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Abstract. We propose improvements to existing degrees of freedom used for
significance testing of multivariate hypotheses in small samples when missing data
are handled using multiple imputation. The improvements are for 1) tests based on
unrestricted fractions of missing information and 2) tests based on equal fractions
of missing information with M(p− 1) ≤ 4, where M is the number of imputations
and p is the number of tested parameters. Using the mi command available as of
Stata 11, we demonstrate via simulation that using these adjustments can result
in a more sensible degrees of freedom (and hence closer-to-nominal rejection rates)
than existing degrees of freedom.
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1 Introduction

Multiple imputation developed by Rubin (1987) is a popular approach for handling
missing data. The basic idea is for the data collector or imputer to simulate values for the
missing data repeatedly by sampling from predictive distributions of the missing values.
The data analyst, who may be the same person as the imputer or may be a secondary
data user, performs the desired analysis on each completed dataset and combines the
results using simple formulas (Rubin 1987, 76–77). As of Stata 11, the mi command
provides methods for generating multiple imputations and implements the formulas
for combining results (StataCorp 2009). Users also can perform multiple imputation
by using ice and mim (Royston 2004, 2005a, 2005b, 2007; Carlin, Galati, and Royston
2008; and Royston, Carlin, and White 2009). For reviews of multiple imputation, see
Schafer (1997), Little and Rubin (2002), and Reiter and Raghunathan (2007).

Often analysts seek to test multivariate hypotheses, for example, if several regres-
sion coefficients are equal to zero. Rubin (1987) suggests two approaches to doing
so with multiply imputed data. The first approach, which is the most widely used
method, presumes that the fractions of missing information (FMI) are equal across
the parameters of interest. A reference F distribution for this method was derived
by Li, Raghunathan, and Rubin (1991). The second approach does not presume equal
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FMIs; however, it may not give well calibrated p-values unless the number of imputed
datasets is large (Li, Raghunathan, and Rubin 1991).

The derivations of these test statistics and their reference distributions presume in-
finite sample size. However, Reiter (2007) demonstrates that, for the equal FMI test,
the infinite sample-size assumption can result in nonsensical procedures. For example,
in modest samples, the computed degrees of freedom for the reference distributions can
exceed the number of cases in the dataset, which should not be possible. A related phe-
nomenon is illustrated by Barnard and Rubin (1999), who derive small-sample degrees
of freedom for univariate inferences.

Reiter (2007) goes on to develop small-sample degrees of freedom for the equal FMI

test that results in better performance than the infinite sample degrees of freedom
of Li, Raghunathan, and Rubin (1991). However, Reiter’s (2007) degrees of freedom
requires M(p − 1) > 4, where M is the number of imputations and p is the number of
tested parameters. While this case may not be a concern in practice because analysts
can set M to be large, it nonetheless must be accounted for when designing software to
implement multiple imputation. For multivariate tests based on unrestricted FMIs, we
are not aware of any published research on small-sample adjustments to the degrees of
freedom.

Motivated by the development of mi, we propose to fill these gaps in the literature.
Specifically, we present small-sample degrees of freedom for the unrestricted FMI test and
for the equal FMI test with M(p− 1) ≤ 4. We demonstrate with simulation results that
using the adjusted degrees of freedom can result in more sensible reference distributions
(and hence closer-to-nominal rejection rates) than using degrees of freedom based on
infinite sample sizes.

2 Significance tests with multiple imputation

We first review the unrestricted and equal FMI tests. Let q be the p × 1 vector of
parameters of interest, such as p regression coefficients. In each completed dataset i,
where i = 1, . . . ,M , let q̂i be the completed-data estimate of q, and let Ûi be its
associated completed-data variance estimate. The analyst combines each q̂i and Ûi

using

q =
1
M

M∑
i=1

q̂i

T = U + (1 +
1
M

)B

Here U =
∑M

i=1 Ûi/M is the within-imputation variance–covariance matrix, and B =∑M
i=1(qi − q)(qi − q)′/(M − 1) is the between-imputation variance–covariance matrix.

