
The Stata Journal (2008)
8, Number 3, pp. 444–445

Stata tip 64: Cleaning up user-entered string variables
Jeph Herrin
Yale School of Medicine
Yale University
New Haven, CT

jeph.herrin@yale.edu

Eva Poen
School of Economics
University of Nottingham
Nottingham, UK

eva.poen@gmail.com

A common problem in data management, especially when using large databases that
receive entries from many different people, is that the same name is given in several
different forms. This problem can arise in many instances, for example, lists of names
of schools, hospitals, drugs, companies, countries, and so forth. Variation can reflect
several genuinely different forms of the same name as well as a multitude of small errors
or idiosyncrasies in spelling, punctuation, spacing, and use of uppercase or lowercase.

Thus, in context, a person may have no difficulty in recognizing that values of a
string variable, such as “New York”, “New York City”, “N Y C”, and so on, all mean
the same thing. However, a program like Stata is necessarily literal and will treat
them as distinct. How do we massage data so that values with the same meaning are
represented in the same way? Several techniques exist for these purposes. Here we
outline a simple strategy for ensuring that names are as tidy as possible.

As a preliminary stage, it is useful to try to eliminate small inconsistencies before
you look at the individual observations. A good tactic is to keep the original names
in one variable, exactly as given, and to work with one or more variables that contain
cleaned-up versions. Some common problems are the following:

• Leading and trailing spaces may not be evident but will cause Stata to treat values
as distinct. Thus “New York City” and “New York City ” are not considered equal
by Stata until trim() is used to delete the trailing space.

• Similarly, inconsistencies in internal spacing can cause differences that Stata will
register. The itrim() function will reduce multiple, consecutive internal blanks
to single internal blanks.

• Variations of uppercase and lowercase can also be troublesome. The upper(),
lower(), or proper() functions can be used to make names consistent.

• Other common differences include whether hyphens are present, whether accented
characters appear with or without accents or in some other form, and whether
ampersands are printed as characters or as equivalent words.

• A large class of problems concerns abbreviations.

In the last two cases, subinstr() is a useful function for making changes toward
consistent conventions. Note a common element here: string functions, documented in
[D] functions, are invaluable for cleaning up strings.

c© 2008 StataCorp LP dm0039



J. Herrin and E. Poen 445

After a preliminary cleaning, you can create a list of all the names that you have.
Usually, this list is shorter than the number of observations. It is worthwhile to inspect
the list of names and look for further clean-up possibilities before proceeding. A tab-
ulation of names, say, by using tabulate, sort, serves this purpose and provides you
with the number of occurrences for each variation.

After the cleaning is completed, you are ready to compile your list of names. Suppose
that the name variable contains the names.

. use mydatafile

. by name, sort: keep if _n == 1

. keep name

Now open the Data Editor by typing

. edit name

and add a second—numeric—variable, say, code. In this second variable, give the same
number for every observation that represents the same object. This will be moderately
time consuming, but because data are sorted on name, it may just take a few minutes.

Now exit the Data Editor, sort on name, and save the dataset:

. sort name

. save codes, replace

Some people may prefer to create the code in their favorite spreadsheet or text editor,
say, if an outside expert not adept at Stata is recruited to do the coding. The principles
are the same: you need to export the data to the other application and then read data
back into Stata. You may lose out on an audit trail if the other software does not offer
an equivalent to a Stata .log file.

Now you have a file (codes.dta) that has a list of the names in all their variety, as
well as a set of numeric codes, which you can return to later to check your work. The
key thing is that you can now merge this file into your original file to assign a common
code to every value of name that is the same:

. use mydatafile, clear

. sort name

. merge name using codes

As always when using merge, examine the merge variable; here, if merge is not
always equal to 3, then you have made a mistake somewhere. You should also examine
code; if there are any missing values, you will need to edit the file codes.dta again to
add them.

Now you can identify the objects by their codes; if you want, you can assign a
common name:

. by code, sort: replace name = name[1]


	Notes and Comments
	Stata tip 64: Cleaning up user-entered string variables, J. Herrin and E. Poen


