
The Stata Journal (2007)
7, Number 2, pp. 249–265

Speaking Stata: Identifying spells

Nicholas J. Cox
Durham University
Durham City, UK

n.j.cox@durham.ac.uk

Abstract. Spells in time series (and more generally in any kind of one-dimensional
series) may be defined as sequences of observations that are homogeneous in some
sense. For example, a categorical variable may remain in the same state, or values
of a measured variable may satisfy the same true–false condition. Devices for
working with spells in Stata include marking the start of each spell with indicator
variables and tagging spells with integer codes. Panel data are easy to handle with
the by: prefix. Some kinds of spell identification require two passes through the
data, as when only spells of some minimum length are of interest or short gaps are
tolerable within spells. Many questions concerning spells are easy to answer given
careful use of by: and appropriate sort order, selection of just 1 observation from
each panel or spell, and appreciation of the many functions written for egen. Gaps
before, between, and after spells can also be important, and I suggest a convention
for handling them.

Keywords: dm0029, spells, runs, time series, data management

1 Introduction

Researchers with time-series data often want to identify spells in their data, periods that
are homogeneous in some sense. Within a spell, some condition holds over a sequence
of observations, short or long as the case may be. The spell ends when that condition
no longer holds (or, conventionally, at the end of the available data). The term run has
also long been in use, especially whenever there is comparison of run numbers or lengths
with various simple probabilistic models. The focus here is on data management and
data summary, contexts in which talk of spells seems much more frequent.

The aim of this column is to show you how to handle spell problems with complete
control over your specifications. I will explain how to combine various basic Stata
commands to identify spells and then calculate their properties.

2 What is a spell?

Interest in spells can arise with both categorical and measured data. You might have
data on employment, so that members of a panel experience spells in and out of work.
Or you might have data on women who gave birth on various dates, on elections that
returned different parties to power, or on eruption and earthquake times. A birth,
an election, an eruption, and an earthquake all can be thought of as initiating new
periods or spells. Or you might have daily data on rainfall or share prices and want

c© 2007 StataCorp LP dm0029

250 Speaking Stata

to determine periods in which it rained at least 10 mm every day or in which share
prices were increasing. Given one or more objective criteria that define a spell, you can
automate identification of spells.

The idea of spell here is both broad and narrow. There may be gaps between spells,
so that it need not rain every day, or share prices might decrease. However, spells are
disjoint and may not overlap. That is not really a restriction; you can always identify
different sets of spells by different criteria and then examine whether those sets overlap.

Although the idea of spells arises most obviously in the analysis of time-series data,
it also applies to other sequences, including one-dimensional spatial series for transects
or profiles. “Time” in such contexts means position or order in a spatial sequence. Such
series may not have a natural direction, unlike time series, so that what is regarded
as “previous” or “following” depends on some convention about the recording of data.
However, any indeterminacy over the direction of spatial data is not usually problematic
for identification of spells.

The focus here is on deterministic definitions: an observation unequivocally is or
is not within a particular spell. There are also statistical definitions in which spells
are relatively homogeneous in some sense, but some within-spell variability is allowed.
From one point of view, the problem is then one of cluster analysis, but with a special
constraint that only contiguous observations may be put in a given cluster (Hartigan
1975). From another point of view, the problem is one of detecting one or more change
points, at which the level of some variable may be thought to jump. Many solutions
have been offered for both problems, but they lie beyond the scope of this column.

3 Spells in Stata

The central question in this column is how to identify such spells for yourself in Stata.
There are three main devices. First, define indicator variables that mark the beginning
of each spell. Second, define identifier variables that tag distinct spells. Third, make
full use of by: together with n and N. An earlier column (Cox 2002) gave an extended
tutorial on these last features. Having read that column, or knowing about by: already,
will make this column easier to understand, but I will assume neither here. Reminding
yourself of the syntax of by: by reading the manual entry or the online help may be a
good idea at some point.

It is no restriction to assume that you will have a variable that indicates time or
spatial order. At worst, you may not yet have such a time variable, but you do know that
your data are in time order. The data might be the results of a series of psychological
tests administered to a person in time order. If so, create a time variable straight away:

. gen time = _n

As some of the examples so far given do indicate, spell identification is often wanted
with panel or longitudinal data. Spells are to be determined separately for different
members of a panel. One of the several advantages of by: is that panel structure is just
as easy to deal with as individual time series, as we will see shortly.

