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probit selection rule. We have written a Stata command, oheckman, that computes
two-step and full-information maximum-likelihood estimates of this model. Using
Monte Carlo simulations, we compare the performances of these estimators under
various conditions.

Keywords: st0123, oheckman, selection bias, ordered probit, maximum likelihood

1 Introduction

We implement full-information maximum likelihood (FIML) and two-step algorithms for
the estimation of a linear regression model with an underlying ordered-probit selection
rule. The selection rule may cause sample selection, regime switching, or a combination
of both.

Several existing studies have used an ordered-probit selection model, but no estima-
tion command has been available for Stata. In all articles discussed below, the two-step
estimation procedure was used.

• Jimenez and Kugler (1987) analyze how the choice to attend a long vocational
training program, a short program, or no program affects an earnings function
for workers in Colombia. The instruments in the selection equation are data on
primary education history and father’s educational status.

• Idson and Feaster (1990) and Main and Reilly (1993) compute wage functions
for workers in companies of different sizes, controlling for the worker’s selec-
tion of company size. Idson and Feaster use marital and veteran status, and
Main and Reilly use data on children as instruments in the selection equation.

• Ermisch and Wright (1993) and Paci et al. (1995) estimate wage equations for
full-time and part-time workers by using an ordered probit to model the decision
to work full-time, part-time, or not at all. Marital status and data on children are
used as first-stage instruments for employment status.

• Carlsson (2004) computes regressions for airfares between pairs of cities separately
depending on whether one, two, or more than two airlines operate between those
cities. He models the selection of number of airlines by using an ordered probit.
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However, he cannot reject the hypothesis that the equations are independent and
therefore there is no selection bias.

• Bellemare and Barrett (2006) analyze livestock markets in Kenya and Ethiopia
by using an ordered tobit model that consists of an ordered probit for classify-
ing households into net buyers, autarkic, or net sellers, and then regressions to
estimate quantity bought or sold.

Miranda and Rabe-Hesketh (2006) developed a wrapper command, ssm, for the
Stata program gllamm (Rabe-Hesketh, Skrondal, and Pickles 2002) that fits a wide va-
riety of selection models with a binary selection variable and discrete outcome variable.
In contrast, the model we consider involves two or more selection categories and a con-
tinuous outcome variable. We also implement our FIML algorithm using the d2 method
for the ml command, which uses an analytically calculated gradient and Hessian matrix
for the log likelihood to dramatically speed up the optimization process.

2 Methods

2.1 Model specification

Consider a model in which individuals i are sorted into J + 1 categories 0, 1, . . . , J on
the basis of an ordered-probit selection rule:

z∗i = α′wi + ui;

zi =





0 if −∞ < z∗i ≤ µ1,
1 if µ1 < z∗i ≤ µ2,
2 if µ2 < z∗i ≤ µ3,
...
J if µJ < z∗i < ∞

(1)

where α is an unknown vector of parameters, ui is a standard normal shock, and the
unknown cutoffs µ1, µ2, . . . , µJ satisfy µ1 < µ2 < · · · < µJ . We also define µ0 ≡ −∞
and µJ+1 ≡ ∞ to avoid having to handle the boundary cases separately. We assume
that the independent variables wi and the categorical variable zi are observed, but the
latent selection variable z∗i is unobserved.

There is also an observed dependent variable yi that is a linear function of some
observed independent variables xi, but the coefficients of xi depend on the category zi:

yi =





β′
0xi + εi0 if zi = 0,

β′
1xi + εi1 if zi = 1,

...
β′

Jxi + εiJ if zi = J

(2)

where for each j ∈ {0, . . . , J}, εij has mean 0, has variance σ2
j , and is bivariate normal

with ui with correlation ρj . We assume that the shocks εij and ui are independently
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and identically distributed across observations. Our goal is to estimate the parameter
vectors β0, . . . , βJ . yi could also be missing for certain categories j, in which case βj ,
ρj , and σj do not exist.

