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Abstract. In recent years, general-purpose statistical software packages have
incorporated new procedures that feature several useful options for design-based
analysis of complex-sample survey data. A common and frequently desired tech-
nique for analysis of survey data in practice is the restriction of estimation to a
subpopulation of interest. These subpopulations are often referred to interchange-
ably in a variety of fields as subclasses, subgroups, and domains. In this article, we
consider two approaches that analysts of complex-sample survey data can follow
when analyzing subpopulations; we also consider the implications of each approach
for estimation and inference. We then present examples of both approaches, using
selected procedures in Stata to analyze data from the National Hospital Ambula-
tory Medical Care Survey (NHAMCS). We conclude with important considerations
for subpopulation analyses and a summary of suggestions for practice.
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1 Introduction
Health care researchers, epidemiologists, and social scientists analyzing survey data
from probability samples with complex, multistage designs (where the designs incorpo-
rate stratification and clustering of the study population) are often interested in focusing
their analyses on specific subgroups of the full population sample (e.g., Midwest region
residents, Hispanics, or males and females). The survey literature and the documenta-
tion for software that implements design-based analyses of survey data use a variety of
terms to refer to these subgroups, including subclasses, subpopulations, domains, and
subdomains. In this article, we refer to these subgroups as subpopulations. The primary
objective of this article is to provide analysts using complex-sample survey datasets with
some practical guidance on appropriate approaches to the analysis of subpopulations of
survey datasets, specifically when using the Stata software.
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The past decade has seen tremendous growth in the availability and power of soft-
ware for the analysis of survey data. Procedures designed for these specialized analyses
have recently incorporated additional options for performing subpopulation analyses of
survey datasets. In particular, the Stata software package currently has options for sub-
population analyses implemented in all its survey data analysis procedures (StataCorp
2007). These developments have made it possible for analysts of survey datasets to
perform complex analyses quickly and easily, but they have also introduced the oppor-
tunity to make critical mistakes when the software options for subpopulation analysis
are not used properly. Few articles have provided survey analysts with practical guid-
ance about performing subpopulation analyses; a recent article by Kreuter and Valliant
(2007) dedicated a section to the subgroup capabilities within the Stata procedures for
survey data analysis. In this article, we aim to focus in more detail on the practical
issues underlying subpopulation analysis of complex-sample survey data.

Section 2 of this article presents a heuristic discussion of the conceptual differences
in “conditional” and “unconditional” approaches (Cochran 1977) to the analysis of
subpopulation data in complex-sample survey datasets. Section 3 then presents a moti-
vating example using data from the 2004 National Hospital Ambulatory Medical Care
Survey (NHAMCS), introducing the problems with variance estimation that can arise
when (incorrectly) following conditional approaches. Section 4 contains a discussion of
issues related to the calculation of degrees of freedom when performing subpopulation
analyses, referring to results from the motivating example. Finally, section 5 presents a
summary discussion of the issues presented.

2 Alternative approaches to subpopulation estimation
and inference

When working with simple random samples (SRSs) of survey populations of interest,
practicing survey data analysts interested in analyzing subpopulations simply need to
restrict the dataset to those observations falling into the subpopulation of interest before
performing analyses. Conceptually, an SRS from a population of interest will include
SRSs of subpopulations as well. In this situation, users of Stata might use the if qual-
ifier to restrict analyses to those cases satisfying a certain condition (e.g., males only),
or users might create and save a dataset containing only cases in a subpopulation of
interest. In this article, we refer to this analytic approach as a conditional approach: the
analysis is “conditioned” on the sample of observations obtained for the subpopulation
under the larger SRS sample selection.

We consider “complex” sample designs in this article that, at a minimum, involve
stratification of the sample and may also include features such as clustering of sample
units and disproportionate probabilities of selection for observational units (i.e., weight-
ing in analysis). The issues discussed in this article are relevant for any survey datasets
arising from a sample with a stratified design, where subpopulation sample sizes within
the strata are not known at the time the sample is selected. We present example sub-
population analyses of real survey data arising from a sample with a stratified multistage



522 Subpopulation analysis of complex-sample survey data

design (e.g., Cochran [1977]), where first-stage primary sampling units (PSUs) were se-
lected with replacement from within first-stage sampling strata, and sample elements
were randomly selected without replacement from within the PSUs at the second stage
and subsequent stages. When working with survey datasets collected from samples with
complex designs, which at a minimum incorporate stratification of target populations,
subpopulation analyses are not as straightforward as in the SRS case. Perhaps surpris-
ingly to some analysts, taking the conditional approach to subpopulation analyses of
complex-sample survey data has the potential to result in incorrect standard errors for
survey estimates.

