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Abstract. I introduce the new mgof command to compute distributional tests
for discrete (categorical, multinomial) variables. The command supports large-
sample tests for complex survey designs and exact tests for small samples as well
as classic large-sample χ2-approximation tests based on Pearson’s X2, the likeli-
hood ratio, or any other statistic from the power-divergence family (Cressie and
Read, 1984, Journal of the Royal Statistical Society, Series B (Methodological) 46:
440–464). The complex survey correction is based on the approach by Rao and
Scott (1981, Journal of the American Statistical Association 76: 221–230) and par-
allels the survey design correction used for independence tests in svy: tabulate.
mgof computes the exact tests by using Monte Carlo methods or exhaustive enu-
meration. mgof also provides an exact one-sample Kolmogorov–Smirnov test for
discrete data.
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1 Introduction

A fundamental task in statistics is to test whether an observed distribution differs from
a hypothetical null distribution, yet support for such tests is incomplete in the standard
release of Stata. There are tools to test continuous distributions, such as normality tests
([R] sktest, [R] swilk) and a one-sample Kolmogorov–Smirnov test ([R] ksmirnov).
However, distributional tests for discrete variables are missing.

This lack of tests for discrete variables might not seem to be an issue of serious
concern because the classic multinomial goodness-of-fit test is a simple χ2 test based on
Pearson’s X2, which is easy to compute from the values of a frequency table ([R] tabu-
late). Furthermore, several user implementations are available for this test (for example,
Weesie [1997]). However, the classic test is only valid in simple random samples and
cannot be used with sampling weights or other complex survey features (e.g., clusters
and strata). Furthermore, the classic test is only asymptotic and may be biased in small
samples or when the null distribution is very uneven.
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148 Multinomial goodness-of-fit tests

I therefore present a new command, called mgof, that performs goodness-of-fit tests
for discrete variables. The command supports complex survey designs and also offers
exact tests for small samples. The complex survey tests are based on the approach by
Rao and Scott (1981) and parallel the survey design correction used for independence
tests in tabulate ([SVY] svy: tabulate twoway). The exact tests are computed by
sampling from the null distribution (the Monte Carlo method) or by enumerating all
possible data configurations (the exhaustive enumeration technique). Supported test
statistics include Pearson’s X2, the likelihood ratio, and any other statistic from the
Cressie and Read (1984) family. The exact multinomial probability test and the exact
discrete Kolmogorov–Smirnov test are also offered.

2 The mgof and mgofi commands

2.1 Syntax

mgof varname
[
=exp

] [
if
] [

in
] [

weight
] [

, options
]

mgofi f1 f2 . . .
[
/ p1 p2 . . .

] [
, options

]
options description

Method 1
approx

[
(nfit)

]
compute large-sample χ2 tests; the default

∗ svy
[
(vcetype, svy options)

]
adjust tests for survey design

∗ vce(vcetype) adjust tests by using proportion variance estimate
∗ cluster(varname) adjust tests for intragroup correlation

noisily show output from proportion

Method 2
mc compute Monte Carlo exact tests
reps(#) number of replications for mc; default is reps(10000)
level(#) set confidence level for mc; default is level(99)
citype(type) set confidence-interval type for mc; default is

citype(exact)

Method 3
ee compute exhaustive enumeration exact tests

Test statistics
nox2 suppress Pearson’s X2 statistic
nolr suppress likelihood-ratio statistic
cr
[
(lambda)

]
include Cressie–Read statistic; lambda defaults to 2/3

mlnp include outcome-probability statistic (mc and ee only)
ksmirnov include Kolmogorov–Smirnov statistic

(mc and ee only)
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Other options
freq display frequency table
percent display frequency table in percentages

∗ matrix(name) provide matrix of observed and expected counts
expected(name) provide matrix (column vector) containing expected

counts
nodots suppress progress dots (mc and ee only)

∗ svy, vce(), cluster(), and matrix() are not allowed with mgofi.

by is allowed (unless svy is specified); see [D] by.

fweights, pweights, and iweights are allowed (see [U] 11.1.6 weight), but pweights
are not allowed with ee or mc, and iweights are not allowed with ee and not allowed
with mc if the mlnp option is specified.

The null distribution (the distribution against which varname is tested) is specified
by exp. exp is assumed to evaluate to the hypothesized probabilities of the categories
of varname or to quantities proportional to these probabilities (e.g., expected counts;
the scale does not matter). If exp is omitted, the uniform (geometric, equiprobable)
distribution is used as the theoretical distribution.

mgofi is the immediate form of mgof ([U] 19 Immediate commands) where f1 ,
f2 , etc., specify the observed counts and, optionally, p1 , p2 , etc., specify the theoretical
probabilities or expected counts.

