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Abstract. We present an update of mim, a program for managing multiply im-
puted datasets and performing inference (estimating parameters) using Rubin’s
rules for combining estimates from imputed datasets. The new features of par-
ticular importance are an option for estimating the Monte Carlo error (due to
the sampling variability of the imputation process) in parameter estimates and in
related quantities, and a general routine for combining any scalar estimate across
imputations.
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1 Introduction

The presence of missing data and the consequent loss of observations from a multivari-
able dataset raise two potential threats: bias due to selection mechanisms that may be
related to the variables of interest, and loss of precision due to the reduced sample size.
In recent years, researchers have realized the importance of working with techniques
that permit cases containing missing data to be used in analysis. The technique known
as multiple imputation (MI) of missing observations (Rubin 1987; Schafer 1997) has
gained popularity and now appears to be the dominant method.

Briefly, MI comprises two stages. First, copies of the original dataset are created, in
each of which the missing values are imputed using an appropriate modeling procedure.
Second, standard analyses are performed on each of these imputed datasets by using
complete-data statistical methods. The results (i.e., parameter estimates that are of
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substantive interest—typically, regression coefficients) are then combined according to
“Rubin’s rules” (Rubin 1987) to obtain a set of final estimates and standard errors
(SEs).

For M1, Carlin, Galati, and Royston (2008) provided mim, a toolkit for performing
analyses of an ensemble of datasets that includes multiple copies of the original data
with imputations of missing values. The tools are based on a simple data-management
paradigm in which the imputed datasets are all stored along with the original data in
one dataset with a vertically stacked format. mim can validly fit most of the regression
models available in Stata to multiply imputed datasets, giving parameter estimates and
confidence intervals computed according to Rubin’s rules. Additionally, mim provides
some postestimation facilities (testparm, lincom, predict) with multiply imputed data
and data manipulation commands (reshape, append, merge) for multiply imputed data.

In this article, we report on functionality that has been added to mim since the
original publication. The key additions are an estimate of the amount of Monte Carlo
(MC) (simulation) error in an estimate, a category(combine) feature that allows Ru-
bin’s rules to be applied at the user’s discretion to just about any scalar quantity, and
extensions to mim: predict.

2 Jackknife estimates of MC error: The mcerror option

2.1 Background

If M1 were performed with an infinite number of imputations (if m = oo, in standard
notation), there would be no purely random contribution to the parameter estimates of a
model—the “MC error” would be zero. According to Rubin’s theoretical work, for finite
m, the SE of an estimated regression coefficient § is given, to a good approximation, by

SE (B) =\ /W+B+B/m (1)

where W is the average within-imputation variance of the B\Z and B is the variance of

the @ across imputations. As m is increased, SE (B) gets smaller (on average) as the

MC error gets smaller (on average). The result is an increase in precision for B, with a
consequent increase in the absolute ¢ statistic and reduction in the p-value for testing
B = 0. The quantity 1/B/m, the MC SE of 3, is itself imprecise and should be regarded
only as a guide.

For practical reasons, and because there is little gain in theoretical efficiency from
using larger values (Rubin 1987; Schafer 1997), small values of m (between 5 and 20) are
typically used. However, users have generally paid little attention to the resulting sam-
pling error associated with MI-based parameter estimates. Although some researchers,
including Horton and Lipsitz (2001) and Graham, Olchowski, and Gilreath (2007), ad-
vocate larger values (see further comments below; it is possible informally to assess the
MC error in a parameter estimate by increasing m and observing changes in B and other
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relevant quantities), the strategy is inefficient and computationally expensive with a
large dataset. Typing mim, mcerror after fitting a model provides an approximate SE
for the random component of each quantity in the table of results, including the pa-
rameter estimates, their SEs, and the corresponding t statistics. The SEs are computed
using the jackknife approach, of which more details are given below. When coefficients
are presented in exponentiated form, jackknife SEs are approximated from the SEs for
untransformed coefficients by using the delta method.