One common pitfall when performing conditional subpopulation analyses of survey
datasets that arise from samples featuring stratification and clustering is the deletion of
PSUs that define a part of the complex design. Most subpopulations of survey datasets
could hypothetically appear in all strata and all PSUs (or clusters) in any given complex
sample. There is the potential, however, that a given complex sample by random chance
does not include elements from a subpopulation of interest (e.g., Asian males age 50 and
above) in one or more of the PSUs (even though the subpopulation could theoretically
appear in those PSUs). If an analyst follows a conditional approach in this situation,
one or more of the PSUs defining the original complex sample design used to collect the
data could be deleted from the dataset, because that PSU does not include any sample
elements in the subpopulation. The software used for analysis would have no idea that
an original PSU based on the complex design ever existed. As most modern analysts
of complex-sample survey datasets know, allowing software to fully acknowledge the
strata and PSUs defining a complex sample is essential for correct variance estimation,
and following the conditional approach can prevent this from happening. This problem
is generally not relevant when working with stratified samples that do not feature the
selection of clusters, because subpopulations that are missing from an entire stratum in
a sample more than likely do not exist in that stratum.

Mathematically, estimates of standard errors for statistics from complex-sample sur-
vey datasets need to take into account sample-to-sample variability in the statistics
of interest based on the original complex design. When focusing on subpopulations,
methods of variance estimation for all point estimates of survey statistics should be
unconditional in that they take the full complex design of a sample into account, and
they should not be restricted to only those sample cases falling into the subpopulation
(the conditional approach). The major mathematical motivation behind this principle
is that, in practice, observed subpopulation sample sizes for strata (and PSUs, when
applicable) are random variables, and the true subpopulation size is not known (and
needs to be estimated). From one sample to another, subpopulation sample sizes within
strata (and PSUs, when applicable) will vary in size, and this variance needs to be taken
into account when variance estimates are calculated.

To illustrate the importance of following the unconditional approach mathematically,
we consider the variance of a sample total; this is because of the fact that all survey
statistics (and their variances) are ultimately expressed as functions of sample totals
for variance estimation purposes, especially when using the Taylor series linearization
technique (e.g., Wolter [1985]). We denote design strata by h (h = 1, 2, . . . ,H), first-
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stage PSUs within strata by α (α = 1, 2, . . . , ah), and sample elements within PSUs
by i (i = 1, 2, . . . , nhα). Taking into account factors such as unequal probability of
selection, nonresponse, and possibly poststratification, the sampling weight for element
i is denoted by whαi. We refer to a specific subpopulation by S. An estimate of the
total for a variable Y in a subpopulation S is computed as follows (Cochran 1977):

ŶS =
H∑

h=1

ah∑
α=1

nhα∑
i=1

whαi IS,hαi Yhαi

where I represents an indicator variable equal to 1 if sample element i belongs to
subpopulation S, and 0 otherwise. The closed-form analytic equation for the variance
of this subpopulation total can be written as follows:

var(ŶS) =
H∑

h=1

ah

(ah − 1)⎧⎨⎩
ah∑

α=1

(
nhα∑
i=1

whαi IS,hαi yhαi

)2

− (
∑ah

α=1

∑nhα

i=1 whαi IS,hαi yhαi)
2

ah

⎫⎬⎭
(1)

Equation (1) shows that the variance of the subpopulation total is calculated by
summing the between-cluster variance in the subpopulation totals within strata, across
the H sample strata. The equation also shows how the indicator variable is used to
ensure that all sample elements (and their design strata and PSUs) are recognized in
the variance calculation; this emphasizes the need for the software to recognize all
the original design strata and PSUs. In this way, sample-to-sample variability in the
estimation of the total due to the subpopulation sample size being a random variable
is captured in the variance calculation. Also if all nhα elements within a given stratum
denoted by h and PSU denoted by α do not belong to the subpopulation S (although
elements from that subpopulation theoretically could belong to that PSU in any given
sample), the PSU will still contribute to the variance estimation: the PSU helps to define
the total number of PSUs within stratum h (ah).

