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Abstract. This paper derives unbalanced versions of the test statistics for first-
order serial correlation and random individual effects summarized in Sosa-Escudero
and Bera (2001, Stata Technical Bulletin Reprints, vol. 10, pp. 307–311), and up-
dates their xttest1 routine. The derived test statistics should be useful for applied
researchers faced with the increasing availability of panel information where not
every individual or country is observed for the full time span. The test statis-
tics proposed here are based on ordinary least-squares residuals and hence are
computationally very simple.
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1 Introduction

A standard specification check that accompanies the output of almost every estimated
error-components model is a simple test for the presence of random individual effects.
The well-known Breusch–Pagan statistic (Breusch and Pagan 1980), based on the Rao-
score (RS) principle, is a frequent choice. Bera, Sosa-Escudero, and Yoon (2001) demon-
strated that, in the presence of first-order serial correlation, the test too often rejects
the correct null hypothesis of no random effects. Consequently, they propose a modified
version that is not affected by the presence of local serial correlation. A similar con-
cern affects the standard test for first-order serial correlation derived by Baltagi and Li
(1991), which overrejects the true null hypothesis when random effects are present.
For this case, an adjusted RS test was also derived by Bera, Sosa-Escudero, and Yoon
(2001). These test statistics, along with their xttest1 routine in Stata and some em-
pirical illustrations, are presented in Sosa-Escudero and Bera (2001). For a textbook
exposition, see Baltagi (2005, 96–97).

These test procedures were originally derived for the balanced case, that is, in the
panel-data terminology, the case where all individuals are observed for the same number
of periods, and in every period all individuals are observed. On the other hand, in
applied work the availability of unbalanced panels is far from being an uncommon
situation. Though in some cases statistical procedures designed for the balanced case
can be straightforwardly extended to accommodate unbalanced panels, many estimation
or test procedures require less trivial modifications.
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Baltagi and Li (1990) derived an unbalanced version of the Breusch–Pagan statistic.
The purpose of this paper is to derive unbalanced versions of the test for first-order
serial correlation originally proposed by Baltagi and Li (1991) and of the modified tests
proposed by Bera, Sosa-Escudero, and Yoon (2001). As a simple extension, we also
derive an unbalanced version of the joint test of serial correlation and random effects
proposed by Baltagi and Li (1991). The derived test statistics, being based on ordinary
least-squares residuals after pooled estimation, are computationally very simple. Finally,
the Sosa-Escudero and Bera (2001) xttest1 routine is appropriately updated to handle
unbalanced panels.

2 Tests for the unbalanced case

Consider a simple linear model for panel data allowing for the presence of random
individual effects and first-order serial correlation:

yit = x′itβ + uit

uit = μi + νit

νit = λνi,t−1 + εit, |λ| < 1

where xit is a k × 1 vector of explanatory variables with 1 in its first position, β is a
k × 1 vector of parameters including an intercept, μi ∼ N(0, σ2

μ), and εit ∼ N(0, σ2
ε ).

We will assume νi,0 ∼ N
{
0, σ2

ε /(1 − λ2)
}
.

We will be interested in testing for the absence of random effects (H0 : σ2
μ = 0)

and/or first-order serial correlation (H0 : λ = 0). The panel will be unbalanced in
the sense that for every individual i = 1, . . . , N we will observe, possibly, a different
number of time observations Ti. We will restrict the analysis to the cases where missing
observations occur either at the beginning or at the end of the sample period for each
individual (that is, there are no “gaps” in the series), and the starting and final periods
are determined randomly. Hence, without loss of generality and to avoid complicating
the notation too much, we can safely assume that the series for each individual starts
at the same period (t = 1) and finish randomly at period t = Ti.

Let m =
∑N
i=1 Ti be the total number of observations. Let u be an m × 1 vector

with typical element uit where observations are sorted first by individuals and then by
time, so the time index is the faster one. Then in our setup, V (u) ≡ Ω can be written
as

V (u) = σ2
μH̃ + σ2

ε Ṽ

where H̃ is an m×m block diagonal matrix with blocks Hi equal to matrices of ones,
each with dimensions Ti × Ti. Similarly, Ṽ will be a block diagonal m×m matrix with
blocks Vi equal to
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Vi =

⎡⎢⎢⎢⎣
1 λ λ2 · · · λTi−1

λ 1 λ · · · λTi−2

...
...

...
...