2.2 The jackknife

The jackknife is used to obtain estimates of SEs that are awkward or impossible by using
standard methods. According to Efron and Gong (1983), “The advantage. . .is an easy
generalizability to any estimator.” We follow the Stata 10 manual entry [R] jackknife.
Suppose we have n observations yi,...,y, and an estimator g = ’9\(y1, -y Yn). Let
5(1-) = g(yl, ey Yie1,Yitls- -, Yn) be the estimate of 6 omitting the ith observation.
Let R R

1,/}1' = TLO — (n — 1) 0(1)

The 1; are known as pseudovalues. Then the jackknife estimator of the SE of 0 is
) n 1/2
2
_ _ 2
o= ) ®

We apply (2) to all relevant quantities in the table of regression output from mim.
Estimates for each imputed dataset are withheld in turn to compute ;) and hence (2).
Here n = m, i.e., the sum is over imputations.

For 0 = B, a regression coefficient, Rubin’s rules imply that 0 = (1/m)>", B\l It
follows that ; = @, i.e., the coefficient in the ith imputed dataset, and so o; reduces
to the standard formula /B/m. However, such a simple formula does not apply to the
other quantities.

2.3 Example

We revisit the breast cancer example described in Carlin, Galati, and Royston (2008,
15-17). First, ice (Royston 2007) is used to impute missing data in the variables mx1,
mx4a, mx5e, mx6, and mhormon, each of which has about 20% of observations artificially
missing completely at random. Five imputations (i.e., m = 5) are generated and stored
in memory by using the clear option:
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. use brcaex

255

(German breast cancer data)

. ice mx1 mx4a mx5e mx6 mhormon 1lnt _d, clear match(mx6) m(5) seed(101)

#missing
values Freq. Percent Cum.
0 231 33.67 33.67
1 290 42.27 75.95
2 126 18.37 94.31
3 33 4.81 99.13
4 6 0.87 100.00
Total 686 100.00
Variable | Command | Prediction equation
mxl | regress | mx4a mxbe mx6 mhormon Ilnt _d
mx4a logit mx1 mx5e mx6 mhormon lnt _d
mxbe | regress | mxl mx4a mx6 mhormon lnt _d
mx6 | regress | mxl mx4a mx5e mhormon Ilnt _d
mhormon | logit mx1 mx4a mx5e mx6 1lnt _d
1nt [No missing data in estimation sample]
_d [No missing data in estimation sample]

Imputing 1..2..3..4..5..
Warning: imputed dataset has not (yet) been saved to a file

[note: imputed dataset now loaded in memory]

Next a suitable fractional polynomial model for the time-to-event outcome (recur-
rence-free survival) is fit to the multiply imputed dataset by using mim. The nohr option
is used to force regression coefficient estimates to be displayed rather than hazard ratios:

. fracgen mx1 -2 -0.5

-> gen double mx1_1 = X"-2
-> gen double mx1_2 = X"-0.5
(where: X = mx1/10)

. fracgen mx6 0.5
-> gen double mx6_1 = X70.5

(where: X = (mx6+1)/1000)

. mim: stcox mx1_1 mx1_2 mx4a mx5e mx6_1 mhormon, nohr
Multiple-imputation estimates (stcox) Imputations = 5
Minimum obs = 686
Minimum dof = 8.2
_t Coef. Std. Err. t P>t [95% Conf. Int.] FMI
mx1_1 38.3469 20.7274 1.85 0.100 -9.23066 85.9245 0.743
mx1_2 -16.4381 8.60385 -1.91 0.089 -35.9189 3.04267 0.716
mx4a .663452 .336683 1.97 0.058 -.022936 1.34984 0.385
mx5e -1.74223 .250471 -6.96 0.000 -2.23975 -1.2447 0.213
mx6_1 -2.12092 .463089 -4.58 0.000 -3.07056 -1.17128 0.414
mhormon -.409152 .161789 -2.563 0.017 -.740712 -.077591 0.411

The table is similar to the one in Carlin, Galati, and Royston (2008), except that
the column titled MI.df has been replaced with one titled FMI. We return to that issue

later.
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Next we use mim, mcerror to give the MC SE of all quantities in the table of coefficient
estimates. We must again use the nohr option of mim; otherwise, we will get SEs of
exponentiated quantities.

