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Abstract. In the past decade, many statistical methods have been proposed for the
analysis of case–control genetic data with an emphasis on haplotype-based disease
association studies. Most of the methodology has concentrated on the estimation
of genetic (haplotype) main effects. Most methods accounted for environmental
and gene–environment interaction effects by using prospective-type analyses that
may lead to biased estimates when used with case–control data. Several recent
publications addressed the issue of retrospective sampling in the analysis of case–
control genetic data in the presence of environmental factors by developing efficient
semiparametric statistical methods. This article describes the new Stata command
haplologit, which implements efficient profile-likelihood semiparametric methods
for fitting gene–environment models in the very important special cases of a rare
disease, a single candidate gene in Hardy–Weinberg equilibrium, and independence
of genetic and environmental factors.
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1 Introduction

Case–control data arise from the retrospective sampling design commonly used when
conducting studies of rare diseases. In the retrospective (case–control) design, the
sampling is conditional on the disease: cases and controls are drawn independently from
two populations with and without a disease, respectively, and their observed covariate
information is recorded. As such, the likelihood of the case–control data is based on the
Pr(X |Y ) of observing covariate information X given the disease status Y as opposed to
the likelihood (with prospective data) that is based on the Pr(Y |X) of the disease given
the covariates. The use of standard (prospective-type) logistic regression to analyze
case–control data (ignoring the retrospective sampling scheme) is justified for the case
when the covariate distribution is left unspecified (Andersen 1970; Prentice and Pyke
1979; Breslow, Robins, and Wellner 2000) and the covariates are always observed.
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In genetic studies, however, it is usually reasonable to impose certain distribu-
tional assumptions about genetic covariates. The most common assumption is Hardy–
Weinberg equilibrium (HWE), under which the genotype frequencies in a population
remain constant from generation to generation. Deviations from HWE can also be mod-
eled according to certain parametric forms (Weir 1996; Niu et al. 2002). Also, in the
presence of environmental factors, it is often assumed that genetic factors are distributed
independently of the environmental factors. Under these assumptions, standard logis-
tic regression is no longer semiparametric efficient for the analysis of case–control data
because additional information is available about the covariate distribution. The use
of prospective-type logistic regression is further complicated by the presence of missing
genetic markers, a problem often encountered during genotyping of subjects. When ge-
netic data are missing, the conditional distribution of the genetic covariates given other
experimental factors must be modeled.

Increased interest in single nucleotide polymorphisms (SNPs) as genetic markers
prompted the development of new statistical methods for the analysis of associations
between the disease phenotype and multiple SNPs, the so-called haplotype-based asso-
ciation studies. A haplotype is a sequence of SNPs on the same chromosome within the
genomic region of interest. A subject’s genetic information is described by a diplotype,
the set of two haplotypes humans carry in the pair of homologous chromosomes. The
current genotyping techniques do not provide an easy way of obtaining the diplotype
data for which the gametic (parental) phase information is known. Instead, the in-
formation about a subject’s genotype, a combination of the haplotypes from a pair of
homologous chromosomes, is available. For homozygous subjects (who carry two copies
of the same allele at all SNP loci) and heterozygous subjects who carry two copies of
the same allele at all but one locus, the diplotype information is uniquely identifiable
from the observed genotype data. For heterozygous subjects who carry different alleles
at two or more loci, the problem of “phase ambiguity” arises. For example, consider
two SNPs. The four possible haplotypes from two SNP loci are H1 = (0, 0), H2 = (0, 1),
H3 = (1, 0), and H4 = (1, 1), where 0 and 1 indicate respectively the absence and
presence of a mutation or polymorphism. Consider the heterozygous subject with the
genotype G = (1, 1) recording the number of mutations in the pair of homologous chro-
mosomes at two loci. There are two diplotypes, {H1,H4} and {H2,H3}, which are
consistent with this genotype, i.e., G = H1 +H4 = H2 +H3. Therefore, for this subject
the phase is indeterminant. The other 8 possible genotypes—(0, 0), (0, 1), (0, 2), (1, 0),
(1, 2), (2, 0), (2, 1), and (2, 2)—correspond to subjects for which the diplotypes can be
recovered uniquely. This “phase ambiguity” problem can be viewed as a missing-data
problem, i.e., the true diplotype is unobserved for the heterozygous subjects who carry
different alleles at two or more loci. For unphased genotype data, complete nonparamet-
ric treatment of the genetic covariates may not be possible because of the identifiability
issues (Epstein and Satten 2003). The assumption of HWE for the diplotype population
is often used to resolve the phase information.

The recently developed methodology for the analysis of case–control genetic data
can be divided into two classes: “prospective” (ignoring the retrospective sampling
of the data; Lake et al. 2003; Zhao, Li, and Khalid 2003) and “retrospective” methods
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(Epstein and Satten 2003; Chatterjee and Carroll 2005; Spinka, Carroll, and Chatterjee
2005; Lin, Zeng, and Millikan 2005; Lin and Zeng 2006; Chen, Chatterjee, and Carroll
2008; Lobach et al. Forthcoming). Overall, the retrospective methods have increased
efficiency compared with the prospective methods; see, for example, Satten and Epstein
(2004) and Spinka, Carroll, and Chatterjee (2005) for details.

Many complex diseases such as cancers, bipolar disorder, hypertension, diabetes,
and schizophrenia are influenced by both genetic and environmental factors. Therefore,
it is important to include both types of factors in the analysis and to explore gene–
environment interactions. This motivated the development of the retrospective profile-
likelihood methods for analyzing case–control haplotype data in the presence of envi-
ronmental factors (Chatterjee and Carroll 2005; Spinka, Carroll, and Chatterjee 2005;
Lin, Zeng, and Millikan 2005; Lin and Zeng 2006; Chen, Chatterjee, and Carroll 2008;
Lobach et al. Forthcoming). Here we demonstrate the new Stata command haplologit,
which implements the modified retrospective semiparametric profile-likelihood method
of Spinka, Carroll, and Chatterjee (2005) and Lin and Zeng (2006) for the specific case
of a rare disease, a single candidate gene in HWE, and haplotype–environment indepen-
dence.

Previously, Stata commands were introduced for haplotype-based analysis of quan-
titative traits (Cleves 2005; Mander 2002) and binary traits with case–control data
(Mander 2001). haplologit is designed for the efficient haplotype-based analysis of
case–control data in the presence of environmental factors. It allows estimating both
haplotype and environmental effects, as well as haplotype–environment interactions for
case–control data, by using the retrospective profile-likelihood approach in the presence
of missing and unphased genotype data.

The structure of the article is as follows: Section 2 introduces two motivating datasets
that we will analyze later with haplologit. Section 3 presents the methodology under-
lying the command. Section 4 describes the haplologit command. Section 5 presents
the analysis of the two datasets introduced in section 2. Section 6 demonstrates a
simulation study conducted to investigate the properties of the implemented method.
Section 7 contains final remarks. We provide the syntax, options, and saved results of
haplologit in the appendix.

2 Motivating examples

Our motivating examples involve the data from a case–control study of colorectal ade-
noma, a precursor of colorectal cancer. We consider two datasets, CASR and NAT2,
used, among others, in Peters et al. (2004), Lobach et al. (Forthcoming), Moslehi et al.
(2006), and Chen, Chatterjee, and Carroll (2008). The first study was designed to in-
vestigate the interactions of dietary calcium intake and genetic variants in the calcium-
sensing receptor (CaSR) region. The second study was designed to assess whether
smoking-related risk of colorectal adenoma may be modified by certain haplotypes in
NAT2, a gene known to be important in the metabolism of smoking-related carcinogens.
From previous studies, the assumptions of a rare disease and genes in HWE are plausible
for these data.
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2.1 CASR data

The CASR data consist of 772 cases and 778 controls sampled from the screening arm
of the Prostate, Lung, Colorectal, and Ovarian (PLCO) Cancer Screening Trial at the
National Cancer Institute in the United States. The data also contain information on
participants’ dietary food intake and genotype data from three nonsynonymous SNPs in
the CaSR region. Some subjects did not have measurements of calcium intake and were
eliminated. The resulting dataset consists of 644 cases and 668 controls.

