The Stata Journal (2008)
8, Number 2, pp. 255-268

Mata Matters: Overflow, underflow and the
IEEE floating-point format

Jean Marie Linhart
StataCorp
College Station, TX
jlinhart@stata.com

Abstract. Mata is Stata’s matrix language. The Mata Matters column shows how
Mata can be used interactively to solve problems and as a programming language
to add new features to Stata. In this quarter’s column, we investigate underflow
and overflow and then delve into the details of how floating-point numbers are
stored in the IEEE 754 floating-point standard. We show how to test for overflow
and underflow. We demonstrate how to use the %21x format to see underflow
and the %16H, %16L, %8H, and %8L formats for displaying the byte content of
doubles and floats.

Keywords: pr0038, underflow, overflow, denormalized number, normalized num-
ber, subnormal number, double precision, missing values, IEEE 754, format, binary,
hexadecimal

1 Introduction

The subject of this quarter’s column is overflow and underflow.

Overflow occurs when numbers exceed the maximum value that can be represented
in the chosen numeric representation, say, double. In Mata (and Stata), when overflow
occurs the result returned is a missing value. maxdouble() is a function that returns
the maximum value that can be stored. Anything larger than maxdouble () is missing.

: maxdouble()
8.9885e+307

: maxdouble () *4

Overflow also occurs when negative numbers exceed the maximum negative value
that can be represented. mindouble() returns the largest negative value that can be
stored. Anything smaller than mindouble () is missing.

: mindouble()

-1.7977e+308
: mindouble()*4

© 2008 StataCorp LP pr0038




256 Mata Matters: Overflow and underflow

Underflow occurs when small nonzero values (positive or negative) become too small:

: 27-1022
2.2251e-308
: 27-1023
0

In this case, the underflow caused a zero to be returned. Underflow is more compli-
cated than overflow because it comes in two forms, gradual and abrupt. The example
above is abrupt underflow. The two forms will be discussed in section 2.

Along the way, we are also going to discuss how floating-point numbers are repre-
sented on modern digital computers, IEEE standard 754, established by IEEE (1985). We
will also discuss Stata’s and Mata’s missing values and discuss the hexadecimal display
formats %21x, %16H, %16L, %8H, and %8L.

This may seem arcane, but underflow recently appeared on Statalist in a question
from Joseph Coveney, who was translating CHYPER code (Shea 1989) from Fortran-77
(using abrupt underflow) into Mata (using gradual underflow).

2 Overflow and underflow

Overflow occurs when a number is too big to be represented. An IEEE double-precision
computer will assign these numbers to infinity (IEEE 1985), and Stata takes these num-
bers and assigns them to missing. In Stata or Mata, you can test for overflow simply
by checking to see if you have a missing value. For example,

: if (missing(x)) { ... }

maxdouble () returns the maximum positive value that can be stored in Stata. Values
greater than maxdouble () are assigned to missing. Likewise, mindouble () is the largest
negative value that can be stored in Stata, and values smaller than mindouble() are
assigned to missing.

It would be natural to assume that mindouble () = —maxdouble (), but this is not
S0.

: maxdouble()
8.9885e+307

: mindouble()
-1.7977e+308

: —2xmaxdouble ()
-1.7977e+308

This asymmetry is explained in section 6.

Underflow occurs when a number is too small to be represented with full precision.
Underflow can result in a number that is lacking full precision, or it can get mapped to
zero. Gradual underflow stores numbers with less than full precision. Abrupt underflow
jumps to zero. The example in section 1 is abrupt underflow. It is hard to “see” gradual
underflow since the results are just numbers:




J. M. Linhart 257

: 1/maxdouble ()
1.1125e-308

1/maxdouble() results in a gradual underflow. One way to see this is by comparing
1/maxdouble() with smallestdouble(). In Mata (and Stata), smallestdouble()
returns the smallest full-precision double-precision number. Any number smaller in
magnitude than smallestdouble() does not have full precision.

