The Stata Journal (2008)
8, Number 3, pp. 401-412

Mata Matters: Macros

William Gould
StataCorp

College Station, TX

wgould@stata.com

Abstract. Mata is Stata’s matrix language. In the Mata Matters column, we
show how Mata can be used interactively to solve problems and as a programming

language to add new features to Stata. Macros are the subject of this column.

Keywords: pr0040, Mata, macros

1 Introduction

Macros, constructs such as ‘varlist’ and ‘i’, play a major role in Stata’s ado-
programming language. Stata ado-file programmers use macros to generalize concepts
from specific examples, to perform looping, to hold numeric or string values, and to use

as the basis for decisions that then perform one action or another.

Stata (ado-file) programmers use macros to generalize concepts from specific ex-
amples such as subtracting 100 from the variable amount to subtracting 100 from a

user-specified variable:

program myfixvars
syntax varlist(max=1)

replace “varlist” = “varlist” - 100

end

Ado-file programmers use macros to perform looping:

program myfixvars
syntax varlist

foreach var of local varlist {
replace “var” = “var” - 100
}

end

(© 2008 StataCorp LP

pr0040

402 Mata Matters: Macros

Ado-file programmers use macros to hold numeric or string values (although they some-
times use scalars):

program myfixvars
syntax varlist

local N =0

local sum = 0

foreach var of local varlist {
quietly summarize “var , meanonly
local sum = “sum” + r(sum)
local N = "N-° + r(N)

}

local mean = “sum” / "N~

foreach var of local varlist {
replace “var® = “var® - ‘mean’

}

end

And finally, ado-file programmers use macros as the basis for decisions to perform one
action or another:

program myfixvars
syntax varlist [, mean]

if (""mean""!="") {
local N =0
local sum = O
foreach var of local varlist {
quietly summarize “var”, meanonly

local sum = “sum”~ + r(sum)
local N = "N~ + r(N)
¥
local mean = “sum” / "N~
}
else local mean = 100

foreach var of local varlist {
replace “var® = “var - “mean’
}

end

Without macros, Stata’s ado-file language simply would not work as a programming
language; it would degenerate to being little more than a scripting language. You could
record specific actions, but you could not generalize them.

Users new to Mata assume that macros play a similarly important role in Mata.
They do not. In fact, you do not even need macros to program in Mata. How you
program without macros constitutes the first part of this article. What you might do
with macros in Mata constitutes the second part.

W. Gould 403

2 Macroless programming in Mata

The first rule for programming in Mata is to forget that macros even exist. Macros
are not necessary and, in fact, all your ado-file instincts will mislead you. Everything
macros do for you in ado-files is performed in Mata by Mata variables.

Consider the name of a variable in your Stata dataset. In ado-files, that name would
be recorded in a macro. In Mata, the name will be recorded in a string variable:

function fixvars(string scalar varname)

{
real vector X
st_view(x, ., varname)
x[.] = x :- 100

}

We could call this Mata program directly from Stata by typing
. mata: fixvars("myvar")
or we could write an ado-file interface:

program myfixvars
syntax varlist(max=1)
mata: fixvars(" varlist~™")
end

With the ado-file interface, you can use this program just as you did when the program
was written entirely in Stata.

The example is silly, but the underlying logic applies equally to substantive pro-
gramming efforts. This style of combining ado-files and Mata code—parsing performed
in Stata and the substantive work performed in Mata—is often used in official ado-
files. Here the Stata command syntax set up the macro varlist to contain a variable
name, and then the variable name was passed to our Mata program when we coded
mata: fixvars("‘varlist’"). If varlist contained the variable name blresp, the
line would read mata: fixvars("blresp") after expansion. fixvars("blresp") is
perfectly good Mata syntax; "blresp" is a string literal in Mataspeak. On the Mata
side of things, execution of fixvars() begins with

function fixvars(string scalar varname)

