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Abstract.

Background: When implementing new statistical procedures, there is often a need
for simple—and yet computationally efficient—ways of numerically evaluating
composite distribution functions. If the statistical procedure must support cal-
culations for censored and noncensored cases, those calculations should be carried
out using efficient computational implementations of both definite and indefinite
integrals (e.g., calculation of tail areas of distribution functions).

Method: We developed a generic function evaluator such that users may specify
a function using reverse Polish notation. As its argument the function evaluator
takes a matrix of pointers and then applies the rows of this matrix to its internally
defined stack of pointers. Accordingly, each row of the argument matrix defines
a single operation such as evaluating a function on the current element of the
stack, applying an algebraic operation to the two top elements of the stack, or
manipulating the stack itself. Defining new composite distribution functions from
other (atomic) distribution functions then corresponds to joining two or more
function-defining matrices vertically. This approach can further be used to obtain
integrals of any defined function. As an example we show how the density and
distribution function for the minimum of two Weibull distributed random variables
can be numerically evaluated and integrated.

Results: The procedure provides a flexible and extensible framework for imple-
menting numerical evaluation of general, composite distributions. The procedure
is numerically relatively efficient, although not optimal.
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1 Introduction

In applied statistics there is often a need for numerically evaluating probability distribu-
tions that are composite in the sense that they arise from two or more random variables,
each with their own particular distribution function.

One example is a two-component mixture with the following generic form for its
cumulative distribution function (cdf)

c© 2007 StataCorp LP pr0034
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F (t; p, θ1, θ2) = pF1(t; θ1) + (1 − p)F2(t; θ2)

where F1 and F2 are two cdfs, p is a probability, and θ1 and θ2 are parameter vectors.

A second example is the probability density function (pdf) of Y = min(X,Z), where
X and Z are two independent, nonnegative random variables with pdfs fX and fZ ,
respectively, and associated survivor functions SX and SZ . It is well known (see, for
example, Degroot 1986, 160) that here the pdf for Y is given by (with obvious notation)

fY (t; θ1, θ2) = fX(t; θ1)SZ(t; θ2) + SX(t; θ1)fZ(t; θ2) (1)

and survivor function given by

SY (t; θ1, θ2) = SX(t; θ1)SZ(t; θ2) (2)

A third example where the problem becomes more compounded is the so-called
forward recurrence distribution given by the following generic form

fR(t; θ) =
ST (t; θ)
μT (θ)

(3)

where μT (θ) is the mean of T , a nonnegative random variable with survivor function
ST (Støvring and Vach 2005). Because T is nonnegative, its mean can be written as

μ =
∫ ∞

0

ST (s; θ) ds

Often no analytical expressions for such integrals of ST exist, and so numerical
evaluation must be applied to obtain this mean, as well as the cdf of R, which is given
by

FR(t; θ) = μ−1
T (θ)

∫ t

0

ST (s; θ)ds

One straightforward method of implementing these functions as ordinary Mata func-
tions would be to code a new function that first invokes the subfunctions it is made of,
and then combines results of these function calls appropriately. This nesting approach
implies that we would need to pass the vector of all parameter values, (p, θ1, θ2), say,
to the new function F , which then must parse them and pass them on to the relevant
functions, F1 and F2. Although this is possible, it becomes tedious when F1 or F2 are
themselves composite functions or if we want to allow for different functional shapes of
F1 and F2. Different shapes effectively require writing a new definition of F for each
shape with dedicated and appropriate parsing of relevant parameters. Further, when
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we need to integrate the new composite function, it is difficult to implement a generic
integration function, which can easily accommodate the different structures of the in-
tegrand and the varying number of arguments needed. Again, although possible, so far
no generic routines exist for solving the problem generally, as far as the author is aware.