. mim, mcerror nohr

Multiple-imputation estimates (stcox) Imputations = 5
Minimum obs = 686
Minimum dof = 8.2

[Values displayed beneath estimates are Monte Carlo jackknife standard errors]

_t Coef. Std. Err. t P>|t| [95% Conf. Int.] FMI
mx1_1 38.3469 20.7274 1.85 0.100 -9.23066 85.9245 0.743
7.02075 5.32528 0.59 .0969 19.176 20.2413 0.173

mx1_2 -16.4381 8.60385 -1.91 0.089 -35.9189 3.04267 0.716

2.85307 1.91661 0.49 .0817 7.59108 6.69266 0.164

mx4a .663452 .336683 1.97 0.058 -.022936 1.34984 0.385
.081162 .040689 0.35 .0441 .142677 .139772  0.191
mx5e -1.74223 .250471 -6.96 0.000 -2.23975 -1.2447 0.213
.045424 .0226 0.54 2.9e-08 .090021 .044201 0.169
mx6_1 -2.12092 .463089 -4.58 0.000 -3.07056 -1.17128 0.414

.115629 .050929 0.61 5.6e-04 .168925 .20287  0.157

mhormon -.409152 .161789 -2.53 0.017 -.740712 -.077591  0.411
.040251 .022795 0.25 .0172 .095837 .045636  0.232

We now see that each quantity in the table is subject to considerable random un-
certainty, due to using only 5 imputations. We can study the effect of increasing m by
rerunning the sequence of analyses with m = 100 instead of m = 5 and repeating mim,
mcerror nohr, with the following results:
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. mim, mcerror nohr

Multiple-imputation estimates (stcox) Imputations = 100
Minimum obs = 686
Minimum dof = 188.6

[Values displayed beneath estimates are Monte Carlo jackknife standard errors]

_t Coef. Std. Err. t P>t [95% Conf. Int.] FMI
mx1_1 36.4644 17.7323 2.06 0.041 1.4852 71.4435 0.554
1.31008 . 746788 0.15 .014 2.56225 1.18428 0.050

mx1_2 -15.0414 7.29785 -2.06 0.040 -29.4257 -.657102 0.510
.517423 .275975 0.13 .0127 475857 .962491 0.048

mx4a .608436 .302504 2.01 0.045 .014207 1.20266 0.233
.014514 .005255 0.05 .0056 .0159 .01966 0.027

mx5e -1.86289 .261403 -7.13 0.000 -2.37638 -1.34941 0.232

.012495 .004499 0.12 2.7e-12 .016655 .013954 0.026

mx6_1 -1.89201 .433128 -4.37 0.000 -2.74348 -1.04054 0.318
.024248 .009518 0.11 7.7e-06 .030477 .031102 0.031

mhormon -.396602 .147469 -2.69 0.007 -.686306 -.106899 0.243
.007215 .002778 0.05 .0012 .010669 .007161  0.028

The MC error in the B for mhormon, for example, is reduced from 10% to a more
reasonable 2%. As expected, because the SE in (1) reduces on average as m increases,
(most of) the ¢ statistics have increased in absolute value.

We may use the MC errors as an indication of how secure the 3 estimates are and
how many imputations would be needed to achieve a given precision. For example, the
0 for mx5e is —1.863 with an MC SE of 0.012. If we wanted this § to be accurate to two
decimal places, we would need to reduce its MC SE by a factor of 2.4 to 0.005, requiring
2.4% = 5.76 times as many imputations, i.e., 576 instead of 100. The magnitude of the
MC error shows the major effect that missing data may have on inference. Although
it will not always be feasible to perform such a large number of imputations, and the
practical importance of determining the estimate to the second decimal place in an
example like this is likely to be minimal, it is important to appreciate that this is a
way in which missing data undermine the principle that two researchers using the same
data and methods should arrive at the same estimates (at least, to a given precision).
With anything other than insignificant amounts of MC error, reproducibility cannot be
achieved.