2.2 Options

Method 1 options

approx
[
(nfit)

]
, the default method, computes classical large-sample χ2-approximation

tests based on Pearson’s X2 and the likelihood-ratio statistic (see, for example,
Horn [1977], Cressie and Read [1989], and Sokal and Rohlf [1995, chapter 17]). The
degrees of freedom for χ2 tests are determined as k−nfit−1, where k is the number of
categories, and nfit , provided by the user, indicates the number of fitted parameters
(imposed restrictions) (nfit defaults to 0). If pweights are specified, the tests are
corrected as outlined in section 4.

svy
[
(vcetype, svy options)

]
specifies that the test results be adjusted for survey de-

sign effects according to the svyset specifications (see [SVY] svyset). vcetype and
svy options are as described in [SVY] svy. The correction procedure is described in
section 4. The svy option is not allowed with mgofi.

vce(vcetype) specifies that the variance–covariance matrix of the proportions be es-
timated by using the proportion command (see [R] proportion) and that the
tests be adjusted based on this estimate (see section 4). vcetype can be analytic,
cluster clustvar , bootstrap, or jackknife (plus possible suboptions as described
in [R] vce option). analytic and cluster clustvar are not allowed in Stata 9. The
vce() option is not allowed with mgofi.
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cluster(varname) is equivalent to Stata 10’s vce(cluster clustvar). The cluster()
option is not allowed with mgofi.

noisily displays the output from the proportion command, which is used to esti-
mate the variances of the proportions if svy, vce(), or cluster() is specified or if
pweights are applied.

Method 2 options

mc causes the exact p-values to be approximated by sampling from the null distribution
(Monte Carlo simulation). The default number of replications for the simulation is
10,000; see the reps() option (the same set of samples is used for all test statistics).
Confidence intervals of 99% are displayed for the estimated p-values.

reps(#) sets the number of replications for the mc method. The default is reps(10000).

level(#) sets the level for the confidence intervals of the p-values computed by the mc
method. The default is level(99). Unlike many other Stata commands, mgof does
not depend on set level (see [R] level).

citype(type) specifies how the binomial confidence intervals for the p-values from the
mc method are to be calculated. Available types are exact, wald, wilson, agresti,
and jeffreys. See [R] ci. citype(exact) is the default.

Method 3 option

ee causes the exact p-values to be computed by cycling through all possible data com-
positions given the sample size and the number of categories. Because the number
of compositions grows very fast—it is equal to (n+ k − 1)!/((k − 1)!n!), where n is
the sample size and k is the number of categories—the ee method is only feasible for
very small samples and few categories. An important exception is when the null dis-
tribution is uniform (and ksmirnov is not specified). In this case, the tests are based
on enumerating partitions, which are much fewer in number than compositions.

Test statistics options

nox2 suppresses Pearson’s X2 statistic.

nolr suppresses the likelihood-ratio statistic.

cr
[
(lambda)

]
specifies that the Cressie–Read statistic, with parameter λ = lambda, be

included (Cressie and Read [1984]; also see Weesie [1997]). The default for lambda
is 2/3.

mlnp requests that a test based on the (minus log) multinomial probability of the ob-
served outcome be included (see Horn [1977]). mlnp is not allowed with approx.

ksmirnov requests that the two-sided Kolmogorov–Smirnov statistic be included. The
Kolmogorov–Smirnov statistic is sensitive to the order of the categories and should
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be used only with variables that have a natural order (i.e., ordinal or discrete metric
data). The Kolmogorov–Smirnov test implemented in Stata’s ksmirnov is conser-
vative in the case of discrete data (see, for example, Conover [1972]). The methods
implemented here are exact. ksmirnov is not allowed with approx.

Other options

freq displays a table containing observed and expected frequencies.

percent displays a table containing observed and expected percentages.

matrix(name) specifies that the observed and expected counts are to be taken from
matrix name (see [P] matrix). The first column of the matrix provides the observed
counts, and the second column, if present, provides the expected counts or theoretical
probabilities. The uniform distribution is used if the matrix does not contain a
second column. Do not provide noninteger observed counts with the ee or mc method.
The matrix() option is not allowed with mgofi.

expected(name) specifies that the expected counts or theoretical probabilities are to
be taken from column vector name (see [P] matrix). mgof aborts if the number of
elements in the vector does not match the number of outcomes.

nodots suppresses the progress dots for the ee and mc methods. The default is to
display a dot per 2% of completed computations.

2.3 Saved results

Scalars
r(N) number of observations r(N pop) population size
r(N strata) number of strata r(N psu) number of primary sampling

units (PSUs)
r(N clust) number of clusters r(df r) design degrees of freedom
r(df) degrees of freedom for χ2 r(df1) numerator df for F
r(df2) denominator df for F r(delta) mean-generalized design effect
r(a2) squared variation coefficient

of generalized design effects
r(reps) number of replications

r(partitions) number of partitions r(compositions) number of compositions
r(stat) value of test statistic r(F stat) design-corrected F
r(p stat) (design-corrected) p-value r(p stat srs) uncorrected p-value
r(p stat lb) lower CI bound for p-value r(p stat ub) upper CI bound for p-value

where stat is x2 (Pearson’s X2), lr (likelihood ratio), cr (Cressie–Read statistic),
mlnp (minus log outcome-probability), or ksmirnov (Kolmogorov–Smirnov D)

Macros
r(depvar) name of tabulated variable r(h0) definition of the theoretical

distribution
r(method) test method r(stats) list of test statistics
r(lambda) Cressie–Read λ r(citype) Monte Carlo CI type
r(cilevel) Monte Carlo confidence level

Matrix
r(count) observed and expected counts
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3 Classic large-sample tests

The classic large-sample goodness-of-fit tests for discrete data are based on the result
that statistics such as Pearson’s X2,