The genotype data consist of three nonsynonymous SNPs in exon 7 of the CaSR gene:
R990G (rs1042636) with major/minor alleles A/G, Q1011E (rs1801726) with alleles
C/G, and A986S (rs1801725) with alleles G/T (Peters et al., 2004). The genotype data
are stored in the variables g casr 01, g casr 02, and g casr 03.

One of the main goals of the study was to investigate the interaction of dietary
calcium intake (mg/day) and the three common haplotypes ACT, AGG, and GCG (coded
as “001”, “010”, and “100”, respectively). Other rare haplotypes are combined with
the most common haplotype, ACG (“000”), to form the base (comparison) haplotype
category. The variable Ldtcal records the values of the log of dietary calcium intake
plus one. Adding one is not necessary with our data because, as we can infer from the
output, there are no values with zero calcium intake. However, zeros are often observed
with other nutrition data, and so we use the conventional transformation for the dietary
calcium intake here. We also wish to adjust for such environmental factors as subjects’
ages (variable agerand), genders (variable sex), and races (Caucasian or not, variable
Caucasian). The disease status is recorded in variable casecontrol, with a value of
one corresponding to a case. Below we provide descriptions and basic summaries of the
variables in the dataset.

. describe g_casr_01 g_casr_02 g_casr_03 casecontrol Ldtcal sex agerand Caucasian

storage display value
variable name type format label variable label

g_casr_01 byte %8.0g first SNP locus
g_casr_02 byte %8.0g second SNP locus
g_casr_03 byte %8.0g third SNP locus
casecontrol byte %8.0g case-control status
Ldtcal float %9.0g log(1+dietary calcium from FFQ)
sex byte %8.0g gender: 1 = Male, 2 = Female
agerand float %9.0g age (in years)
Caucasian float %9.0g ethnicity: 0 = Non Caucasian,

1 = Caucasian

. summarize g_casr_01 g_casr_02 g_casr_03 casecontrol Ldtcal sex agerand Caucasian

Variable Obs Mean Std. Dev. Min Max

g_casr_01 1312 .1623476 .3968026 0 2
g_casr_02 1312 .1021341 .3176886 0 2
g_casr_03 1312 .2804878 .4992599 0 2

casecontrol 1312 .4908537 .500107 0 1
Ldtcal 1312 6.767107 .506731 4.893262 8.544137

sex 1312 1.304878 .4605313 1 2
agerand 1312 62.53329 5.276247 55.042 74.99

Caucasian 1312 .9458841 .2263324 0 1
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2.2 NAT2 data

The NAT2 data consist of 628 prevalent advanced adenoma cases and 635 gender-
matched controls, selected from the screening arm of the PLCO Cancer Screening Trial
(Gohagan et al. 2000; Moslehi et al. 2006). One of the main objectives of this study
was to assess whether smoking-related risk of colorectal adenoma may be modified
by certain haplotypes in NAT2, a gene known to be important in the metabolism of
smoking-related carcinogens. Subjects were genotyped at six SNPs (C282T, T341C,
C481T, G590A, A803G, and G857A) in exon 2 of the NAT2 gene. The dataset in-
cludes the genotype information—recorded in variables g1, g2, g5, g6, g7, and g8—and
the following four environmental factors: age recorded in years (variable age); gender
(variable gender); and two dummy variables, smk1 and smk2, identifying “former” and
“current” smokers, respectively. The disease status is recorded in variable d.

. describe g1 g2 g5 g6 g7 g8 d age smk1 smk2 gender

storage display value
variable name type format label variable label

g1 byte %8.0g SNP locus 1
g2 byte %8.0g SNP locus 2
g5 byte %8.0g SNP locus 3
g6 byte %8.0g SNP locus 4
g7 byte %8.0g SNP locus 5
g8 byte %8.0g SNP locus 6
d byte %8.0g disease indicator
age float %9.0g age (in years)
smk1 byte %8.0g smoking status: 1 = Former smoker
smk2 byte %8.0g smoking status: 1 = Current

smoker
gender byte %8.0g gender: 0 = Male, 1 = Female

. summarize g1 g2 g5 g6 g7 g8 d age smk1 smk2 gender

Variable Obs Mean Std. Dev. Min Max

g1 1263 1.163895 .7116161 0 2
g2 1263 .0577989 .2334552 0 1
g5 1263 1.347585 .6734789 0 2
g6 1263 .8780681 .720551 0 2
g7 1263 1.16152 .7127156 0 2

g8 1263 .594616 .6640195 0 2
d 1263 .4972288 .5001904 0 1

age 1263 62.56838 5.269487 55.0637 74.9897
smk1 1263 .3982581 .4897331 0 1
smk2 1263 .2034838 .4027487 0 1

gender 1263 .3246239 .4684196 0 1

In both of our examples, we are interested in investigating the association between
certain haplotypes (and environmental factors) and the risk of having colorectal ade-
noma. We are also interested in exploring the effect of certain haplotype–environment
interactions on this risk. We use haplologit to perform these analyses, which are
demonstrated in section 5.
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3 Methodology

This section describes the methodology underlying the haplologit command. If you
are not interested in theoretical details, you can skip this section and proceed to the
description of the haplologit command in section 4.

The haplologit command implements the retrospective profile-likelihood methods
of Spinka, Carroll, and Chatterjee (2005) and Lin and Zeng (2006), which are equivalent
under the assumptions of a rare disease and HWE.

Suppose that subjects are genotyped at M tightly linked biallelic SNPs. Let Hk =
(h1k, . . . , hMk) be a haplotype from the M SNPs and Hhap = {Hk, k = 1, . . . ,K = 2M}
be the set of all possible haplotypes from M SNP sites. Each component hik ∈ {0, 1}
represents the absence or presence of a mutant (minor) allele at the ith SNP site for i =
1, . . . ,M . Let Hd = (Hk,Hl) be a subject’s diplotype with the constituent haplotypes
Hk and Hl, and let Hdip = {(Hk,Hl) : Hk,Hl ∈ Hhap} be the set of all possible
haplotype pairs (all possible diplotypes). Let Y be the disease indicator (the case–
control status) and X = (X1, . . . , Xp)� be environmental factors.

The risk of a disease given a subject’s genetic and environmental covariates is mod-
eled by logistic regression. Under the assumption of a rare disease,

Pr(Y = y |Hd,X) ≈ exp[y{β0 +m(X,Hd;β1)}], y = 0, 1

where β0 is an unknown intercept, β1 is a vector of unknown coefficients, and m(·) is a
known function whose general form is given in (1) below.

Consider the set H� =
{
H�

j , j ∈ J� ⊂ {1, 2, . . . ,K}
}

of K� < K risk haplotypes.
Then the general form of the regression function is

m(X,Hd;β1) = β�
XX +

∑
j∈J�

βH�
j
Z(Hd,H�

j ) +
∑

j1∈J�

p∑
j2=1

βH�
j1

Xj2
Z(Hd,H�

j1)Xj2 (1)

where Z(Hd,H�
j ) is defined according to one of the following three genetic (haplotype

risk) models:

Z(Hd,H�
j ) =

⎧⎨⎩
I(Hk = H�

j ) + I(Hl = H�
j ) if additive;

I(Hk = H�
j ) + I(Hl = H�

j ) − I(Hk = Hl = H�
j ) if dominant;

I(Hk = Hl = H�
j ) if recessive.