N. J. Cox 251

People coming to Stata from some other language might fairly guess that identifica-
tion of spells is some kind of looping problem. That is, we need to look in turn at each
observation and decide whether it resembles its predecessor, and so belongs in the same
spell, or it differs, and so is the start of a new spell. This guess is in essence correct, but
you do not need to write programs with a loop construct such as while, forvalues, or
foreach. Stata’s ability to refer to previous observations by using subscripting and its
by: prefix are typically sufficient, and a few commands used interactively solve most
spell problems.

4 Start at the beginning

Begin with spell problems by focusing on the times at which spells themselves begin.
Here is a toy dataset, for one person or object. We will soon get to consider full panel
structure.

year state

1995 A
1996 A
1997 A
1998 B
1999 B
2000 B
2001 C
2002 C
2003 C
2004 C

These data are, as expected, in time order. Identifying spells hinges on data’s being
in time order for each time series. That should not seem surprising. It is always a good
idea to sort explicitly by, say,

. sort year

Such sorting does no harm at the best of times, and it will catch situations in which
your data somehow got out of order.

These toy data fall into three distinct spells, in which state is in turn A, B, and
C. state could here be a string variable or a numeric variable with value labels. The
general idea of a spell does not depend on what kind of variables you have.

At the start of each new spell, state differs from its previous value. Recall that
Stata uses the system variable n for observation numbers. In years 1998 and 2001,
state (which always can be thought of in its fuller form as state[n]) is not equal to
its previous value, state[n-1]. This finding leads to the idea of an indicator variable
marking the start of each spell:

. gen byte begin = state != state[_n-1]

252 Speaking Stata

The simple device of marking the start of each spell is the basis for solving all spell
problems. We are using generate to create a new variable. The expression specifying
an inequality, state != state[n-1], will be true when state differs from its previous
value and false otherwise, when state is the same as its previous value. Stata returns
1 when a logical expression is true and 0 when it is false.

It is good practice to specify that the new indicator variable should be of byte type.
byte variables, as Stata’s most compact numeric variable type, suffice to hold 0s and
1s. Using byte variables will also help if you are short of memory. The results will be

year state begin

1995 A 1
1996 A 0
1997 A 0
1998 B 1
1999 B 0
2000 B 0
2001 C 1
2002 C 0
2003 C 0
2004 C 0

What happened for the first observation needs special attention.
state != state[n-1]—or equivalently state[n] != state[n-1]—for the first ob-
servation is state[1] != state[0], as n is 1 for the first observation. state[0] is
before the start of the data. Stata does not know what it should be, any more than
whoever compiled the data, perhaps yourself. Stata’s way of saying “I don’t know” is
to return missing. In particular, whenever Stata is asked to determine a value in an
observation that it does not have, it returns missing. Missing will mean numeric missing
(.) with numeric variables and string missing ("") with string variables. Either way,
state[0], returned as missing, will not be the same as state[1], here with the value
or value label A. This is why begin is returned as 1 for 1995, indicating 1995 as the
first year in a spell.

Almost always, this rule of Stata will give the behavior that we want for identifying
spells. Occasionally, we will need to be a little more careful. Suppose that interest is in
identifying spells of missing data. The first values in spells of missing values are then
given by

. gen byte begin = missing(state) & (state != state[n-1])

except that this is not right whenever the first value observed is missing. Here state[1],
which is missing, will be equal to state[0], which as explained is deemed to be missing
too. This small problem is easy to fix. The compound condition that defines the start
of a spell needs tweaking to

. gen byte begin = missing(state) & ((state != state[_n-1]) | (_n == 1))

N. J. Cox 253

So, an alternative to values of state differing from the values previously recorded
is that the observation be the first. Either of two conditions is sufficient for the start of
a spell of missing values:

(a) This value of state is missing, and the previous value is not.

(b) This value of state is missing, and this is the first value. Recall that n == 1

identifies the first observation.

In examples like this, parenthesizing the code aggressively to spell out the logic, not
only to Stata but also to yourself and anybody else reading it, should cause no embar-
rassment. You need not assume knowledge of Stata’s precedence rules that determine
interpretation when several operators are used in one expression. More importantly,
you may avoid some horrible little bugs.

We now have an indicator or marker variable for the start of each spell, and that
itself may be useful. If we want to summarize some variables, taking snapshots only at
the start of each spell, then the qualifier if begin == 1—or even more concisely if

begin—identifies those observations only.