For more information on variance estimation approaches used by the Stata soft-
ware for commonly estimated survey statistics, we refer readers to Eltinge and Sribney
(1996a, 1996b, 1996c, 1996d, 1996e). Proper analysis methods for subpopulations of
survey data have been well established in the survey methodology literature (Rao 2003;
Korn and Graubard 1999; Lohr 1999; Fuller et al. 1989; Cochran 1977; and Kish 1965),
and interested readers can consult these references for more general information on es-
timation of survey statistics and related variance estimation techniques. Choosing to
perform either a conditional or unconditional subpopulation analysis will only impact
variance estimates; weighted estimates of survey statistics will not be affected, and this
will be illustrated in section 3.
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3 A motivating example: Analyses of data from the 2004
NHAMCS Emergency Department Sample

We now consider a motivating example in Stata to illustrate the importance of perform-
ing unconditional subpopulation analyses of complex-sample survey data. We consider
data from the 2004 NHAMCS. Briefly, the NHAMCS collects data from annual, cross-
sectional, four-stage probability samples of visits to randomly selected, noninstitutional,
general and short-stay U.S. hospitals with emergency departments or outpatient depart-
ments (McCaig and McLemore 1994). Dizziness is one of the most common reasons
that patients present to physicians’ offices, hospital outpatient departments (OPDs),
and emergency departments (EDs) in the United States (Burt and Schappert 2004). In
this example, we consider a very specific subpopulation: visits to EDs (only) by elderly
(age ≥ 60) African-American males. This subpopulation is somewhat specific but can
still theoretically appear across the strata and PSUs in a nationally representative sam-
ple design involving stratification and clustering. We seek to estimate the percentage
of these visits with dizziness or vertigo as a reason for the visit.

NHAMCS analytic guidelines (e.g., Hing et al. [2003]) specifically indicate that anal-
yses focusing only on ED visits require analysts to combine separate datasets for the
ED and OPD visits in a given year and perform unconditional subpopulation analyses,
treating ED visits as representing a subpopulation of the full NHAMCS sample (which
includes OPD visits). We combined the 2004 ED and OPD datasets, publicly available
from the National Center for Health Statistics, and computed an indicator variable in
Stata for our specific subpopulation of interest in the combined dataset:

. generate subc = (settype == 3 & sex == 2 & agecat == 5 & race == 2)

Here settype = 3 represents ED visits, sex = 2 represents males, agecat = 5
represents ages greater than or equal to 60, and race = 2 represents African Americans.
We then used commands in Stata to examine the complex design of the 2004 NHAMCS

sample, referring to the variables containing stratum (cstratm) and ultimate cluster
(cpsum) codes computed by National Center for Health Statistics staff for variance
estimation purposes:

. svyset cpsum [pweight = patwt], strata(cstratm)

. svydescribe

The resulting output indicated 8 strata, containing between 6 and 86 PSUs each. All
together, there were 8 strata and 294 PSUs defining the full complex design of the 2004
NHAMCS.
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We then computed an indicator variable for visits where any one of the reasons for
the visit was vertigo and/or dizziness (dizzyrfv). First, we considered a conditional
approach to estimating the percentage of visits in this subpopulation for dizziness and/or
vertigo in 2004, restricting the dataset to the visits of interest (the se, ci, and percent
options request that Stata display standard errors based on Taylor series linearization,
corresponding 95% confidence intervals for the percentage, and percentages rather than
proportions, respectively):

. svy: tabulate dizzyrfv if subc == 1, se ci percent

Then we performed the same analysis, only using Stata’s subpop() option for per-
forming correct unconditional analyses (available for all svy: commands in Stata 10):

. svy, subpop(subc): tabulate dizzyrfv, se ci percent

Table 1 compares results from these two distinct analysis approaches.

Table 1. Results from the motivating example

Conditional approach Unconditional approach

Sample size 397 68,372
Subpopulation 397 397
Design strata 8 8

Design clusters 114 294
Design DF 106 286

Estimated percentage 4.8201 4.8201
Linearized standard error 1.5761 1.5904
95% confidence interval (1.6954, 7.9448) (1.6897, 7.9504)

In table 1, we note how the conditional approach resulted in substantially fewer de-
sign clusters being recognized by Stata (and therefore fewer design degrees of freedom
being used for confidence-interval construction). When following this approach, Stata
would not know that there are another 180 clusters that were a part of the 2004 NHAMCS

design. Further, the conditional approach resulted in a smaller linearized standard er-
ror for the percentage, which in turn leads to a narrower confidence interval. While the
resulting estimates and standard errors in this case are not substantially different when
following these two approaches (we would not expect the actual weighted estimate to
differ at all), the implications of following the (incorrect) conditional approach are ap-
parent: underestimated standard errors and confidence intervals for statistics of interest
that are too narrow (i.e., overstated precision of survey estimates). This problem tends
to be exacerbated in complex samples with fewer PSUs selected from each sampling
stratum.