I() denotes the indicator function—it is 1 if the condition in parentheses is true, and 0
otherwise.

In (1), the first term represents the main effects of environmental factors X, the sec-
ond term defines the main additive (or dominant, or recessive) effects of risk haplotypes
H�, and the last term defines the interaction effects of risk haplotypes and environmen-
tal covariates. The available regression functions can be derived from (1) by setting
various coefficients to zero. For example, suppose we have two environmental factors,
X1 and X2, and two risk haplotypes, H�

1 and H�
2 . We want to include the main effects
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of all factors and two additive interaction effects of H�
1 and X1, and H�

2 and X2. Then
the regression function (1) corresponds to

m(X,Hd;β1) = βX1X1 + βX2X2 +
2∑

j=1

(βH�
j

+ βH�
j Xj

Xj){I(Hk = H�
j ) + I(Hl = H�

j )}

This reduces to m(X,Hd;β1) = βX1X1 +βX2X2 +2βH�
j

+2βH�
j
Xj for a subject with a

diplotype Hd = (H�
j ,H

�
j ), j = 1, 2; to m(X,Hd;β1) = βX1X1 + βX2X2 + βH�

1
+ βH�

2
+

βH�
1
X1 + βH�

2
X2 for a subject with a diplotype Hd = (H�

1 ,H
�
2 ); and so on.

The true diplotype Hd = (Hk,Hl) is not directly observed. Instead, a genotype
G = (g1, . . . , gM ) = Hk +Hl is observed. Each component gi ∈ {0, 1, 2} represents the
number of mutant alleles in a pair of homologous chromosomes at the ith SNP site for
i = 1, . . . ,M . Therefore, genotype data provide incomplete information about which
combination of alleles appears along each of the individual chromosomes. As such,
the genotype G may be consistent with multiple diplotypes Hd. This is the case for
heterozygous subjects who carry different alleles at two or more loci. For these subjects,
the phase is ambiguous. For homozygous subjects (who carry two copies of the same
allele at all loci) and heterozygous subjects who carry two copies of the same allele at all
but one locus, the diplotype information is uniquely identifiable. When G has missing
components, a subject’s genetic information consists of multiple possible genotypes and,
therefore, is consistent with multiple diplotypes. Such phase ambiguity can be viewed
as a missing-data problem. The algorithm assumes that genotype data are missing at
random and accounts for this by integrating the distribution of the missing data out of
the joint likelihood for the observed and missing data.

It is assumed that Hd is independent of X. The distribution of Hd is governed by
HWE:

Pr{Hd = (Hk,Hl);θ} = θ2k if Hk = Hl

= 2θkθl if Hk �= Hl

where θk denotes the frequency for haplotype Hk.

Let (Yi,Xi, Gi), where i = 1, . . . , N , be the observed disease indicator, the set of
environmental variables, and the SNP genotype for the ith subject, respectively. Let N1

and N0 denote, respectively, the number of cases and controls in the sample, with N =
N1 +N0. The retrospective likelihood

∏N
i=1 Pr(Gi,Xi |Yi) involves a possibly infinite-

dimensional (if X has continuous components) nuisance distribution of X. Therefore,
it is desirable to profile the distribution of X out of the likelihood prior to estimating
the parameters of interest, β1 and θ.

(Continued on next page)
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Let Hdip
G = {(Hk,Hl) : the haplotype pair is consistent with G} be the set of all

possible diplotypes consistent with the observed genotype data G; μ = β0+log(N1/N0)−
log{Pr(Y = 1)/Pr(Y = 0)}; Ω = (μ,β1,θ); and S(Y,X,Hd; Ω) ≈ Pr(Hd;θ) exp[Y {μ+
m(X,Hd;β1)}] (under the assumption of a rare disease). The profile retrospective log
likelihood is then

l�(Ω) =

N∑
i=1

⎡⎢⎣log

⎧⎪⎨⎪⎩
∑

Hd∈Hdip
Gi

S(Yi,Xi,H
d; Ω)

⎫⎪⎬⎪⎭− log

⎧⎨⎩
1∑

y=0

∑
Hd∈Hdip

S(y,Xi,H
d; Ω)

⎫⎬⎭
⎤⎥⎦ (2)

The semiparametric maximum-likelihood estimators for μ, β1, and θ can be ob-
tained from maximizing (2) by Newton–Raphson. The intercept β0 is not estimable
unless the probability of a disease in the population Pr(Y = 1) is known. If Pr(Y = 1)
is known, then β0 can be estimated as β̂0 = μ̂−log(N1/N0)+log{Pr(Y = 1)/Pr(Y = 0)},
where μ̂ is the maximum likelihood estimate (MLE) of μ and is labeled as cons in the
output. The initial values of μ and β1 are set to zero, and the initial values of haplo-
type frequencies θ are obtained from the control sample (if emsample() is omitted) by
using the expectation maximization (EM) algorithm described below. Subjects’ diplo-
types with initial frequencies of constituent haplotypes less than max(2/N, 0.001) (or
hfthreshold(#)) are not used during the maximization for the purpose of numerical
stability.

haplologit allows the user to fit haplotype-based models in the absence of envi-
ronmental factors. Here Ω = (βH ,θ); S(Y,Hd; Ω) = Pr(Hd;θ) exp{Y m(Hd;βH)}; and
the retrospective log likelihood is

l(Ω) =
N∑

i=1

⎡⎢⎣log

⎧⎪⎨⎪⎩
∑

Hd∈Hdip
Gi

S(Yi,H
d; Ω)

⎫⎪⎬⎪⎭− log

⎧⎨⎩ ∑
Hd∈Hdip

S(Yi,H
d; Ω)

⎫⎬⎭
⎤⎥⎦

which corresponds to the approach of Epstein and Satten (2003).

Initial estimates of the haplotype frequencies are obtained by using the EM algorithm.
Let Bi = {(k, l): (Hk,Hl) ∈ Hdip

Gi
, k, l = 1, . . . ,K} be the set of indices of diplotypes

consistent with the observed genotype Gi. The observed data likelihood is L(θ;G) =∏N
i=1

∑∑
(k,l)∈Bi

θkθl, and the expected full-data log likelihood given the observed data
is

N∑
i=1

K∑
k=1

K∑
l=1

Prθ{Hd
i = (Hk,Hl) |Gi}(log θk + log θl) (3)

During the expectation step of the algorithm, we evaluate the expected log likelihood

(3) at the current values of haplotype frequencies, θ̂
(m−1)

. During the maximization
step, we maximize (3) with respect to θ to obtain the estimates θ̂(m)

k . We iterate
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between the two steps until the maximum number of iterations is reached or until
convergence (

∑K
k=1 | θ̂(m)

k − θ̂
(m−1)
k | < ε = 10−6), whichever comes first. Sometimes,

the EM algorithm may converge to a local maximum. As such, it is recommended to
try different starting values for the haplotype frequencies. By default, haplologit uses
equal frequencies as starting values: θ

(0)
k = 1/K, where k = 1, . . . ,K. This can be

changed by specifying the option eminit().

4 The haplologit command

The command haplologit estimates haplotype effects and haplotype–environment in-
teractions from case–control genetic (SNP-based) data for one of three types of genetic
(haplotype risk) models: additive, dominant, or recessive. It fits haplotype-effects lo-
gistic regression by using the retrospective profile-likelihood method in the special case
of a rare disease and a single candidate gene in HWE, under the assumption of gene–
environment independence. It allows simultaneous estimation of the effects of multiple
risk haplotypes and their interactions with environmental factors.

The observed SNP genotype data is supplied to haplologit as subjects’ genetic
information via the required option snpvars(). The genotype data must be recorded
in the so-called SNP variables (one variable for each SNP locus), containing only values
of 0, 1, 2, and missing (.). Data must be in the wide form—a single observation per
subject.