Here are some useful details for stipulating logical conditions. Whenever an if

condition includes a numeric variable name only, Stata looks inside each value of that
variable and treats nonzero values as true and zero values as false. Here if begin is
true whenever begin is 1 and false whenever begin is 0, and so if begin is equivalent
in practice to if begin == 1. Also, if !begin is equivalent to if begin == 0, as
negation using ! flips nonzero to 0 and 0 to 1.

5 From indicators to identifiers

An indicator variable for spell starts is one step away from something we usually want,
an identifier variable that tags distinct spells. This variable can most easily be just the
cumulative sum, given by the sum() function:

. gen spell = sum(begin)

(Continued on next page)

254 Speaking Stata

Here are the results in our toy example:

year state begin spell

1995 A 1 1
1996 A 0 1
1997 A 0 1
1998 B 1 2
1999 B 0 2
2000 B 0 2
2001 C 1 3
2002 C 0 3
2003 C 0 3
2004 C 0 3

Evidently, as we are summing 1s and 0s, the identifier changes only when we start
a new spell, exactly as we would desire.

Now let us consider a common complication. Suppose that spells are defined by being
in state B. We consider states A and C, whatever they are, to define gaps between spells.
Our start criterion is now a compound condition. If state is a string variable, we can
say

. gen byte begin = (state == "B") & (state != state[_n-1])

and if it is a numeric variable with value label attached, we would usually specify the
appropriate numeric value, such as

. gen byte begin = (state == 2) & (state != state[_n-1])

Let us work through that possible problem with the first observation. Whenever the
first value is indeed "B" or 2, it will differ from the zeroth value, the one before, which
Stata will deem to be missing. Hence we have no need for an extra condition like n ==

1 in defining the start of the spell.

What about the identifier variable?

. gen spell = sum(begin)

will not do by itself, as sum(begin) will not only be 1 as soon as the first B is met but
also remain that way at the end of the spell when state becomes C, or indeed anything
other than B. Only when a new B is observed will the identifier change.

This in turn is easy to fix. We have been using a simple and natural convention: the
first, second, third, and any following spells have been assigned identifiers 1, 2, 3, and
so on. A convenient extension is to label gaps between spells by 0s. Normally, we will
not care much about those gaps, except that they exist, so lumping them together will
lose us little. If we do later decide that they are interesting, or at least useful, we can
define them as spells of a different kind. This convention can be implemented in two
steps. Consider the string variable case:

N. J. Cox 255

. gen spell = sum(begin)

. replace spell = 0 if state != "B"

Even better: it can be implemented in one step, by exploiting the helpful function
cond():

. gen spell = cond(state == "B", sum(begin), 0)

Even if cond() is new to you, its operation should seem clear from this example. If
state is B, we use sum(begin) for our identifier; otherwise, we use 0. For a tutorial on
cond(), see Kantor and Cox (2005).

The results will look like this:

year state begin spell

1995 A 0 0
1996 A 0 0
1997 A 0 0
1998 B 1 1
1999 B 0 1
2000 B 0 1
2001 C 0 0
2002 C 0 0
2003 C 0 0
2004 C 0 0

The words “gap” and “between” should be treated elastically. A gap, meaning a
sequence of observations not in a spell, can exist before the first spell (as in 1995–1997)
or after the last spell (as in 2001–2004).

A convention of identifying gaps by 0 allows another useful shortcut. The condition
that observations are within some spell (but not specifying which spell) is just if spell

> 0 or even more concisely if spell.

So far, we have been looking at examples in which some condition, either the value
of state or whether state is B, remaining constant was the definition of a spell (or
implicitly of gaps between spells). The opening examples included spells begun by some
kind of event (births, elections, earthquakes, eruptions). Usually, we suppose that each
such spell lasts until the next such event. We do not need any more tricks for this, as
we already know that given an indicator variable for the start of a spell we can move
directly to an identifier variable.

When the criterion for a spell is quantitative, it should be specified, whenever pos-
sible, in terms of an equivalent true–false criterion. Suppose that we have daily rainfall
data and want spells in which rainfall was at least 10 mm every day. We could go

. gen byte begin = (inrange(rain,10,.) & !inrange(rain[_n-1],10,.)