To overcome this we suggest and implement a new function evaluator based on
reverse Polish notation (RPN). The motivation for using RPN is that it avoids nesting
of functions and instead naturally specifies computations sequentially. This has the
advantage of allowing function definitions to be framed as matrices of pointers, where
each row defines one computational step in the RPN algorithm. These definition matrices
can be straightforwardly stacked to construct new composite functions, thus facilitating
implementation of complicated pdfs and cdfs. Finally, the strategy allows a general
implementation of integration as this can be obtained from sandwiching any integrand
between two general, special purpose functions defining the points of evaluation and
summarizing the integrand at the evaluated points.

The paper is organized as follows: section 2.1 introduces the principle of RPN before
section 2.2 describes how it is implemented in Mata. In sections 2.3 and 2.4, I show how
the procedure allows for general numerical integration, both for definite and indefinite
integrals. To show the potential of the procedure, section 2.5 gives an example on
evaluation of a forward recurrence distribution arising from a random variable, which
itself is the minimum of two Weibull distributed random variables. Finally, I discuss
the primary advantages and limitations of the suggested procedure in section 3.

2 Methods

2.1 The principle of RPN

Conceptually, RPN is based on first defining two operands and then applying a binary
operator (addition, multiplication, etc.) to obtain the result. Although the notation
for this principle is less intuitive than the standard infix notation, its main advantage
is obliviating the need for parentheses and equation signs; i.e., it essentially specifies
computations in one (long) serial sequence instead of the intuitively appealing nesting of
the usual notation with parentheses. Anyone with experience in using an RPN calculator
has recognized that RPN involves fewer button pushes and allows one to compute almost
straight from left to right of any numerical expression, although it needs a slightly
different organization of computations than a traditional calculator.

The key step in implementing RPN is to setup an indexed stack with elements con-
taining operands and results. Then one must define functions for manipulating stack
elements. These functions roughly fall into three categories: stack manipulation, binary
operators, and single element functions. Consider for example the steps involved in the
computation of the exponential density given by

f(t;λ) = λ exp[−λt]

With RPN, the computation would be given by the algorithm presented in figure 1.
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1. Put λ on stack • 1 �� λ

2. Replicate λ on stack • 2 ��

1

�������������� λ

λ

3. Put t on stack • 3 ��

2

��������������

1

���
��

��
��

��
��

��
��

��
t

λ

λ

4. Multiply two top elements • 2 ��

1

�������������� λt

λ

5. Reverse sign of top element • 2 ��

1

�������������� −λt

λ

6. Take exponential of top element • 2 ��

1

�������������� exp[−λt]

λ

7. Multiply two top elements • 1 �� λ exp[−λt]

Figure 1: The steps involved in computing the exponential pdf using RPN. The • with
arrows denotes the stack, which is nothing more than an indexed set of pointers, 1, 2,
. . . , here denoted by arrows, and the referenced boxes contain the elements of the stack
after the indicated action. Operations on elements of the stack place the result of the
operation on the stack.
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Steps 1–3 are examples of stack manipulation actions: steps 1 and 3 put arguments
λ and t, respectively, into the stack, whereas step 2 copies the current top element to a
new top element of the stack. Steps 4 and 7 apply the binary operator of multiplication
to the two top elements of the stack. Steps 5 and 6 apply a single element function to
the top element of the stack and returns the result in the same place.

2.2 Implementing RPN for matrices in Mata

The implementation of an RPN function evaluator in Mata consists of two main in-
gredients. The first is a function, rpnfcn(), which sets up the stack and sequentially
applies the individual steps of any algorithm defined in a matrix of pointers in which
the rows each define one step in the algorithm. Internally, rpnfcn() relies heavily on
a helper function, anyeqpt(), for determining the type of action to take in each step.
The code of rpnfcn() and anyeqpt() are included in the rpn package. The second
main ingredient consists of various stack functions of the three types described above.
A short description of the basic implemented stack functions is given in table 1. The im-
plemented pdfs and cdfs are only examples and more should be implemented whenever
need arises.