The effect of a single gene in HWE on the disease is considered. A risk haplotype (or
causal haplotype) is a target haplotype whose effect on a disease is of interest. The effects
of risk haplotypes can be modeled according to one of three genetic models, specified in
the option inheritance() as the mode of inheritance: additive (the default), dominant,
or recessive. Genetic covariates are viewed as functions of subjects’ SNP genotype data
and risk haplotypes. Specifically, genetic covariates depend on the number of copies of a
risk haplotype present in the subject’s diplotype. Their functional forms are determined
by the selected genetic model. For example, under the additive risk model, having two
copies of a risk haplotype in a subject’s diplotype doubles the effect of this haplotype on
a disease compared with having only one copy of a risk haplotype. In contrast, under
the dominant risk model having one or two copies has the same effect on the disease.
Under the recessive model, having only two copies of a risk haplotype has an effect
on the disease. haplologit uses genetic covariates indirectly in the computation via
the supplied information about SNP genotypes (option snpvars()), the genetic model
(option inheritance()), and the risk haplotypes.

A risk haplotype can be specified as a string of a sequence of zeros and ones (binary
representation) or as a haplotype index (position of a risk haplotype in the ordered
sequence of 2M possible haplotypes at M SNP sites). Risk haplotypes are specified
in the options riskhap1(), riskhap2(), and so on. By default, if no risk haplotypes
are specified, haplologit uses the most frequent haplotype estimated from the control
sample (or the sample specified in emsample()) as the risk haplotype. Environmental
covariates can be specified following the dependent variable in the syntax of haplologit.
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The interaction effects of environmental factors and risk haplotypes can be included by
using riskhap#()’s suboption interaction().

The distributional assumptions on genetic covariates are HWE and independence
with environmental covariates. Environmental covariates can be both continuous and
discrete, and their distribution is left unspecified.

haplologit’s estimation process consists of three stages: data management, ini-
tial estimation of haplotype frequencies, and estimation of haplotype and optionally
environmental effects. During the data-management stage, haplologit performs data
manipulations necessary for handling unphased and missing SNP genotypes in the com-
putation. At the second stage, the initial haplotype frequencies are estimated from the
sample specified in emsample() by using the EM algorithm. Only the haplotypes with
the estimated initial frequencies exceeding a default threshold (or an alternate threshold
specified in hfthreshold()) are retained for further estimation; this is necessary for nu-
merical stability of the algorithm. At the third stage, the coefficients for environmental
covariates, risk haplotypes, and their interactions are estimated simultaneously with the
haplotype frequencies by Newton–Raphson. The command displays information from
and, optionally, progress at each of the three steps.

See the appendix for details of syntax, options, and saved results.

5 Empirical data analysis

We demonstrate the use of haplologit for the analysis of two previously described
datasets, CASR and NAT2 (see section 2), containing data from a case–control study of
colorectal adenoma.

5.1 Analysis of the CASR data

From the EM algorithm applied to the control sample (see output below), we identified
the following four haplotypes with frequencies exceeding 0.001: ACG coded as “000”
(0.710), ACT coded as “001” (0.150), AGG coded as “010” (0.055), and GCG coded
as “100” (0.084). These results agree with those obtained by Peters et al. (2004) and
Lobach et al. (Forthcoming). Our goal is to investigate the effects of the three common
haplotypes “001”, “010”, and “100” and their interaction with dietary calcium intake
(Ldtcal) on the risk of colorectal adenoma (casecontrol=1). The most common haplo-
type, ACG (“000”), and other rare haplotypes are treated as the base haplotype category.
We also estimate effects for age, gender, and race (Caucasian or not).

We consider three regression models: the first model (RM1) includes only main effects
of the three haplotypes of interest; the second model (RM2) extends the RM1 model by
adding main effects of the environmental factors Ldtcal, agerand, sex, and Caucasian;
and the third model (RM3) adds the interaction effects of Ldtcal with haplotypes “010”
and “100”. We fit all regression models under each of the three modes of inheritance
(additive, dominant, and recessive).
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Using haplologit

Below we consider the dominant risk-haplotype model (inheritance(dominant)). The
recessive or additive models can be fit similarly by specifying inheritance(recessive)
or inheritance(additive) (the latter can be omitted for the additive genetic model).

haplologit follows the same syntax as most Stata estimation commands in the spec-
ification of a dependent variable and independent covariates (environmental factors).
The necessary genetic information is supplied in the options snpvars(), inheritance(),
riskhap1(), riskhap2(), and so on.

First, we fit the model including the main dominant effects of haplotypes (RM1). We
specify the required information about subjects’ genotypes (SNP variables) in the option
snpvars(g casr 01 g casr 02 g casr 03) and choose the dominant mode of inheri-
tance. To include the main effects of our haplotypes of interest (risk haplotypes) in the
regression model, we specify the haplotypes in riskhap1("001"), riskhap2("010"),
and riskhap3("100").

. haplologit casecontrol, snpvars(g_casr_01 g_casr_02 g_casr_03)
> inheritance(dominant) riskhap1("001") riskhap2("010") riskhap3("100")

Building consistent haplotype pairs:

Obtaining initial haplotype frequency estimates from the control sample:

Haplotype frequency EM estimation

Number of iterations = 53
Sample log-likelihood = -982.17816

haplotype frequency*

000 .71033
001 .150449
010 .055389
100 .083832

* frequencies > .0015244

Performing gradient-based optimization:

Iteration 0: Retrospective log likelihood = -1881.6901
Iteration 1: Retrospective log likelihood = -1874.7763
Iteration 2: Retrospective log likelihood = -1874.757
Iteration 3: Retrospective log likelihood = -1874.757

Haplotype-effects logistic regression
Mode of inheritance: dominant Number of obs = 1312

Genetic distribution: Hardy-Weinberg equilib. Number phased = 1253
Genotype: g_casr_01 g_casr_02 Number unphased = 59

g_casr_03 Number missing = 0

Wald chi2(3) = 9.71
Retrospective log likelihood = -1874.757 Prob > chi2 = 0.0212

casecontrol Coef. Std. Err. z P>|z| [95% Conf. Interval]

hap_001 -.2915435 .1238471 -2.35 0.019 -.5342793 -.0488077
hap_010 -.3595679 .1860106 -1.93 0.053 -.7241419 .0050062
hap_100 -.2205036 .1515137 -1.46 0.146 -.517465 .0764578
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Haplotype frequencies

Coef. Std. Err. z P>|z| [95% Conf. Interval]

hap_000 .7029724 .0121205 58.00 0.000 .6792165 .7267282
hap_001 .1527179 .0095216 16.04 0.000 .1340559 .1713798
hap_010 .0578313 .0063137 9.16 0.000 .0454566 .0702059
hap_100 .0864785 .0075397 11.47 0.000 .071701 .101256

The first part of the output displays the results of the EM algorithm used to estimate
the haplotype frequencies in the control-only data. Only estimated frequencies exceeding
the default threshold are displayed (and used in the subsequent analysis). The default
haplotype frequency threshold in our example is 0.0015 and is determined by 2/1312.
This can be changed by specifying the option hfthreshold().

The second part of the output displays results from the gradient-based optimiza-
tion. The table header provides general information about the fitted model. Mode of
inheritance reports the type of genetic model (dominant). The assumed distribu-
tion of genetic covariates is HWE. The variables containing genotype information (SNP

variables) are listed under Genotype.

Number of obs reports the number of subjects used in the computation. From
the output, all 1,312 subjects (644 cases and 668 controls) in the dataset are used
in the computation. haplologit also reports the numbers of subjects with observed
phased genotypes (Number phased), with unphased genotypes (Number unphased), and
with incomplete genotypes in which at least one SNP variable contains a missing value
(Number missing). According to the output, 1,253 subjects have phased genotypes,
and 59 subjects have unphased genotypes.