λTi−1 λTi−2 λTi−3 · · · 1

⎤⎥⎥⎥⎦
For the purpose of deriving the test statistics, the log-likelihood function will be

L(β, λ, σ2
ε , σ

2
μ) = constant − 1

2
log |Ω| − 1

2
u′Ω−1u

The information matrix for this problem is known to be block diagonal between
β and the remaining parameters. Therefore, for the purposes of this paper, we will
concentrate only on the parameters λ, σ2

μ, and σ2
ε . Under a more general setup, suppose

the log likelihood can be characterized by a three-parameter vector θ = (ψ, φ, γ)′. Let
d(θ) be the score vector and J(θ) the information matrix. If it can be assumed that
φ = 0, the standard Rao-score (RS) test statistic for the null hypothesis H0 : ψ = 0 is
given by

RSψ = dψ(θ̂)J−1
ψ·γ(θ̂)dψ(θ̂) (1)

where dψ is the element of the score corresponding to the parameter ψ, Jψ·γ(θ) =
Jψ − JψγJ

−1
γ Jγψ, and θ̂ is the maximum likelihood estimator (MLE) of θ under the

restriction implied by the null hypothesis and the assumption φ = 0. Asymptotically,
this test statistic under the null hypothesis H0: ψ = 0 is known to have a central chi-
squared distribution. In the context of our error-components model, if γ = σ2

ε and if we
set ψ = σ2

μ and φ = λ, (1) is a test for random effects assuming no serial correlation;
and if we set ψ = λ and φ = σ2

μ, (1) gives a test for serial correlation assuming no
random effects. The standard Breusch–Pagan test for random effects (assuming no
serial correlation) and the Baltagi–Li test for first-order serial correlation (assuming no
random effects) are derived from this principle.

Bera and Yoon (1993) showed that the test statistic (1) is invalid when φ �= 0, in
the sense that the test tends to reject the null hypothesis too frequently even when it is
correct. More specifically, the RSψ statistic is found to have an asymptotic noncentral
chi-squared distribution under H0 : ψ = 0, when φ = δ/

√
n, that is, when the alternative

is locally misspecified. In particular, this implies that when the null is correct, the
Breusch–Pagan test tends to reject the true null of absence of random effects if the
error term is serially correlated, even in a local sense. A similar situation arises for
the test for serial correlation of Baltagi and Li (1991) in the local presence of random
effects. In order to remedy this problem, Bera and Yoon (1993) proposed the following
modified RS statistic:
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RS∗
ψ =

1
n

{
dψ(θ̂) − Jψφ·γ(θ̂)J−1

φ·γ(θ̂)dφ(θ̂)
}′

{
Jψ·γ(θ̂) − Jψφ·γ(θ̂)J−1

φ·γ(θ̂)Jφψ·γ(θ̂)
}−1{

dψ(θ̂) − Jψφ·γ(θ̂)J−1
φ·γ(θ̂)dφ(θ̂)

}
(2)

where θ̂ is the MLE of θ under the joint null ψ = φ = 0. This modified test statistic has
an asymptotic central χ2

1 distribution under the null hypothesisH0 : ψ = 0 and when φ =
δ/
√
n, that is, the modified test statistic has the correct size even when the underlying

model is locally misspecified. Based on this principle, Bera, Sosa-Escudero, and Yoon
(2001) derived modified tests for random effects (serial correlation), which are valid in
the presence of local first-order serial correlation (random effects) assuming that the
panel is balanced.

To derive tests for the unbalanced case, let θ = (λ, σ2
μ, σ

2
ε )

′ and θ̂ = (0, 0, σ̂2
ε )

′ be the
MLE of θ under the joint null hypothesis H0 : λ = σ2

μ = 0. The following formula by
Hemmerle and Hartley (1973) will be useful to derive the score vector for the problem:

dθr
≡ ∂L

∂θr
= −1

2
tr

(
Ω−1 ∂Ω

∂θr

)
+

1
2

(
u′Ω−1 ∂Ω

∂θr
Ω−1u

)
(3)

where θr denotes the rth element of θ, r = 1, 2, 3. Note that ∂Ω/∂σ2
μ = H̃ with

tr(H̃) = m. Similarly, ∂Ω/∂σ2
ε = Ṽ , which under the restricted MLE is an m × m

identity matrix with trace equal to m. Also ∂Ω/∂λ = σ2
ε G̃, where G̃ is a block diagonal

matrix with blocks equal to Gi, with Gi = ∂Vi/∂λ given by

Gi =

⎡⎢⎢⎢⎢⎢⎢⎣

0 1 2λ · · · (Ti − 1)λTi−2

1 0 1 · · · (Ti − 2)λTi−3

...
...

...
...