: x = 1/maxdouble()

: smallestdouble()
2.2251e-308

: if (abs(x) < smallestdouble()) {
> printf ("Underflow!\n")

>}

Underflow!

This is how to check for underflow. Above we compared abs(x) and smallestdouble().
This check for underflow will work if x is positive or negative and whether the underflow
is abrupt or gradual.

Gradual underflow results in very small numbers with less than full precision. These
numbers are called subnormal or denormalized numbers, in contrast with full-precision
numbers, which are called normalized numbers. Subnormal or denormalized numbers
fill in a gap on a logarithmic scale between zero and the smallest full-precision number.
Otherwise, there is a large gap around zero as seen on a logarithmic scale. The preci-
sion of subnormal or denormalized numbers depends on the magnitude of the number,
whereas all normalized numbers have precision to 1 part in 2°2. Each normalized num-
ber has 52 binary (base 2) digits; the precision is derived from this. This precision is
approximately 16 decimal (base 10) digits. We will discuss normalized and denormalized
numbers in more detail in section 6.

The adoption of gradual underflow caused a controversy largely because of fears
it would degrade performance of floating-point processors. Severance (1998) explains
this controversy in the story of the creation of the IEEE 754 floating-point standard.
Degradation of performance turned out not to be a problem, however; Fortran and C
both allow a flush to zero mode to force abrupt underflow.

[Technical note

In Stata and Mata, smallestdouble() returns the smallest full-precision double-
precision number. The smallestdouble() function returns a value of approximately
2.2251e—308, or, in Stata’s %21x format, exactly +1.0000000000000X —3fe (see section 3
for instructions on reading this number). In addition, the value smallestdouble is in
Stata’s creturn list. The smallest full-precision double is 271022,

This value was recently corrected in Mata and added to Stata; the previous value
was + 1. H{X —3fe or approximately 4.4501e—308 (twice as large).

For those using Stata 9, here is a work-around for calculating an exact value of 271022,

Calculating 271922 directly yields a very good approximation, not the exact value. The




258 Mata Matters: Overflow and underflow

best way to calculate the smallest full-precision double in Mata is via repeated division
in a loop.

: smdoub = 1

: for(i=1; i < 1023; i++){
> smdoub = smdoub/2
>}

: smdoub
2.2251e-308

Once the smallest full-precision double is obtained, you can test for underflow by
testing for values between it and zero, for example,

: if (abs(x) < smdoub) { ... }

[Technical note

Whether you use new or old Stata, it is helpful to compare the value of smdoub,
calculated in the previous technical note by repeated division, and the value obtained
from exponentiation. Results are not the same, but they are close.

: smdoub_approx = 27-1022

: (smdoub_approx - smdoub)/smdoub
2.7533be-14

The value from repeated division is better.

Exponentiation is implemented via an internal function called pow() where 2% =
pow(2,3). Calculations with small integer exponents are achieved via direct multiplica-
tion, but large integer and noninteger exponents are calculated by use of the exponential
function exp() and the logarithm function log(), for example, 271022 = pow(2, —1022) =
exp{—1022 x log(2)}. Both log() and exp() are very accurate, but neither is perfectly
accurate.

1

3 The best way to display underflow: the %21x format

Stata’s best tool for visualizing double-precision numbers is the %21x or hexadecimal
format, which was discussed in Cox (2006). This format displays the full content of a
double-precision number, not an approximation like the %f and %g formats do. The
%21x format is similar to scientific notation. The %21x format was created for Stata
by William Gould and first appeared in Stata release 8 in January 2003.

The digits in %21x format are base 16 called hexadecimal, so the digits are 0-9
plus the letters a—f to represent digits 10—15. Below we use a subscript of z to indicate
integer and floating-point numbers in hexadecimal format. Here are a few translations
of numbers from hexadecimal to base 10.