The first estimation table reports the estimates of haplotype effects. For example,
the log odds-ratio of haplotype “001” is −0.292, suggesting a reduction in the risk of
adenoma for subjects carrying this haplotype. The second table reports MLE of the
haplotype frequencies.

Next we add four environmental factors to the regression model (RM2) as covariates
sex, Ldtcal, agerand, and Caucasian. We use the abbreviated versions of options
snpvars() and inheritance(), and we suppress the output from the EM stage and the
ML iteration log by using the options noemshow and nolog, respectively.
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. haplologit casecontrol sex Ldtcal agerand Caucasian,
> snp(g_casr_01 g_casr_02 g_casr_03) inher(d) riskhap1("001") riskhap2("010")
> riskhap3("100") noemshow nolog

Building consistent haplotype pairs:

Obtaining initial haplotype frequency estimates from the control sample:

Performing gradient-based optimization:

Haplotype-effects logistic regression
Mode of inheritance: dominant Number of obs = 1312

Genetic distribution: Hardy-Weinberg equilib. Number phased = 1253
Genotype: g_casr_01 g_casr_02 Number unphased = 59

g_casr_03 Number missing = 0

Wald chi2(7) = 25.42
Retrosp. profile log likelihood = -2775.9764 Prob > chi2 = 0.0006

casecontrol Coef. Std. Err. z P>|z| [95% Conf. Interval]

sex -.1230768 .122593 -1.00 0.315 -.3633547 .117201
Ldtcal -.1959127 .113829 -1.72 0.085 -.4190134 .0271879
agerand .037118 .0105986 3.50 0.000 .0163451 .0578908

Caucasian .1514149 .2515958 0.60 0.547 -.3417038 .6445336
hap_001 -.2915435 .1238471 -2.35 0.019 -.5342793 -.0488077
hap_010 -.3595678 .1860106 -1.93 0.053 -.7241418 .0050063
hap_100 -.2205036 .1515137 -1.46 0.146 -.517465 .0764578

_cons .1253638 .293798 0.43 0.670 -.4504696 .7011972

Note: _cons = b0 + ln(N1/N0) - ln{Pr(D=1)/Pr(D=0)}

Haplotype frequencies

Coef. Std. Err. z P>|z| [95% Conf. Interval]

hap_000 .7029724 .0121205 58.00 0.000 .6792165 .7267282
hap_001 .1527179 .0095216 16.04 0.000 .1340559 .1713798
hap_010 .0578313 .0063137 9.16 0.000 .0454566 .0702059
hap_100 .0864785 .0075397 11.47 0.000 .071701 .101256

The estimates of the environmental factors suggest that the risk of colorectal ade-
noma is higher for older people and for Caucasians, while the risk is lower for females
and for people with higher calcium intake. The estimates of the haplotype effects re-
main unchanged as expected under the haplotype-environment independence assump-
tion. Also, here, the estimates of the environmental effects are the same as those from
the conventional logistic model (logit).

In the final regression model (RM3), we investigate the interaction effects of risk
haplotypes with the covariate Ldtcal. We also recenter variables Ldtcal and agerand
at their sample mean values before fitting the model so that the main haplotype ef-
fects correspond to the mean values of age and calcium. To include the haplotype–
environment interaction effects, we specify environmental covariates in riskhap#()’s
suboption interaction(). In the following input, we specify inter(Ldtcal) in options
riskhap2() and riskhap3() to include the interaction effects of Ldtcal with haplo-
types “010” and “100”. We also use the option happrefix() to specify a short prefix
to fit haplotype labels in the output tables.



318 Semiparametric analysis of case–control genetic data

. haplologit casecontrol sex Ldtcal agerand Caucasian,
> snpvars(g_casr_01 g_casr_02 g_casr_03) inher(d) riskhap1("001")
> riskhap2("010", inter(Ldtcal)) riskhap3("100", inter(Ldtcal))
> noemshow nolog happrefix("_")

Building consistent haplotype pairs:

Obtaining initial haplotype frequency estimates from the control sample:

Performing gradient-based optimization:

Haplotype-effects logistic regression
Mode of inheritance: dominant Number of obs = 1312

Genetic distribution: Hardy-Weinberg equilib. Number phased = 1253
Genotype: g_casr_01 g_casr_02 Number unphased = 59

g_casr_03 Number missing = 0

Wald chi2(9) = 36.61
Retrosp. profile log likelihood = -2769.5997 Prob > chi2 = 0.0000

casecontrol Coef. Std. Err. z P>|z| [95% Conf. Interval]

sex -.1222521 .12261 -1.00 0.319 -.3625632 .118059
Ldtcal -.0553412 .1213515 -0.46 0.648 -.2931857 .1825032
agerand .0370709 .0105986 3.50 0.000 .016298 .0578439

Caucasian .1579015 .2517616 0.63 0.531 -.3355422 .6513452
_001 -.2915038 .1238556 -2.35 0.019 -.5342563 -.0487513
_010 -.4371039 .1932946 -2.26 0.024 -.8159544 -.0582533
_100 -.2507072 .1535909 -1.63 0.103 -.5517398 .0503254

_010*Ldtcal -.7947331 .2759949 -2.88 0.004 -1.335673 -.253793
_100*Ldtcal -.5047162 .2205877 -2.29 0.022 -.9370601 -.0723723

_cons .1193802 .2939819 0.41 0.685 -.4568137 .6955741

Note: _cons = b0 + ln(N1/N0) - ln{Pr(D=1)/Pr(D=0)}

Haplotype frequencies

Coef. Std. Err. z P>|z| [95% Conf. Interval]

_000 .7029555 .0121212 57.99 0.000 .6791983 .7267127
_001 .1527102 .0095211 16.04 0.000 .1340491 .1713713
_010 .0578413 .0063148 9.16 0.000 .0454646 .070218
_100 .086493 .0075409 11.47 0.000 .0717131 .1012729

Results

In table 1, we summarize the results (coefficients) from the three regression models for
the dominant genetic model. The respective odds ratios can be obtained by exponenti-
ating coefficients; haplologit does it automatically if the option or is used.



Y. V. Marchenko, R. J. Carroll, D. Y. Lin, C. I. Amos, and R. G. Gutierrez 319

Table 1. Estimates of environmental and dominant haplotype effects (log odds) from
three regression models for the CASR study. Standard-error estimates are shown in
parentheses. The significance of the 0.05-level Wald test is labeled as follows: ∗p < 0.10,
∗∗p < 0.05, and ∗∗∗p < 0.005.

Factors RM1 RM2 RM3

sex — −0.1231 (0.1226) −0.1223 (0.1226)
Ldtcal — −0.1959 (0.1138)∗ −0.0553 (0.1214)
agerand — 0.0371 (0.0106)∗∗∗ 0.0371 (0.0106)∗∗∗

