The Stata Journal (2008)
8, Number 1, pp. 79-104

fuzzy: A program for performing qualitative
comparative analyses (QCA) in Stata

Kyle C. Longest
Department of Sociology
University of North Carolina at Chapel Hill
Chapel Hill, NC
klongest@email.unc.edu

Stephen Vaisey
Department of Sociology
University of North Carolina at Chapel Hill
Chapel Hill, NC

Abstract. Qualitative comparative analysis (QCA) is an increasingly popular
analytic strategy, with applications to numerous empirical fields. This article
briefly discusses the substantive motivation and technical details of QCA, as well
as fuzzy-set QCA, followed by an in-depth discussion of how the new program
fuzzy performs these techniques in Stata. An empirical example is presented that
demonstrates the full suite of tools contained within fuzzy, including creating
configurations, performing a series of statistical tests of the configurations, and
reducing the identified configurations.

Keywords: st0140, fuzzy, cmvom, cnfgen, coincid, coverage, fzplot, mavmb, re-
duce, setgen, suffnec, truthtab, yavyb, yvn, yvo, yvv, yvy, qualitative comparative
analysis, QCA, fuzzy sets, Boolean logic, Boolean data, postestimation command

1 Introduction

In recent years, researchers in a number of fields have begun using qualitative compar-
ative analysis (QCA) or its fuzzy-set variant to analyze multivariate data (Ragin 1987,
2000). For examples, see Kalleberg and Vaisey (2005), Mahoney (2003), Roscigno and
Hodson (2004), and Vaisey (2007). Rather than estimate the net effects of single vari-
ables, QCA employs Boolean logic to examine the relationship between an outcome and
all binary combinations of multiple predictors. The advantage of QCA is that it allows
the researcher to find distinct combinations of causal variables that, in turn, suggest dif-
ferent theoretical pathways to given outcomes. Although early versions of QCA (Ragin
1987) were criticized on the grounds that they were deterministic and that they bore lit-
tle relation to commonly used variants of the general linear model, recent developments
are now integrating QCA-based strategies with more formal statistical distributions and
procedures (Ragin 2006; Smithson and Verkuilen 2006).

(© 2008 StataCorp LP st0140

80 fuzzy: A program for performing QCA in Stata

2 Why QCA?

Because QCA is still a relatively new strategy, we illustrate its utility by describing one
substantive topic that might benefit from its application. The stress process model has
inspired a wealth of research in the mental health field that has shown the deleterious
consequences of an accumulation of stressors on increased negative health outcomes. Yet
personal resources, active coping strategies, and social support can buffer these stressors,
thereby reducing their harmful impact (for reviews, see Lin and Ensel [1989] and Thoits
[1995]). The strength of this research notwithstanding, Thoits (1995) argued that there
may be important pathways to negative health outcomes that have remained unseen
because investigators typically apply linear estimation models to the stress process.

Just as there may be different combinations of conditions across countries
which lead to political revolution, there may be different configurations of
factors across individuals which lead to heart attack or to the onset of major
depression. . .. The assumption of one process for becoming depressed or ill
and the concomitant use of the general linear model to test it requires us to
reject or ignore other possible processes which are less frequently observed
and do not manage to achieve statistical significance. (Thoits 1995, 68)

In this observation, Thoits was advocating the use of QCA in tests of the stress
process model. That is, high levels of conjunction among stressors and buffering agents
could define multiple routes to the same level of distress.

In addition to finding multiple paths to an outcome, QCA is especially appropri-
ate for testing models, like that underlying stress theory, that involve a multitude of
“interacting” factors. More precisely, QCA effectively addresses theoretical hypotheses
that predict multiple variables will operate in tandem at specific levels (e.g., high stress
events, low coping resources, and low social support) to produce particular outcomes
(e.g., high distress). For example, stress theory predicts that numerous negative events
should interact with chronic strain to produce high levels of distress, but the use of sev-
eral active coping strategies should moderate this interaction, reducing the likelihood of
elevated distress. Furthermore, high levels of mastery may enhance the buffering influ-
ence of active coping efforts, and high social support might further increase mastery’s
moderating influence on the interaction of active coping with stressors. This hypothesis
modeled in a regression framework would involve a five-way interaction term, which
would have to be interpreted along with all of its component interactions, an obviously
difficult and inefficient task. QCA, on the other hand, explicitly and straightforwardly
tests each possible combination of factors at specific levels with a given outcome. The
results then can be interpreted more clearly, making QCA a potentially more effective
analytic strategy for complex theoretical processes such as those posed by stress theory.

The stress process model is just one specific case that would benefit from the ap-
plication of QCA.! QCA’s utility as an analytic strategy stands to augment research in
numerous fields. Greckhamer and his colleagues (2007) have recently argued for QCA’s

1. Longest and Thoits (2007) have tested this model with QCA and found several intriguing results.

K. C. Longest and S. Vaisey 81

application in strategic management research because of its ability to analyze complex
relationships between different industry- and corporate-level mechanisms in predicting
business success. Similarly, researchers in epidemiology would benefit from QCA’s capac-
ity to capture holistically individuals’ experience of risk and protective characteristics
(Schuit et al. 2002). Finally, Shanahan et al. (2007) have demonstrated how QCA can
be employed to examine the complex relationship between environmental and genetic
factors leading to adult success.