The analyst can use q as a point estimate of q and T as an estimate of the variance of
q.
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We now suppose that the analyst seeks to test the null hypothesis, H0: q = q0. The
unrestricted FMI test proposed by Rubin (1987) is

(q0 − q)T−1(q0 − q)′/p ∼ Fp,ν (1)

where

ν = (M − 1)(1 + 1/rave)2

rave = (1 + 1/M)tr(BU
−1

)/p

Here rave is the average relative variance increase due to missing data.

Note that even under the assumption of infinite sample size, multivariate testing uses
an F reference distribution rather than a chi-squared distribution. This is because of
the fact that the variance T in the test statistic (1) involves estimates of the within- and
between-imputations variances based on the finite number of M imputations. Therefore,
the denominator degrees-of-freedom parameter ν in (1) represents the amount of inde-
pendent information used to estimate the variance after accounting for a finite number
of imputations. In standard multiple-imputation contexts, this amount of information
theoretically cannot exceed the number of cases in the dataset, which sometimes hap-
pens with the approximations of Rubin (1987) and Li, Raghunathan, and Rubin (1991).

The equal FMI test originally suggested by Rubin (1987) is

(1 + rave)−1(q0 − q)U
−1

(q0 − q)′/p ∼ Fp,(p+1)ν/2 (2)

Reiter (2007) uses the same test statistic as (2) with an alternative denominator degrees
of freedom for the F distribution appropriate when M(p − 1) > 4.

The key distinction between the two test statistics is the variance inside the quadratic
form. The unrestricted FMI test uses T, whereas the equal FMI test uses (1 + rave)U.
This difference arises because of the equal FMI condition. To see this, define B∞ = limB
as M → ∞, and define T∞ = U + (1 + 1/M)B∞; we could obtain these values if we
had an infinite number of datasets to estimate B and T. Under equal FMIs, U = ρB∞
for some constant ρ, and thus T∞ = (1 + ρ)U. The relative variance increase, rave, in
(2) is an estimate of ρ.

At first glance, the unrestricted test would seem to be always preferable because
it is derived under more general conditions. However, Rubin (1987) shows that the
unrestricted test can perform poorly when M is small relative to p because B can
be unreliable. Essentially, using B to estimate B∞ from the M datasets is akin to
estimating a p × p covariance matrix with only M observations, which can be prob-
lematic when M < p. Using the equal FMI test mitigates these difficulties because
the analyst estimates only one parameter, ρ, rather than p2 + p(p − 1)/2 parameters.
Li, Raghunathan, and Rubin (1991) demonstrate that testing procedures based on the
assumption of equal FMIs perform well as long as the fractions do not vary substantially.
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3 Small-sample degrees-of-freedom adjustments

We now consider adjustments for the denominator degrees of freedom in the reference
distributions in (1) and, for cases with M(p − 1) ≤ 4, in (2) to reflect small samples.

For the unrestricted FMI test, we propose to use the small-sample degrees of freedom
of Barnard and Rubin (1999) in place of ν in (1). That is, we use

νbr =
(
ν−1

� + ν̂−1
obs

)−1

where

ν� = (M − 1)γ−2
ave

ν̂obs = (1 − γave)νcom(νcom + 1)/(νcom + 3)

γave = (1 + 1/M)tr(BT−1)/p

Here νcom is the degrees of freedom if the data were complete, and γave is the approx-
imate average FMI. The quantity νbr has several features that led Barnard and Rubin
(1999) to recommend its general use, regardless of the sample size. First, νbr ≤ νcom,
whereas ν can exceed νcom. This property of νbr is desirable because the presence of
missing data should reduce the degrees of freedom rather than increase it. Second,
νbr < ν with approximate equality when the sample size is large, so using νbr instead
of ν is slightly conservative in large samples. Third, νbr is always between νcom and ν,
making it a compromise degrees of freedom.

Barnard and Rubin (1999) illustrate the effectiveness of this degrees of freedom for
univariate inferences. To our knowledge, νbr is rarely, if ever, used for multivariate
inferences. However, Barnard and Rubin (1999) note that the steps in the derivation
of νbr for multivariate q follow immediately under equal FMIs. Hence, by using νbr for
the degrees of freedom in the unrestricted test, we lean on the equal FMI assumption
to avoid unrealistic degrees of freedom, but we do allow the variance in the quadratic
form to be estimated without the restriction.