. gen spell = cond(inrange(rain,10,.), sum(begin), 0)

256 Speaking Stata

inrange() here, as elsewhere, conveniently excludes missing values (Cox 2006). The
apparently simpler solution

. gen byte begin = (rain > 10) & !(rain[_n-1] > 10)

is the wrong criterion for the first observation as rain[0] is deemed missing (and thus
≥10 mm). As earlier, this could be fixed by allowing n == 1 as an extra criterion.

You might prefer to be a little more long-winded for clarity:

. gen byte wet = inrange(rain, 10, .)

. gen byte begin = wet & !wet[_n-1]

. gen spell = cond(wet, sum(begin), 0)

Binary or dichotomous division of quantitative ranges is naturally not the only pos-
sibility. You can categorize ranges by using whatever intervals or bins you want. You
should usually worry at least a little about how far any categorization is arbitrary.
One that can seem natural for many time series is categorizing into periods of increase,
stability, and decrease.

6 Panel structure

The extension from one series to several defined for each of several panels is also easy,
so long as we let by: flex its muscles. The appropriate sort order to work with is first
by identifier and then by time or position, say,

. sort id time

If you are using tsset, then

. tsset

will ensure that same sort order. Using tsset is not essential for spell identification,
but it is a good idea generally. All that we need to add to our technique is using by:

as a prefix when generating indicators and identifiers. Our first two examples would be
generalized to

. by id: gen byte begin = state != state[_n-1]

. by id: gen spell = sum(begin)

and

. by id: gen byte begin = (state == "B") & (state != state[_n-1])

. by id: gen spell = cond(state == "B", sum(begin), 0)

Evidently, calculations must be done separately for each panel, but this is not a
problem: it is exactly what we want. When by: is specified, n as the observation
number is determined separately for each panel, so that (for example) n == 1 always
identifies the first observation in each panel. The spell identifiers produced by this recipe

N. J. Cox 257

also start at 1 for each panel. This is not a restriction either. If we ever wanted to lump
together spells from different panels, they can be given unambiguous identifiers by

. egen SPELLID = group(id spell) if spell, label

which, as a side effect, assigns missing values to any gaps for which spell is 0. We
could in turn replace those missings with zeros:

. replace SPELLID = 0 if spell == 0

7 Useful results are now at hand

7.1 Spell properties

Once you have indicators for the start of spells and identifiers for being within spells (or
within gaps), almost everything else to do with spells is easy. We might want summary
statistics for each spell, say, the mean of some response. The functions written for egen
can be invaluable for this purpose:

. by id spell, sort: egen mean = mean(response)

There are just two details to be careful about. First, as above, a spell is in general
specified jointly by a panel identifier and a spell identifier. If there is just one panel, we
need worry only about a spell identifier. Second, when we calculate summaries and put
them in new variables, each summary will be repeated for every observation in a panel.
Usually we should want to use each summary in some further analysis just once, once
for each spell. With an indicator variable already at hand marking the start of each
spell, this selection of 1 observation from each spell is yielded by if begin.

egen has many other uses for spells. The time at which the first spell for each panel
started is

. by id, sort: egen firstspellstart = min(cond(begin, time, .))

What is going on here? We are exploiting the fact that the egen function min()—like
several other egen functions—can feed on an expression, which can be more complicated
than one variable name. The expression cond(begin, time, .) will return the times
at which spells began for observations that are the first in each spell and missings
otherwise. The egen function min() will find the minimum over those and thus ignore
the missings—unless a panel experienced no spells, where missing will be returned,
which is fair enough.

Similarly, the time at which the last spell ended for each panel is

. by id, sort: egen lastspellend = max(cond(spell, time, .))

This command may seem more surprising if you are thinking that missings in Stata
are always treated as arbitrarily large. But the egen function max(), like min(), ignores
missings unless they are everywhere in sight. (The ordinary functions min() and max()

do the same.)

258 Speaking Stata

Perhaps more obvious alternatives are

. by id, sort: egen firstspellstart = min(time) if begin

and

. by id, sort: egen lastspellend = max(time) if spell

However, the resulting variables will be sprinkled with missings for those observations
that do not satisfy the if conditions, which is more awkward for later work. It can in
turn be fixed:

. by id (firstspellstart), sort: replace firstspellstart = firstspellstart[1]

. by id (lastspellend), sort: replace lastspellend = lastspellend[1]

Sorting within panels pushes nonmissing values to the start of each panel so that
they can then be used to overwrite every value for each panel. But we will still need to
fix the sort order before doing anything else. Evidently, being able to get to the desired
point in one step is more attractive.