X2 =
k∑

j=1

(fj − hj)2

hj

where fj and hj are the observed and expected (theoretical) counts for the categories
j = 1, . . . , k, the likelihood-ratio statistic,

G2 = 2
k∑

j=1

fj ln
(
fj

hj

)
or, generally, the power-divergence statistic (Cressie and Read 1984),

D2(λ) =
2

λ(λ+ 1)

k∑
j=1

fj

{(
fj

hj

)λ

− 1

}

are asymptotically χ2(k − 1) distributed.1 With significance level α given, an observed
distribution is considered significantly different from the null distribution if the chosen
test statistic exceeds the (1 − α) quantile of the χ2 distribution with (k − 1) degrees
of freedom. For guidelines on choosing a test statistic, see the “Which Test Statistic?”
sections in Read and Cressie (1988). One result, for example, is that in small samples
the approximation of the χ2 distribution is much better for Pearson’s X2 than for the
likelihood ratio. Based on various simulations, Read and Cressie (1988) propose the
λ = 2/3 power-divergence statistic as a good compromise in a wide range of situations.
λ = 2/3 is the default for D2(λ) in mgof.

As an example, assume we are testing a sequence of numbers against Benford’s law.
The law states that under certain conditions the first digit of numbers in the base-10
system follows a probability distribution given as

Pr(j) = log10(1 + 1/j), j = 1, . . . , 9

(Newcomb 1881; Benford 1938; Hill 1998). In a small Swiss mail survey, respondents
were asked to indicate the first digit of the street number of an acquaintance.2 The
distribution of the indicated digits is astonishingly close to Benford’s law, as the results
from mgof reveal:

1. The Cressie–Read statistic is equal to Pearson’s X2 if λ = 1 and, as the limiting value, to the
likelihood ratio if λ = 0. Further special cases are the Freeman–Tukey statistic with λ = −1/2,
the Kullback–Leibler information with λ = −1, and Neyman’s modified X2 statistic with λ = −2
(see Cressie and Read [1984] and Weesie [1997]).

2. The survey was conducted in December 2006 and January 2007 by the sociology department of
the ETH Zürich. Respondents were sampled from the residents of the German-speaking part of
Switzerland. The street number question was included toward the end of a very short questionnaire
about income inequality; it had no relation to the other questions. The response rate of the survey
was 41%.
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. mata mata mlib index

.mlib libraries to be searched are now
lmatabase;lmataado;lmataopt;lmgof;lfreduse

. use digits, clear
(2007 Swiss Street Number Data)

. mgof firstdigit = log10(1+1/firstdigit), cr percent

Number of obs = 313
N of outcomes = 9
Chi2 df = 8

Goodness-of-fit Coef. P-value

Pearson´s X2 6.226606 0.6219
Log likelihood ratio 6.475677 0.5941

Cressie-Read (2/3) 6.303507 0.6133

firstdigit observed expected

1 32.59 30.10
2 17.57 17.61
3 14.70 12.49
4 10.86 9.69
5 6.39 7.92
6 6.07 6.69
7 4.47 5.80
8 4.15 5.12
9 3.19 4.58

Total 100.00 100.00

The p-values of the tests based on Pearson’s X2, the Cressie–Read statistic, and the
likelihood-ratio statistic suggest that the null hypothesis of Benford-distributed digits
cannot be rejected.

4 Survey design correction for large-sample tests

The results of the standard χ2 tests are only valid for simple random samples. In
the case of nonidentical sampling probabilities, nonindependence, or stratification, the
tests may be considerably biased. mgof therefore offers a survey design correction that
is based on Rao and Scott (1981) and is analogous to the default independence-test
correction used in svy: tabulate twoway (see [SVY] svy: tabulate twoway and the
references therein). The procedure determines the “design effects” for the variances of
the proportion estimates for the single outcomes and then corrects the χ2 test statistic
for the level and variation of these design effects. Rao and Scott (1981) call this a
second-order correction; a first-order correction would ignore the variation in design
effects. Finally, the corrected statistic is converted into an F statistic to adjust for the
degrees of freedom of the employed variance estimates.

More precisely, let V̂ /(n − 1) be a consistent estimate of the variance–covariance
matrix of the proportion estimates p̂j , j = 1, . . . , k, where n is the number of observa-
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tions. Furthermore, let v̂ij denote an element of V̂ , let m be the number of PSUs or
clusters, and let L be the number of strata. The correction then assumes

F =
χ2

δ̂.(â2 + 1)
d−1 =

χ2

δ̂.
(k − 1)−1

to be F (d, (m− L)d) distributed, where χ2 stands for X2, G2, or D2(λ), and where

δ̂. = (k − 1)−1
k∑

i=1

v̂ii/p̂i, â2 = (δ̂2. − 1)−1

⎧⎨⎩(k − 1)−1
k∑

i=1

k∑
j=1

v̂2
ij/(p̂ip̂j)

⎫⎬⎭
and d = (k − 1)/(1 + â2). δ̂. is the mean, and â2 is the squared variation coefficient of
the “generalized design effects” for the proportions (Rao and Scott 1981). proportion
is used to estimate V̂ /(n− 1), taking into account pweights, clusters, or other complex
survey design settings (see [R] proportion for details).