For the equal FMI test, we suggest a refinement to the degrees of freedom of Reiter
(2007) for cases when M(p − 1) ≤ 4. Here we again propose to substitute νbr for ν in
(2). This is similar in spirit to the suggestion of Li, Raghunathan, and Rubin (1991),
who use (2) for cases when M(p − 1) ≤ 4 for their large-sample tests. The primary
difference is that we use a degrees of freedom, νbr, that has more desirable properties
in small samples.

4 Simulation studies of properties of adjustments

The proposed adjusted degrees of freedom are ad hoc in nature. As noted by Rubin
(1987), there is little way around such constructions, because we are approximating
complicated Bayesian integrals with simple distributions. Thus it is imperative to eval-
uate the operating characteristics of tests based on these procedures by using simulation
studies.
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In all simulations studies, we generate an outcome, Y , and covariates, (X1, X2, . . . ,
Xp), where p depends on the simulation scenario, for 50 observations. The covariates
are sampled from a multivariate normal distribution with means equal to zero, variances
equal to one, and all pairwise correlations equal to 0.5. The outcome is sampled from a
normal distribution with mean equal to zero and variance equal to one independently
of covariates. The simulate command is used to generate the data. We investigate
the empirical significance levels of the procedures when testing if all coefficients in the
regression of Y on (X1,X2, . . . , Xp) are equal to zero; that is, we test H0: β1 = β2 =
· · · = βp = 0. The empirical significance levels are based on 10,000 replications.

We consider four simulation scenarios in which we vary FMIs; these are described in
sections 4.1 and 4.2. Multiple imputations are performed using mi impute mvn, which
implements multivariate normal imputation. The estimation step is performed using
mi estimate. The results of the equal FMI test are obtained from the default settings
of mi test. The results of the unrestricted FMI test are obtained by specifying the
ufmitest option with mi test. The results from the corresponding large-sample tests
are obtained by specifying the nosmall option with mi test.

4.1 Small-sample adjustment for the unrestricted FMI test

Scenarios 1, 2, and 3 use p = 4 covariates, and scenario 4 uses p = 5 covariates.
In scenario 1, we randomly delete 10% of the 50 observations, which corresponds to
approximately equal fractions of information missing due to nonresponse. Scenario
2 is similar to scenario 1 but with 30% of the observations deleted. In scenario 3, we
introduce variation among the FMIs by randomly deleting 10% of the data from X2, 20%
of the data from X4, and 35% of the data from X3; here X1 and Y are complete. Scenario
4 represents a relatively large deviation from equal FMI with increased missingness: 10%
of the data are deleted from X4, 30% of the data are deleted from X2, 50% of the data
are deleted from X1 and X3, and X5 and Y are complete. We use M = 20 multiple
imputations.

Table 1 displays key results from the 10,000 replications. Across all scenarios, the
small-sample degrees of freedom, νbr, is more sensible than the large-sample degrees of
freedom in (2), ν, which always greatly exceeds the sample size of 50. The unrestricted
FMI test using νbr provides close-to-nominal significance levels and is somewhat conser-
vative. In contrast, the unrestricted FMI test using ν is anticonservative; its empirical
significance levels always exceed the corresponding nominal significance levels. The dif-
ference between the empirical and nominal levels is always smaller for the test based on
νbr. Thus we recommend νbr over ν for the unrestricted FMI test.
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Table 1. Simulated significance levels for the unrestricted FMI test of all coefficients
equal to zero. ν denotes the denominator degrees of freedom averaged over replications.

Scenario DF ν α = 0.1 α = 0.05 α = 0.01

10% missing, equal FMI (1) small 36.22 0.0941 0.0455 0.0081

large 1180.76 0.1164 0.0636 0.0168

30% missing, equal FMI (2) small 22.57 0.0819 0.0361 0.0069

large 130.58 0.1103 0.0587 0.0162

max 35% missing, unequal FMI (3) small 33.04 0.0965 0.0477 0.0082

large 660.37 0.1209 0.0674 0.0185

max 50% missing, unequal FMI (4) small 23.57 0.0892 0.0452 0.0089

large 151.24 0.1224 0.0725 0.023

4.2 Small-sample adjustment for the equal FMI test

To evaluate the performance of the testing procedure under the equal FMI assumption for
the case when M(p−1) ≤ 4, we consider four simulation scenarios similar to those used
for the unrestricted test. We use p = 2 covariates, (X1,X2), and M = 3 imputations so
that M(p−1) = 3. In scenario 1, we randomly delete 10% of all observations. In scenario
2, we randomly delete 30% of all observations. In scenario 3, we randomly delete 10%
of the data from X1 and 35% of the data from X2. In scenario 4, we randomly delete
30% of the data from X1 and 50% of the data from X2.