{
real vector b4
st_view(x, ., varname)
x[.] = x :- 100

}

The variable name "blresp" is stored in the Mata variable varname, and after that, the
rest is pure Mata. In this code, we set up a view onto the variable and then subtracted
100 from each of its elements. How that works was discussed in a previous column
(Gould 2005). What’s important to note this time are the details. In Mata, you do

404 Mata Matters: Macros

not type st_view(x, ., blresp) to set up a view onto blresp; instead, you type
st_view(x, ., "blresp"). The variable name appears in quotes because st_view()
expects a string scalar argument and "blresp" is one way of specifying a string scalar.
In our program, however, we did not even code st_view(x, ., "blresp") because we
did not want a view onto the fixed variable blresp. We wanted a view onto a user-
specified variable. We coded st_view(x, ., varname), where varname was the name
of the Mata variable that contained the Stata variable name.

Now consider a list of Stata variable names. In ado-files, those names would be
recorded in a macro, one name after the other, with spaces in between. In Mata, the
list might be formatted the same way, but even so it would be recorded in a string scalar.
Alternatively, the list of names might be recorded in a string vector with each name
occupying an element of the vector. Lists of variables are often received from Stata in
the first format, but they are easier to use in Mata when they are in the second. Mata’s
tokenize () function converts the first format to the second. The following program
uses this approach:

function fixvars(string scalar varnames)

{

string vector varvec

real vector b

varvec = tokenize(varnames)

for (j=1; i<=length(varvec); j++) {
st_view(x, ., varvec[jl)
x[.] = x :- 100

}

}

Another way we could have written the above program is

function fixvars(string scalar varnames)

{
string vector varvec
real matrix X
varvec = tokenize(varnames)
st_view(X, ., varvec)
for (j=1; j<=length(varvec); j++) {
x[.,j] = x[.,j] :- 100
}
}

In the code above, the setting up of the view is moved outside the loop. In terms of
execution time, it does not matter much either way. In fact, the loop itself can be
removed, and we could code

W. Gould 405

function fixvars(string scalar varnames)

{
real matrix X
st_view(X, ., tokenize(varnames))
X[.,.] =X :- 100

}

With any of the above Mata programs, our ado-file to call it could read

program myfixvars

syntax varlist

mata: fixvars(" varlist ")
end

In all three versions, Stata’s ‘varlist’ macro, in quotes, expands to the space-separated
names. Placed in double quotes, " ‘varlist’", the quoted and expanded macro, looks
like a Mata string literal. That string literal is received by the Mata program fixvars()
and stored in the string scalar varnames. Inside fixvars(), tokenize(varnames)
returns a string vector. If, for example, " ‘varlist’" were "mpg weight displ", then
tokenize (varnames) returns the vector ("mpg", "weight", "displ"). Macros were used
on the Stata side but not on the Mata side.

The final version of the Stata ado-file myfixvars in the introduction subtracted
100 from the variables specified or subtracted the overall group mean calculated across
variables if the option mean was specified. Here is the code in combined Stata/Mata to
do that:

program myfixvars
syntax varlist [, means]

mata: fixvars(" varlist™", "“means™")
end
mata:
function fixvars(string scalar varnames, string scalar means)
{
real matrix X
real scalar tosub
st_view(X, ., tokenize(varnames))
tosub = (means=="" ? 100 : sum(X)/nonmissing(X))
X[.,.] = X :- tosub
}
end

This code takes fewer lines than our original, is more readable, and will run more quickly.
On the Mata side of things, we never needed macros.

3 Dealing with macros in Mata

Mata does not need macros, but that does not mean you cannot work with macros in
Mata. Macros are such an important part of Stata that you will sometimes want to
access a macro’s contents or change those contents. The Mata function st_local (name)

406 Mata Matters: Macros

will return the contents of a local macro. For instance, st_local("varlist") returns
the contents of the local macro varlist; the syntax is st_local("varlist"), not
st_local("‘varlist’") or st_local(‘varlist’). st_local() can reset the contents
of macros, too. st_local(name, contents) sets the contents of the Stata local macro
name to be contents. contents is a string scalar, as is name. You can access and
reset global macros by using the function st_global(), which has the same syntax as
st_local().