We believe that part of the reason QCA has not been utilized more widely in empirical
research across fields is because no software presently exists that easily combines QCA
with conventional data management and statistical tests. The primary stand-alone
program, fuzzy-set QCA, is able to compute logical truth tables for both fuzzy-set and
dichotomous-set data, but it has no built-in capacity for probabilistically testing logical
necessity and sufficiency, as advocated by Ragin (2006). There is also a program for the
R statistics language that can perform logical reductions of Boolean data, but it lacks
the ability to perform useful statistical tests. Further, there is no program in Stata that
can perform the necessary analyses or reductions in fuzzy-set analyses.

In this paper, we present and outline fuzzy, a new Stata command we have developed
that is capable of creating, testing, and performing logical reductions on both fuzzy and
dichotomous (crisp) set-theoretic data. We will first outline some of the background
of the technique and then provide a detailed explanation of the functionality of the
command.

3 Statistical background

QCA evaluates the relationship between an outcome and all possible Boolean combina-
tions of predictors. For example, given an outcome set Y and predictor sets A and B,
QCA examines which combinations of A and B (i.e, A- B, A- b, a- B, a - b) are most likely
to produce Y. In a QCA framework, the term “set” is used rather than “variable” to em-
phasize the idea that each variable has been transformed to represent the individual’s
level of membership in a given condition, for example, his or her level of membership
in “heavy alcohol users”. The combination of individual “sets” —for example, high de-
pression and low self esteem—is then referred to as a “configuration”. Sets are labeled,
according to convention, with capital and lowercase letters. In the crisp-set case (i.e., all
sets are dichotomous indicators) capital letters signify 1 (i.e., fully in A) and lowercase
letters signify 0 (i.e., fully out of A). When using fuzzy sets, where set membership can
take on any value between 0 and 1, uppercase simply means the level of set membership
(e.g., value of A) and lowercase means 1 minus the set membership (e.g., 1—A). The
operator “” stands for the Boolean “and”.

In the crisp-set case, the relationship between the predictors and the outcome can
be evaluated using conditional probabilities—e.g., Pr(Y|A - B). In set-theoretic terms,
higher conditional probabilities indicate greater empirical correspondence with the state-
ment “A - B is a subset of Y”, or, in logical terms, “if A - B, then Y”. Evaluating this
logical or subset relationship becomes more problematic in the fuzzy-set case, however,

82 fuzzy: A program for performing QCA in Stata

because unlike crisp sets, fuzzy sets can range between 0 (completely exclusive) and 1
(completely inclusive). Thus individuals can be more or less a member of a particular
set (e.g., 0.33 would indicate something like “more out than in, but still somewhat in”
the set, whereas 0.7 would signify something like “more in than out, but not entirely in”
the set). Combining fuzzy sets into configurations is usually done using the minimum
operator, so A - B = min(A,B), or a - B = min{(1—4A) , B}.

The advantage of fuzzy sets over crisp sets is that we can transform our original
measures without losing the variation associated with dichotomizing categorical or con-
tinuous measures. Using the minimum operation to calculate configuration membership
more precisely defines the degree to which an individual experiences the combination
of factors (i.e., individuals do not have to be completely in or completely out of every
possible configuration). But this added nuance prohibits the use of a simple conditional
probability to evaluate the degree of subsetness of each configuration in a given out-
come. The most common approach to evaluating this relationship when using fuzzy sets
is the inclusion ratio:

Ixy = Ymin(z;, y;)/S; (1)

where X signifies the predictor configuration (e.g., A - B), Y signifies the outcome set, x;
stands for each case’s membership in the configuration X, and y; stands for each case’s
membership in the set Y (see Ragin [2000, 2006] and Smithson and Verkuilen [2006] for
discussions of other methods). As with conditional probabilities, the closer the value
of I'xy to unity, the greater the consistency of the data with the assertion that X is a
subset of Y or, in logical terms, with the statement “if X, then Y”. (For this reason,
this value is often referred to below as the “consistency score”.)

Also there are a number of methods for deciding whether each configuration of
predictors (X) should “count” as a (probabilistically) sufficient condition for Y. One
way, advocated by Ragin (2000, 2006), is to determine a numeric benchmark (say, 0.8)
and code all configurations, for which Ixy > 0.8, as sufficient. We take no position
on any particular method here, and the fuzzy program allows multiple types of tests
of probabilistic sufficiency. This flexibility is beneficial because the methods are still
being refined and because several types of tests can support the robustness of claims of
sufficiency.

The ultimate classification of some configurations as sufficient, however, is an im-
portant part of QCA. Once the sufficient configurations have been determined, one can
use Boolean algebra to reduce the configurations into a more parsimonious solution.
For example, if both a - B - C and A - B - C were coded as sufficient, this would reduce
to B - C. This type of logical reduction can be extended to more complicated solution
sets of configurations through the use of the Quine—McCluskey algorithm (see Ragin
[1987]). In this way, one can obtain a logical description of the conditions sufficient to
produce (probabilistically speaking) a particular outcome.

K. C. Longest and S. Vaisey 83

Finally, each final solution is evaluated with respect to its coverage of the outcome.
Coverage is simply an indicator of how much of Y is covered by X; it is computed as
follows:

Cxy = Xmin(z;,y;) /Xy

Although computationally similar, coverage addresses a different aspect than does
the consistency score. Primarily, it helps to answer how much of the outcome is under-
stood by taking into account the final solution set. For example, the set of skydiving
parachute failures would be a near-perfect subset (i.e., high consistency) of the set of
deaths, but this combination might not be very helpful (i.e., low coverage) in determin-
ing the most common or meaningful pathways to mortality in a given population.