7.2 Spell lengths

The length of spells is a property of much interest. Depending on what is most sensible
for your problem, this could be

. by id spell, sort: gen length = _N

or

. by id spell (year), sort: gen length = year[_N] - year[1] + 1

or

. by id spell (time), sort: gen length = time[_N] - time[1]

Let us back up and look at those one-liners more slowly. A principle used in all is
that under by:, N is the number of observations in each distinct group of observations,
here each spell. (So, as with n, N is interpreted with respect to its own group, not the
dataset as a whole.) Thus, in the first one-liner, we just count observations separately.
This could be a sensible measure of length in many situations, especially whenever
observations are equally spaced (e.g., daily, monthly, yearly).

In the second and third one-liners, we stipulate first that within panels and then
within spells, values are sorted by our time variable. (Sorting by panels and spells alone
does not ensure this; assuming that it does is a source of nasty small bugs.) Given such
sorting, year[N] is the last year within each spell and year[1] is the first year within
each spell. Adding 1 in the second one-liner matches the fact that (for example) a spell
starting in 1995 and ending in 2004 is 10 years long, not 9. The third one-liner is for
situations in which time is measured so finely that we do not customarily add one unit
to get a correct answer.

N. J. Cox 259

7.3 Spell ends and sequence numbers

You may need recipes for indicating or marking the last observation at the end of each
spell,

. by id spell (year), sort: gen byte end = _n == _N

and for assigning sequence identifiers within a spell,

. by id spell (year), sort: gen seq = _n

Again, let us look at those more slowly. The versatility of by: really is impressive,
even when you appreciate it, but there is correspondingly need for minute care in working
out the choreography. Consider again a toy example, but now imagine two panels instead
of one:

year id state begin spell

1995 1 A 1 1
1996 1 A 0 1
1997 1 A 0 1
1998 1 B 1 2
1999 1 B 0 2
2000 1 B 0 2
2001 1 C 1 3
2002 1 C 0 3
2003 1 C 0 3
2004 1 C 0 3
1997 2 C 1 1
1998 2 C 0 1
1999 2 A 1 2
2000 2 A 0 2
2001 2 A 0 2
2002 2 B 1 3
2003 2 B 0 3
2004 2 C 1 4

Incidentally, the fabricated example here is designed to underscore the generality of
what we are doing. For example, there are no hidden assumptions about the lengths of
panels or the number of spells being the same in each panel.

That detail aside, the last observation in each spell must be identified in steps, first
within panel and then within spell. Again we specify that within spells, observations
are sorted on the time variable:

. by id spell (year), sort:

That stipulated, the last, or end, observation in each spell is marked by the ob-
servation number in that group of observations being the same as the total number of
observations in that group. For example, if there are 7 observations in a spell, then the
last is the seventh.

260 Speaking Stata

. by id spell (year), sort: gen byte end = _n == _N

The logical expression n == N will be true (evaluated as 1) whenever the observa-
tion number n is the same as the number of observations N and false otherwise (0).
Similarly, observations within each spell can be labeled in sequence by

. by id spell (year), sort: gen seq = _n

This command would label gaps sequentially, too; remember our convention that they
have identifier, here spell, of 0. You can leave that as it is, or insist that gap sequence
identifiers be zero, or insist that they be missing:

. by id spell (year), sort: gen seq = cond(spell, _n, 0)

. by id spell (year), sort: gen seq = cond(spell, _n, .)

The beauty of this approach is that you are in charge and can get exactly what you
want.

7.4 Number of spells

Another common need is the number of spells in each panel. This is

. by id, sort: egen spellno = max(spell)

or (just to show that there is more than one way to do it)

. by id, sort: egen spellno = total(begin)

as the number of spells is the same as the number of spell starts. With this command,
the number of spells in each panel, held in the variable spellno, is necessarily identical
for every observation in each panel. Typically, you would want to use spellno just once
for each panel. For that, you need to tag just 1 observation in each panel. There are two
systematic ways to do that, to use the first observation or the last. To see this, consider
that panels could be as short as 1 observation. Then the rule of choosing the first and
the rule of choosing the last would still both work, but any other rule, such as choosing
the second, would fail. (Being arbitrary is, by comparison, of little consequence.) Let
us choose the first in each panel,

. by id (time), sort: gen byte tag = _n == 1

and then do further work on the number of spells in each panel like this:

. tab spellno if tag

You may know that the egen function tag() uses exactly this idea.