To demonstrate the use of these functions, we are going to rewrite our final version
of myfixvars/fixvars() to use them. There is even good reason that we might want
to do that. Using our final version of myfixvars, written in combined Stata and Mata,
pretend we typed

. myfixvars ql1-q5, means

Then the line that reads mata: fixvars("‘varlist’", "‘means’") would expand to
mata: fixvars("ql g2 q3 g4 95", "means")

Now imagine that we typed
. myfixvars surveyquestionl-surveyquestion2000, means

I will not show you the result of expanding mata: fixvars("‘varlist’", "‘means’")
because it would take 10 pages to print. "‘varlist’", when expanded, is a 36,892-
character string, not counting the quotes. Despite the length of the input string, how-
ever, our myfixvars/fixvars() solution will work, although it is unfortunate that the
string is so long because there will be a lot of copying of the expanded "‘varlist’"
string before it finally makes its way to Mata’s varnames variable. First, the string
will be expanded and stored in Stata’s varlist macro. Then the varlist macro will
be expanded in the ado-file when it executes the line mata: fixvars("‘varlist’",
"‘means’"). Next that line will be passed to Mata for execution. All told, the 36,892-
character string will be copied three times before fixvars() begins execution, but
things will proceed efficiently after that.

You should not be overly concerned about efficiency, but if you have concerns, there
is a solution. We could change our combined Stata/Mata program to read

W. Gould 407

program myfixvars
syntax varlist [, means]

mata: fixvars("varlist", "“means™")
end
mata:
function fixvars(string scalar varnames, string scalar means)
{
real matrix X
real scalar tosub
st_view(X, ., tokenize(st_local(varnames)))
tosub = (means=="" ? 100 : sum(X)/nonmissing(X:<=.))
X[.,.] =X :- tosub
}
end

The differences are subtle. First, I changed
mata: fixvars(" varlist”™", "“means")
to read
mata: fixvars("varlist", "“means”")

That is, I removed the single quotes around varlist so that it would not be expanded.
In the updated version, I pass the name of the macro to fixvars() rather than the
names of the variables. Then I changed

st_view(X, ., tokenize(varnames))
to
st_view(X, ., tokenize(st_local(varnames)))

Previously, varnames contained the variable names, but now it contains "varlist", the
name of the macro that contains the variable names, and st_local ("varlist") returns
the contents of the macro. Thus, in the improved version, rather than depending on
Stata and Mata to pass the contents of the macro to me, I inserted code to copy the
contents for myself. By doing that, I reduced execution time because Stata no longer
needs to expand the macro and the Mata compiler no longer needs to deal with a
potentially long expanded macro (now called a string literal in Mataspeak).

I could go back and do the same thing with the " ‘means’" macro, passing its name
rather than its contents, but I would never bother. I know " ‘means’" expands either
to "" or to "means", and that is not long enough to be worth the trouble. It is not clear
whether the change was worth the bother even in the case of varlist.

It is important to understand, however, that you can access the current contents of
Stata macros in your Mata code. You do this not by coding x = ‘value’, but instead
by coding

x = st_local("value")

408 Mata Matters: Macros

In a similar way, you can access (and change) Stata’s scalars and matrices by using
the Mata functions st_numscalar() and st matrix().

4 How Mata deals with macros

Let’s understand what would happen if you were to code x = ‘value’ in Mata. Let’s
assume ‘value’ is 3. In Stata, when you type

. generate x = 3

Stata just does it. Stata goes directly from what you type to filling in x in one step.
There is work involved in that. Stata studies (parses) the line to figure out what the
line is telling Stata to do, but after figuring that out, Stata just does it.