The fuzzy program allows the user to create configurations from single sets coded
as dichotomous or as fuzzy, to evaluate the sufficiency of these configurations statisti-
cally by using a variety of benchmarks, and to reduce the configurations determined
sufficient to their common logical elements. The remainder of this paper describes the
functionality of the program.

4 Creating, testing, and reducing sets

4.1 Syntax

fuzzy wvarlist [zf] [weight} [, label(capital_letter_list) keepsets drop
settest (festlist) group(varname) conval(#) sigonly slevel(#)
wer(coll | col2) common cluster(varname) necessity matx(matlist)
standardized altdisplay reduce remainders(#) dnc(configlist)

truthtab (filename) keepconfigs]

where testlist is yvn, yvo, yvv, yavyb, cmvom, or mavmb; and matlist is suffnec or
coincid.

fweights, iweights, and pweights are allowed with fuzzy; see [U] 11.1.6 weight.

The weights are applied with the ratio command, which is used to calculate the con-
sistency score for each configuration, but are not used in any other parts of the routine
(such as the creation of the bestfit variable).

4.2 Description

fuzzy is a suite of tools to perform QCA, as previously described. Without any options
specified, it will create the bestfit variable that displays the number of cases that score
greater than 0.500 on each configuration (which each case can only do for one config-
uration). The varlist should be treated similarly to other Stata commands, such that

84 fuzzy: A program for performing QCA in Stata

the first variable listed is the outcome variable followed by the individual set variables.
All variables entered must range from 0 to 1 (or be dichotomous coded 0/1).2

To create the configurations, fuzzy requires that all of the variables in the varlist
be named with single, capital letters. If the user enters variables named as such, then
fuzzy, without any options, will simply create the bestfit variable. But if any of the
variables in the varlist are not named with single, capital letters, fuzzy will generate
a copy variable of each variable in the varlist, naming them with single, capital letters,
which are automatically deleted when the program is terminated. The user can con-
trol what letters are used to designate these copies by invoking the label() option,
and when done the new variables will remain in the dataset, unless the drop option
also is specified. Additionally, specifying keepconfigs will prevent the deletion of the
generated configurations.

The primary advantages of fuzzy, compared to other QCA programs, lie in its op-
tions, most notably settest() and reduce. The settest() option defines the tests
(each to be fully explained later) to be performed on the configurations’ means or con-
sistency scores. These tests help determine each configuration’s degree of inclusion with
the given outcome. sigonly, slevel(), conval(), and greater() all alter the config-
urations that are displayed by the given test and determine which configurations enter
the reduction (if reduce is specified). At least one of these options (hereafter referred
to as settest () options) must be specified for reduce to work, otherwise it would try
to logically reduce every possible configuration (i.e., it would reduce to a logical con-
tradiction). common can be used when multiple tests are run in a single call and will
display (and send to reduce) only the configurations that pass all the tests designated.

reduce uses the Quine—McCluskey algorithm (Ragin 1987) to logically reduce the
configurations specified by settest () and its options. Further, it displays the coverage
statistics for each of the reduced configurations and for the total final solution set. If
nonsingle, capital letter variables are entered in varlist, reduce will display its output
using the original variable names.

Finally, the option matx() can be used to produce matrices of descriptive statistics.
matx(coincid) will display the coincidence matrix for the varlist, and invoking the
standardized option will produce the standardized scores. Similarly, matx(suffnec)
produces a matrix showing the sufficiency and necessity scores for each variable entered
into the varlist, and using the altdisplay option will produce a “flipped” matrix,
placing the values where they are generally visualized graphically (i.e., sufficiency in the
upper left and necessity in the lower right).

4.3 Options

label (capital_letter_list) allows the user to specify what sets should be named when
used in creating and displaying the resulting configurations. If all variables in varlist
are already named as single, capital letters, then there is no reason to specify this
option (unless the user would like copies of the variables with new designations).

2. See setgen for a useful way to create such variables.

K. C. Longest and S. Vaisey 85

Further, this option is not required, but if any of the variables in varlist are not
named with a single, capital letter and this option is not specified, then the generated
copies of those variables will be named with a random single, capital letter, which
will be used in displaying the configurations but dropped when fuzzy is terminated.

keepsets prevents the generic single, capital letter version of each variable from being
deleted. This is only applicable when the 1abel () option has not been specified and
the original variables are not already named as single, capital letters.

drop automatically deletes any single, capital letter copies of variables entered in varlist
when the program is terminated (only applicable if 1abel() is also specified).

settest (festlist) defines which tests will be run and displayed:

yvn performs and displays the results (configuration; y consistency; n consistency;
F distribution; p-value; number of best-fitting observations) of the test between
each configuration’s y consistency (inclusion in y) versus its n consistency (inclu-
sion in not-y, or 1 —y). The test is performed using a Wald test (which uses an F'
distribution) comparing the consistency scores [i.e., equation (1)] derived using
the ratio command; a similar test procedure is used for all the tests available
in settest(). Thus a significant p-value means that the y consistency and the
n consistency of a particular configuration are statistically different.

yvo performs and displays the results (configuration; y consistency; all other sets’ y
consistency; F' distribution; p-value; number of best-fitting observations) of a test
between each set’s y consistency and the y consistency of all other configurations
(excluding only the configuration in question). This “other” y consistency is
calculated by taking the maximum value of every other configuration, excluding
the configuration to be tested, and computing its inclusion in the outcome set.
This test is generally applicable only if the configurations comprise binary crisp
sets.