Since only one category j is observed for each individual and the observations are
independent, the correlations between εij and εik for j 6= k cannot be identified, so we
do not model or estimate them.1

As Heckman (1979) observed for the binary case, estimating any of the equations in
(2) via ordinary least squares (OLS) generally leads to biased results. To see this, we
define

λi ≡ E[ui | zi,wi] =

∫ µj+1

µj
(z∗i − α′wi)φ(z∗i − α′wi) dz∗i

Φ(µj+1 − α′wi) − Φ(µj − α′wi)

=
−

∫ µj+1

µj
φ′(z∗i − α′wi) dz∗i

Φ(µj+1 − α′wi) − Φ(µj − α′wi)

=
φ(µj − α′wi) − φ(µj+1 − α′wi)

Φ(µj+1 − α′wi) − Φ(µj − α′wi)
(3)

where j = zi. Then

E[yi | zi,wi,xi] = β′
jxi + E[εij | zi = j,wi]

= β′
jxi + ρjσjλi (4)

Now consider an OLS regression of y on x over the subsample {i : zi = j}. If we had

added λ as an extra regressor, then the estimate β̂j would have been consistent, but
without λ, the regression suffers from omitted-variable bias if ρj 6= 0 and will generally
be inconsistent.

We next describe two methods for consistent estimation of the model: a two-step
procedure and an FIML procedure.

2.2 Two-step estimation

The two-step estimation procedure has previously been described by Greene (2002) and
is a generalization of Heckman’s (1979) estimator for the binary case.

1. The correlation between εij and εik does matter when we want to counterfactually predict yi in
category k for an individual who actually chose category j. Our yif() postestimation statistic, which
is described in section 4.4, implements such predictions under the assumption that εij and εik are
conditionally independent given ui.
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In the first step, we estimate (1) by an ordered probit of z on w, yielding the
consistent estimates α̂, µ̂1, µ̂2, . . . , µ̂J . Define ẑ∗i ≡ α̂′wi. Then by using (3), a consistent
estimator of λi is2

λ̂i ≡
φ(µ̂j − ẑ∗i ) − φ(µ̂j+1 − ẑ∗i )

Φ(µ̂j+1 − ẑ∗i ) − Φ(µ̂j − ẑ∗i )
(5)

where j = zi.

With (4), we can consistently estimate βj with an OLS regression of y on x and λ̂
by using only the observations i for which zi = j.

Let Ĉj be the coefficient on λ̂ in this regression, and let RSSj be the residual sum
of squares for the regression. Let nj be the number of observations in which equation j
is observed. Then σj can be estimated as

σ̂j ≡
1

nj


RSSj − Ĉ2

j

∑

i:j=j

∂λ̂i

∂ẑ∗i




=
RSSj

nj
−

Ĉ2
j

nj

∑

i:j=j

{
(µ̂j − ẑ∗i )φ(µ̂j − ẑ∗i ) − (µ̂j+1 − ẑ∗i )φ(µ̂j+1 − ẑ∗i )

Φ(µ̂j+1 − ẑ∗i ) − Φ(µ̂j − ẑ∗i )
− λ̂2

i

}

Finally, since Ĉj is a consistent estimator for ρjσj ,

ρ̂j ≡
Ĉj

σ̂j

is a consistent estimator for ρj .

2.3 FIML estimation

FIML estimation consists of finding the parameter values that maximize the likelihood
of the data. The parameters to be estimated are

α;β0, β1, . . . , βJ−1; µ1, µ2, . . . , µJ ; ρ0, ρ1, . . . , ρJ−1; σ0, σ1, . . . , σJ−1

but βj , ρj , and σj do not exist for categories j in which y is missing.