Sribney ([1998]; also see Thomas, Singh, and Roberts [1996]) provides simulation
evidence indicating that the F -based variant of the second-order Rao–Scott correction
works well for independence tests in two-way contingency tables. Although it appears
reasonable to assume that these results translate to goodness-of-fit tests in one-way
tables, it seems important to perform at least a few brief checks. I therefore ran the
following simulations.3

Simulation 1

Simulation 1 parallels the simulation reported by Sribney (1998). In each replication, a
sample was initialized by drawing a number of cluster sizes from a uniform distribution
and expanding the clusters to individual observations. Then two sets of variables with
categorical values j ∈ {1, . . . , k} and k varying between 2 and 9 were generated from an
underlying continuous variable y, which was N(0, 1) distributed and had an intraclass
(cluster) correlation of 0.25 (see Sribney [1998] for details on how to generate such a
variable). For the first set of categorical variables, y was categorized using normal quan-
tiles with equally spaced probabilities, so that the variables had a geometric (uniform)
distribution. For the second set, the cutpoints were chosen according to Benford’s first-
digit law (see references in section 3), where the base of the number system was set to
k + 1. Hence, the probabilities of the categories of the variables in the second set were
given as

Pr(j) = log(1 + 1/j)/ log(k + 1), j = 1, . . . , k

3. See Thomas and Rao (1987) and Rai, Srivastava, and Gupta (2001) for additional results.
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For a variable with two categories, for example, the probabilities were (0.631, 0.369);
for a variable with nine categories, they were (0.301, 0.176, . . . , 0.046).

As in Sribney (1998), two types of simulations were conducted: one with small-
variance degrees of freedom (few PSUs) and one with large-variance degrees of freedom
(many PSUs). For the simulations with few PSUs, 20 clusters were generated with sizes
between 30 and 70 observations, resulting in a sample size of approximately 1,000 ob-
servations. For the simulations with many PSUs, 200 clusters were generated with sizes
between 3 and 10 observations, resulting in a sample size of approximately 1,200 ob-
servations.4 Ten thousand replications were computed for both types, and the nominal
significance level was set to α = 0.05. In comparison to the simulation by Sribney
(1998), the clusters were regenerated in each replication.

Tests based on the first- and second-order Rao–Scott corrections (RS1 and RS2,
respectively) according to the following definitions were evaluated:

X2
RS1 = X2/δ̂.

a∼ χ2(k − 1)

FRS1 = X2
RS1/(k − 1) a∼ F{k − 1, (m− L)(k − 1)}

X2
RS2 = X2

RS1/(1 + â2) a∼ χ2(d)

FRS2 = X2
RS2/d

a∼ F{d, (m− L)d}

FRS2 corresponds to the correction method implemented in mgof as outlined above.
Furthermore, an adjusted Wald F test was considered, with

FW
adj = W

(m− L) − (k − 1) + 1
(m− L)(k − 1)

a∼ F{k − 1, (m− L) − (k − 1) + 1}

where

W = (p̂∗ − p∗)T {V̂ ∗/(n− 1)}−1(p̂∗ − p∗)

and where p̂ = (p̂1, . . . , p̂k) and p = (p1, . . . , pk) are the vectors of observed and expected
probabilities, and the asterisk indicates that one of the categories is left out (see, for
example, Thomas and Rao [1987]).5

The results of the simulations are depicted in figures 1 and 2. Displayed are the
rejection rates for the various test statistics, that is, the proportion of times they rejected
the (true) null hypothesis at the α = 0.05 level. In the case of small-variance degrees

4. The number of 1,300 given in Sribney (1998) seems to be incorrect.
5. Rao–Scott-corrected tests based on the likelihood-ratio statistic were also conducted. Results were

similar to the tests based on Pearson’s X2.
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of freedom (figure 1), both of the first-order Rao–Scott-corrected tests (RS1) and the
adjusted Wald F test are highly anticonservative (i.e., rejecting the null hypothesis too
often) as the number of categories increases. The second-order Rao–Scott-corrected X2

test is also anticonservative, but the bias does not depend on the number of categories.
For the second-order Rao–Scott-corrected F test, however, the simulated rejection rates
match the nominal 5% very well.
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Figure 1. Rejection rates in small-variance degrees of freedom simulations

In the case of large-variance degrees of freedom (figure 2), both of the first-order
Rao–Scott-corrected tests and the adjusted Wald F test are still slightly anticonser-
vative. The second-order Rao–Scott correction again performs well, at least for the
uniform variables. With the Benford-distributed variables, the second-order Rao–Scott
correction seems to be slightly conservative.6

6. In both simulations, the uncorrected tests were highly anticonservative (51–57% and 11–16% re-
jection, respectively).
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Figure 2. Rejection rates in large-variance degrees of freedom simulations

Simulation 2

Simulation 1 is model-based and somewhat artificial. To get an impression of the per-
formance of the Rao–Scott correction in a more realistic setting, I conducted a second
simulation based on sampling from a “real” population, the Swiss 2000 Census.7

The sampling plan for the simulation was as follows: First, a total of 100 munici-
palities was sampled proportional to size (with replacement) from 15 strata (the Swiss
cantons, with some aggregations of small cantons). Second, 10 households were drawn
with replacement from each sampled municipality, and one individual was selected from
each sampled household. The a priori sampling probabilities for the individuals varied
depending on household size and because of moderate oversampling of small strata. The
gsample user-written command was used to draw the samples (Jann 2006).