J. M. Linhart 259

10, = 16
100, = 16% = 256
1b, =1x 16 +11 =27
2l.ae, =2 x 161 + 1410 x 1671 4+ 14 x 1672 = 33.6796875
1.832, =1 +8x 1671 +3 x 1672 +2 x 1672 = 1.51220703125

The %21x format decodes the bytes of a double-precision number to display its
mantissa and exponent. In the example above, the mantissa is a binary or hexadecimal
number like 1.832,; it has single digit before the point, usually a one. The exponent
indicates a power of two, not a power of 10 and not a power of 16.

If we display 271922 in %21x format, we get +1.0000000000000X —3fe, which is 1 x
g-3fe. — 9—(3x266+15x16+14) _ 9—1022 A capital X is used in %21x format to indicate
that digits are in hexadecimal.

Translating from %21x format to a base-10 number is straightforward. One trans-
lates the hexadecimal floating-point number, then multiplies it by the appropriate power
of two; for example, —1.4400000000000X+003 is

—(144x1671 +4x1672) x 28 = —1.265625 x 8 = —10.125

The %21x format makes it easy to tell which numbers have full precision. All full-
precision numbers start with 1 in front of the floating point. Numbers with less than full
precision have a 0 in front of the floating point. Full-precision numbers or normalized
numbers have 13 hexadecimal digits after the floating point, which is a precision of one
part in 16'3 or, equivalently, 1 part in 2°2. Subnormal numbers have less than full
precision, start with zero, and their precision depends on the first nonzero digit of the
number. Earlier we noted that the result of 1/maxdouble () was an underflow; the result
of the calculation is a subnormal or denormalized number. Let’s take a look:

¢ printf("%21x", 1/maxdouble())
+0.8000000000000X-3ff

The leading zero tells us this is a subnormal number. The exponent is —3ff, = —1023; all
numbers with this exponent are either zero or denormalized, as we will see in section 6.

Let’s look at the smallest denormalized number. We can see that it is the smallest
by the leading zeros.

: smallestdouble()/(2752)
4.9407e-324

: printf("%21x\n", smallestdouble()/(2°52))
+0.0000000000001X-3ff




260 Mata Matters: Overflow and underflow

We can see the difference between a double and a float easily in %21x format as
well. Here the constant 7 is displayed in %21x format, and the constant 7 rounded to
the nearest single-precision floating-point value.

: printf ("%21x\n", pi())
+1.921fb54442d18X+001

: printf("%21x\n", floatround(pi()))
+1.921fb60000000X+001

Single-precision numbers have Os for the final 7 hexadecimal digits of their mantissa.

Stata and Mata have four other formats for displaying double- and single-precision
numbers in the form the computer stores them; %16H and %16L display double-
precision numbers and %8H and %8L display single-precision numbers. These four
formats display the raw byte content of the number; %21x has the same information
but it first translates the bytes into a form similar to scientific notation. The H in %16H
and %8H format indicates the bytes that make up the number that will be displayed
in hilo ordering (highest order or most significant byte to lowest order or least signif-
icant byte), and the L in %16L and %8L format indicates the bytes will be displayed
in lohi ordering (lowest order byte to highest order byte). Each byte is represented
by two hexadecimal digits. Unlike %21x format, in these formats there is no simple
observational test to tell whether the number is positive or negative, much less to tell
whether it is normalized or denormalized. To better understand these formats and the
internal representation of numbers, read sections 5 and 6 on binary floating point and
IEEE floating-point numbers as well as section 7 on the formats.

[Technical note

In the technical notes in section 2, we saw how to compute the smallest full-precision
double by repeated division. We named our result smdoub. We also calculated 271022
and called this result smdoub_approx. We asserted that repeated division got the better
result. Using the %21x format, we can see this:

: smdoub
2.2251e-308

: smdoub_approx
2.2251e-308

: printf ("%21x\n", smdoub)
+1.0000000000000X-3fe

: printf("%21x\n", smdoub_approx)
+1.000000000007cX-3fe

Note the noise 7c before the X in the %21x display of smdoub_approx.