Given the parameters, the likelihood of an observation i in which the category is j
and yi is observed is

Ly
ij ≡ L[yi, j | xi, βj , σj , ρj , α,wi, µj , µj+1]

= L[yi | xi, βj , σj ] Pr[j | yi,xi, βj , σj , ρj , α,wi, µj , µj+1]

=
1

σj
φ (ti)


Φ


α′wi + ρjti − µj√

1 − ρ2
j


 − Φ


α′wi + ρjti − µj+1√

1 − ρ2
j





 (6)

2. In the special case bµj = 0 and bµj+1 = ∞, this simplifies to φ(bz∗i )/Φ(bz∗i ), which Heckman (1979)
called the “inverse Mills’ ratio.”
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where ti ≡ (yi − β′
jxi)/σj , φ is the standard normal density function, and Φ is the

standard normal cumulative distribution function. The derivation uses the fact that if
ε, u are standard bivariate normal with correlation ρ, then the conditional distribution
of u given ε is normal with mean ρε and variance 1 − ρ2.

If j is a category for which y is unspecified, then the likelihood is simply

L·
ij ≡ Φ(α′wi − µj) − Φ(α′wi − µj+1) (7)

We take the logarithm of (6) or (7) to get the log likelihood for observation i, and
since observations are independent we can add the log likelihood across observations to
get the log likelihood for the entire sample:

L ≡
n∑

i=1

{
log Ly

izi
, if yi is observed;

log L·
izi

, if yi is missing
(8)

2.4 Identification problems

If all variables in w are also in x, then the identification of βj is weak because λ̂i in (5)

is a function of ẑ∗i = α̂′wi. Since x and ẑ∗i are collinear, x and λ̂i would be collinear

except for the nonlinearity of the function λ̂i(ẑ
∗
i ). Therefore, the identification of βj

relies on the specific form of the nonlinearity of λ̂i(ẑ
∗
i ), in particular the normality of

ui, which is often a dubious assumption in practice. As noted by Puhani (2000), this is
a well-known problem for Heckman’s original estimator for the probit selection model.

In the ordered-probit selection model, this identification problem is especially bad
for the selection categories 1 ≤ j ≤ J − 1 in the interior of the range of z, for which
both the lower and upper cutoffs µ̂j and µ̂j+1 are finite. As shown in figure 1, λ̂(ẑ∗)
is nearly linear when both cutoffs are finite, even when the cutoffs are relatively far
apart. For smaller categories for which the cutoffs are closer together, the linearity is
even stronger, and in the limit, limbµj+1→bµj

λ̂i = µ̂j − ẑ∗i , which is perfectly linear. The

near-linearity of λ̂(ẑ∗) means that βj is barely identified at all for interior categories j
when w is a subset of x.

Therefore, for the ordered-probit selection model w must contain a variable that is
not in x. That is, the researcher must have at least one instrument for the selection
variable z that has no effect on y except through its effect on z. Such a variable w must
be a significant determinant of z yet satisfy the exclusion restriction Cov(w, εj) = 0 for
all j.

This identification problem under the lack of an exclusion restriction affects both
the two-step and the FIML estimation procedures, as we demonstrate with Monte Carlo
simulations in section 6.6.



172 Ordered-probit selection model

Figure 1: λ̂ as a function of ẑ∗, from (5). From top to bottom: (i) µ̂j = 1, µ̂j+1 = ∞; (ii)

µ̂j = −1, µ̂j+1 = 1; (iii) µ̂j = −∞, µ̂j+1 = −1. Observe that λ̂(ẑ) is clearly nonlinear

in cases (i) and (iii), in which the selection category has one infinite cutoff, but λ̂(ẑ) is
nearly linear for an interior selection category (ii), with both cutoffs finite.

3 Implementation details

FIML estimation of the model is implemented using the fast d2 method for the ml

command. In the d2 method, the log likelihood is computed for each observation,
along with its analytical gradient and Hessian matrix. The log-likelihood function is
maximized using the modified Newton–Raphson algorithm.