A number of categorical variables were tested with the true population distribution
as the null hypothesis. The variables included sex (1 = male, 2 = female), nationality
(Swiss, foreign), marital status (single, married, divorced, widowed), education (6 lev-
els), and socioeconomic status (12 levels). The distributions, representing a broad mix
of patterns, are listed in table 1.

7. The Swiss Census was conducted by the Swiss Federal Statistical Office and covers all residents
of Switzerland in December 2000. For the purpose of the simulation, I restricted the population
to individuals age 15 or older. The population then consisted of 6,043,350 individuals, 3,179,246
households, and 2,896 municipalities. The strata sizes varied between 200,000 and 1,000,000 indi-
viduals.
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Table 1. Population distributions (in percent)

1 2 3 4 5 6 7 8 9 10 11 12

Sex 48.5 51.5

Nationality 80.2 19.8

Marital status 30.1 56.3 6.9 6.8

Education 13.0 25.6 36.7 7.9 9.1 7.6

Socioeconomic status 2.1 5.6 5.1 10.1 12.0 4.9 7.4 15.5 7.8 14.2 10.8 4.5

The rejection rates from 5,000 replications with a nominal α = 0.05 significance level
are displayed in table 2. The test statistics are the same as in simulation 1, namely,
first- and second-order Rao–Scott corrections of Pearson’s X2, with and without F
conversion, and the adjusted Wald F .8 In addition, rejection rates for Pearson’s X2

without correction (X2
SRS) are reported. As is evident from the rejection rates in the last

column in table 2 (up to 40%), the uncorrected tests yield intolerably anticonservative
results in such a sample. Among the considered correction procedures, the second-order
Rao–Scott F performed best. The rejection rates for FRS2 closely match the nominal 5%
for sex, education, and socioeconomic status, but they are somewhat anticonservative
for nationality and marital status, possibly because of the strongly skewed distributions
of the two variables. The degree of anticonservatism, however, is not dramatic and is
smallest among all evaluated procedures. As in simulation 1, the adjusted Wald F is
considerably anticonservative in some cases.

Table 2. Rejection rates (in percent; based on 5,000 replications)

X2
RS1 FRS1 X2

RS2 FRS2 FW
adj X2

SRS

Sex 4.9 4.6 4.9 4.6 4.7 16.6

Nationality 7.3 6.9 7.3 6.9 8.3 23.3

Marital status 9.3 9.0 7.1 6.7 13.8 29.1

Education 7.1 6.8 5.0 4.8 8.5 32.8

Socioeconomic status 10.7 10.4 5.8 5.6 12.0 41.2

Overall, the results from simulations 1 and 2 suggest that the second-order Rao–
Scott-corrected F test outperforms the other considered tests and is a good default
choice.

Example

In the example in section 3, the digit distribution of house numbers of acquaintances
was analyzed. The survey from which the data was taken is based on a simple ran-

8. Results were similar for the Rao–Scott corrections based on the likelihood-ratio statistic.
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dom sample of households. Because only one adult was selected per household, the
individual-level sampling probabilities depended on the household size: individuals from
larger households had smaller sampling probabilities. Therefore one should apply prob-
ability weights (inverse to the number of adult household members) to make the data
representative of the population of individuals instead of the population of households.
Because the standard tests would not be valid, mgof applies the complex survey design
correction if pweights are specified. In addition to the uncorrected test statistics, cor-
rected F statistics and associated p-values are reported. The results from mgof, applied
to the weighted example data, are as follows:

. use digits, clear
(2007 Swiss Street Number Data)

. mgof firstdigit = log10(1+1/firstdigit) [pw=w]

Number of obs = 313
N of outcomes = 9
F df1 = 7.93123
F df2 = 2474.54

Goodness-of-fit Coef. F-value P-value

Pearson´s X2 6.144661 0.6435 0.7402
Log likelihood ratio 6.425913 0.6730 0.7145

Again there is virtually no evidence against the null hypothesis that the data are
distributed according to Benford’s law.

A more general syntax to obtain results with design correction is to set the survey
properties by using svyset (see [SVY] svyset) and then apply the svy option in mgof,
as in the following example:9

. svyset [pw=w]

pweight: w
VCE: linearized

Single unit: missing
Strata 1: <one>

SU 1: <observations>
FPC 1: <zero>

. mgof firstdigit = log10(1+1/firstdigit), svy

Number of strata = 1 Number of obs = 313
Number of PSUs = 313 Pop size = 583

Design df = 312
N of outcomes = 9
F df1 = 7.93123
F df2 = 2474.54

Goodness-of-fit Coef. F-value P-value

Pearson´s X2 6.144661 0.6435 0.7402
Log likelihood ratio 6.425913 0.6730 0.7145

9. Because of some technical difficulties, svy cannot be used as a prefix command (see [U] 11.1.10
Prefix commands) with mgof.



160 Multinomial goodness-of-fit tests

5 Exact small-sample tests

The χ2 distribution of statistics such as Pearson’s X2 is only asymptotic, and the
p-values of the standard χ2 goodness-of-fit tests may be biased when the sample is very
small or the null distribution is highly uneven. In such cases, it is desirable to compute
the exact p-values.