4 Precision protection

In Mata, numbers are stored and calculations are performed in double precision. On
the other hand, data in Stata are usually stored in single precision, but calculations are




J. M. Linhart 261

done in double precision. Single-precision floating-point values have precision to 1 part
in 222 or approximately 7 decimal digits, which is more than enough for recording most
statistical data. Calculations are done in double precision to provide a buffer against
precision problems of all varieties, including overflow and underflow and mundane preci-
sion problems that may occur in addition or subtraction. Double precision has precision
to 1 part in 2% or approximately 16 decimal digits.

Single-precision numbers are stored in 4 bytes (32 bits). Double-precision numbers
are stored in 8 bytes (64 bits).

Computer hardware offers another layer of protection against precision problems.
Registers on computer chips are at a higher precision than even double precision, 80
bits versus 64 bits, called extended double precision. Calculation takes place at this
higher precision and periodically results are rounded and saved in double precision.
Different hardware and software can get different results if the rounding due to saving
to double precision occurs at different times in the calculation.

Rarely is single precision insufficient for data storage. One case occurs when a 9-
digit U.S. Social Security number is used as an identifier. Nine decimal digits cannot
be exactly recorded in single-precision floating point. Social Security numbers must be
stored as longs, doubles, or strings.

Denormalized numbers have less than full precision but may have plenty of preci-
sion for a given problem. You can calculate the amount of precision from the %21x
representation, for example,

:x = 2.0e-312

¢ printf("%21x",x)
+0.0005e403a93f7X-3ff

has 9 full digits of hexadecimal precision, with a 5 in the lead digit. Each hexadecimal
digit has precision to 1 part in 16. This is precision of 1 part in 5 x 167, about 11
decimal digits.

5 Binary floating point

All numbers on the computer are ultimately stored in binary digits, which can be
translated into a binary floating-point number. This means that every number is stored
as a set of zeros and ones, and each type of number such as single precision and double
precision has a format associated with it for translating those zeros and ones to a binary
floating point.

Let’s look at some simple examples of binary floating-point numbers. Here the
subscript 2 indicates we are looking at binary (base 2) numbers.




262 Mata Matters: Overflow and underflow

105 = 2
1005 = 4
11, =3

1lla=141x2"1=15
101101 =1x 22 +1+1x27 +1x273=5.625

Each binary digit is a bit of information. We generally speak of bytes of information
and each byte contains 8 bits of information. A byte is represented by two hexadecimal
digits. Four binary digits give numbers from 00002 = 0 to 11115 = 15 = f,, so each set
of 4 binary digits determines a hexadecimal digit. To translate 8 binary digits to a byte
separate them into two groups of four and translate each group of 4 binary digits to
hexadecimal digit shoving them together at the end, see, for example, Gould (2006).

11010011, — 1101y, 0011, — dy, 3, — d3.
The magic of translating by position and putting the digits together at the end works
when one base is a power of another; hexadecimal is base 16 and 16 = 2%,
Raw data stored on a computer is generally displayed in bytes rather than bits.

Before we delve into the details of how a computer stores an 8-byte double, let’s look
at a manufactured format for a 1-byte number. This made-up format has 1 bit devoted
to the sign, 3 bits to the exponent, and 4 bits for the fraction.

The format is

sign fraction
= A~ N
0 100 1001
~—~
exponent

Our example number is 010010015.

We read from left to right, and we write the most significant bit as the leftmost bit,
similar to decimal numbers, where the leftmost digit is the most significant digit.

The sign bit is the first bit, and it is the easiest to understand. A zero indicates a
positive number and a one indicates a negative number. Our number is positive.

The power of two is determined by the exponent. Exponents are usually offset or
biased so that we can represent either positive or negative exponents. Let’s assume the
bias is 3. A 3 bit exponent is a number that ranges from 0 to 7 in base 10. We subtract
the bias, making the exponent range from —3 to 4. Our number is 100, = 1 x 22 = 4.
With the bias removed, this exponent is 1, and we multiply by 2! = 2.