yvv performs a test of each configuration’s y consistency versus a given numerical
value (default is 0.800) and displays the configuration, y consistency, test value,
F distribution, p-value, and number of best-fitting observations.

yavyb tests each configuration’s y consistency for each of the subgroups defined in
group(). The y consistency for each configuration is calculated separately for
each subgroup, and then they are tested against each other. Hence this test
will indicate, for each configuration, whether the y consistency of the first group
defined in group() is significantly different from the y consistency of the second
group. It displays the configuration; the first group’s y consistency; the second
group’s y consistency; the F' distribution; and the p-value. group() must be
specified with settest (yavyb).

cmvom operates similarly to yvo, but rather than using the configuration’s consis-
tency, it calculates and displays each configuration’s weighted mean. The con-
figuration’s mean on the outcome is weighted by the membership in that con-
figuration. This value is then tested against the mean as weighted by the max-
imum value of the other configurations. It displays each configuration’s mean;

86 fuzzy: A program for performing QCA in Stata

the “other” cumulative configuration’s mean; the ¢ value; the p-value; and the
number of best-fitting observations.

mavmb operates similarly to yavyb, but it conducts the test using the configuration’s
weighted mean by each group specified by group(). The adjusted mean is cal-
culated using the membership in that configuration for each subgroup. It then
displays the weighted mean for the first group, weighted mean for the second
group, t value, and p-value. group() must be specified with settest (mavmb).

group (varname) defines the group variable used when invoking the yavyb or mavmb
test. varname must be a 2-category variable.

conval (#) changes the value against which to test each configuration’s y consistency
if settest (yvv) is specified. The value can be any number between 0 and 1. The
default is conval(.800).

sigonly restricts the display of any tests specified in settest() to only those with
significant p-values.

slevel(#) changes the significance level to be used in determining sigonly. The
default is slevel(.05).

greater(coll|col2) restricts the display of any test specified by settest() to only
those in which the value in the designated column (of the output) is greater than
the other column. The first column is always the consistency (or mean) for each
configuration, while the second column is what that consistency is being tested
against.

Note: sigonly and greater(coll|col2) can be used in conjunction. Thus, for
example, if sigonly and greater(coll) were specified, any test designated in
settest () would display only the results for those configurations that had a signif-
icant p-value on the test and that had a first column value greater than the second
column.

common displays only the configurations that pass all of the tests and conditions specified
by settest(). For example, if settest(yvn yvv) sigonly common was entered,
common would display the configurations that had a significantly greater y consistency
than n consistency and a y consistency significantly greater than 0.800.

Note: At least one of the settest () options must be used if reduce is invoked, in
order to specify which configurations should be entered into the reduction. Further,
if one (or more) of these restrictions is invoked along with reduce, only those con-
figurations that are displayed will be entered into the reduction. Finally, if multiple
tests are specified in settest (), without common, the last displayed configurations
(regardless of the order in which the tests are specified) will be entered into the
reduction (the order of the display will follow the order listed in the syntax above).
Specifying common will send those common configurations to reduce.

cluster (varname) allows the standard errors produced by the ratio command when
calculating consistencies to adjust for intragroup correlation.

K. C. Longest and S. Vaisey 87

necessity produces a table of each configuration’s necessity value (similar to consis-
tency except the denominator is the sum of the outcome instead of the sum of the
configuration).

matx (matlist) defines which matrix to produce:

suffnec produces a sufficiency and necessity matrix for all the variables entered in
varlist. Thus this option can be used to help determine the relationship between
individual sets with each other and with the outcome. Sufficiency, in this case,
is equivalent to computing individual set consistency scores.

coincid produces a coincidence matrix for all the variables entered in varlist. Again
this is useful to help understand the relationship between the independent vari-
ables by using methods in line with fuzzy-set theory. Coincidence measures the
amount of overlap or coincidence between the two sets or configurations (see
Ragin [2006] for full details).

standardized alters the coincidence scores by taking into account the size of the sets.
Coincidence is, in part, determined by the size of the sets because the larger they
are the more room there is to overlap. This standardizing procedure divides the
coincidence score by the total membership of the smaller set. The values in this
matrix thus indicate the proportion of the total possible overlap between the sets.

altdisplay flips the suffnec matrix so that the sufficiency scores are in the upper
left and the necessity scores are in the lower right (which is how these values are
generally portrayed graphically).

reduce uses the elements passed by settest() to implement the Quine—McCluskey
algorithm to produce a reduced final solution set and its accompanying coverage
statistics. For example, if the input

. fuzzy Y A B C, settest(yvn) sigonly

displayed the configurations ABc and ABC, then reduce would produce AB and display
this reduced configuration’s coverage statistics. Again, when invoking reduce, it is
also necessary to give some criteria to prevent the total possible configuration set
from being entered into the reduction, which would reduce to a logical contradiction.
Thus, when reduce is specified, settest() and sigonly or greater() must be
specified.

remainders(#) runs the reduction twice: once with those configurations specified as
remainders included in the reduction as “do-not-care” configurations, and once with
them excluded. The # determines that any configuration with fewer or equal to #
best-fitting observations are treated as remainders. This is highly advisable when
the configuration contains many sets or when the sample size is small.

dnc (configlist) specifies configurations as “do-not-care” configurations. The entered
configurations are treated as do-not-care configurations regardless of whether they
pass any specified tests. These configurations are used in the first step of the reduc-
tion but not in the second step (see Ragin [2000] for a full explanation of do-not-care
configurations).