For numerical reasons it is easiest for ml to estimate parameters that have domain
(−∞,∞), so we rescale some of the parameters before passing them to ml. We pass
arctanh(ρj) in place of ρj , ln(σj) in place of σj , and ln(δj), where δj ≡ µj − µj−1,
in place of µj . Results are displayed both for the transformed parameters and for the
original parameters.

The initial values passed to ml are obtained using the two-step estimation proce-
dure described in section 2.2. To avoid passing ml infeasible or extreme feasible initial
values, we follow the heckman implementation in censoring the initial ρ̂j into the range
[−0.85, 0.85] for all j.

We estimate a constant term for the second-step equation (2) but not for the first step
(1) since the cutoffs µ1, µ2, . . . , µJ make a constant redundant. As a result, for binary
selection our oheckman command produces results identical to those of the heckman

command, but the output format differs because heckman reports a constant term for the
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first step, whereas oheckman reports a cutoff. This difference in output formats parallels
the difference between the output formats of the probit and oprobit commands.

4 The oheckman command

4.1 Syntax

oheckman depvar
[
=

][
indepvars

] [
if

] [
in

] [
weight

]
,

select(categoryvar
[
=

]
indepvars sel)

[
twostep robust cluster(varname)

level(#) maximize options
]

fweights, pweights, and iweights are allowed, but only if twostep is not specified.

4.2 Options

select(categoryvar
[
=

]
indepvars sel) is required and specifies the categorical variable

z and the independent variables w that determine z through an ordered probit as
in (1).

twostep implements the two-step estimation procedure. The default is to use FIML.

robust computes robust estimates of variance. robust may not be used with twostep.

cluster(varname) adjusts standard errors for intragroup correlation. It implies robust
and may not be used with twostep.

level(#) sets the level for confidence intervals, as a percentage. The default is
level(95) or as set by set level.

maximize options are passed directly to ml and control the maximization process. They
are used only by the FIML algorithm and are rarely needed; see [R] maximize.

4.3 Syntax for predict

predict
[
type

]
newvar

[
if

] [
in

] [
, xbsel xbif(j) mills psel(j)

millsif(j) yif(j)
]

4.4 Options for predict

xbsel computes ẑ∗i = α̂′wi.

xbif(j) calculates β̂′
jxi.
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mills returns λ̂i in (5), the estimate of the expected value of ui given zi and wi. This
approach is the generalization of the Mills’ ratio computed by heckman. However,
unlike heckman, oheckman computes λ̂i for the actual value of the categorical variable
zi, not as if zi were equal to 1. To get behavior similar to that of the mills statistic
for heckman, use millsif().

psel(j) estimates the probability that the categorical variable zi would take on the
value j, using the independent variables wi in the selection equation.

millsif(j) estimates the expected value of ui for each observation by using wi, under
the assumption that the categorical variable zi is equal to j for every observation.

yif(j) estimates the counterfactual ỹj for the given equation j, if all observations were
to switch to category j, but taking into account the category that was actually
chosen. That is,

ỹj = β̂′
jxi + ρ̂j σ̂j λ̂i

with λ̂i calculated as in (5), using the zi actually chosen. This calculation differs

from the ycond postestimation statistic for heckman, which computes λ̂i as if zi = j
for all observations.

4.5 Saved results

In addition to the results returned by ml, the following program-specific results are
saved:

Scalars
e(numeq) # of second-step equations e(ll 0) log likelihood if ρj = 0 for all j

(FIML only)
e(chi2 c) χ2 for test ρj = 0 for all j

(FIML only)
e(p c) p-value for test ρj = 0 for all j

(FIML only)

Macros
e(x sel) selection regressors w e(x reg) second-step regressors x
e(y sel) categorical variable z e(y reg) dependent variable y
e(method) ml or two-step