Caucasian — 0.1514 (0.2516) 0.1579 (0.2518)
hap 001 −0.2915 (0.1238)∗∗ −0.2915 (0.1238)∗∗ −0.2915 (0.1239)∗∗

hap 010 −0.3596 (0.1860)∗ −0.3596 (0.1860)∗ −0.4371 (0.1933)∗∗

hap 100 −0.2205 (0.1515) −0.2205 (0.1515) −0.2507 (0.1536)
hap 010*Ldtcal — — −0.7947 (0.2760)∗∗∗

hap 100*Ldtcal — — −0.5047 (0.2206)∗∗

The model with only haplotype effects (RM1) shows a significant dominant effect
of the “001” haplotype on the risk of colorectal adenoma; that is, the presence of
the “001” haplotype in a subject’s diplotype reduces the risk of colorectal adenoma.
Other haplotypes are associated with a reduced risk as well but without significant
statistical evidence at the 5% level. The addition of the environmental factors to the
model demonstrates a statistically significant impact of age on the risk: age is associ-
ated with an increased risk of the disease. Other statistically nonsignificant findings
include an increased risk of advanced colorectal adenoma for Caucasians, males, and
subjects with lower calcium intake. The last model, RM3, demonstrates interesting
results. The inclusion of the interaction of the log calcium intake (Ldtcal) with the
haplotype “010” reveals this haplotype’s statistical significance at the 5% level that
was not visible from previously fitted models. Both interaction terms, hap 010*Ldtcal
and hap 100*Ldtcal, are statistically significant at the 1% and 5% levels, respectively.
Among the subjects having at least one copy of the haplotype “010” (or “100”) in
their diplotype, those with higher values of dietary calcium intake have lower risk of
colorectal adenoma. Peters et al. (2004) conducted a prospective logistic analysis of
these data and found no multiplicative interaction effects of total calcium intake with
the CaSR common variants to be statistically significant after additionally adjusting for
other environmental factors (smoking, alcohol intake, energy intake, etc.). Lobach et al.
(Forthcoming) considered a model similar to ours without adjusting for age, gender, and
ethnic origin and with additive haplotype effects. They also found the interactions of
log calcium intake with haplotypes AGG (combined with the rare haplotypes) and GCG

to be statistically significant after taking into account possible measurement error in
dietary calcium intake.

In table 2, we summarize the Akaike’s information criterion (AIC) obtained for nine
models (the three regression models each fit assuming additive, dominant, and recessive
modes of inheritance). The dominant genetic model has the smallest AIC for all three
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regression models. The large differences in values between the RM1 and RM3 (or RM2)
models are due to different likelihood functions being used in each. The model con-
taining only main haplotype effects (RM1) is based on the true retrospective likelihood,
whereas the models including environmental factors (RM2 and RM3) are based on the
retrospective profile likelihood. As such, it is not appropriate to use AIC to compare
models with environmental factors with those without environmental factors.

Table 2. AIC for the additive, dominant, and recessive genetic models considered for
the CASR data

Genetic model RM1 RM2 RM3

additive 3766.942 5579.381 5568.302
dominant 3761.514 5573.953 5565.199
recessive 3762.808 5575.247 5575.913

5.2 Analysis of the NAT2 data

We wish to investigate the effects of certain common haplotypes in NAT2 (a gene im-
portant in the metabolism of smoking-related carcinogens) on the risk of colorectal ade-
noma. More importantly, we want to assess whether smoking-related risk of colorectal
adenoma can be modified by certain haplotypes.

From the EM algorithm applied to the control sample, we obtain the following
seven haplotypes with frequencies exceeding 0.002: “001100” (0.377), “100011” (0.302),
“101010” (0.238), “110010” (0.028), “101100” (0.027), “001110” (0.019), and “001010”
(0.007). The four common haplotypes—“100011”, “101010”, “110010”, and “101100”
(with estimated frequencies exceeding 1%)—are chosen as risk haplotypes. The other
rare haplotypes are combined with the most frequent haplotype, “001100”, into the base
category.

Similarly to our CASR example, we fit three regression models with haplotype effects
only (RM1); haplotype and environmental effects of age, gender, and two smoking in-
dicators (RM2); and interaction effects of the haplotype “101010” with smoking (RM3).
The last model allows us to investigate whether the risk associated with smoking is
modified by the presence of one of the chosen risk haplotypes “101010”. We report
results for the RM3 model only, because those for the RM1 and RM2 models were similar
to the results for RM3.

Using haplologit

In our call to haplologit, we include the main effects of environmental factors age,
smk1, smk2, and gender; the main effects of haplotypes “100011”, “101100”, and
“110010”; and the main and interaction effects of haplotype “101010” with covariates
smk1 and smk2 (within the option riskhap2()).
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. haplologit d age smk1 smk2 gender, snpvars(g1 g2 g5 g6 g7 g8) nolog
> happrefix("_") riskhap1("100011") riskhap2("101010", inter(smk1 smk2))
> riskhap3("101100") riskhap4("110010")

Building consistent haplotype pairs:

Obtaining initial haplotype frequency estimates from the control sample:

Haplotype frequency EM estimation

Number of iterations = 28
Sample log-likelihood = -1458.197

haplotype frequency*

001010 .006492
001100 .376972
001110 .018898
100011 .302362
101010 .23839
101100 .026965
110010 .028346

* frequencies > .0015835

Performing gradient-based optimization:
Note: removing 2 observations; constituent haplotype frequencies are smaller

than .0015835

Haplotype-effects logistic regression
Mode of inheritance: additive Number of obs = 1261

Genetic distribution: Hardy-Weinberg equilib. Number phased = 450
Genotype: g1 g2 g5 g6 g7 g8 Number unphased = 811

Number missing = 0

Wald chi2(10) = 54.09
Retrosp. profile log likelihood = -3702.5759 Prob > chi2 = 0.0000

d Coef. Std. Err. z P>|z| [95% Conf. Interval]

age .051942 .0110732 4.69 0.000 .0302389 .073645
smk1 .0709409 .1494879 0.47 0.635 -.22205 .3639318
smk2 .9690708 .177891 5.45 0.000 .6204108 1.317731

gender .0023537 .1255334 0.02 0.985 -.2436873 .2483947
_100011 -.1145104 .0955996 -1.20 0.231 -.3018822 .0728613
_101010 -.1186759 .1365992 -0.87 0.385 -.3864054 .1490537
_101100 -.0970695 .2520265 -0.39 0.700 -.5910324 .3968933
_110010 -.0391023 .2420902 -0.16 0.872 -.5135904 .4353859

_101010*smk1 .0761621 .1553604 0.49 0.624 -.2283387 .3806628
_101010*smk2 -.2912431 .1824043 -1.60 0.110 -.6487489 .0662628

_cons -.0908722 .1483782 -0.61 0.540 -.3816882 .1999437

Note: _cons = b0 + ln(N1/N0) - ln{Pr(D=1)/Pr(D=0)}

(Continued on next page)
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Haplotype frequencies

Coef. Std. Err. z P>|z| [95% Conf. Interval]

_001010 .0054919 .0014702 3.74 0.000 .0026104 .0083735
_001100 .3774709 .013276 28.43 0.000 .3514504 .4034914
_001110 .0190909 .002715 7.03 0.000 .0137696 .0244122
_100011 .3033175 .0129196 23.48 0.000 .2779956 .3286395
_101010 .2391732 .0119945 19.94 0.000 .2156644 .2626819
_101100 .0270196 .0045714 5.91 0.000 .0180598 .0359793
_110010 .028436 .0046715 6.09 0.000 .0192801 .0375919

Here the number of observations used in the computation (1,261) is smaller than the
total number of subjects (1,263—628 cases and 635 controls) in the dataset. According
to the note displayed during the gradient-based optimization, 2 subjects had frequencies
of constituent haplotypes less than the default threshold, 0.0015835, and thus were
removed from the estimation. Out of 1,261 subjects, 811 have unphased genotypes and
all have complete genotype information.

Results

We fit all three types of genetic models—additive, dominant, and recessive. The es-
timates of the effects of haplotypes “110010” and “101100” had large standard errors
under the recessive model, according to which only subjects with exactly two copies of
the haplotype contribute to the estimation of the effect. The estimated frequencies of
these haplotypes are low in the observed sample with respective homozygous diplotype
frequencies of less than 0.09%. Therefore, there were not enough subjects in the sample
to reliably estimate the recessive effects of these two haplotypes, which led to the large
standard errors. The above output shows results from the additive model. However,
the same inference about the haplotype and environmental effects can be made from
the dominant model.