88 fuzzy: A program for performing QCA in Stata

truthtab (filename) outsheets (and replaces) a file containing the resulting truth table.
If no options are specified, it will outsheet the entire truth table; otherwise, it op-
erates similarly to reduce in how it defines which configurations are included. The
filename should end in the desired output type (.dta, .csv, etc.).

keepconfigs prevents the generated configuration variables from being deleted when
fuzzy is terminated.

4.4 Saved results

Macros
r(y) outcome variable
r(sets) total possible configuration set
r(start) independent variable sets
r(colsig) configurations passing the last displayed results (if settest() is specified)
r(comm) common configurations (if common is specified)

r(reducsols) final reduced configurations (if reduce is specified)

Matrices
r(coincid) coincidence matrix (if matx(coincid) is specified)
r(suffnec) sufficiency and necessity matrix (if matx(suffnec) is specified)

4.5 Postestimation commands and stand-alones

In addition to the base command and its options, the fuzzy program also includes many
of the same options as stand-alone programs, to be used in testing specific configura-
tions or as “postestimation” commands. Specifically, all the possible tests specified in
settest (), the matrices in matx (), truthtab(), coverage, and reduce can all be used
as stand-alone or postfuzzy commands. In both cases, they accept all the options that
would pertain to them if specified in fuzzy.

When run as stand-alone programs, the user can enter specific configurations that
do not have to exist in the dataset, but if they do not, their set components (named
with single, capital letters) must. For example, if the user was specifically interested in
the consistencies of two particular configurations (A - B - C and a - B - C), the command

. yvn Y ABC abc

could be run, which would produce the typical yvn output, but only for ABC and abc.
Variables representing the configurations ABC and abc do not need to be present in the
dataset for this command to work, but the individual set variables Y, A, B, and C do.
The user could also specify the sigonly, the greater (), or both options, just as would
be done if yvn was used in the fuzzy command.

These commands can also be used as postestimation commands. So, for example,
if the user ran a simple fuzzy command with no options, yvn could be entered subse-
quently, which would produce the same output as if yvn had been included in settest ()
with the original fuzzy command. When these postestimation commands are used in
this manner, they use the full varlist from the last run fuzzy command unless last is
specified as an option, which will then use the last “displayed” configurations resulting
from any invoked settest() options. If the user wishes to run the test on the final

K. C. Longest and S. Vaisey 89

reduced solution set (assuming reduce had been specified in the previous command),
usereduction should be entered as an option.

Additionally, reduce, coverage, and truthtab can be used as postestimation com-
mands and will automatically perform their operations on the last displayed configu-
rations (last does not need to be specified because these programs can be used only
if settest() was used in the last run fuzzy or stand-alone command). They also can
be used as stand-alones to manually run their operations. For example, a user could
perform a reduction on a specified set of configurations. When used in this manner,
full configurations must be entered (i.e., it will not reduce ABc aB because the latter
does not contain all of the constituent sets; but it would reduce ABC aBc aBC, which
is logically equivalent). Finally, reduce as a stand-alone accepts the dncare() option
for specifying configurations as do-not-care configurations, and truthtab accepts its
outsheet () option.

Next there are a few extensions of fuzzy that only work as stand-alone programs.

cnfgen newconfigurationlist generates specific configuration variables. The individual
sets must be included in the dataset, named with single, capital letters, and range
from 0 to 1. For example, the user could enter

. cnfgen aBc ABC abc

to produce variables representing these three configurations.

yvy outcomevar configurationl configuration? tests the y consistency of the first config-
uration entered against the y consistency of the second configuration entered. The
configurations do not need to exist in the dataset, but their individual single, capital
letter versions must. It is also possible to test individual sets against each other, but
they must exist in the dataset (and be individual letters) and range from 0 to 1.

fzplot outcomevar configuration [, mlabel (varname)] will produce a sufficiency plot
of the specified configuration and the outcome variable. The configuration does not
need to exist in the dataset, but its individual single, capital letter versions must
exist.

mlabel (varname) is an available option and is used just as it would be with scatter;
see [G] graph twoway scatter.

coverage [outcomevar conﬁgumtians] will produce the coverage statistics for the given
configurations. The configurations do not need to exist in the dataset, but their
individual single, capital letter versions must exist.

setgen newvar = fen(arguments) [, option] works like egen but specifically for cre-
ating fuzzy sets that range from 0 to 1. The function fen is one of the following:

stdrank (varname) rank orders the variable and then standardizes this ranking to
range from 0 to 1. The equation for this standardization is

rankedvar — min(rankedvar)

max(rankedvar) — min(rankedvar)

90 fuzzy: A program for performing QCA in Stata

drect (varname) , anchors(numlist) performs the “direct” transformation, out-
lined in Ragin (2008), which uses set values (the anchors () option) to calibrate
the membership scores as levels of deviation from the anchors, in terms of log
odds. The anchors should be entered in ascending order (i.e., mimimum thresh-
old, crossover point, maximum threshold).

ndrect (varname) , grpdvar (varname) performs the “indirect” transformation, out-
lined in Ragin (2008), which uses a regression based on the qualitative cutpoints
in the grpdvar () option to determine membership scores. The grpdvar () option
should be a categorization of the original variables into groups according to their
levels of membership (e.g., more in than out = 0.33). This new, qualitatively
grouped variable is regressed on the original in order to reshape the original
variable into a set, ranging from 0 to 1, that is based on the knowledge-based
grouping.

crisp(varname) [, cutpt(#)] will produce a “crispy” copy of the variable (i.e.,
a binary 0/1 variable). The default is to split the new variable at the original
variable’s median, such that the median value and below will be coded as 0,
otherwise 1 (unless the median and the maximum value are the same in the
original variable, in which case the median will be coded 1). If the median is not
an appropriate delineation, the cutpt () option can be used to specify the value
at which to split the variable, such that all those values equal to or less than the
cutpoint will be coded 0 and the rest 1.