Exhaustive enumeration

The most straightforward approach to compute an exact goodness-of-fit test is to con-
struct all possible data combinations given the number of observations and the number
of categories and then to sum up the probabilities of all configurations that are at least as
distant from the null hypothesis as the observed data (for example, Radlow and Alf, Jr.
[1975]). The steps of the procedure can be summarized as follows:

1. Calculate the probability of each data configuration, given the null hypothesis.
Under simple random sampling, the probability of a specific configuration f =
(f1, . . . , fk) given expected cell probabilities p = (p1, . . . , pk) (the null hypothesis)
is

Pr(f | p) =
n!

(f1!f2! · · · fk!)
· pf1

1 p
f2
2 · · · pfk

k

where n =
∑
f .

2. Calculate the value of the test statistic—say, Pearson’s X2 or the likelihood-ratio
statistic, G2—for each data configuration, given the null hypothesis.

3. Compute the exact p-value as the sum of the probabilities of all configurations in
which the test statistic is at least as large as in the observed data.

A natural variant to using Pearson’s X2 or the likelihood ratio as the test criterion
is to directly use Pr(f | p) to determine whether a configuration adds to the p-value or
not (see, for example, Horn [1977]). mgof offers such a multinomial probability test
via the mlnp option, where the reported outcome-probability statistic is parameterized
as −ln(Pr(f | p)) so that large values indicate departure from the null distribution and
the scaling is similar to a χ2 statistic. Little evidence exists for whether directly using
the multinomial probability as the fit statistic is superior to using a statistic such as
Pearson’s X2, but both procedures yield “exact” p-values. The only difference is in how
discrepancies between the null hypothesis and the data are valued. While statistics such
as Pearson’s X2 are defined in terms of differences (or ratios) between expected and
observed counts, the direct approach uses the multinomial probability as the measure
of discrepancy. In general, different fit statistics give weight to different patterns of
deviations from the null distribution, and the usefulness of a specific statistic may
depend on the situation (Read and Cressie 1988, 136–137).

The method outlined above—whichever fit statistic is employed—is called the “ex-
haustive enumeration” method because all possible data configurations are enumer-
ated. It can be implemented by using algorithms to construct k-part compositions of n
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(Reingold, Nievergelt, and Deo 1977; Nijenhuis and Wilf 1978). For example, for n = 3
and k = 2, the possible compositions are as follows:10

. mata
mata (type end to exit)

: f = mm_compositions(3,2)

: f
1 2 3 4

1 3 2 1 0
2 0 1 2 3

: end

Using the sex distribution in a sample with three individuals as an example, possible
sample compositions are the following: 3 females and 0 males, 2 females and 1 male,
1 female and 2 males, or 0 females and 3 males. Assume that the second outcome, 2
females and 1 male, is the observed outcome. To compute the p-value of the test that
the ratio of females to males is, say, 1 to 2, one would determine for each composition
Pearson’s X2 and the probability of the composition given the null hypothesis, and
then sum up the probabilities of all compositions for which X2 is at least as large as
the observed X2. For example,11

. mata
mata (type end to exit)

: h = (1, 2)´

: x2 = colsum((f :- h):^2 :/ h)

: x2
1 2 3 4

1 6 1.5 0 1.5

: n = 3

: pr = exp(lnfactorial(n) :- colsum(lnfactorial(f)) :+ colsum(f :* ln(h :/ n)))

: pr
1 2 3 4

1 .037037037 .2222222222 .4444444444 .2962962963

: pvalue = sum(pr :* (x2 :>= x2[2]))

: pvalue
.5555555556

: end

10. The mm compositions() Mata function is part of the moremata package, which provides a number
of combinatorial algorithms (among many other functions; Jann [2005]).

11. The logarithmic form of Pr(f | p) is used here to turn products into sums and thus make computa-
tions easier. The logarithmic form is computationally more robust because lnfactorial() can be
evaluated for much larger numbers than factorial() can.
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The p-value is 0.556 and, hence, we cannot reject the null hypothesis (which is not
surprising given only three observations). The same result can be obtained by mgofi as
follows:

. mgofi 2 1 / 1 2, ee nodots

Number of obs = 3
N of outcomes = 2
Compositions = 4

Exact
Goodness-of-fit Coef. P-value

Pearson´s X2 1.5 0.5556
Log likelihood ratio 1.386294 0.5556

The number of possible data configurations increases rapidly with additional ob-
servations and categories (the combinatorial explosion), which imposes restrictions for
the application of the exhaustive enumeration method. The formula for the number of
k-fold compositions of n is (n+k−1)!/((k−1)!n!). For example, with n = 50 and k = 5,
the problem size is 316,251, which can be handled (mgof takes about 7 seconds on my
computer for a problem of this size). If k is increased to 6, the number of compositions
becomes 3,478,761, taking about 80 seconds to compute. With k = 7, the number fur-
ther increases to 32,468,436, and with k = 10, it is 12,565,671,261 (which would take
three to four days to compute).