N. J. Cox 261

8 Spells of consecutive observations

A different spell problem arises whenever there are gaps in panel data. You may then
want to look systematically at spells of consecutive observations, especially the length
of the longest spell in each panel. Some researchers restrict analyses to the longest spell
available for each panel, dropping others from the dataset. This problem yields to the
same methods as before.

Suppose that we have observations for one panel at time

1, 2, 3, 5, 6, 7, 8, 9, 11, 12

so that we have three spells of consecutive observations

1, 2, 3; 5, 6, 7, 8, 9; 11, 12

as there are gaps before the observations at times 5 and 11. (The term gap is here used
differently from before, which should not be too confusing.)

At the start of each spell, time - time[n-1] is more than 1. The first observation
is no exception, as time[1] - time[0] is evaluated as missing, which is more than 1.

Thus the start indicator becomes

. by id (time), sort: gen byte begin = (time - time[_n-1]) > 1

and the identifier is

. by id: gen spell = sum(begin)

and the lengths are

. by id spell, sort: gen length = _N

How do we select the longest spell? Within each panel, sort the longest spell to the
end. Arbitrarily, let us choose the latest if there are ties for longest spell. Other choices
are clearly possible, including random selection.

. by id (length time), sort: keep if spell == spell[_N]

9 Two passes may be needed

Sometimes, two passes through the data may be the best way—indeed, the only way—to
identify spells. We will look at two problems of this kind.

9.1 Spells must be at least so long

Often researchers are interested only in spells of at least a certain length. Scientifically
and practically, it is often extended periods in which a condition persists that are im-
portant. Misery arises from long-lasting troubles, as life and history make all too clear.

262 Speaking Stata

However, you do not know how long a spell lasts until you have reached its end, which
makes two passes necessary.

Assume again that we have a panel identifier, id; a time variable, time; a start
indicator, begin; and a spell identifier, spell. Recall that we can get spell lengths
(here we fix on counting observations) with

. by id spell, sort: gen length = _N

We might want to insist that spells be, say, of at least length 7. Then being within
a spell is redefined as a logical or indicator variable:

. gen byte inspell = (spell > 0) & (length >= 7)

Spells must satisfy whatever criteria they satisfied before and be at least so long. A
start indicator variable for these longer spells is then

. by id (time), sort: gen byte longbegin = inspell & !inspell[_n-1]

and an identifier variable for the same spells is then

. by id: gen longspell = cond(inspell, sum(longbegin), 0)

9.2 Short gaps are allowed within spells

The opposite of a strict definition (spells must be at least so long) is a generous definition:
gaps of up to a certain length are allowed and regarded as parts of each spell. One
technique is to follow spell identification on a first pass with a treatment of the gaps
between spells as another kind of spell on a second pass.

Assume again that we have a panel identifier, id; a time variable, time; a start
indicator, begin; and a spell identifier, spell. Recall our convention that within gaps
the spell identifier should be 0.

A start indicator variable for gaps is then

. by id (time), sort: gen byte gapbegin = !spell & spell[_n-1]

We are leaning once more on Stata’s rules for true and false. If spell is 0, that is
logically false, but its negation !spell is 1 and logically true. Conversely, spell[n-1]

will be treated as logically true whenever it is nonzero. A check will show that this
will work as desired for the first observation in each panel, as spell[0] will always be
deemed missing, which is nonzero. Thus our criterion for the start of a gap is shorthand
for

(spell == 0) & (spell[_n-1] > 0)

An identifier variable for gaps is then

. by id: gen gap = cond(!spell, sum(gapbegin), 0)

N. J. Cox 263

and the lengths of gaps are

. by id gap, sort: gen gaplength = cond(gap, _N, 0)

Suppose that we are happy to tolerate gaps that are at most length 3. Then being
within a spell is redefined with an indicator variable

. gen byte inspell = (spell > 0) | (gaplength <= 3)

A start indicator variable for these more liberal spells is then

. by id (time), sort: gen byte libbegin = inspell & !inspell[_n-1]

and an identifier variable for the same spells is then

. by id: gen libspell = cond(inspell, sum(libbegin), 0)

This liberal spell definition includes, possibly, one gap before the first spell in each
panel. Suppose that to you is one step too far: you will tolerate gaps between spells
but not a gap before the first spell. (As before, the word gap is strained here, but that
is a mere point of terminology.) Then you need to specify a further restriction: no gap
can be reclassified that occurred before the first spell start. We have already seen how
to calculate the time of the first spell start. The revised criterion is then

. gen byte inspell = (spell > 0) | ((gaplength <= 3) & (time > firstspellstart))

and the code is otherwise identical. A similar issue may arise with any gap after the
last spell, and the solution is similar: insist that no gap observation can be reclassified
if it occurs after the last spell end.