5 Remarks and examples

To illustrate the capabilities and functionality of the fuzzy command, we present anal-
yses using the National Study of Youth and Religion (Smith and Denton 2003). The
study is a nationally representative survey of 3,390 teenagers and their parents. For
simplicity, 5th and 6th grade adolescents are dropped and listwise deletion is employed
for all variables in analyses, resulting in a sample size of n = 3,112.

For the purposes of these examples, we will be using the teen’s reported grades (grds)
during the past academic semester as the outcome variable (higher scores indicate better
grades). The independent variables will include their number of work hours (workhrs),
their number of friends reported to use drugs or drink alcohol (peerus), an index of
parental monitoring (pmonit), and their reported alcohol usage (alcuse). All of the
variables have been transformed into sets using the stdrank() function in setgen.

This transformation is one of many that could be used to convert variables into sets.
To illustrate its general properties, we have presented the frequency distributions from
the original grade variable and its new set version.

K. C. Longest and S. Vaisey

. use nsyr_example_data

. tabulate grds, nol

grds Freq. Percent Cum.
1 13 0.42 0.42
2 11 0.35 0.77
3 19 0.61 1.38
4 88 2.83 4.21
5 387 12.44 16.65
6 503 16.16 32.81
7 402 12.92 45.73
8 1,088 34.96 80.69
9 325 10.44 91.13
10 276 8.87 100.00
Total 3,112 100.00
. setgen G = stdrank(grds)
. tabulate G
rank of
(grds) Freq. Percent Cum.
0 13 0.42 0.42
.0040438 11 0.35 0.77
.0090986 19 0.61 1.38
.0271272 88 2.83 4.21
.1071609 387 12.44 16.65
.2571188 503 16.16 32.81
.409604 402 12.92 45.73
.6606571 1,088 34.96 80.69
.8987363 325 10.44 91.13
1 276 8.87 100.00
Total 3,112 100.00

91

The distribution of cases has not changed, but the scale has been “fuzzified” to
range between 0 and 1, with the values now representing the level of membership in
the set “good grades”. The similarity of distributions is not required, and in fact there
are situations that may call for more user-knowledge-based coding (for a discussion of
this type of transformation, see Ragin [2000]). In the current example, we have chosen
to use the standardized rank transformation because it is a relatively straightforward

conversion.

The following is the distribution of each variable and its corresponding set:

Variable Original range Original mean Set mean
Grades 1-10 7.26 0.52
Work hours 0-40 3.31 0.19
Peer substance use 0-5 0.70 0.25
Parent monitoring 0-4 2.62 0.51
Alcohol use 0-5.5 0.60 0.27

92 fuzzy: A program for performing QCA in Stata

5.1 Configuration testing

The first step in the fuzzy analysis might be to see which configurations contain the
greatest number of individuals.

. use nsyr_example_data, clear

. foreach var of varlist grds workhrs peerus pmonit alcuse {

2. setgen st var” = stdrank(var”)

3.}
. fuzzy stgrds stworkhrs stpeerus stpmonit stalcuse, label(G W P M A)
. tabulate bestfit

bestfit Freq. Percent Cum.
WPMA 45 1.45 1.45
WPMa 32 1.03 2.47
WPmA 198 6.36 8.84
WPma 47 1.51 10.35
WpMA 37 1.19 11.54
WpMa 148 4.76 16.29
WpmA 83 2.67 18.96
Wpma 113 3.63 22.59
wPMA 110 3.53 26.12
wPMa 115 3.70 29.82
wPmA 318 10.22 40.04
wPma 131 4.21 44.25
wpMA 158 5.08 49.33
wpMa 882 28.34 77.67
wpmA 220 7.07 84.74
wpma 475 15.26 100.00
Total 3,112 100.00

Thus 1.45% of adolescents are likely to experience all of the independent measures at
above-median levels (WPMA), while the most common configuration (wpMa), with 28.34%
of the sample best fitting it, indicates low work hours, not many friends who use sub-
tances, high parent monitoring, and low levels of individual alcohol use. This command
would also have produced five new individual variables (G, W, P, M, A), all copies of the
original variables for which they were named. If the user did not wish to keep these
new variables, drop could be specified.

K. C. Longest and S. Vaisey 93

The label () option, however, is not necessary. Had it not been specified, we would
have seen the following:

. fuzzy stgrds stworkhrs stpeerus stpmonit stalcuse
. tabulate bestfit

bestfit Freq. Percent Cum.
BDEF 45 1.45 1.45
BDEf 32 1.03 2.47
BDeF 198 6.36 8.84
BDef 47 1.51 10.35
BdEF 37 1.19 11.54
BdEf 148 4.76 16.29
BdeF 83 2.67 18.96
Bdef 113 3.63 22.59
bDEF 110 3.53 26.12
bDEf 115 3.70 29.82
bDeF 318 10.22 40.04
bDef 131 4.21 44 .25
bdEF 158 5.08 49.33
bdEf 882 28.34 77.67
bdeF 220 7.07 84.74
bdef 475 15.26 100.00
Total 3,112 100.00

The only difference in the two commands, therefore, is the naming of the configura-
tions. Of course, using label() may be helpful in keeping straight the sets involved in
creating the configurations. Also, because label() was not used, the variables B, D, E,
and F are, by default, deleted when the program is terminated, but keepsets could be
specified to prevent this if the user wanted to use these generic names in future calls.
In the remaining examples, we will use the single letter designations with the fuzzy
command (treating it as though the user had already run the first invocation of fuzzy
above). But all of the commands could be run with original variables (with or without
the label() option).