...
... 1 0 1

(Ti − 1)λTi−2 · · · · · · 1 0

⎤⎥⎥⎥⎥⎥⎥⎦
Under the restricted MLE, Gi is a bidiagonal matrix as follows:

Gi(θ̂) =

⎡⎢⎢⎢⎢⎢⎣
0 1 0 · · · 0
1 0 1 · · · 0
...

...
...

...
...

0 · · · 1 0 1
0 · · · · · · 1 0

⎤⎥⎥⎥⎥⎥⎦
Hence, tr

{
Gi(θ̂)

}
= 0. Replacing these results in (3) and evaluating the expression

under the restricted MLE, we obtain
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dσ2
μ
(θ̂) = −1

2
tr

(
1
σ̂2
ε

ImH̃

)
+

1
2
e′

1
σ̂2
ε

ImH̃
1
σ̂2
ε

e

= −1
2

1
σ̂2
ε

m+
1
2

1
σ̂4
ε

e′H̃e = −m

σ̂2
ε

A

where e is an m× 1 vector with typical element eit = x′itβ̂, and β̂ is the restricted MLE

of β. Similarly, σ̂2
ε = e′e/m is the restricted MLE of σ2

ε , and A ≡ 1 − e′H̃e/(e′e). In a
similar fashion,

dλ(θ̂) = −1
2
tr

{
1
σ̂2
ε

σ̂2
ε G̃(θ̂)

}
+

1
2
2

1
σ̂2
ε

e′G̃(θ̂)e

=
1
σ̂2
ε

e′G̃(θ̂) e = m B

where B ≡ e′G̃e/e′e.

To derive the elements of the information matrix, we will use the following formula
from Baltagi (2005, 59–60):

Jr,s(θ) = E

(
− ∂2L

∂θr∂θs

)
=

1
2
tr

(
Ω−1 ∂Ω

∂θr
Ω−1 ∂Ω

∂θs

)
Then

Jσ2
ε ,σ

2
ε
(θ̂) =

1
2
tr

{
1
σ̂2
ε

Ṽ (θ̂)
1
σ̂2
ε

Ṽ (θ̂)
}

=
1
2
tr

(
1
σ̂4
ε

Im

)
=

m

2σ̂4
ε

Jσ̂2
μ,σ̂

2
μ
(θ̂) =

1
2
tr

(
1
σ̂2
ε

H̃
1
σ̂2
ε

H̃

)
=

1
2

1
σ̂4
ε

tr
(
H̃H̃

)
=

∑N
i=1 T

2
i

2σ̂4
ε

Jλ,λ(θ̂) =
1
2
tr

{
1
σ̂2
ε

σ̂2
ε G̃(θ̂)

1
σ̂2
ε

σ̂2
ε G̃(θ̂)

}
=

1
2
tr

{
G̃(θ̂)G̃(θ̂)

}
=

1
2

N∑
i=1

2(Ti − 1) = m−N

Jσ̂2
ε ,σ̂

2
μ
(θ̂) =

1
2
tr

{
1
σ̂2
ε

Ṽ (θ̂)
1
σ̂2
ε

Ṽ (θ̂)
}

=
1
2

1
σ̂4
ε

tr
(
H̃

)
=

m

2σ̂4
ε

Jσ̂2
ε ,λ

(θ̂) =
1
2
tr

{
1
σ̂2
ε

Ṽ (θ̂)
1
σ̂2
ε

G̃(θ̂)
}

=
1
2

1
σ̂4
ε

tr
{
G̃(θ̂)

}
= 0

Jλ,σ̂2
μ
(θ̂) =

1
2
tr

{
1
σ̂2
ε

σ̂2
ε G̃(θ̂)

1
σ̂2
ε

H̃

}
=

1
2

1
σ̂2
ε

tr
{
G̃(θ̂)H̃

}
=

1
2

2
σ̂2
ε

( N∑
i=1

Ti −N

)
=

1
σ̂2
ε

(m−N)
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where we have used the facts that tr
{
G̃i(θ̂)G̃i(θ̂)

}
= tr

{
G̃i(θ̂)H̃i

}
= 2(Ti − 1), and

tr(H̃iH̃i) = T 2
i .