Matrices
e(cat) unique values of e(y sel) e(cutoffs) estimates bµ1, . . . , bµJ

e(rho) estimates {bρj} e(sigma) estimates {bσj}

5 Example

We illustrate the oheckman command by estimating wage equations in the public,
private, and informal sectors for male workers in India. The categorical variable is
inf prv pub, which takes on the value 1 for a worker in the informal sector, 2 for a
worker in the private sector, and 3 for a worker in the public sector. Log wage is re-
gressed against age, years of education, and a non–Hindu religion dummy. Household
size and marital status dummies are used as extra regressors in the selection equation.
The data come from the 55th round of India’s National Sample Survey.
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. use http://siteresources.worldbank.org/INTPOVRES/Resources/55th_short

. local selvar hhsize married widowed divorced

. local indvar age educ nonhindu

. oheckman log_realwage ‘indvar’ [pw=weight] if sex==1,
> select(inf_prv_pub ‘selvar’ ‘indvar’)
Warning: Two-step initial estimate of rho2 = -.96588101 truncated to +/-.85.

Iteration 0: log pseudolikelihood = -1.787e+08 (not concave)
Iteration 1: log pseudolikelihood = -1.750e+08 (not concave)
Iteration 2: log pseudolikelihood = -1.748e+08

(output omitted )
Iteration 7: log pseudolikelihood = -1.745e+08

Ordered probit selection model Number of obs = 58349
Wald chi2(7) = 10630.71

Log pseudolikelihood = -1.745e+08 Prob > chi2 = 0.0000

Robust
Coef. Std. Err. z P>|z| [95% Conf. Interval]

inf_prv_pub
hhsize -.0142523 .0024162 -5.90 0.000 -.0189879 -.0095166
married .1307387 .0166229 7.86 0.000 .0981584 .163319
widowed -.2637936 .0486937 -5.42 0.000 -.3592316 -.1683556

divorced -.4980634 .1146349 -4.34 0.000 -.7227437 -.2733831
age .0275979 .0007404 37.27 0.000 .0261466 .0290491

educ .2499107 .002549 98.04 0.000 .2449148 .2549066
nonhindu .1049969 .0189047 5.55 0.000 .0679443 .1420495

log_realwa~1
age .0020197 .0003532 5.72 0.000 .0013275 .0027118

educ .0226429 .0016513 13.71 0.000 .0194064 .0258794
nonhindu .1488653 .0106898 13.93 0.000 .1279137 .169817

_cons 5.200081 .0144964 358.72 0.000 5.171668 5.228493

log_realwa~2
age -.002199 .0021025 -1.05 0.296 -.0063198 .0019217

educ -.1520386 .0119005 -12.78 0.000 -.1753631 -.128714
nonhindu -.0391257 .0248368 -1.58 0.115 -.087805 .0095536

_cons 7.718006 .1660724 46.47 0.000 7.39251 8.043502

log_realwa~3
age .0191914 .0014842 12.93 0.000 .0162823 .0221004

educ .082742 .0059923 13.81 0.000 .0709973 .0944867
nonhindu -.0166981 .0233705 -0.71 0.475 -.0625034 .0291073

_cons 5.48088 .136613 40.12 0.000 5.213124 5.748637

/cutoff1 2.767841 .0339927 81.42 0.000 2.701217 2.834465
/lndelta2 -.0922004 .011462 -8.04 0.000 -.1146656 -.0697352
/athrho1 -.1011615 .0159755 -6.33 0.000 -.1324729 -.0698501
/athrho2 -1.280433 .0576339 -22.22 0.000 -1.393393 -1.167473
/athrho3 -.0403424 .0666513 -0.61 0.545 -.1709766 .0902918
/lnsigma1 -.5630402 .0061925 -90.92 0.000 -.5751772 -.5509032
/lnsigma2 .1307919 .0339859 3.85 0.000 .0641807 .1974031
/lnsigma3 -.5955589 .0194662 -30.59 0.000 -.633712 -.5574057
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cutoff1 2.767841 .0339927 2.701217 2.834465
cutoff2 3.679763 .0345111 3.612123 3.747404

rho1 -.1008178 .0158131 -.1317034 -.0697367
rho2 -.8566002 .0153442 -.8839152 -.8234603
rho3 -.0403205 .066543 -.1693298 .0900473

sigma1 .5694751 .0035265 .5626052 .5764289
sigma2 1.139731 .0387348 1.066285 1.218235
sigma3 .5512544 .0107309 .5306185 .5726929