The examples suggest that the exhaustive enumeration method is only feasible for
very small problems. However, in the case of a uniform null distribution the amount of
computations can be reduced a great deal because of redundancies among the compo-
sitions. If all elements of h (and hence of p) are equal, then the order of the elements
in a composition does not affect the value of Pr(f | p) or X2. In the toy example above,
for instance, the compositions {2, 1} and {1, 2} would yield identical values for Pr(f | p)
and X2 if p is uniform, as would {3, 0} and {0, 3}. Hence, the exact p-values can
be computed by enumerating only compositions with unique sets of elements. These
compositions are equivalent to the (zero-padded) integer partitions of n into k or fewer
addends (Andrews 1984; Andrews and Eriksson 2004). For example, in the case of n = 4
and k = 3, possible partitions are as follows:

. mata
mata (type end to exit)

: f = mm_partitions(4,3)

: f
1 2 3 4

1 4 3 2 2
2 0 1 2 1
3 0 0 0 1

: end
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As is immediately clear, the number of partitions grows much slower with n and
k than the number of compositions. For example, for n = 50 and k = 10, as above,
the number of partitions is only 62,740, compared to 12.6 billion compositions.12 In
the case of a uniform null distribution, it is therefore much more efficient to compute
the p-value based on partitions, where each partition is weighted by the number of
possible permutations (see, for example, Hirji [1997]).13 Table 3 gives an overview of
the approximate computing times on a standard personal computer for different problem
sizes depending on whether the null distribution is uniform.

Table 3. Approximate computing times for the exhaustive enumeration algorithm de-
pending on sample size n, number of categories k, and type of null hypothesis

Nonuniform null distribution Uniform null distribution

n\k 3 4 5 6 8 10 15 n\k 3 4 5 6 8 10 15

10 <1s <1s <1s <1s <1s 2s 44s 50 <1s <1s <1s <1s 2s 3s 7s

20 <1s <1s <1s 1s 20s 4m 9h 75 <1s <1s <1s 3s 14s 42m 3m

30 <1s <1s 1s 7s 4m 1h >7d 100 <1s <1s 2s 9s 1m 5m 36m

40 <1s <1s 3s 27s 23m 13h >7d 150 <1s 1s 11s 1m 15m 2h 1d

50 <1s <1s 7s 1m 2h 3d >7d 200 <1s 3s 32s 4m 2h 16h >7d

75 <1s 2s 33s 9m 23h >7d >7d 300 <1s 10s 3m 28m 22h >7d >7d

100 <1s 4s 2m 36m 7d >7d >7d 500 1s 45s 19m 6h >7d >7d >7d

150 <1s 13s 8m 4h >7d >7d >7d 1000 4s 6m 5m 7d >7d >7d >7d

Notes: Assuming a base speed of 45,000 compositions and 20,000 partitions per second; s = seconds,
m = minutes, h = hours, d = days.

In the example in section 3, there were 313 observations and 9 categories. This is
too large a problem for the exhaustive enumeration method (2.56 · 1015 compositions or
1.09 · 1010 partitions, respectively). To illustrate, I apply the exhaustive enumeration
tests by using a 5% sample of the data:14

12. There is no simple formula for the number of partitions as there is for the number of compositions.
However, the number of partitions can be computed by using the mm npartitions() function from
the moremata package (Jann 2005).

13. The number of permutations equals k!/(r1!, . . . , ri!), where ri denotes the number of repetitions of
the ith distinct addend in the partition. The algorithm used by mgof to enumerate the partitions is
based on Algorithm ZS1 by Zoghbi and Stojmenovic (1998), with some modifications to generate
restricted partitions.

14. The gsample command is provided by Jann (2006).
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. set seed 12

. use digits, clear
(2007 Swiss Street Number Data)

. gsample 5, percent generate(freq)

. mgof firstdigit = log10(1+1/firstdigit) [fw=freq], ee

Percent completed (735471 compositions)
0 20 40 60 80 100
..................................................

Number of obs = 16
N of outcomes = 9
Compositions = 735471

Exact
Goodness-of-fit Coef. P-value

Pearson´s X2 7.902401 0.4207
Log likelihood ratio 9.157266 0.4564

. mgof firstdigit [fw=freq], ee

Percent completed (201 partitions)
0 20 40 60 80 100
..................................................

Number of obs = 16
N of outcomes = 9
Partitions = 201

Exact
Goodness-of-fit Coef. P-value

Pearson´s X2 15.5 0.0557
Log likelihood ratio 18.13734 0.0348

The results indicate that the data in the sample are closer to Benford’s law than they
are to the uniform distribution. Especially for the likelihood ratio, the exact p-values
can be considerably different from the approximate p-values in such small samples. The
approximate p-values are 0.443 and 0.329 for the tests against Benford’s law and 0.050
and 0.020 for the equal-probability case.

❑ Technical note

In the example above, the sample was marked by using frequency weights instead of
by constructing a dataset containing the sampled observations. The rationale behind
this was to ensure that all original categories remained visible to mgof even if some of
them were missing in the sample. In general, a goodness-of-fit test will be biased if cate-
gories with theoretical probabilities greater than zero are omitted from the test because
of lack of corresponding observations. Such “missing” categories can be introduced to
mgof by adding extra observations to the dataset and assigning zero weights to them.
Alternatively, zero observed counts can be specified by using the immediate mgofi or
the matrix() option.
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Monte Carlo method

Many problems are too large for exhaustive enumeration, but one might still want to
compute the exact p-values. An approach that is easy to implement and can handle
larger problems in reasonable time is to approximate the exact p-values by Monte Carlo
simulation. The approach is made by sampling from the null distribution15 and comput-
ing the p-value as the fraction of replications in which the test statistic is at least as large
as in the observed data. A drawback of the procedure is that the computed p-values are
subject to random variation (which, however, can be made arbitrarily small by increas-
ing the number of replications). Ninety-nine percent confidence intervals (computed by
using cii; see [R] ci) are therefore reported by mgof.