The fraction is 10015. There is a leading 1 that is assumed on the fraction to yield a
mantissa. This mantissa is 1.1001, or, leaving out the zeros, 1 x 20 +1x 271 +1x 274 =
1.5625. We multiply by 2 and get 3.125 as our final result.




J. M. Linhart 263

We can also look at this number in hexadecimal; 010010015 is 49,, but this does
not mean 49, = 73 like it does for a regular translation from hexadecimal to base 10.
We have to use the hexadecimal equivalent of the binary format above to translate and
understand that in this format this number represents 3.125. The first hexadecimal
digit 4 represents the sign and the exponent. If the digit is greater than 8, we have a
negative number and we must subtract 8 to give the biased exponent. This number is
not negative, and no modification to the first digit is required; our biased exponent is
4. Remove the bias, and we see we will multiply by 2'. The final hexadecimal digit
represents the fraction, so our mantissa is 1.9, = 1+9x 16~! = 1.5625, and we multiply
this by 2 to obtain 3.125 just like we calculated from binary.

6 IEEE Floating point formats and Stata’s missing values

The IEEE 754 floating-point standard, established by IEEE (1985), defines how floating-
point numbers are stored on modern computers and defines some ground rules for per-
forming calculations. There is a format for double precision, 8-byte floats, familiar as
Stata’s double type, and single precision, 4-byte floats, known as Stata’s float type.

There are also standards for both single- and double-extended precision, which we
will not cover here. We discuss the formats for single precision and double precision.

IEEE single-precision numbers consist of 32 bits (4 bytes). The first bit gives the
sign, the next 8 bits give the exponent, and the last 23 bits give the fraction. Likewise,
IEEE double-precision numbers consist of 64 bits (or 8 bytes), where the first bit gives
the sign, the next 11 bits give the exponent, and the remaining 52 bits give the fraction
(IEEE 1985), for example,

Single precision:

sign 23 bits for the fraction
~ =
1 10000000 11001000000000000000000
—_—

8 bits for the exponent

Double precision:

sign 52 bits for the fraction
=~
1 10000000000 11001000000000000000000000000000000000000...0
—_—
11 bits for the exponent

The exponent is biased in both single and double precision. In single precision, the
biased exponent ranges from 0 to 127 with a bias of 63. In double precision, the biased
exponent ranges from 0 to 2047 with a bias of 1023. In double precision, the range of
unbiased exponents is —1023 to 1024. We will say exponent to indicate the unbiased
exponent; i.e., the exponent after the bias has been subtracted off. In the IEEE definition,
two exponents, the smallest and largest, are reserved for special cases. Exponents in the




264 Mata Matters: Overflow and underflow

middle range (—1022 to 1023 for double) indicate normalized or full-precision numbers.
In the normalized numbers, the mantissa is calculated from the fraction by placing a 1
before the floating point.

The smallest exponent, —1023 for double or —63 for single, indicates either a zero
or a denormalized number. This was chosen in part for the nice property that zeros
have all zeros in the biased exponent and in the fraction, but they can have positive or
negative sign. Denormalized or subnormal numbers have the smallest exponent but a
nonzero fraction. These numbers have less precision than normalized numbers because
the mantissa is assumed to have a leading zero instead of a leading one. The first
nonzero digit determines the precision for the number, which is at most 1 part in 2°!
because there are at most 51 full binary digits.

The largest exponent (64 or 1024 for single and double precision, respectively) holds
two different types of results, either what IEEE calls an infinity or what IEEE calls a
“not-a-number” (NaN). Infinities have the largest exponent and zeros in the fraction.
They can have a positive or a negative sign. Taking the logarithm of zero would result
in a value of negative infinity. NaNs also have the highest exponent, but they have a
nonzero fraction. A NaN is produced, for example, when one tries to take the logarithm
of a negative number.

Stata does not report infinities or NaNs. Instead, Stata maps these values to missing.
Stata takes up the largest positive power of two for its missing values. This means that
all positive values that are stored in IEEE format with the exponent 1023 are recognized
by Stata as missing.