Wald test of indep. eqns. (rho = 0): chi2(3) = 521.08 Prob > chi2 = 0.0000

The Wald test at the end of the output is a test of the null hypothesis ρ1 = ρ2 =
ρ3 = 0. If this hypothesis is true, then OLS is unbiased and there is no need to use a
selection-bias correction model. Here the null hypothesis is strongly rejected.

After fitting the model, we can predict what wages would be in the public and private
sectors. Then we estimate how much each public-sector employee gained by working in
the public sector rather than in the private sector.

. predict public_log_wage if sex==1
(Option xbsel assumed; estimation of latent selection variable)

. predict private_log_wage if sex==1
(Option xbsel assumed; estimation of latent selection variable)

. predict informal_log_wage if sex==1
(Option xbsel assumed; estimation of latent selection variable)

. gen diff = public_log_wage - private_log_wage if sex==1 & inf_prv_pub==3
(62606 missing values generated)

6 Monte Carlo simulations
Many Monte Carlo studies have been done comparing the performance of the two-
step estimator and FIML in the binary selection case considered by Heckman (1979).
Surveying these studies, Puhani (2000) finds that FIML is usually more efficient than the
two-step estimator. In this section, we describe the results of Monte Carlo simulations
for the more general ordered-probit selection model.

6.1 Data-generating process

We generate x1i and x2i as independent standard normal random variables. Shocks ui

and εi are generated as standard bivariate normal with correlation ρ. The selection
process is

z∗i = α1x1i + α2x2i + ui;

zi =





0 if −∞ < z∗i ≤ −1,
1 if −1 < z∗i ≤ 1,
2 if 1 < z∗i < ∞

(9)
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The dependent variable yi is defined by

yi =

{
βx1i + εi if zi = j∗,
. (missing) otherwise

(10)

where j∗ ∈ {0, 1, 2} is a parameter that we vary.

6.2 Baseline specification

Our baseline parameters in (9) and (10) are ρ = 0.5, and α1 = α2 = β = 1. Our
regressors are wi = [x1i x2i]

′ for the selection equation and xi = [x1i] for the main
equation.

We report results for both j∗ = 0 and j∗ = 1. We test the performance of FIML and
the two-step algorithm, as well as simple OLS (regress). We run 1,000 trials of every
experiment, and we use the same datasets across the different methods (table 1).

Table 1: Results from first run

No. of β̂ for j∗ = 0, 95% Conf. β̂ for j∗ = 1, 95% Conf.
Method obs./trial mean (SD) coverage (%) mean (SD) coverage (%)

FIML 1,000 0.9988 (0.0777) 94.8 1.0005 (0.0656) 95.1
Two-step 1,000 0.9989 (0.0797) 94.6 1.0003 (0.0656) 95.2
OLS 1,000 0.8360 (0.0669) 31.8 0.7871 (0.0525) 2.2

FIML 500 1.0000 (0.1097) 94.1 1.0029 (0.0959) 94.3
Two-step 500 1.0014 (0.1133) 93.9 1.0028 (0.0959) 94.2

FIML 300 0.9958 (0.1459) 93.1 0.9996 (0.1201) 94.9
Two-step 300 1.0006 (0.1482) 93.8 0.9989 (0.1197) 95.2

FIML 200 1.0008 (0.1836) 92.9 1.0055 (0.1505) 95.7
Two-step 200 1.0043 (0.1884) 93.7 1.0049 (0.1503) 95.5

FIML 100 0.9923 (0.2836) 89.9 1.0029 (0.2261) 93.0
Two-step 100 0.9957 (0.2738) 92.4 0.9981 (0.2202) 93.9

FIML 50 0.9965 (0.4243) 85.2 1.0436 (0.3442) 91.1
Two-step 50 1.0101 (0.4441) 91.1 1.0174 (0.3217) 93.7

The OLS estimator is clearly biased. FIML is slightly more efficient than the two-step
estimator when j∗ = 0, but FIML is not noticeably better than the two-step estimator
when j∗ = 1. As the sample size gets small, the coverage rate of the confidence intervals
deteriorates, particularly for FIML. Robust confidence intervals for FIML have even worse
coverage (results not shown).
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6.3 High correlation of errors

For this experiment, we set ρ = 0.99 (table 2).