With the Benford example from section 3, the Monte Carlo method can simulate
the exact p-values in a few seconds:

. use digits, clear
(2007 Swiss Street Number Data)

. mgof firstdigit = log10(1+1/firstdigit), mc

Percent completed (10000 replications)
0 20 40 60 80 100
..................................................

Number of obs = 313
N of outcomes = 9
Replications = 10000

Exact
Goodness-of-fit Coef. P-value [99% Conf. Interval]

Pearson´s X2 6.226606 0.6147 0.6021 0.6272
Log likelihood ratio 6.475677 0.5921 0.5793 0.6048

As can be expected for a sample of this size, the approximate p-values (0.6219 and
0.5941; see section 3) are very close to the simulated exact p-values and lie within the
computed 99% confidence limits.

Discrete Kolmogorov–Smirnov test

In addition to the multinomial tests based on, say, Pearson’s X2 or the likelihood ratio,
mgof also offers an exact (two-sided) Kolmogorov–Smirnov test for ordered discrete
data. The Kolmogorov–Smirnov test has higher power than the multinomial tests but
is only appropriate if the categories have a natural order.

The (two-sided) Kolmogorov–Smirnov test statistic is defined as the supremum (least
upper bound) of the absolute difference between the theoretical and the empirical dis-
tribution function. In the discrete case, the statistic can be expressed as

15. Sampling from a null distribution is equivalent to sampling n units with replacement from a pop-
ulation of k elements, where the sampling weights for the elements correspond to the theoretical
probabilities of the categories.
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D = max
j

|H(j) − F (j)|, j = 1, . . . , k

with

H(j) =
1
n

j∑
i=1

hi and F (j) =
1
n

j∑
i=1

fi

where hj and fj denote the expected and observed counts for category j (also see, for
example, Wood and Altavela [1978]).

The distribution of the Kolmogorov–Smirnov statistic for continuous data is well
known (see [R] ksmirnov) but does not hold for discrete data (for example, Conover
[1972]). mgof therefore performs the discrete Kolmogorov–Smirnov test without making
assumptions about the distribution of D using Monte Carlo simulation or exhaustive
enumeration.

In the Benford example in section 3, an argument could be put forward that the
Kolmogorov–Smirnov test is more appropriate than the multinomial tests because the
digits do have a natural order. Indeed, the p-value from the Kolmogorov–Smirnov test
is considerably lower than the p-values based on Pearson’s X2 or the likelihood ratio:

. mgof firstdigit = log10(1+1/firstdigit), mc ksmirnov

Percent completed (10000 replications)
0 20 40 60 80 100
..................................................

Number of obs = 313
N of outcomes = 9
Replications = 10000

Exact
Goodness-of-fit Coef. P-value [99% Conf. Interval]

Pearson´s X2 6.226606 0.6311 0.6186 0.6435
Log likelihood ratio 6.475677 0.6093 0.5966 0.6219
Kolmogorov-Smirnov D .0582185 0.0967 0.0892 0.1046

6 Concluding remarks

In this article, I introduced a new and flexible command for multinomial goodness-of-fit
tests. The main features of the command are that it can be used with complex survey
designs and that it offers methods to determine exact p-values in small samples.

The second-order Rao–Scott correction, which is used by the command to account
for survey design, is an improvement over performing uncorrected tests or using the Wald
statistic, as I illustrated in the simulations in section 4. However, there is also some
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evidence that the correction is not always optimal. For example, Magnussen and Köhl
(2006) present a study in which the second-order Rao–Scott correction did not perform
as well as certain other procedures in the context of single-stage cluster sampling. A
comprehensive simulation in which different procedures are systematically evaluated
under various survey designs and data structures would be valuable.

Further, computational speed is a major concern when computing exact p-values.
The exhaustive enumeration method is slow or even unfeasible unless the sample is very
small. Some speed gains could be made if the underlying combinatorial algorithms,
which are currently implemented in Mata, were ported to C, although this would not
greatly increase the range of feasible applications. A more promising approach would be
to implement fast algorithms for exact p-values, extending the work of Mehta and Patel
(1983); Baglivo, Olivier, and Pagano (1992); or Hirji (1997, 2006). However, the returns
on this appeared limited to me given the availability of the Monte Carlo approximation
method and given that, for Pearson’s X2 or Cressie–Read’s D2(λ = 2/3) (but not for
G2), the χ2 approximation is usually quite good, even with relatively small samples (for
example, Read [1984]; for a somewhat more conservative view, see Formann [1995]). An
exception may be if several very small p-values have to be estimated with great accuracy
(Keich and Nagarajan 2006). Although currently not planned, a future extension of the
command to cover such fast algorithms might therefore be desirable.
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