For an in-depth general discussion of computers, how they do calculations, and
precision, see Goldberg (1991), Knuth (1998), and (with detailed reference to Mata)
Gould (2006),

[Technical note

The asymmetry in maxdouble () and mindouble() is explained by the definition of
Stata’s missing values. We can see this when we display maxdouble () and mindouble ()
and . in %21x format.

: printf("%21x", maxdouble())
+1. fEfffEfLfFFFEX+3 e

: printf ("%21x", mindouble())
1. fEfffffffFFFEX+3E

: printf("%21x", .)
+1.0000000000000X+3£f

mindouble() has the same mantissa as maxdouble(), but the power of two is one
larger—3fe, = 1022 and 3ff, = 1023. Stata allows negative values with the exponent
1023, but missing values are positive with the exponent 1023.

1




J. M. Linhart 265

7 %21x, %16H, %16L, %8H, and %8L formats

It is difficult for us humans to keep track of the large number of binary digits in a
double-precision number; it is easier to translate to a hexadecimal representation. The
%21x format is by far the easiest exact representation of a floating-point number to un-
derstand. Understanding and translating the %21x format was covered in section 3. Of
the remaining formats, only the %16H format is not too difficult to translate to decimal.
The %16H, %16L, %8H, and %8L formats are mostly used for byte comparisons; this
most commonly occurs when you are looking at a hexadecimal encoding of a binary file
called a hexdump.

We will start by learning %16H format, which displays the 16 hexadecimal digits
or 64 bits of information used to store a double-precision number. The 16 in %16H
indicates the number of hexadecimal digits that will be displayed. The H in %16H
indicates that the number is displayed in hilo format. This means the highest order
byte comes first. This is the normal way we understand numbers, e.g., if we write 125
(base 10) the first digit, 1, is in the hundreds place, the highest order or most significant
digit, and the last digit, 5, is in the ones place, the lowest order or least significant digit.

Let’s translate the binary double-precision example given in the previous section
from %16H format to normal decimal format. In binary, this number was

11000000000011001000000000000000000000000000000000000...02

The %16H representation is more manageable, c00c800000000000, with the format

c00 ¢800000000000
—~— —_—
sign and exponent fraction

The sign bit and 11 bits of the exponent make up the first 3 hexadecimal digits c00,.
The remainder give the fraction, c800000000000,,.

The sign and part of the exponent are all mixed together in the first hexadecimal
digit. We can either translate from hexadecimal to binary (c, = 11002) and see that
this is negative because the first digit is a one, or note that the number is negative
if its first hexadecimal digit is greater than 8. Removing the first digit if it is a one
is equivalent to subtracting 8 if the hexadecimal digit is larger than 8. If the first
hexadecimal digit is less than 8, no subtraction is needed. ¢, is larger than 8; our
number is negative. Subtracting 8 from the first digit yields 4 so our biased exponent is
400, = 4 x 162 = 1024. After removing the bias, we see the power of two we multiply
by is 2'.

Translating the fraction ¢800000000000, we get 12 x 16! + 8 x 162 (omitting the
zeros), which results in a mantissa of 1.78125. Our number is —1.78125 x 2 = —3.5625.

It is much easier to see what is going on from the %21x format than it is from the
%16H format. In %21x format, —3.5625 is —1.¢800000000000X + 001 = —(1 + 12 x
1671 +8 x 1672) x 21 = —1.78125 x 2.




266 Mata Matters: Overflow and underflow

The %16L format displays the same information but in lohi format. The lowest
order byte comes first. Here is —3.5625 in both %16H and %16L format:

: printf("%16H\n", -3.5625)
c00c800000000000

: printf("%16L\n", -3.5625)
0000000000800cc0O

One might expect %16L to give the reverse of the hexadecimal digits in the %16H
format, but each byte is two hexadecimal digits. It is the pairs that are reversed. Our
most significant byte is c0,, which appears at the end, the next is Oc;, 80,, etc. Once
this is figured out, we could translate as we did with the %16H example. The sign and
exponent make up the three most significant hexadecimal digits (c00,), the remainder
is the fraction. Getting the order correct is the biggest new trick here. %16L format
does not look very neat visually since it does not break evenly on byte boundaries.

part of fraction sign and first part of exponent
—_——— P
000000000080 Oc c0

~—

first digit is part of exponent
last digit is part of fraction

For this reason, it is easier to use %16H instead.