That is very different from what Mata does when you type
tx =3

Mata breaks the problem into two parts, called compilation and execution. In the
compilation step, Mata translates what you type into a byte code that means

push_literal 3
store X

and in fact reads
001£00000000122a7852000500000000173a227¢

In the above, I assume the literal 3 is stored at the computer address 0x122a785a
and matrix x is stored at 0x173a227c. The compiled version looks like a mess, but it
is something your computer can execute very quickly. The above compiled code can
be stored and executed in the future, and that ability to reexecute compiled code is
what makes Mata so fast. The difference between Stata (an interpreter) and Mata (a
compiler) is that every time Stata sees a line, it must figure out what it means, and
that happens even when Stata sees the same line repeatedly. When Stata executes

forvalues i=1(1)100 {
local x"i” =0

}

Stata literally looks at the line local x“i’ = 0 one hundred times, and each time, Stata
behaves as if it is seeing the line for the first time! Mata, executing

for (i=1; i<=100; i++) {
x[il =0
}

figures out what it means just once.

Going back to our discussion, we are considering x = 3, and we just learned that to
achieve that, Mata executes the code 001£00000000122a785a000500000000173a227c.

W. Gould 409

Now think about the Stata line

. generate x = “value~

Let’s pretend the macro ‘value’ contains 3. The result is that 3 is stored in x. If at
some future time you reexecute the line generate x = ‘value’ and the contents of
‘value’ are different, the results will be different. They will be different because, every
time Stata sees a line such as generate x = ‘value’, Stata reinterprets its meaning.
On the other hand, if in Mata you code

1 x = “value”

Mata goes through its two-step logic. After substitution, the line reads x = 3, and after
compilation, we have

001£00000000122a785a000500000000173a227¢c

That is exactly the same compiled code we had before. When the compiled code is
executed, the result is that x contains 3. The difference between Stata and Mata is
that, if later we reexecute this code, the result will be unchanged even if ‘value’
changes. That will happen within a loop even if the value of the macro is changing.
We code x = ‘value’ and what is substituted for ‘value’ is the contents of value at
the time the code was compiled, not when it is executed. That will also happen across
loops and programs. If you have the line x = ‘value’ embedded in a longer program,

function myfunction(...)

{
x = “value~
}

then every time you execute myfunction(), the value of x will be set to the contents
of ‘value’ as it was at the time of compile. That could be the value two seconds ago,
two minutes ago, or if you save compiled programs in libraries, two days or even two
years ago.

5 Putting compile-time macros to use in Mata

There is, however, a good use for lines such as
x = “value~
once you understand that the value substituted will be the value at compile time.

Let’s pretend we are writing a program that has four alternative ways to calculate
its estimate of variance. One calculation is used if the user specifies no options, another
if the user specifies dofadjusted, another if the user specifies unequal, and yet another
if the user specifies both options together. Here is very readable code to accomplish
this:

410

local
local

local

local
local
local
local
local

mata:

Mata Matters: Macros

RS real scalar
SS string scalar
Varlist TSS”

VarType “RS”

VT_dflt 1

VT_dofadj 2

VT_uneq 3

VT_dofuneq 4

function calculation(Varlist~” vars, “SS° op_dofadj, “SS° op_uneq)

{

}

“VarType~ vt

vt = parse_options(op_dofadj, op_uneq)
make_base_calculation(vars)
make_var_calculation(vt)

“VarType ~ parse_options(*SS”~ op_dofadj, “SS° op_uneq)

}

if (op_dofadj!="") {

}

else

}

return(op_uneq=="" 7 ~VT_dofadj” : ~VT_dofuneq’)

if (op_uneq!="") {
return(*VT_uneq”)

return("VT_dflt ")

void make_base_calculation(Varlist~ vars)

{
}

void make_var_calculation(VarType vt)

{

}

end

if (v

}

else

else

else

else

arcalc == “VT_dflt~") {
if (varcalc == “VT_dofadj") {
if (varcalc == “VT_uneq”) {

if (varcalc == “VT_dofuneq~) {

_error(3999)

The macros used above are all defined at compile time and intended to be substituted
at compile time; they are defined right at the top, in the same file as the code itself.

W. Gould 411

The first macros defined are RS and SS, and they are shorthands for real scalar
and string scalar. Type declarations are optional in Mata, but we at StataCorp use
them in all official code. It gets tiresome typing out real scalar, string scalar, and
the like, so our style is to define local macros such as RS, SS, etc., meaning the same
thing. Throughout the rest of the code, I use ‘RS’ rather than real scalar and ‘SS’
rather than string scalar. This saves typing and makes code more readable because
it makes lines shorter.