Readers should keep in mind that the standard errors of these estimates express
the degree of variability that we would expect from one hypothetical sample to another
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around the true subpopulation percentage. In the conditional analysis, the calculations
assumed that each hypothetical sample would have the same number of subpopulation
visits (397) and all variation from sample to sample would come from variation in the
value of the indicator for dizziness/vertigo among those subpopulation visits. In reality,
this would never be the case because the subpopulation sample size is a random variable.
The unconditional analysis accounts for this random variability.

4 Calculation of degrees of freedom for test statistics
from subpopulations

The standard degrees-of-freedom calculation method in the analysis of complex-sample
survey data is to assume that the design degrees of freedom are equal to the num-
ber of first-stage PSUs minus the number of design strata. The motivating example
in table 1 shows that Stata uses this calculation in both the conditional and uncondi-
tional approaches. The appropriateness of this “fixed” degrees-of-freedom calculation
method with respect to subpopulation analysis has recently been assessed for a subpop-
ulation mean. Burns et al. (2003) considered a simulation with a true null hypothesis
and showed that, when considering rare subpopulations not well-represented across a
complex sample design, the use of this “fixed” method to calculate degrees of freedom
may result in overestimation of degrees of freedom (and narrower confidence intervals).
The consequence of this overestimation was an increased null hypothesis rejection rate,
compared with a “variable” degrees of freedom calculation method involving only those
sampled PSUs with observations in the subpopulation minus those strata with sampled
observations in the subpopulation (Korn and Graubard 1999). Applying this “variable”
method to the unconditional approach in section 3 would result in 106 design degrees of
freedom for confidence-interval construction, rather than the full 286 degrees of freedom.
We acknowledge that additional work is needed in this area.

Qian (1998) proposed additional improvements to the Satterthwaite method for the
estimation of degrees of freedom for complex-sample survey data; these improvements
built on work by Johnson and Rust (1992), which showed that Satterthwaite estimates
tend to underestimate the effective degrees of freedom based on a complex design (result-
ing in conservative tests and wider confidence intervals). Rust and Rao (1996) offered
practical guidance on calculating degrees of freedom for test statistics when working
with replicated variance-estimation methods (see section 5). In short, they suggest that
a working rule of thumb for approximating the effective degrees of freedom is to sub-
tract the number of design strata with one or more subpopulation elements from the
number of PSUs with one or more subpopulation elements (this is the “variable” method
discussed above).

The unconditional variance-estimation approach discussed in this article emphasizes
the use of all available strata and PSUs based on the complex design, and the full complex
design is therefore reflected in the variance estimation equation for subpopulation statis-
tics. However, sampling zeros occasionally arise in subpopulation analyses, where in a
given sample a subpopulation is not represented in a given stratum (although it could
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be). In this case, these strata should be omitted from variance estimation or degrees-of-
freedom calculations when following the unconditional approach (Rust and Rao 1996).
In Stata 10, the current versions of the Stata procedures for analysis of complex-sample
survey data correctly drop these strata from degrees-of-freedom calculations. This was
not an issue in the motivating example in section 3, but this is more likely to be an
issue in complex designs with a greater number of sampling strata.

Accurate, robust determination by survey data analysts of degrees of freedom is
needed both in the calculation of confidence intervals and the calculation of p-values
for Wald-type statistics, making their proper determination essential for any tests of
significance. Overstating the degrees of freedom for a given subpopulation analysis will
tend to make confidence intervals too small, and this problem often arises when sampling
zeros and structural zeros (strata with no subpopulation elements by design) are not
correctly taken into account. Very little analytic theory exists for degrees-of-freedom
calculations based on complex-sample designs, especially for subpopulations that are
particularly small and “sparse” (i.e., not well-represented across the complex design).