All three regression models relate the four target haplotypes to a reduced risk for
colorectal adenoma (negative estimates of the log-odds parameters), although without
significant statistical evidence. The only statistically significant effects are observed
for age and “current” smokers (relative to nonsmokers). Both of them are positively
associated with the risk of disease. The estimated log odds for age is 0.0519 with a
standard error of 0.0111, and for smk2, it is 0.9691 with a standard error of 0.1779.
None of the interaction terms are statistically significant at 10%. The negative estimate
of the 101010*smk2 effect agrees with results from previous epidemiological studies:
among current smokers, the risk for colorectal adenoma is reduced for carriers of the
haplotype “101010” compared with noncarriers. In fact, Chen, Chatterjee, and Carroll
(2008) reveal the statistical significance of this interaction term after relaxing the gene–
environment independence assumption by modeling the conditional distribution of the
haplotypes as a function of the smoking status.
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6 Simulation

Spinka, Carroll, and Chatterjee (2005); Lin, Zeng, and Millikan (2005); and Lin and
Zeng (2006) present simulations for general methods relaxing the assumptions of a
rare disease and HWE. Spinka, Carroll, and Chatterjee (2005) demonstrate simulation
results without using the rare-disease approximation. Lin, Zeng, and Millikan (2005)
and Lin and Zeng (2006) perform simulations for the case when the population is in
Hardy–Weinberg disequilibrium (HWD). We conducted a simulation study to investigate
the performance of the implemented method for the special case of a rare disease and
HWE.

We reproduced one of the simulation scenarios considered in Lin, Zeng, and Millikan
(2005) but assumed that the genotype population is in HWE. We used three SNP sites
and generated haplotypes H1, H2, H3, and H4 with the following respective frequencies:
0.62, 0.27, 0.07, and 0.04. The haplotype frequencies of the other four possible haplo-
types were set to zero. The diplotypes were generated assuming HWE. We generated
the disease status according to the following logistic model:

logit{Pr(Y = 1 |Hd,X)} = α+ βXX + βH2N2(Hd) + βH2XN2(Hd)X

where X is a Bernoulli random variable with 0.3 success probability and N2(Hd) is
the number of copies of the haplotype H2 in a diplotype Hd (the additive genetic
model). The intercept was set to −4.7 to yield an approximately 1% disease rate in
the population and to −3.1 to yield an approximately 5% disease rate. To investigate
the haplotype effect, we set βX = βH2X = 0.3 and varied βH2 from −0.3 to 0.3. To
investigate the effect of the haplotype–environment interaction, we set βX = βH2 = 0.3
and varied βH2X from −0.3 to 0.3. We randomly selected 500 cases and 500 controls
from a larger random sample of subjects. The simulation results are presented in tables
3 and 4 and are based on 1,000 replications.

(Continued on next page)
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Table 3. Simulation results with Pr(Y = 1) = 1%. Bias and SE are the bias and the
standard error of the semiparametric MLE for a parameter. SEE is the mean of the
standard-error estimator. CP is the coverage probability of a 95% confidence interval.
Power is the power of a 0.05-level Wald test of the null hypothesis H0: β = 0.

Parameter Bias SE SEE CP Power
βH2 = −0.3 −0.0010 0.1263 0.1269 0.947 0.657
βX = 0.3 0.0074 0.1544 0.1567 0.941 0.516
βH2X = 0.3 −0.0026 0.1552 0.1586 0.942 0.493
βH2 = 0.0 0.0017 0.1204 0.1211 0.952 0.048
βX = 0.3 0.0091 0.1603 0.1646 0.947 0.488
βH2X = 0.3 −0.0054 0.1442 0.1494 0.943 0.540
βH2 = 0.3 0.0022 0.1114 0.1115 0.951 0.777
βX = 0.3 0.0051 0.1633 0.1668 0.947 0.459
βH2X = −0.3 −0.0026 0.1539 0.1592 0.945 0.481
βH2 = 0.3 0.0040 0.1134 0.1138 0.953 0.760
βX = 0.3 0.0099 0.1652 0.1684 0.940 0.462
βH2X = 0.0 −0.0064 0.1432 0.1473 0.940 0.060
βH2 = 0.3 0.0053 0.1164 0.1160 0.954 0.736
βX = 0.3 0.0175 0.1677 0.1702 0.942 0.472
βH2X = 0.3 −0.0145 0.1365 0.1367 0.948 0.545
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Table 4. Simulation results with Pr(Y = 1) = 5%. Bias and SE are the bias and the
standard error of the semiparametric MLE for a parameter. SEE is the mean of the
standard-error estimator. CP is the coverage probability of a 95% confidence interval.
Power is the power of a 0.05-level Wald test of the null hypothesis H0: β = 0.

Parameter Bias SE SEE CP Power
βH2 = −0.3 −0.0025 0.1258 0.1244 0.943 0.678
βX = 0.3 0.0128 0.1548 0.1563 0.954 0.527
βH2X = 0.3 −0.0102 0.1554 0.1534 0.953 0.466
βH2 = 0.0 0.0016 0.1201 0.1209 0.945 0.055
βX = 0.3 0.0175 0.1605 0.1629 0.948 0.517
βH2X = 0.3 −0.0226 0.1449 0.1431 0.948 0.500
βH2 = 0.3 −0.0067 0.1117 0.1154 0.946 0.749
βX = 0.3 −0.0017 0.1632 0.1658 0.949 0.468
βH2X = −0.3 0.0111 0.1543 0.1561 0.954 0.449
βH2 = 0.3 −0.0005 0.1136 0.1171 0.941 0.754
βX = 0.3 0.0091 0.1651 0.1691 0.945 0.473
βH2X = 0.0 −0.0089 0.1441 0.1450 0.948 0.052
βH2 = 0.3 0.0097 0.1163 0.1198 0.947 0.758
βX = 0.3 0.0298 0.1674 0.1710 0.951 0.498
βH2X = 0.3 −0.0429 0.1375 0.1399 0.931 0.476

From tables 3 and 4, we can see that the biases of all parameter estimates are small.
The biases increase slightly as the probability of a disease in a population increases
from 1% to 5%. The estimates of standard errors agree with the observed variability in
the parameter estimates. The 95% confidence intervals have coverage that is very close
to nominal. The Wald tests have reasonable powers. The simulation results also agree
with those given in Spinka, Carroll, and Chatterjee (2005) and Lin, Zeng, and Millikan
(2005) for more general methods allowing a nonrare disease and HWD.

We also investigated the effect of HWD on the implemented method by simulating
genotypes according to the following model (results are not shown):

Pr{Hd = (Hk,Hl);θ, ρ} = (1 − ρ)θkθl + I(k = l)ρθk

We noticed increased bias in the parameter and standard-error estimates in the pres-
ence of the extreme excess homozygosity or heterozygosity (for | ρ | > 0.1). For more
moderate values of ρ (0.05 < | ρ | < 0.1), we observed only a slight increase in biases
and standard errors.

(Continued on next page)
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7 Discussion

We have described the new Stata command haplologit, which implements the retro-
spective profile-likelihood method for the analysis of case–control genetic data under
the additive, dominant, and recessive models in the special case of a rare disease, a
single candidate gene in HWE, and independence of genetic and environmental factors.
The haplologit command was developed under Stata 10.

Our empirical data analyses and simulation results support the necessity for the
developed retrospective profile-likelihood methodology to be available to researchers.
Also the NAT2 example and simulation results for a population in HWD demonstrate the
importance of relaxing the assumptions of HWE and gene–environment independence—
matters to be considered for future versions of haplologit.

haplologit is not designed for genome-wide SNP association analysis in which the
goal is to locate a genetic region associated with the disease from a very large number
(hundreds or thousands) of SNP loci. haplologit is instead intended for smaller regions
(containing 5–10 tightly linked SNPs) to investigate further the effects of gene variants
(haplotypes) from those regions on the disease. If studies use a large number of markers,
then the regions to be studied would need to be divided into smaller groups, otherwise
haplotype frequencies will become too small. Also haplologit assumes that subjects
are unrelated and is thus not appropriate for family studies.