Collecting all the elements, the information matrix evaluated at the restricted MLE

under the joint null can be expressed as

J(θ̂) =
1

2σ̂4
ε

⎡⎣ m m 0
m a 2σ̂2

ε (m−N)
0 2σ̂2

ε (m−N) 2σ̂4
ε (m−N)

⎤⎦
where a ≡ ∑N

i=1 T
2
i . For the balanced case Ti = T , we get exactly the same expression

for J(θ̂) as in Baltagi and Li (1991, 279). From the above expression of J(θ̂), we can
show that

Jμλ·σ2
ε

=
m−N

σ̂2
ε

Jμ·σ2
ε

=
a−m

2σ̂4
ε

Jλ·σ2
ε

= m−N

Substituting these results in (2), we obtain the unbalanced version of the modified
test for random effects as

RS∗
μ =

m2 (A+ 2B)2

2 (a− 3m+ 2N)

When Ti = T (the balanced case), the above expression boils down to

RS∗
μ =

NT (A+ 2B)2

2(T − 1) {1 − (2/T )}
as in Bera, Sosa-Escudero, and Yoon (2001) for the balanced case.

Similarly, the modified test statistic for serial correlation is

RS∗
λ =

(
B +

m−N

a−m
A

)2 (a−m)m2

(m−N)(a− 3m+ 2N)

and when Ti = T , we get

RS∗
λ =

(
B +

A

T

)2
NT 2

(T − 1)(1 − 2/T )

which is the expression in Bera, Sosa-Escudero, and Yoon (2001) for the balanced case.
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For computational purposes, it is interesting to see that

A = 1 −
∑N
i=1

(∑Ti

t=1 e
2
it

)2

∑N
i=1

∑Ti

t=1 e
2
it

and

B =
∑N
i=1

∑Ti

t=2 ei,tei,t−1∑N
i=1

∑Ti

t=1 e
2
it

and, therefore, there is no need to construct the G̃ or H̃ matrices; hence, the test
statistics can be easily computed right after ordinary least-squares estimation without
constructing any matrices.

The previous derivations allow us to obtain the unbalanced version of the test for
serial correlation assuming no random effects:

RSλ =
m2B2

m−N

which again reduces to NT 2B2/(T − 1), originally derived by Baltagi and Li (1991) for
balanced panels. Also, for completeness, the unbalanced version of the test for random
effects assuming no serial correlation is given by

RSμ =
1
2m

2A2

a−m

This test statistic is a particular case of the Baltagi–Li test for the two-way error-
components model.

Suppose that we are interested in the joint null hypothesis of no random effects and
no first-order serial correlation. Let RSφ,ψ be the RS test statistic for the joint null
hypothesis H0 : φ = ψ = 0. Bera and Yoon (2001) show that the following identities
hold:

RSφψ = RS∗
ψ + RSφ = RS∗

φ + RSψ

This simplifies computations, as illustrated in Sosa-Escudero and Bera (2001). Then,
as a simple byproduct of the previous derivations, we can obtain a statistic for jointly
testing serial correlation and random effects, as

RSλμ = m2

{
A2 + 4AB + 4B2

2(a− 3m+ 2N)
+

B2

m−N

}
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When Ti = T , RSλμ simplifies to

RSλμ =
NT 2

2(T − 1)(T − 2)
(
A2 + 4AB + 2TB2

)
which is the original joint test statistic of Baltagi and Li (1991).

Finally, because σ2
μ ≥ 0, it is natural to consider one-sided versions of the tests for

the null H0 : σ2
μ = 0. As in Bera, Sosa-Escudero, and Yoon (2001), appropriate test

statistics can be readily constructed by taking the signed square roots of the original
two-sided tests RSμ and RS∗

μ. Denoting their one-sided versions, respectively, as RSOμ

and RSO∗
μ, we have

RSOμ = −
√

1
2 m

2

a−m
A

and

RSO∗
μ = −

√
m2

2 (a− 3m+ 2N)
(A+ 2B)

3 Empirical illustration

As an illustration of these procedures, we provide an empirical exercise that is based on
Gasparini, Marchionni, and Sosa-Escudero (2001). It consists of a simple linear panel-
data model where the dependent variable is the Gini coefficient for 17 regions of Ar-
gentina. The vector of explanatory variables includes mean income and its square (ie
and ie2); proportion of the population employed in the manufacturing industry (indus)
and in public administration, health, or education (adpubedsal); unemployment rate
(desempleo); activity rate (tactiv); public investment as percentage of GDP (invipib);
degree of openness (apertura); social assistance (pyas4); proportion of population older
than 64 (e64); proportion of population that completed high school (supc); and average
family size (tamfam); for details see Gasparini, Marchionni, and Sosa-Escudero (2001).
Models of this type have been used extensively in the literature exploring the links be-
tween inequality and development, usually to study the so-called “Kuznets hypothesis”,
which postulates an inverted U -shaped relationship between these two variables (for
example, see Anand and Kanbur [1993] and Gustafsson and Johansson [1999]).