Table 2: Results from second run

No. of β̂ for j∗ = 0, 95% Conf. β̂ for j∗ = 1, 95% Conf.
Method obs./trial mean (SD) coverage (%) mean (SD) coverage (%)

FIML 1,000 0.9992 (0.0500) 95.1 1.0021 (0.0465) 95.6
Two-step 1,000 0.9975 (0.0643) 94.9 1.0023 (0.0535) 95.1
OLS 1,000 0.6734 (0.0573) 0.0 0.5807 (0.0432) 0.0

The relative efficiency of FIML over the two-step method increases with |ρ|. OLS also
becomes more biased as |ρ| increases.

6.4 Multiple equations

An advantage of FIML over the two-step estimator appears to be that FIML uses the value
of yi across all equations when estimating βj for one particular equation j. However,
the feedback across equations is only indirect through the selection-equation parameters
α and {µj}.

To test whether the simultaneous estimation of all equations improves the FIML

estimator, we replace (10) with

yi = βx1i + εi always, regardless of zi

Doing so results in the estimation of three separate equations, for j = 0, 1, and 2.3

We report the estimate β̂ for equation j∗ (table 3), and we report results only for FIML

since the two-step results are the same as in the baseline case.

3. In real applications, βj and/or ρj would vary with j, since otherwise there is no need to use a
selection model. We chose β and ρ to be independent of j for simplicity of presentation, and this choice
has little effect on the simulation results.
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Table 3: Results from third run

No. of β̂ for j∗ = 0, 95% Conf. β̂ for j∗ = 1, 95% Conf.
Method obs./trial mean (SD) coverage (%) mean (SD) coverage (%)

FIML 1,000 0.9988 (0.0778) 94.7 1.0004 (0.0653) 95.3
FIML 500 0.9999 (0.1097) 94.0 1.0026 (0.0960) 94.1
FIML 300 0.9960 (0.1459) 93.1 0.9994 (0.1200) 95.1
FIML 200 1.0013 (0.1837) 93.1 1.0065 (0.1511) 95.2
FIML 100 0.9931 (0.2836) 90.3 1.0042 (0.2301) 92.7
FIML 50 0.9969 (0.4255) 85.2 1.0403 (0.3459) 91.4

Comparing these results to the baseline case shows that including all the equations
results in no noticeable improvement for FIML.

6.5 Nonnormal shocks

We modify the shocks ui, εi to be nonnormal by squaring them (table 4).

Table 4: Results from fourth run

No. of β̂ for j∗ = 0, 95% Conf. β̂ for j∗ = 1, 95% Conf.
Method obs./trial mean (SD) coverage (%) mean (SD) coverage (%)

FIML 1,000 0.9568 (0.1799) 84.2 1.0002 (0.0850) 95.1
Two-step 1,000 0.9956 (0.1437) 94.8 1.0021 (0.0861) 95.0
OLS 1,000 0.9722 (0.1316) 93.8 0.9422 (0.0784) 88.6

For j∗ = 0, the two-step estimator handles the nonnormality well, but FIML is
biased and has poor coverage. FIML makes full use of the assumption of joint normality
of the shocks, so it makes more mistakes when the shocks are not normal. The two-
step estimator is actually consistent even if the second-step shocks εij are not normally
distributed.