10 Some questions answered

10.1 Irregular spacing

What if your time series are irregularly spaced, so that some gaps occur between obser-
vations?

Sometimes the answer is to define the start of spells by using the lag operator L.,
not the previous value indicated by the subscript [n-1]. Doing so requires that the
data be tsset. If the previous time is not present in the data for the same panel, then
L.varname will be deemed missing, just like varname[0], and this will typically lead to
an indication that a new spell has started.

Often—perhaps more often—a pragmatic answer is that we should work from the
data that we have. Thus if a panel was in state B at times 1, 2, and 4, but time 3 is
not given in the data, we will not usually presume that the panel jumped to a different
state at time 3 and then back again.

264 Speaking Stata

10.2 if and in conditions

What about extra if and/or in conditions?

That is up to you. You are in charge and should specify what your definition is. But
be careful. Selecting entire panels, or ignoring some of them, will usually be a simple
matter. Selecting some times within panels will often be problematic, as the previous
observations, in general, may or may not be selected, too. Normally, extra conditions
should not override the principle that spells consist of contiguous sequences of values.

10.3 Missing values

What about missing values?

Same answer, really. Again, be careful.

10.4 Censoring

How do I flag that spells are censored? I want to flag that spells may begin or end only
in an artificial sense, as I have data only within a particular time window.

A left-censored spell starts at the first relevant observation (so it might have started
earlier, except that we have no data to determine that). A right-censored spell ends
at the last relevant observation (so it might have ended later, except that we have no
data to determine that). Indicator variables for censoring are easily produced. The first
problem is when the first observation in each panel has been declared the start of a
panel:

. by id (time), sort: gen byte censoredleft = spell & (_n == 1)

The second problem is when the last observation in a panel is within a spell:

. by id (time), sort: gen byte censoredright = spell & (_n == _N)

These variables flag only the beginning or end of each censored spell. The entire
first spell is flagged as censored left with

. by id (time), sort: gen byte censoredleft = spell == 1 & spell[1]

and similarly the entire last spell is flagged as censored right with

. by id (time), sort: gen byte censoredright = (spell == spell[_N]) & spell[_N]

11 Conclusion

We have looked at some simple techniques for working with spells in Stata.

N. J. Cox 265

Mark the start of each spell with an indicator variable. The key is that observations
at the start of spells will differ from their predecessors. Care may be needed in handling
the first observation, either in a dataset or in a panel.

Use cumulative sums to map start indicators to spell identifiers that are 1 up. A use-
ful extra convention is to identify gaps between spells by 0. With identifiers, summariz-
ing spell characteristics is then usually straightforward. egen functions are particularly
useful.

Panel datasets are no more difficult than individual series, so long as you use by:.
Using features allowed after tsset is perfectly sensible but not essential.

Some spell criteria do require two passes through the data. Typically, spells are
reclassified on the second pass, say, to restrict spells to certain lengths or to allow short
gaps within spells.

12 Acknowledgments

Kit Baum, Jan Dehn, Richard Goldstein, Stephen Jenkins, Philippe Van Kerm, Gary
Longton, Vince Wiggins, and Fred Wolfe have made helpful contributions to my under-
standing of spells.

13 References
Cox, N. J. 2002. Speaking Stata: How to move step by: step. Stata Journal 2: 86–102.

———. 2006. Stata tip 39: In a list or out? In a range or out? Stata Journal 6:
593–595.

Hartigan, J. A. 1975. Clustering Algorithms. New York: Wiley.

Kantor, D., and N. J. Cox. 2005. Depending on conditions: A tutorial on the cond()

function. Stata Journal 5: 413–420.

About the author

Nicholas Cox is a statistically minded geographer at Durham University. He contributes talks,
postings, FAQs, and programs to the Stata user community. He has also coauthored 15 com-
mands in official Stata. He wrote several inserts in the Stata Technical Bulletin and is an editor
of the Stata Journal.

	Articles and Columns
	Speaking Stata: Identifying spells, N. J. Cox