To further exemplify the uncertainties in MI and how MC error can throw light
on them, we repeated the breast cancer analysis in 10 independent replications, 5
with m = 5 and 5 with m = 100. The resulting 8 estimates for mx4a with m =5
were (0.559,0.626,0.451,0.515,0.654) compared with (0.609,0.579,0.611,0.583,0.604)
for m = 100. The corresponding jackknife SEs (o 5) were (0.019, 0.068, 0.030, 0.087,0.076)
and (0.013,0.015,0.013,0.014,0.014). The values of o; with m = 5 are highly variable
and much less informative than with m = 100, for which o; = 0.014 4+ 0.001. The




258 Multiple imputation of missing values: New features for mim

values of B with m = 100 vary narrowly, between 0.58 and 0.61, whereas for m = 5
they range between 0.45 and 0.65. It seems clear that more than 5 imputations would
be needed for a serious analysis of this dataset. Finally, the p-values for mx4a are
also instructive; with m = 5 they are (0.037,0.052,0.088,0.141,0.055) compared with
(0.041,0.056, 0.039, 0.050,0.044) for m = 100. As already discussed, because of larger
m increasing the precision of B, the p-values are somewhat lower with m = 100 than
with m = 5.

We do recommend that users replicate their MI analysis at least once—that is, having
selected a “reasonable” value of m, to create two independent sets of m imputations—
and compare the results of running mim, with respect to substantive values such as
and their MC errors. Running analyses with larger numbers of imputations is much
cheaper than obtaining additional subjects for the research!

3 mim, category(combine)

Principally, mim is an engine to fit Stata regression models in several imputed datasets
and apply Rubin’s rules to combine estimates across imputations, also calculating ap-
propriate SEs for them. In principle, Rubin’s rules may be applied in similar fashion to
any scalar quantity. However, Rubin’s rules should be applied only to quantities that
are estimators of well-defined parameters; they must not, for example, be applied to
p-values or to Wald x? or likelihood-ratio x? statistics.

mim, category(combine) provides options for computing a scalar quantity (and,
optionally, its SE) in each of m imputations and combining the m values according
to Rubin’s rules. To do the calculations, mim harnesses the power of another Stata
command: statsby. The output from mim, category(combine) displays the statsby
command that mim has used to do the desired analysis and estimate the scalar statistic
for each positive value of _mj, the imputation indicator.

We illustrate using the breast cancer data. First, a dataset with m = 5 imputations
is created as in the previous section. Suppose that we wish to predict the probability of
a woman being postmenopausal as a function of age and then use the concordance in-
dex (c-index) as a measure of the strength of the association. Rubin’s rules may validly
be applied to the c-index because it estimates a parameter (the probability that a ran-
domly selected postmenopausal woman is older than a randomly selected premenopausal
woman). The c-index and its SE may be calculated by using the Stata command roctab.
The variable x2 is coded as 1 for premenopausal and 2 for postmenopausal, and mx1
is the woman’s age. x2 is complete, whereas mx1 is about 20% missing observations.
First, we create a binary variable for menopausal status:
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. generate byte meno = (x2 == 2)

. mim, category(combine) est(r(area)) se(r(se)): roctab meno mxi

Applying Rubin’s rules, using statsby for analysis:

-> statsby est = (r(area)) se = (r(se)), by(_mj) nodots clear: roctab meno mxl

command: roctab meno mxl
est: r(area)
se: r(se)
by: _mj

Combined estimate ‘ Mean Std. Err. [95% Conf. Intervall] FMI

r(area) ‘ .887999 .0180201 .8502271 .9257709 0.513

Here mim requires three options: category(combine) to signify the type of oper-
ation, est () to tell statsby how to compute the estimate, and se() to tell statsby
how to compute the SE of the estimate. (The se() option may be omitted, in which
case only the average of the estimate is reported.) After the usual colon comes the
Stata command, here roctab meno mx1, that statsby uses to do the work. mim tells
statsby to execute roctab meno mx1 in each of the m imputations, and mim then col-
lects the resulting estimates returned by statsby in r(area) and the SEs in r(se).
The locations r (area) and r(se) have to be determined either empirically, by running
the target command once and issuing a return list to see what it has produced, or
by consulting the Saved results section of the help file on the target command.