The actual parameterizations chosen for the densities are described by the following
expressions for the associated survivor functions:

Exponential: S(t; θ = β) = exp[−eβt]

Weibull: S{t; θ = (β, α)} = exp
[
−(eβt)exp(α)

]
(4)

where Φ is the standard normal cdf. The parameterization is chosen so as to avoid
restricting parameters to be positive, which is useful in avoiding boundary problems in
estimation procedures.
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Example on basic use

To illustrate how to apply the rpnfcn() function, consider computation of the density
for the minimum of two Weibull distributed random variables, i.e., the density given
in (1) with the Weibull parameterization of (4). The algorithm matrix for this density
takes the following form in Mata syntax:

. mata
mata (type end to exit)

: x = (NULL)

: theta1 = (NULL)

: theta2 = (NULL)

: fweimin = (&tostack(), &x \
> &enter(), NULL \
> &enter(), NULL \
> &fwei(), &theta1 \
> &swapst(), NULL \
> &Swei(), &theta2 \
> &product(), NULL \
> &rotst(), NULL \
> &enter(), NULL \
> &Swei(), &theta1 \
> &swapst(), NULL \
> &fwei(), &theta2 \
> &product(), NULL \
> &add(), NULL
> )

: end

We defined x, theta1, and theta2 to be empty matrices as they must exist before
defining the algorithm matrix. Their contents can, however, be set after defining the
algorithm matrix. The following Mata code fills the matrices and evaluates the function
defined in fweimin:

. mata
mata (type end to exit)

: x = (0, 2, 8 \
> .7, 1, 6)

: theta1 = (-2, 2)

: theta2 = (0, .3)

: rpnfcn(fweimin)
1 2 3

1 0 .1344860648 4.74373e-08
2 .6423218484 .4965861523 .0000298698

: end
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2.3 Definite integration with RPN

Suppose that we want to evaluate

H(a, b) =
∫ b

a

h(s)ds

Conceptually, numerical integration can be divided into three steps: first, define
the points at which to evaluate h, the so-called nodes; second, apply h to these nodes;
and third, sum the weighted results of this evaluation, where the weights depend on the
choice of nodes. For an example of how to integrate a function with stratified, antithetic
Monte Carlo integration, see Ripley (1987, 131–132). Formally, the computation to be
done is given by

∫ b

a

f(s)ds ≈ b − a

2M

M−1∑
j=0

[
f {a + δ(j + uj)} + f {a + δ(j + 1 − uj)}

]

where δ = (b − a)/M and all uj are uniformly distributed and mutually independent.
The nodes here are thus

a + δ(j + uj) and a + δ(j + 1 − uj)

all with weights (b − a)/(2M).

Following this, three functions have been implemented to setup a matrix containing
the nodes (MCatnode), setup a matrix containing the weights (MCatwt), and compute the
integration result by summing the weighted evaluation results (intres), respectively.
All three functions are generic in the sense that they are completely independent of
the evaluator to be used: MCatnode replaces the matrix in the current top element of
the stack with a matrix of the relevant nodes. The function to be integrated is then
applied to the nodes leaving the result in the top element of the stack, and finally, the
weights are computed and the summation function is applied, yielding the result matrix.
For algorithm matrix notation, this means sandwiching the rows for the function to be
integrated between rows concerning MCatnode initially, and—at the bottom—MCatwt
and intres. For this to work, the function to be evaluated must only rely on the single
matrix of nodes present in the stack after execution of MCatnode.

Example on definite integration

Consider integration of the density for the minimum of two Weibull distributed random
variables, fweimin defined above. Let the matrix ab be an n×2 matrix, where each row
contains integration limits, such that the first column is the lower limit and the second
column is the upper limit. Assume that u is an n × m matrix containing uniformly
distributed random numbers. For example, the matrices could be given by
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. set seed 9876

. mata
mata (type end to exit)

: ab = (0, 4 \
> 0, 2 \
> 2, 4 \
> 4, 10)

: u = uniform(rows(ab), 30)

: end

The algorithm matrix for the integration can now be defined, and the integration
performed as follows:

. mata
mata (type end to exit)

: intfweimin = (&tostack(), &u \
> &MCatnode(), &ab ) \
> fweimin[2..rows(fweimin), .] \
> (&tostack(), &u \
> &MCatwt(), &ab \
> &intres(), NULL)

: rpnfcn(intfweimin)
1

1 .9972108522
2 .921117737
3 .0766576168
4 .0014903807

:
: end

2.4 Indefinite integration with RPN

Suppose that we want to evaluate

S(a) =
∫ ∞

a

h(s)ds

One way to do this numerically is to apply the transformation s �→ e−s so that the
integral becomes

S(a) =
∫ exp(−a)

0

h(− log u)
u

du

Because the integral is now definite, it can be evaluated as above, except that the
weights should now take into account the term u−1. For stratified, antithetic sampling
the nodes become
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a − log
(

j + uj

M

)
and a − log

(
j + 1 − uj

M

)

for j = 0, 1, . . . ,M − 1. The corresponding weights are

1
2(j + uj)

and
1

2(j + 1 − uj)

Example on indefinite integration

Consider tail integration of the density for the minimum of two Weibull distributed
random variables, fweimin defined above. Let the matrix a be an n × 1 vector, where
each element is a lower integration limit. Assume that u is an n×m matrix containing
uniformly distributed random numbers. For example, the matrices could be given by

. set seed 4757

. mata
mata (type end to exit)

: a = (0\
> 2\
> 4)

: u = uniform(rows(a), 20)

: end

The algorithm matrix for the integration can now be defined, and the integration
performed as follows:

. mata
mata (type end to exit)

: Sweimin = (&tostack(), &u \
> &tlMCatnode(), &a ) \
> fweimin[2..rows(fweimin), .] \
> (&tostack(), &u \
> &tlMCatwt(), &a \
> &intres(), NULL)

: rpnfcn(Sweimin)
1

1 .9986485593
2 .0781537442
3 .0014923006

:
: end

Here it is also possible to evaluate the integral explicitly by using the formula in (2),
and so we can validate the results above:
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. mata
mata (type end to exit)

: Sweimin_exact = (&tostack(), &a \
> &enter(), NULL \
> &Swei(), &theta1 \
> &swapst(), NULL \
> &Swei(), &theta2 \
> &product(), NULL)

: rpnfcn(Sweimin_exact)
1

1 1
2 .0781648043
3 .0014922392

: end

Although the numerical evaluation based on stratified, antithetic sampling leads to
results close to their true values, tail integration of a density for a nonnegative random
variable all the way from zero should be considered an extreme case, where precision is
low. In practical applications, such integrals are of course best replaced by their (known)
theoretical value of 1. For slightly larger values of a, the integral is best replaced by a
definite integral from a to some large constant b (larger than all elements of a) plus an
indefinite one from b. The indefinite integral from b only needs to be computed once
and hence allows using many strata (M) for improving precision. One simple choice for
b is

b = max(ai|i = 1, 2, . . . , n)

where ai’s are the elements of a.

2.5 Example on forward recurrence density for minimum of two
Weibull distributed random variables

To show some of the potential of the implemented RPN evaluator, let us consider the
distribution arising from transforming the minimum of two Weibull distributed random
variables into a forward recurrence time. Based on the expressions in (2) and (3) the
density for the new random variable R is given by

fR(r) =
SX(r)SZ(r)∫ ∞

0
SX(s)SZ(s) ds

where SX and SZ are the survivor functions of the two original Weibull distributed ran-
dom variables. This density can be implemented and evaluated using the RPN procedure
as follows:
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. mata
mata (type end to exit)

: a0 = J(1, 1, 0)

: u0 = uniform(rows(a0), 20)

: frfweimin_exact = (&tostack(), &x ) \
> Sweimin_exact[2..rows(Sweimin_exact), .] \
> (&tostack(), &u0 \
> &tlMCatnode(), &a0 ) \
> Sweimin_exact[2..rows(Sweimin_exact), .] \
> (&tostack(), &u0 \
> &tlMCatwt(), &a0 \
> &intres(), NULL \
> &divide(), NULL)