5 Discussion

In the motivating example presented in section 3, we focused on the estimation of a
percentage (and its corresponding standard error) for a specific subpopulation in a real
survey dataset, collected in a medical care setting from a sample with a complex design.
The issues discussed in this article also apply to estimates of means, totals, regression
coefficients, odds ratios, and additional survey statistics of interest. In addition, we
considered only Taylor series linearization for variance estimation in the examples that
we presented. When analysts use replicated methods for variance estimation, such as
jackknife repeated replication or balanced repeated replication, a conditional approach
to variance estimation will result in correct standard errors, but the correct calculation
of replicate weights representing the original complex design of the sample is essential.
Most public-use datasets containing replicate weights have these weights calculated cor-
rectly by the agencies producing the datasets, so analysts do not need to worry about
this weighting issue in practice. Determining the correct degrees of freedom for devel-
oping confidence intervals and conducting hypothesis tests when calculating replicated
variance estimates for subpopulations is still an open problem. For more information on
inference for subpopulations under jackknife repeated replication or balanced repeated
replication, we refer readers to Rust and Rao (1996).

As indicated in this article, a conditional approach to the analysis of subpopulation
data from a complex-sample survey restricts the estimation of sample statistics and
variances only to those cases that belong to the defined subpopulation. Estimates of
sampling variance and determination of degrees of freedom for confidence interval for-
mation or hypothesis tests are “conditioned” on the strata and clusters in which, by
design, sample observations actually appear. Theoretically, there are two situations in
which the conditional approach to estimation and inference can be applied to subpopu-
lation analysis of complex-sample survey data: 1) the subpopulation is a design domain
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(Kish 1987), and observations on subpopulation members can be obtained only in a
subset of design strata; and 2) the subpopulation size is known for each stratum, and
appropriate stratified estimators are employed. Applying the unconditional analysis ap-
proach in most cases will yield correct analysis results for design domains, provided that
sampling strata where it is not possible for a subpopulation to appear are not included
in the calculation of degrees of freedom (see section 4).

The presence of missing data on analysis variables can effectively result in a con-
ditional analysis, because cases with missing data on analysis variables will be deleted
when running any types of analyses in nearly all statistical software packages. Ana-
lysts need to investigate missing-data problems carefully when performing any forms
of complex-sample survey data analysis. Approaches to the analysis of missing data
(such as multiple-imputation analysis) should be considered by analysts first to avoid
the potential pitfalls associated with missing data in subpopulations of interest. We
refer readers to Horton and Kleinman (2007) for additional alternatives to handling
missing-data problems.

Survey data analysts can perform the unconditional subpopulation analysis pre-
sented in this article by using procedures in the SAS, SUDAAN, and SPSS software pack-
ages as well, and interested readers can email the authors for relevant code and options
in these packages. We urge analysts to pay attention to the calculation of degrees of
freedom according to a complex design (section 4) when performing subpopulation anal-
yses in these other packages, taking the points that we have presented in this article
into consideration (especially when working with sampling zeros).

Analysts should also keep in mind that performing conditional subpopulation anal-
yses of complex-sample survey data can lead to problems where certain sampling strata
have only a single PSU present, especially in paired-selection designs (where each sam-
pling stratum has two PSUs selected). Procedures for survey data analysis in Stata will
report an explicit note about this problem when it is encountered. Referring to (1) for
the variance of sample totals, a more restrictive conditional approach to the analysis
may result in ah being equal to one or zero (meaning that stratum h has only a sin-
gle PSU present in the restricted dataset), which would make the variance of the total
undefined. The problem of having a single PSU per stratum (which prevents variance
estimation) can arise in other situations in practice as well, and original designs with a
single PSU selected from specific strata often need to be approximated with sampling-
error calculations models that enable variance estimation. Interested readers can refer
to Lee and Forthofer (2005, 42–43) or Korn and Graubard (1999, 140–141) for more
information on this issue.

Finally, additional research is necessary to determine the most appropriate methods
for calculating degrees of freedom for test statistics when performing subpopulation
analyses. Simulations might be helpful in this area to assess the true distributions of
test statistics, especially in the case of small subpopulations. The problem of analyzing
extremely small subpopulations that theoretically could be represented across a full
complex design but inevitably are not in any given sample also warrants future research;
for these cases, there is a lack of analytic theory that does not rely on asymptotic results.
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Model-based approaches to small-area estimation are currently recommended in practice
(Rao 2005), and additional work is necessary to examine design-based approaches for
small subpopulations.
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