The result in the above example is that the c-index is estimated as 0.888 with an
SE of 0.018. mim stores these quantities in r(Q) and r(se), respectively, and the lower
and upper confidence limits in r(1b) and r(ub), respectively.

A rather faster alternative to statsby is the user-written program byvar (Royston
1996). The syntax is similar. The additional option byvar is supplied to mim:

. mim, category(combine) est(r(area)) se(r(se)) byvar: roctab meno mxl
Applying Rubin’s rules, using byvar for analysis:

-> byvar _mj, r(area se) unique generate: roctab meno mxl

Combined estimate ‘ Mean Std. Err. [95% Conf. Intervall FMI

area ‘ .887999 .0180201 .850227 .9257709 0.513

A copy of byvar is provided and should be installed alongside mim.

Further details on how to specify the est () and se() options may be obtained from
relevant parts of the help files for mim, statsby, and byvar.

3.1 Advanced use

For category(combine) to work, one needs a single command that returns the required
scalar quantity and its SE in either an r() or an e() saved result. If more than one
command is necessary to achieve this, the user has to write an r-class program (see help
program) that returns the requisite quantities for use by statsby or byvar.
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For example, suppose we wanted a 95% confidence interval (CI) for a Pearson correla-
tion coefficient, R, computed in an MI dataset. The standard normalizing transformation
for R is Fisher’s z function (see Cox [2008]),

1. 1+R
z = —In—— = atanh (R
2 1—R ()
whose asymptotic variance is 1/ (n — 3), with n being the sample size. We compute z
and its confidence limits, and then back-transform using the inverse function:

exp (2z) — 1
= - = h
exp (2z) + 1 tanh (2)

The simple program (ado-file) listed below, fisher, computes z and SE(z), given
two variables to be correlated:

. program define fisher, rclass
syntax varlist(min=2 max=2) [if] [in]
quietly correlate “varlist”™ “if~ “in~
return scalar z = atanh( r(rho) )
return scalar sez = sqrt( 1 / (r(N) - 3) )
end

O W N

The [if] part of the syntax is essential, because fisher will filter the imputation
indicator variable, mj. The values of z and its SE are returned by fisher in r(z) and
r(sez), respectively.

Here is an example. Suppose for the breast cancer data that we want the correlation
and its 95% CI between In (1 + mx6) and mx5e. The necessary work, using fisher and
mim, category(combine), is as follows:

. use brcaeximp, clear
(German breast cancer data)

. gen mx61 = 1n(1 + mx6)
(127 missing values generated)

. mim, category(combine) est(r(z)) se(r(sez)): fisher mxbe mx61
Applying Rubin’s rules, using statsby for analysis:

-> statsby est = (r(z)) se = (r(sez)), by(_mj) nodots clear: fisher mxbe
> mx61
command: fisher mxbe mx61
est: r(z)
se: r(sez)

by: _mj
Combined estimate ‘ Mean Std. Err. [95% Conf. Intervall FMI
r(z) ‘ .1324091 .0600462 .0007296 .2640887 0.651
. display "Combined R = " %7.4f tanh(r(Q)) " 95% CI = " %7.4f tanh(r(1lb)) ","

> %7.4f tanh(r(ub))
Combined R = 0.1316 95% CI = 0.0007, 0.2581

mim presents the combined value of z and its 95% CI as 0.1324 [0.0007,0.2641]. The
final line of the example code picks up these three quantities, saved by mim in r(Q),
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r(1b), and r(ub), as described above. The required CI for R is computed “manually”
using Stata’s tanh() function and is presented as 0.1316 [0.0007,0.2581].

