armenia exports 90 100
3. Bolivia imports 200 230
4. Bolivia exports 80 115
5. Colombia imports 100 105
6. Colombia exports 70 71

4. This recipe is adapted from Stata Tip 45 (Baum and Cox (2007)). I am grateful to Nicholas J.
Cox for his contributions to this Stata Tip.



!

!

!

!

!

!

!

!

116 Chapter 6 Cookbook: Do-file programming II

7. end

. reshape long Yr , i(country tradeflow)
(note: j = 1990 1991)

Data wide -> long

Number of obs. 6 -> 12
Number of variables 4 -> 4
j variable (2 values) -> _j
xij variables:

Yr1990 Yr1991 -> Yr

This transformation swings the data into long form with each observation identified by
country, tradeflow and the new variable j, taking on the values of year. We now
perform reshape wide to make imports and exports into separate variables:

. rename _j year

. reshape wide Yr, i(country year) j(tradeflow) string
(note: j = exports imports)

Data long -> wide

Number of obs. 12 -> 6
Number of variables 4 -> 4
j variable (2 values) tradeflow -> (dropped)
xij variables:

Yr -> Yrexports Yrimports

Transforming the data to wide form once again, the i() option contains country and
year as those are the desired identifiers on each observation of the target dataset.
We specify that tradeflow is the j() variable for reshape, indicating that it is a
string variable. The data now have the desired structure. Although we have illustrated
this double-reshape transformation with only a few countries, years and variables, the
technique generalizes to any number of each.

As a second example of successive applications of reshape, consider the World
Bank’s World Development Indicators (WDI) dataset.5 Their extract program gen-
erates a comma-separated-value (CSV) database extract, readable by Excel or Stata,
but the structure of those data hinders analysis as panel data. For a recent year, the
header line of the CSV file is:

"Series code","Country Code","Country Name","1960","1961","1962","1963",
"1964","1965","1966","1967","1968","1969","1970","1971","1972","1973",
"1974","1975","1976","1977","1978","1979","1980","1981","1982","1983",
"1984","1985","1986","1987","1988","1989","1990","1991","1992","1993",
"1994","1995","1996","1997","1998","1999","2000","2001","2002","2003","2004"

That is, each row of the CSV file contains a variable and country combination, with

5. http://econ.worldbank.org



!

!

!

!

!

!

!

!

6.2 Applying reshape repeatedly 117

the columns representing the elements of the timeseries.6

Our target dataset structure is that appropriate for panel-data modeling with the
variables as columns and rows labeled by country and year. Two applications of reshape
will again be needed to reach the target format. We first insheet ([D] insheet) the
data and transform the triliteral country code into a numeric code with the country
codes as labels:

. insheet using wdiex.raw,comma names

. encode countrycode, generate(cc)

. drop countrycode

We then must deal with the fact that the timeseries variables are named var4-var48,
as the header line provided invalid Stata variable names (numeric values) for those
columns. We use rename ([D] rename) to change v4 to d1960, v5 to d1961 and so
on, as described in Section 3.6. We use a technique for macro expansion, involving the
equals sign, by which an algebraic expression may be evaluated within a macro. In this
case, the target variable name contains the string 1960, 1961, . . . , 2004:

. forvalues i=4/48 {

. rename v‘i’ d‘=1956+‘i’’

. }

We now are ready to carry out the first reshape. We want to identify the rows of
the reshaped dataset by both countrycode (cc) and seriescode, the variable name.
The reshape long will transform a fragment of the WDI dataset containing two series
and four countries:

reshape long d, i(cc seriescode) j(year)
(note: j = 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 197
> 3 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988
> 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 20
> 04)

Data wide -> long

Number of obs. 7 -> 315
Number of variables 48 -> 5
j variable (45 values) -> year
xij variables:

d1960 d1961 ... d2004 -> d

list in 1/15

cc seriesc~e year countryname d

1. AFG adjnetsav 1960 Afghanistan .
2. AFG adjnetsav 1961 Afghanistan .
3. AFG adjnetsav 1962 Afghanistan .
4. AFG adjnetsav 1963 Afghanistan .
5. AFG adjnetsav 1964 Afghanistan .

6. AFG adjnetsav 1965 Afghanistan .

6. A variation occasionally encountered will resemble this structure, but with time periods in reverse
chronological order. The solution below can be used to deal with that problem as well.



!

!

!

!

!

!

!

!

118 Chapter 6 Cookbook: Do-file programming II

7. AFG adjnetsav 1966 Afghanistan .
8. AFG adjnetsav 1967 Afghanistan .
9. AFG adjnetsav 1968 Afghanistan .
10. AFG adjnetsav 1969 Afghanistan .

11. AFG adjnetsav 1970 Afghanistan -2.97129
12. AFG adjnetsav 1971 Afghanistan -5.54518
13. AFG adjnetsav 1972 Afghanistan -2.40726
14. AFG adjnetsav 1973 Afghanistan -.188281
15. AFG adjnetsav 1974 Afghanistan 1.39753

The rows of the data are now labeled by year but one problem remains: all variables for
a given country are stacked vertically. To unstack the variables and put them in shape
for xtreg ([XT] xtreg), we must carry out a second reshape which spreads the variables
across the columns, specifying cc and year as the i variables and j as seriescode. As
that variable has string content we use the string option.

reshape wide d, i(cc year) j(seriescode) string
(note: j = adjnetsav adjsavC02)

Data long -> wide

Number of obs. 315 -> 180
Number of variables 5 -> 5
j variable (2 values) seriescode -> (dropped)
xij variables:

d -> dadjnetsav dadjsavC02

order cc countryname

tsset cc year
panel variable: cc (strongly balanced)
time variable: year, 1960 to 2004

After this transformation, the data are now in shape for xt modeling, tabulation or
graphics.

As illustrated here, the reshape command can transform even the most inconvenient
data structure into the structure needed for your research. It may take more than one
application of reshape to get there from here, but it can do the job.