The %16L format has the advantage over the %8H and %8L formats in that it does
break evenly on all but the first hexadecimal digit.

The %8H and %8L formats both display the 8 hexadecimal digits or 32 bits of
information that are used to store a single-precision number. These formats are messy;
%8H format has the disadvantage that the first hexadecimal digit contains information
from the sign and exponent, and the third hexadecimal digit contains information from
both the exponent and the fraction. For this reason, for single-precision numbers, it is
often just as easy to go from a binary representation, rather than using the confusing
intermediary of %8H (or, even worse, %8L) format.

: printf ("%8H", -3.5625)
c0640000

: printf ("}16H", -3.5625)
c00c800000000000

For %8H we have

c0 640000
~~ N——
sign and exponent exponent and fraction

Unless you need to compare bytes, avoid all these complications by displaying in
%21x format.




J. M. Linhart 267

8 Conclusion

Stata does calculations in double precision to protect users from precision problems.
Programmers may still need to know how to test for overflow and underflow and may
benefit from numerical formats to show the exact contents of numbers, rather than a
base-10 approximation.

You may test for overflow with
: if (missing(x)) { ... }
and underflow with
: if (abs(x) < smallestdouble()) { ... }

Here smallestdouble() = 271922 ig the smallest full-precision double-precision.

Underflow can result in either a zero or a number with less than full-precision double-
precision. Numbers with less than full-precision double-precision are called subnormal
or denormalized numbers.

The %21x format can be used to see whether a number is denormalized. A full-
precision number starts with a 1 before the floating point; a denormalized number
starts with a 0 before the floating point.

Numbers are stored in the computer in a standard format given by the IEEE 754
floating-point standard (IEEE 1985). Stata has several formats for visualizing the binary
contents of numbers. The %21x format is most useful and intuitive. Exact bytes in the
order stored may be displayed with the %16H and %16L formats for doubles or the %8H
and %8L formats for single-precision floats. The %8H and %8L formats are particularly
nonintuitive because the parts of the number do not end on even hexadecimal digit
boundaries. %16H, %16L, %8H, and %8L are mostly used for examining a hexadecimal
encoding of a binary file called a hexdump; for most applications, %21x is preferred.

9 References

Cox, N. J. 2006. Stata tip 33: Sweet sixteen: Hexadecimal formats and precision
problems. Stata Journal 6: 282—283.

Goldberg, D. 1991. What every computer scientist should know about floating-point
arithmetic. ACM Computing Surveys 23: 5-48. Available at
http://docs.sun.com/source/806-3568 /ncg_goldberg.html.

Gould, W. 2006. Mata Matters: Precision. Stata Journal 6: 550-560.

IEEE. 1985. IEEE Standard 754-1985 for binary floating-point arithmetic. New York:
Institute of Electrical and Electronics Engineers.

Knuth, D. E. 1998. The Art of Computer Programming. Volume 2: Seminumerical
Algorithms. 3rd ed. Reading, MA: Addison—Wesley.




268 Mata Matters: Overflow and underflow

Severance, C. 1998. An interview with the old man of floating-point. IEEE Computer
114-115. Available at
http://www.cs.berkeley.edu/~wkahan /icee754status/754story.html.

Shea, B. L. 1989. A remark on Algorithm AS152: Cumulative hypergeometric proba-
bilities. Applied Statistics 38: 199-204. Code available at
http://lib.stat.cmu.edu/apstat/152.

About the author

Jean Marie Linhart is a senior mathematician at StataCorp.




	Articles and Columns
	Mata Matters: Overflow, underflow and the IEEE floating-point format, J. M. Linhart