Table 2 displays the key results from the 10,000 replications. In all cases, νbr is
less than the sample size of 50, whereas the degrees of freedom in (2) far exceeds 50.
For the scenarios with modest FMIs (scenarios 1 and 3), the test based on νbr generally
has closer-to-nominal empirical significance levels than the test based on the degrees of
freedom in (2). However, the picture is less clear with large FMIs (scenarios 2 and 4):
the levels for the test based on νbr are closer to nominal when α = 0.01 but not when
α ∈ (0.05, 0.10). For the scenarios with equal FMIs, the test based on νbr is conservative,
whereas the test based on the degrees of freedom in (2) can be anticonservative. For
both degrees of freedom, the tests in scenarios 3 and 4 are reasonably well calibrated
despite the unequal FMI, although the levels for the test based on νbr can exceed the
nominal α in this case.

(Continued on next page)
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Table 2. Simulated significance levels for the equal FMI test of two coefficients equal to
zero. ν denotes the denominator degrees of freedom averaged over replications.

Scenario DF ν α = 0.1 α = 0.05 α = 0.01

10% missing, equal FMI (1) small 40.09 0.0933 0.0485 0.0099

large 2025.32 0.1017 0.0558 0.0123

30% missing, equal FMI (2) small 15.65 0.0795 0.0406 0.0096

large 97.74 0.0886 0.0480 0.0127

max 35% missing, unequal FMI (3) small 31.08 0.1023 0.0536 0.0132

large 888.59 0.1111 0.0625 0.0170

max 50% missing, unequal FMI (4) small 17.22 0.0872 0.0435 0.011

large 154.50 0.0967 0.0509 0.0147

Taking these results as a whole, we recommend using the adjusted degrees of freedom
when M(p−1) ≤ 4. The test based on νbr tends to be conservative when the assumption
of equal FMI is true or nearly true, which is when these tests perform best. Of course,
data analysts need not force themselves into choosing between these two degrees of
freedom. They can increase M sufficiently so that M(p − 1) > 4 and use the degrees
of freedom developed by Reiter (2007) for the equal FMI test, which has been shown to
perform well with approximately equal FMIs. For small sample sizes, using a large M
should not be a computational burden and can greatly improve analyses.

5 Illustration of testing with multiple imputation in Stata

As an example of testing multivariate hypotheses, we use multiply imputed data on
house resale prices, mhouses1993s30.dta, from example 2 in the Stata manual for
the mi estimate command, [MI] mi estimate. The original data are provided by
the Albuquerque Board of Realtors and distributed by the Data and Story Library
(http://lib.stat.cmu.edu/DASL/Stories/homeprice.html).

We are interested in the effect of house characteristics like square footage, age of
house, and amount of taxes paid on house prices, which we estimate with a linear
regression. The data contain missing values on age and taxes. mhouses1993s30.dta
contains M = 30 imputations created using mi impute mvn, which invokes multivariate
normal imputations. The imputation strategies are described in detail in example 3 of
the Stata manual entry [MI] mi impute mvn.

Below we present the results of the regression on the multiply imputed data. These
results are obtained by using mi estimate. We specify the vartable option to display
the estimated FMIs. The test statistic and p-value for the test of all coefficients equaling
zero are displayed in the regression output header. By default, this test is based on the
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equal FMI test with the degrees of freedom of Reiter (2007). Based on this test, there
is significant evidence to reject the null hypothesis that all coefficients equal zero.