For j∗ = 1, both FIML and the two-step estimator handle the nonnormality well,
since the near-linearity of λ̂i in figure 1 (ii) makes FIML nearly equivalent to the two-step
estimator.

6.6 No exclusion restriction

For this experiment, we let wi = [x1i] (and hence α2 = 0), so that there is no exclusion
restriction because wi = xi. As discussed in section 2.4, the identification for β here
depends entirely on the weak nonlinearity of λ̂i, so we expect our estimators to have
some trouble.
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The precision of the two-step estimator can be improved by throwing out trials for
which the estimated ρ̂ is infeasible (|ρ̂| > 1). We report this version of the estimator as
Two-step∗ (table 5).

Table 5: Results from fifth run

No. of β̂ for j∗ = 0, 95% Conf. β̂ for j∗ = 1, 95% Conf.
Method obs./trial mean (SD) coverage (%) mean (SD) coverage (%)

FIML 1,000 0.8784 (0.2916) 79.8 0.7370 (0.5426) 64.8
Two-step 1,000 0.9946 (0.4394) 97.9 1.0768 (2.6304) 95.0
Two-step∗ 1,000 0.9314 (0.3705) 98.0 0.7016 (0.7161) 100.0
OLS 1,000 0.6893 (0.0765) 1.7 0.6342 (0.0519) 0.0

As can be seen from comparing curves (i) and (ii) in figure 1, the nonlinearity of λ̂i

is much weaker for j∗ = 1 than for j∗ = 0, and this explains why the results are much
worse for j∗ = 1.

The FIML estimates are much tighter than the two-step estimates, but they are
biased. Throwing out infeasible estimates greatly improves the precision of the two-
step estimator but introduces bias.

6.7 Exclusion restriction not satisfied

We replace (10) with

yi =

{
βx1i + x2i + εi if zi = j∗,
. (missing) otherwise

so that the exclusion restriction on x2 is not satisfied (table 6).

Table 6: Results from sixth run

No. of β̂ for j∗ = 0, 95% Conf. β̂ for j∗ = 1, 95% Conf.
Method obs./trial mean (SD) coverage (%) mean (SD) coverage (%)

FIML 1,000 0.1350 (0.0805) 0.0 0.0030 (0.0706) 0.0
Two-step 1,000 0.0887 (0.0887) 0.0 −0.0014 (0.0720) 0.0
OLS 1,000 0.5008 (0.0786) 0.0 0.3621 (0.0593) 0.0

The estimates are all tight, yet far from the true β = 1. This finding highlights the
importance of having a valid exclusion restriction.
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6.8 Weak instrument

We change α2 = 0, so that the instrument x2 used for identification is invalid. How-
ever, identification can still be achieved with x1 alone because of nonlinearity, but this
nonlinearity is weak, as discussed in section 2.4 (table 7).

Table 7: Results from seventh run

No. of β̂ for j∗ = 0, 95% Conf. β̂ for j∗ = 1, 95% Conf.
Method obs./trial mean (SD) coverage (%) mean (SD) coverage (%)

FIML 1,000 0.8794 (0.2925) 79.7 0.6902 (0.5411) 62.0
Two-step 1,000 0.9770 (0.4198) 97.4 1.7948 (1.6622) 98.9
Two-step∗ 1,000 0.9233 (0.3590) 97.4 0.6775 (0.6477) 99.5
OLS 1,000 0.6893 (0.0765) 1.7 0.6342 (0.0519) 0.0

These results are similar to those for no exclusion restriction, which makes sense
since in both cases the identification comes only from x1.

6.9 Summary

The FIML estimator is slightly more efficient than the two-step estimator when the data
exactly meet the model specifications and especially when |ρ| is high. However, the
FIML confidence intervals have poor coverage rates for small sample sizes, and FIML

performs poorly when the shocks are not normal. Therefore, the two-step estimator is
more robust and appears to be the better choice for almost all practical applications.

Both estimators perform poorly when there is no exclusion restriction imposed or
when the exclusion restriction is not satisfied.
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