: x
1 2 3

1 0 2 8
2 .7 1 6

: rpnfcn(frfweimin_exact)
1 2 3

1 1.090430679 .0852333006 1.16102e-08
2 .5878359215 .4011468755 .0000116703

: end

The corresponding survivor function can be implemented and evaluated as follows:

. mata
mata (type end to exit)

: a0 = J(3, 1, 0)

: u0 = uniform(rows(a0), 10)

:
: frSweimin_exact = (&tostack(), &u \
> &tlMCatnode(), &a ) \
> Sweimin_exact[2..rows(Sweimin_exact), .] \
> (&tostack(), &u \
> &tlMCatwt(), &a \
> &intres(), NULL \
> &tostack(), &u0 \
> &tlMCatnode(), &a0 ) \
> Sweimin_exact[2..rows(Sweimin_exact), .] \
> (&tostack(), &u0 \
> &tlMCatwt(), &a0 \
> &intres(), NULL \
> &divide(), NULL)

: a
1

1 0
2 2
3 4
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: rpnfcn(frSweimin_exact)
1

1 .9985048706
2 .0459127621
3 .0007040949

: end

3 Discussion

In this paper we have developed and described a general procedure for numerical evalu-
ation in Mata of complex density and distribution functions and for general integration
of such functions. The procedure uses RPN to serialize computations, where individual
steps in the computation are specified in rows of a controlling algorithm matrix. The
approach allows building complex expressions by simply stacking relevant rows of al-
gorithm matrices, and we have shown how to implement general integration based on
stratified, antithetic sampling both for definite and indefinite integrals. The algorithm
is numerically relatively efficient as it encourages not copying argument matrices more
than needed in any given algorithm, and internally, the result matrix replaces the input
matrix whenever possible, helping to minimize the strain on memory.

From one perspective, the procedure does not add anything new: what can be calcu-
lated with RPN can also be calculated with the ordinary infix notation already present
in Mata. The more interesting question is, however, how easy it is to implement a
complex function in a systematic way. From that perspective, the main virtue of the
RPN implementation is its use of algorithm matrices. These matrices make the function
definition—together with its required arguments—explicit, and it straightforwardly al-
lows the function to be reused in even more complex functions without subparsing of
arguments. It is possible that this could have also been obtained by clever exploita-
tion of Mata’s facility for defining structures, but the author is not aware of existing
implementations of this type.

The first limitation of the described RPN procedure is its reliance on specific, named
arguments, which all must exist at the time of defining the algorithm matrix. This
makes algorithm matrices less universal, although this can in part be overcome with
appropriate naming conventions for arguments. The primary objective of the RPN

procedure—at least as envisaged by its author—is, however, to be used internally in
other user-developed packages, and so the naming of arguments is less problematic.

Second, it is not clear how double integrals are to be handled with the proposed
RPN procedure. Although it is often possible to avoid this, situations do arise where
double integrals are inevitable. If, for example, no direct analytical expression had
existed for the survivor function for the minimum of two Weibull distributed random
variables, a double integral would have arisen when considering the survivor function
for the associated forward recurrence distribution evaluated in section 2.5.
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A further inconvenience of the procedure is that algorithm matrices quickly become
complex and hard to read, which hinders debugging. To some degree this is offset by
the ability to build complex functions from simpler algorithm matrices, which can be
debugged individually, but in some settings the debugging may still prove problem-
atic. Accordingly, the RPN procedure should not be considered a panache but rather
its advantages and shortcomings should be carefully weighed against each other when
considering how to implement a specific numerical evaluation.

With the present implementation of the RPN procedure, only the most basic stack
functions and densities are supplied. For the RPN procedure to become more useful more
subfunctions are needed, particularly implementation of other probability distributions
and other integration rules.
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