Correct SEs are obtained only if the sampling distribution of the estimate in complete
data is normal. However, it is not known how robust this assumption is to departures
from normality. In the above example, we used the Fisher transformation of R to try
to ensure that we fulfilled the normality assumption and to produce plausible CIs.

4 Fraction of missing information

The fraction of missing information (FMI) is now reported for every model that mim fits.
This quantity is an estimate of the relative loss of efficiency, or increase in variance, of
a parameter estimate because of missing data (Schafer 1997). For each predictor, FMI
is a function of the ratio of the between- to within-imputation variance of the estimated
coefficient and the associated approximate degrees of freedom (df):

FMI = <T+df2+3> /(r+1)

where 7 is the “relative increase in variance due to nonresponse” (Rubin’s terminology)
and is estimated by (1 + m’l) B/W. Because df is always positive, FMI lies between
0 and 1, and because df is usually considerably larger than 3, FMI is approximately
r/(r+1). The larger the value of FMI, the greater the loss of information (hence loss of
precision) that has been induced in the estimated coefficient by the missing data.

It is important to remember that FMI, as reported by mim, is an estimate. For few
imputations, FMI is likely to be imprecise. Just how imprecise may be gauged using the
mim, mcerror replay command, described above.

5 Extension of mim: predict

mim: predict (by default, i.e., without further options) computes the linear predictor
(xb) from the most recently fit model and averages the predictions across imputations,
storing the resulting means in the appropriate mj==0 locations. mim: predict now
accepts other predict options, according to the category(fit) command that has
been used. With stcox, for example, the hr option of predict gives the mean relative
hazard for each individual across imputations, that is, an estimate of the hazard for
each individual relative to the baseline hazard function:

. mim: stcox mx1_1 mx1_2 mx4a mx5e mx6_1 mhormon, nohr
(output omitted )

. mim: predict hr, hr
[predicting hr]
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6 Minor extensions

6.1 Saved results from mim: testparm

The testparm command is a standard postestimation feature of most of Stata’s regres-
sion commands. It applies a Wald test to (a subset of) the covariates fit in a model.
If the null distribution of the test statistic is assumed to be chi-squared on d df, then
testparm returns the chi-squared statistic in r(chi2) and the df in r(df); if it is as-
sumed to be F on dy, ds df, then testparm returns the I statistic in r(F), d; in r(df),
and dy in r(df_r). In both cases, the p-value is returned in r(p).

mim: testparm mimics testparm with MI data. Because theory suggests that the
null distribution of the Wald statistic in MI is best approximated by the F' distribution,
mim: testparm returns the same quantities as testparm does in the F' distribution
case. For example,

mim: testparm mx4a mhormon

(1) mxd4a =0
( 2) mhormon = 0

F( 2, 25.9) = 5.00
Prob > F = 0.0145
. return list
scalars:
r(df_r) = 25.9190852241141

r(F) = 5.0029667920515
r(df) = 2
r(p) = .0145422160391562

Because mim: testparm performs an F' test with denominator df, r(df r), estimated
from the data, even in cases (such as logistic regression) in which a chi-squared test
statistic would be expected with complete data, an F' test is reported.

6.2 from() and to() options

The from() and to() options simply limit the range of imputation numbers to which
a given mim command is to be applied; for example,

. mim, from(2) to(4): stcox mx1_1 mx1_2 mx4a mx5e mx6_1 mhormon, nohr

(output omitted )

would estimate a Cox model using imputations 2, 3, and 4 only. These options may be
pedagogically useful; e.g., one could create a dataset with 50 imputations and run mim
in batches of 5 imputations to study the variability of the resulting estimates.
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7 Conclusion

As with ice (Royston 2007), development of mim continues as new features are re-
quested by users or considered by the authors to be worthwhile. In particular, the
category(combine) and mcerror features should prove to be useful extensions to the
practical use of MI.
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