The next macro defined is Varlist. StataCorp style is to define new types desig-
nating how variables are used rather than how they happen to be stored. ‘Varlist’
literally means string scalar, as does ‘SS’. The ‘Varlist’ type is not just any string
scalar, however; it is a string scalar containing space-separated Stata variable names.
Using ‘Varlist’ in place of ‘SS’ makes code even more readable.

Finally, there is a block that defines VarType along with VT_dflt, VT_dofadj,
VT_uneq, and VT_dofuneq. The first of these is a new type in the same spirit as Varlist.
‘VarType’ is in fact real scalar, but the name was chosen to indicate that it con-
tains a particular numeric coding. The remaining macros define the numeric code. In
the subsequent Mata program, if a variable is ‘VarType’, that means it contains a
numeric code for the variance calculation to be made. And in the program, we never
refer to the numeric codes themselves; we refer to their more readable equivalents:
‘VT_dflt’, ‘VT_dofadj’, ‘VT_uneq’, and ‘VT_dofuneq’. Thus the variable vt might
be a ‘VarType’, and it might contain the value ‘VT_dflt’.

In describing the above style, I have written phrases like, “StataCorp styleis...”. I
am not laying down the law. These are local macros defined in this file for the purposes
of this code, the intent being to make this code more readable and hence less likely to
contain errors, and to be more easily modified later. Local macros come into existence
when the file is read and disappear thereafter. The local macros defined in this file
have no implications for other files, and so varying styles can be combined freely. We at
StataCorp do not have a committee meeting every time a developer wants to use a new
macro-defined type or code. StataCorp style is the above, taken generically. StataCorp
law is that code will be readable. Comments, written between /* and */, are sometimes
used to improve readability, but we at StataCorp want to avoid code-plus-comments of
the form

vt = 3 /* remember, 3 means VT_uneq. Or is it 47 */

It is easy to confuse the meaning of 1, 2, 3, and 4. It is more difficult to confuse
‘VT_dflt’, ‘VT_dofadj’, ‘VT_uneq’, and ‘VT_dofuneq’.

You can look at the code and decide for yourself whether this use of macros improves
readability. There is only one thing I want to draw your attention to, and that is the
end of make var_calculation(). There are four potential variance calculations, and
many programmers would have been tempted to code the selection as

412 Mata Matters: Macros

if (varcalc == “VT_dflt") { calculation 1 }
else if (varcalc == “VT_dofadj") { -calculation 2 }
else if (varcalc == “VT_uneq’) { calculation 3 }
else { calculation 4 }
I coded it as

if (varcalc == “VT_dflt~) { calculation 1 }
else if (varcalc == “VT_dofadj") { calculation 2 }
else if (varcalc == “VT_uneq’) { calculation 3 }
else if (varcalc == “VT_dofuneq”) { calculation 4 }
else _error(3999)

The second style is preferred. It is too easy to omit a code and, if you omit one using
the first style, you might not notice because you will obtain the ‘VT_dofuneq’ result. In
the second style, if you omit a code, you will get an error. In addition, we at StataCorp
often go back and add additional calculations. It is even easier to omit a code in that
case.

6 Conclusion
In summary, here is my advice:
1. Do not use ‘name’ or $name to refer to the run-time contents of Stata macros.
Moreover, Stata macros play no formal role in Mata’s programming language.

2. Do use st_local(name) and st_global(name) to access the contents of local
and global macros should the need arise. Use st_local(name, contents) and
st_global (name, contents) to set local and global macros.

3. Do use ‘name’ to refer to the compile-time contents of Stata macros. Do this to
improve the readability of your code.

7 Reference
Gould, W. 2005. Mata Matters: Using views onto the data. Stata Journal 5: 567-573.

About the author

William Gould is president of StataCorp, head of development, and principal architect of Mata.

	Articles and Columns
	Mata Matters: Macros, W. Gould