. use http://www.stata-press.com/data/r11/mhouses1993s30
(Albuquerque Home Prices Feb15-Apr30, 1993)

. mi estimate, vartable: regress price sqft age nfeatures ne custom corner tax

Multiple-imputation estimates Imputations = 30

Variance information

Imputation variance Relative
Within Between Total RVI FMI efficiency

sqft .004442 .003623 .008186 .842713 .464984 .984737
age .277762 .896309 1.20395 3.33446 .778164 .974717

nfeatures 157.333 26.7139 184.937 .175452 .150568 .995006
ne 1104.74 114.734 1223.29 .107319 .097502 .99676

custom 1783.12 85.8858 1871.87 .049772 .04756 .998417
corner 1548.13 93.6976 1644.95 .06254 .059084 .998034

tax .012421 .00814 .020832 .677183 .410355 .986506
_cons 3834.84 257.487 4100.91 .069382 .065152 .997833

Linear regression Number of obs = 117
Average RVI = 0.5415
Complete DF = 109

DF adjustment: Small sample DF: min = 16.42
avg = 72.83
max = 101.18

Model F test: Equal FMI F( 7, 96.3) = 45.63
Within VCE type: OLS Prob > F = 0.0000

price Coef. Std. Err. t P>|t| [95% Conf. Interval]

sqft .2900879 .0904748 3.21 0.003 .1073624 .4728134
age -.7524605 1.097246 -0.69 0.502 -3.073675 1.568754

nfeatures 4.361055 13.59917 0.32 0.749 -22.67719 31.3993
ne 5.495913 34.97562 0.16 0.875 -63.95148 74.94331

custom 132.3453 43.26507 3.06 0.003 46.52087 218.1697
corner -66.95606 40.55801 -1.65 0.102 -147.4264 13.51429

tax .5516444 .1443319 3.82 0.000 .2612817 .842007
_cons 130.3491 64.03837 2.04 0.044 3.277868 257.4203

We can use mi test to test hypotheses about subsets of coefficients. Suppose that
we seek to test the null hypothesis that the coefficients for age, nfeatures (number of
certain features), and ne (whether the city is located in the northeast, largest residential,
area) all equal zero. By default, mi test performs the equal FMI test, as illustrated
below.

. mi test age nfeatures ne
note: assuming equal fractions of missing information

( 1) age = 0
( 2) nfeatures = 0
( 3) ne = 0

F( 3, 70.4) = 0.39
Prob > F = 0.7639
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However, from the output of mi estimate, the assumption of equal FMIs for age,
nfeatures, and ne does not seem plausible: the estimated FMIs range from 0.10 for
ne to 0.78 for age. We therefore perform the unrestricted FMI test with the ufmitest
option, as follows.

. mi test age nfeatures ne, ufmitest

( 1) age = 0
( 2) nfeatures = 0
( 3) ne = 0

F( 3, 41.8) = 0.28
Prob > F = 0.8376

The unrestricted FMI test results in a larger p-value than the equal FMI test. How-
ever, both tests indicate that these three variables are not strong predictors of house
resale prices, at least according to the model we fit here.

6 Conclusion

We proposed improvements to the existing degrees of freedom for multivariate tests for
multiply imputed data. In particular, we proposed a small-sample adjustment to the de-
grees of freedom of the unrestricted FMI test, and we refined the small-sample adjustment
for the equal FMI test when M(p− 1) ≤ 4. Empirical evaluations of these adjustments,
while admittedly limited in scope as all such evaluations must be, demonstrated that
using tests based on the proposed small-sample adjustments can improve performance
over using tests based on the large-sample analogues. Simulations also showed that the
proposed testing procedures become more conservative as FMIs increase or start varying
substantially. The deviations from nominal significance result because the adjustments
are, as noted previously, unavoidably ad hoc in nature. For example, the derivation
of the proposed degrees of freedom presumes that FMIs are approximately equal even
though this assumption is not used in the test statistic. Additionally, estimates of the
within-imputation and between-imputations variance components can be unreliable for
small sample sizes and modest numbers of imputations.

We also considered using the denominator degrees of freedom suggested by Reiter
(2007) for the unrestricted FMI test. This led to a slightly more conservative test than
the one using the degrees of freedom from Barnard and Rubin (1999).

Other simulations not shown here suggested that the small-sample unrestricted FMI

test performs better than the small-sample equal FMI test when the FMIs vary no-
ticeably, and that the small-sample equal FMI test performs better when the FMIs are
approximately equal. Further research is needed to compare the properties of these two
tests in a wide range of plausible scenarios.
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