Income-related variables, including the Gini coefficients, are constructed using Ar-
gentina’s Permanent Household Survey (Encuesta Permamente de Hogares), which sur-
veys several socioeconomic variables at the household level for several regions of the
country. Because of certain administrative deficiencies, the panel is largely unbalanced,
so the number of available temporal observations ranges from 5 to 8 years in the period
1992–2000.
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First, we tsset the data and then use xtreg to estimate the parameters of a one-way
error-components model with region-specific random effects:

. use ginipanel5

. tsset naglo ano
panel variable: naglo (unbalanced)
time variable: ano, 1992 to 2000, but with a gap

delta: 1 unit

. xtreg gini ie ie2 indus adpubedsal desempleo tactiv invipib apertura pyas4
> e64 supc tamfam, re i(naglo)

Random-effects GLS regression Number of obs = 128
Group variable: naglo Number of groups = 17

R-sq: within = 0.5096 Obs per group: min = 6
between = 0.6153 avg = 7.5
overall = 0.5344 max = 8

Random effects u_i ~ Gaussian Wald chi2(12) = 121.30
corr(u_i, X) = 0 (assumed) Prob > chi2 = 0.0000

gini Coef. Std. Err. z P>|z| [95% Conf. Interval]

ie -.0000995 .0001823 -0.55 0.585 -.0004568 .0002578
ie2 1.64e-08 2.19e-07 0.08 0.940 -4.12e-07 4.45e-07

indus -.041974 .0704982 -0.60 0.552 -.1801478 .0961999
adpubedsal -.0635789 .0531777 -1.20 0.232 -.1678053 .0406475
desempleo -.1177452 .0638999 -1.84 0.065 -.2429868 .0074963

tactiv .0999584 .0737997 1.35 0.176 -.0446864 .2446031
invipib -.3307239 .1912258 -1.73 0.084 -.7055197 .0440718

apertura .4289793 .0768693 5.58 0.000 .2783183 .5796404
pyas4 2.884162 1.626136 1.77 0.076 -.3030061 6.071331

e64 -.1339182 .1505384 -0.89 0.374 -.4289681 .1611316
supc .2417907 .0946423 2.55 0.011 .0562952 .4272861

tamfam .0169905 .0174328 0.97 0.330 -.0171771 .0511581
_cons .3084864 .1031351 2.99 0.003 .1063453 .5106274

sigma_u .01370805
sigma_e .01377936

rho .49740589 (fraction of variance due to u_i)
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Next the command xttest1 with the unadjusted option presents the following
output:

. xttest1, unadjusted

Tests for the error component model:

gini[naglo,t] = Xb + u[naglo] + v[naglo,t]
v[naglo,t] = lambda v[naglo,(t-1)] + e[naglo,t]

Estimated results:
Var sd = sqrt(Var)

gini .0006167 .0248335
e .0001899 .01377936
u .0001879 .01370805

Tests:
Random Effects, Two Sided:
LM(Var(u)=0) = 13.50 Pr>chi2(1) = 0.0002
ALM(Var(u)=0) = 6.03 Pr>chi2(1) = 0.0141

Random Effects, One Sided:
LM(Var(u)=0) = 3.67 Pr>N(0,1) = 0.0001
ALM(Var(u)=0) = 2.46 Pr>N(0,1) = 0.0070

Serial Correlation:
LM(lambda=0) = 9.32 Pr>chi2(1) = 0.0023
ALM(lambda=0) = 1.86 Pr>chi2(1) = 0.1732

Joint Test:
LM(Var(u)=0,lambda=0) = 15.35 Pr>chi2(2) = 0.0005

The unadjusted version of the tests for random effects (LM(Var(u)=0)) and serial
correlation (LM(lambda=0)), and the test for the joint null (LM(Var(u)=0,lambda=0))
suggest rejecting their nulls at the 5% significance level. Care must be taken in deriving
conclusions about the direction of the misspecification because, in light of the results
in Bera, Sosa-Escudero, and Yoon (2001), rejections may arise because of the presence
of random effects, serial correlation, or both. To explore the possible nature of the
misspecification, we restore the modified versions of the test. The adjusted version of
the test for serial correlation ALM(lambda=0) now fails to reject the null hypothesis
while the adjusted version of the test for random effects ALM(Var(u)=0) still does. This
suggests that the possible misspecification is likely due to the presence of random effects
rather than the serial correlation. Consequently, and to stress the main usefulness of
these procedures, in this example the presence of the random effects seems to confound
the unadjusted test for serial correlation, making it spuriously reject its null.
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