The algorithms used are computationally intensive. Execution time increases signif-
icantly with an increased number of SNP loci and haplotype and environmental effects.
The presence of many subjects with missing or unphased genotypes increases the exe-
cution time as well.
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Appendix

A.1 Syntax

haplologit depvar
[
indepvars

] [
if

] [
in

]
, snpvars(varlist)

[
options

]
options description

Model
� snpvars(varlist) specify SNP variables
inheritance(inhmode) specify mode of inheritance
riskhap(riskhap spec) specify a single risk haplotype
riskhap#(riskhap spec) specify #th risk haplotype
hfthreshold(#) retain observations with initial

haplotype frequencies exceeding
hfthreshold(); default is max(2/N, 0.001)

constraints(numlist) apply specified linear constraints on
environmental factors indepvars

collinear keep collinear variables
noconstant suppress constant term

Reporting
level(#) set confidence level; default is level(95)
or report odds ratios
happrefix(string) use string as a prefix when labeling

haplotypes in the output; default is
happrefix(hap )

alldots show all iterations (except ML) as dots
nocoef suppress coefficients table
nofreq suppress haplotype-frequency table
noheader suppress output header

(Continued on next page)
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EM

emsample(controls | cases | all) obtain initial haplotype frequencies from the
specified sample; default is
emsample(controls)

emiterate(#) number of EM iterations; default is
emiterate(500)

emtolerance(#) EM convergence tolerance; default is 1e−6
eminit(matname) specify matrix containing starting values of

haplotype frequencies for EM estimation
sort sort haplotypes by frequencies in the

EM output
emlog show EM iteration log
emdots show EM iterations as dots
noemshow suppress output from EM estimation
noemtable suppress EM haplotype-frequency table

Max options
maximize options control maximization process; see section 8

� snpvars(varlist) is required.

inhmode description

additive additive mode of inheritance; the default
dominant dominant mode of inheritance
recessive recessive mode of inheritance

riskhap spec is

riskhap str |#
[
, riskhap suboptions

]
riskhap str specifies the binary representation of a risk haplotype enclosed in quotes,
or # specifies a risk haplotype index (the position of a risk haplotype in the ordered
sequence of 2M possible haplotypes from M SNP sites).

riskhap suboptions description

interaction(varlist) specify interaction variables
noconstant suppress constant term (seldom used)
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A.2 Options

Model options

snpvars(varlist) is required; it specifies SNP variables (variables recording subjects’
SNP genotypes). The SNP variables must contain values of 0, 1, 2, or missing (.). A
missing value (.) indicates missing information at a SNP site; other values represent
the number of copies of a mutant (minor) allele at a SNP site in a subject’s pair of
homologous chromosomes.

inheritance(inhmode) specifies a mode of inheritance (a genetic model). The default
is the additive risk model in which having two copies of a risk haplotype in a pair
of homologous chromosomes results in a twofold effect of the risk haplotype on a
disease. The dominant risk model assumes that having one or two copies of a risk
haplotype has the same effect on a disease. The recessive model assumes that
having only two copies of a risk haplotype has an effect on a disease.

riskhap(riskhap spec) requests to include effects of the specified risk haplotype in a
regression model. riskhap() is a synonym for riskhap1().

riskhap#(riskhap spec) requests to include effects of the #th risk haplotype in a regres-
sion model. If interaction(varlist) is specified with riskhap#(), the respective
interaction effects of the risk haplotype with the covariates specified in varlist are
also included in the regression model. If noconstant is used, the main haplotype
effect is omitted and only haplotype–environment interaction effects are included in
the model (seldom used).

interaction(varlist) specifies variables to be interacted with the specified risk hap-
lotype.

noconstant requests that the constant term (the main effect of a risk haplotype) is
not included in the model (seldom used). This option requires interaction().

hfthreshold(#) specifies to retain in the computation only diplotypes with initial
frequencies of constituent haplotypes exceeding #. The default is
max(2/N, 0.001), where N is the total number of cases and controls.

constraints(numlist) and collinear; see [R] estimation options. constraints()
can be used to define linear constraints on only environmental covariates indepvars.

noconstant suppresses the constant term.

Reporting options

level(#); see [R] estimation options.

or reports the estimated coefficients transformed to odds ratios, i.e., exp(b) rather than
b. Standard errors and confidence intervals are similarly transformed. This option
affects how results are displayed, not how they are estimated. or can be specified at
estimation or when replaying previously estimated results.
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happrefix(string) uses the specified string as a prefix when labeling haplotypes in the
output (except for the EM output). The default prefix is hap .

alldots specifies that iterations from all (possibly time-consuming) computations be
shown as dots except for the ML iterations. alldots implies emdots.

nocoef specifies that the coefficient table not be displayed.

nofreq specifies that the haplotype-frequency table not be displayed.

noheader suppresses the output header, either at estimation or upon replay.

EM options

emsample(controls | cases | all) requests that the initial haplotype frequencies be es-
timated from the control sample, case sample, or combined case–control sample.
The default is to use the control sample.

emiterate(#) specifies the number of EM iterations to perform. The default is
emiterate(500).

emtolerance(#) specifies the convergence tolerance for the EM algorithm. The de-
fault is 1e−6. The EM algorithm terminates when the maximum relative change in
estimated haplotype frequencies between successive iterations is less than #.

eminit(matname) specifies the 1 × L matrix matname containing starting values of
haplotype frequencies for EM estimation. If M is the number of SNP loci (SNP

variables), then L = 2M − 1. By default, all haplotypes are assumed to be equally
likely; that is, all haplotype frequencies are set to 1/2M .

sort requests that haplotypes be displayed in descending order of frequencies in the EM

haplotype-frequency table. By default, haplotypes are displayed according to their
binary ordering.

emlog specifies that the EM iteration log be shown. The EM iteration log is, by default,
not displayed.

emdots specifies that the EM iterations be shown as dots. This option can be convenient
when the EM algorithm requires many iterations to converge.

noemshow suppresses the output from the EM estimation.

noemtable suppresses the EM haplotype-frequency table.

Max options

maximize options: difficult, iterate(#),
[
no

]
log, trace, hessian, gradient,

showstep, tolerance(#), ltolerance(#), gtolerance(#), nrtolerance(#),
nonrtolerance, shownrtolerance; see [R] maximize.
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By default, convergence is declared when the nrtolerance() criterion and either the
tolerance() or ltolerance() criterion have been met. If nonrtolerance is specified,
then convergence is declared when either the tolerance() or ltolerance() criterion
has been met.

If gtolerance() is specified, then the gtolerance() criterion must be met in addi-
tion to any other required criterion for convergence to be declared. See [R] maximize
for more information on the different types of tolerance options.

A.3 Saved results

haplologit saves the following in e():

Scalars
e(N) number of observations (subjects) e(df m) model degrees of freedom
e(N phased) number of phased genotypes e(chi2) chi-squared
e(N unphased)number of unphased genotypes e(p) significance of model test
e(N miss) number of incomplete genotypes e(em N) number of EM observations
e(ll) retrospective (profile) log likelihood e(em ll) EM log likelihood
e(converged) 1 if converged, 0 otherwise e(cutoff) haplotype-frequency

threshold
e(rc) return code

Macros
e(cmd) haplologit e(inheritance) mode of inheritance
e(cmdline) command as typed e(genepop) genetic distribution
e(depvar) name of dependent variable e(emsample) a sample used for EM
e(snpvars) names of SNP variables e(happrefix) haplotype prefix

Matrices
e(b) coefficient vector e(V) variance–covariance matrix
e(em freq) initial haplotype-frequency vector

Functions
e(sample) marks estimation sample

For other saved results, see [R] maximize.
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