[Technical note

While the total in the bestfit variable does add up to the total number of non-
missing cases, this may not always be true. Cases scoring 0.5 on all individual predictor
sets will not appear because they belong equally to all configurations.

—1

Next one might want to get a sense of the relationship between the independent
variable sets by using fuzzy-set methods.

(Continued on next page)

94 fuzzy: A program for performing QCA in Stata

. fuzzy G W P M A, matx(coincid suffnec) standardized

Coincidence Matrix

G W P M A
G 1.000
W 0.603 1.000
P 0.574 0.422 1.000
M 0.699 0.485 0.453 1.000
A 0.595 0.459 0.630 0.482 1.000

Sufficiency and Necessity Matrix

G W P M A
G 1.000 0.214 0.276 0.677 0.311
W 0.603 1.000 0.422 0.485 0.459
P 0.574 0.311 1.000 0.453 0.630
M 0.699 0.178 0.225 1.000 0.261
A 0.595 0.311 0.579 0.482 1.000

The high work hours and high grades sets overlap by 60% of their possible shared
area, as shown by their 0.603 coincidence score. The standardization option is especially
helpful because several of the variables (e.g., work hours and alcohol use) do not contain
many members at high degrees. In fact, the coincidence score between grades and work
hours was one of the lowest when the size of the variables was not accounted for by the
standardization option, which demonstrates the utility of also invoking standardized
with the coincidence matrix. We also see that high parent monitoring is the single set
that—alone—is most sufficient for predicting the outcome (consistency = 0.699). Both
of these matrices are returned and could be used to run further tests.

Seeing that the variable sets are indeed related, it would now be helpful to examine
their resulting configurations’ sufficiency with the outcome. To do so, we will run a
series of tests, the first of which is the most basic, to get a sense of each configuration’s
consistency with the outcome.

. fuzzy G W P M A, settest(yvv)

Y-Consistency vs. Set Value

Set YConsist Set Value F P NumBestFit
wpma 0.790 0.800 1.78 0.182 475
wpmA 0.771 0.800 4.76 0.029 220
wpMa 0.739 0.800 69.15 0.000 882
wpMA 0.805 0.800 0.14 0.705 158
wPma 0.770 0.800 4.11 0.043 131
wPmA 0.650 0.800 83.20 0.000 318
wPMa 0.801 0.800 0.01 0.926 115
wPMA 0.759 0.800 5.51 0.019 110
Wpma 0.804 0.800 0.06 0.804 113
WpmA 0.759 0.800 3.12 0.077 83
WpMa 0.790 0.800 0.41 0.523 148
WpMA 0.843 0.800 3.95 0.047 37
WPma 0.819 0.800 0.76 0.385 47
WPmA 0.648 0.800 47.15 0.000 198
WPMa 0.835 0.800 1.95 0.162 32
WPMA 0.796 0.800 0.03 0.869 45

K. C. Longest and S. Vaisey 95

Each configuration’s consistency is displayed, as well as the resulting test against
0.800. The results indicate that only the configuration WpMA is significantly more consis-
tent than 0.800 at the 0.05 level. Of course, one of the primary advantages of the fuzzy
command is that it can perform more stringent tests of each configuration’s consistency
value. We look for the configurations that have y consistencies significantly greater than
0.700, as well as significantly greater than their n consistencies.

. fuzzy G W P M A, settest(yvv yvn) sigonly greater(coll) conval(.700) common
Y-CONSISTENCY vs N-CONSISTENCY

Set YCons NCons F P NumBestFit
wpma 0.790 0.734 16.49 0.000 475
wpMa 0.739 0.646 45.83 0.000 882
Wpma 0.804 0.727 6.79 0.009 113
WpMa 0.790 0.698 9.46 0.002 148
WPma 0.819 0.715 5.70 0.017 47
Y-Consistency vs. Set Value

Set YConsist Set Value F P NumBestFit
wpma 0.790 0.700 136.51 0.000 475
wpmA 0.771 0.700 27.69 0.000 220
wpMa 0.739 0.700 27.20 0.000 882
wpMA 0.805 0.700 68.45 0.000 158
wPma 0.770 0.700 21.90 0.000 131
wPMa 0.801 0.700 48.95 0.000 115
wPMA 0.759 0.700 11.33 0.001 110
Wpma 0.804 0.700 43.85 0.000 113
WpmA 0.759 0.700 6.45 0.011 83
WpMa 0.790 0.700 31.27 0.000 148
WpMA 0.843 0.700 43.19 0.000 37
WPma 0.819 0.700 29.96 0.000 47
WPMa 0.835 0.700 28.48 0.000 32
WPMA 0.796 0.700 12.50 0.000 45

Common Sets
wpma wpMa Wpma WpMa WPma

Notice that the sigonly and greater() options apply to both the yvv and yvn
tests, while conval() pertains only to yvv. Using the common option is a quick way
to see the configurations that pass both tests. From the given output, it appears that
wpma, wpMa, Wpma, WpMa, and WPma are the most highly consistent configurations with
good grades. It is possible though that these configurations may logically overlap. To
perform the reduction:

(Continued on next page)

96 fuzzy: A program for performing QCA in Stata

. fuzzy G W P M A, settest(yvv yvn) sigonly greater(coll) conval(.700)
> common reduce

(output omitted)

Common Sets
wpma wpMa Wpma WpMa WPma

5 Solutions Entered as True

Minimum Configuration Reduction Set
Wma pa

Final Reduction Set

Coverage

Set Raw Coverage Unique Coverage Solution Consistency
Wkm*a 0.113 0.017 0.778

p*a 0.732 0.636 0.603

Total Coverage = 0.749
Solution Consistency = 0.604

The five initial configurations have been collapsed into two. (The “Minimum Con-
figuration Reduction Set” displays the reduced configurations from the initial step.
In certain cases, this will be different than the “Final Reduction Set”, which results
from the second step—employing prime implicants—of the Quine—McCluskey algo-
rithm.) We also can tell that low personal alcohol use (a) is key to higher grades.
When this base set is conjoined with either low peer substance use (p) or high work
hours combined with low parent monitoring (W * m), the adolescent is also likely to
be achieving higher grades.®> Additionally, this example displays the benefit of fuzzy
methods more generally, as we find a somewhat surprising relationship between work
hours and a positive outcome. Normally, higher work hours have been found to in-
crease the likelihood of a number of delinquent activities (Bachman and Schulenberg
1993; Safron, Schulenberg, and Bachman 2001; and Paschall, Ringwalt, and Flewelling
2002). When this high work intensity, however, is concurrently combined with low
personal alcohol use and low parent monitoring, it is associated with higher academic
achievement. Understanding why low parent monitoring is included in this configura-
tion is difficult without further examination although it may indicate independent youth
(i.e., working many hours breaks them from parent monitoring, but they still do not
participate in delinquent activities, which all conjoins to be associated with positive
academic outcomes).

Finally, it would have been possible to run the entire set of analyses in the following
single command:

3. We recognize that the reduced configuration p*a has a consistency below the 0.7 set value. This drop
in value (i.e., increased coverage but reduced effectiveness) is due to the increased amount of people who
belong to the minimized configuration. We recognize this difference as an important methodological
(and substantive) issue that should be addressed in future research.

K. C. Longest and S. Vaisey 97

. drop GWPMA

. fuzzy stgrds stworkhrs stpeerus stpmonit stalcuse, label(G W P M A)
> matx(coincid suffnec) standard settest(yvv yvn) sigonly greater(coll)
> conval(.700) common reduce

(output omitted)

Common Sets
wpma wpMa Wpma WpMa WPma

5 Solutions Entered as True

Minimum Configuration Reduction Set
Wma pa

Final Reduction Set

Coverage

Set Raw Coverage Unique Coverage Solution Consistency
STWORKHRS*stpmonit*stalcuse 0.113 0.017 0.778
stpeerus*stalcuse 0.732 0.636 0.603

Total Coverage = 0.749
Solution Consistency = 0.604

When the original variables are used along with reduce, the reduction output uses
the original variable names, making it possible to use this output in potential tables.

[Technical note

It is possible to pass configurations to that have consistency scores that are greater
with the negation (i.e., 1 — outcome) than the outcome to reduce (e.g., fuzzy varlist,
settest(yvn) greater(col2) reduce), but if this is done, reduce still uses the out-
come to compute the coverage and consistency scores of the reduced configurations.

If these values are desired for the negation, we suggest the user create a specific vari-
able, to be used as the outcome, that represents 1 — outcome and revert to specifying
greater (coll) with the yvn test.

L1

5.2 Postestimation testing and stand-alones

Many of the options within fuzzy have been constructed to be used as stand-alone
programs, which may be highly useful to test specific configurations. For example,
perhaps one is interested in the coincidence of the configurations, in addition to the
individual variables:

(Continued on next page)

98 fuzzy: A program for performing QCA in Stata

. fuzzy GWP M A
. coincid “r(sets)”

Coincidence Matrix

cl c2 c3 c4 cb c6
ri 1.000
r2 0.220 1.000
r3 0.432 0.133 1.000
rd 0.180 0.550 0.162 1.000
r5 0.156 0.168 0.096 0.145 1.000
r6 0.074 0.202 0.046 0.159 0.284 1.000
r7 0.128 0.140 0.113 0.171 0.535 0.215
r8 0.066 0.189 0.056 0.237 0.275 0.407
r9 0.097 0.079 0.065 0.074 0.074 0.042
r10 0.039 0.115 0.025 0.106 0.059 0.064
ri1 0.085 0.066 0.076 0.077 0.060 0.034
ri2 0.035 0.104 0.028 0.126 0.053 0.056
ri3 0.033 0.053 0.021 0.049 0.128 0.074
ri4 0.020 0.055 0.013 0.048 0.069 0.089
rib5 0.028 0.047 0.023 0.056 0.109 0.062
rl6 0.018 0.054 0.014 0.064 0.069 0.082
c7 c8 c9 cl10 cl1 cl2
r7 1.000
r8 0.343 1.000
r9 0.065 0.046 1.000
r10 0.052 0.073 0.269 1.000
riil 0.069 0.048 0.464 0.180 1.000
ri12 0.061 0.087 0.213 0.482 0.237 1.000
ril3 0.109 0.086 0.207 0.189 0.139 0.170
ri4 0.057 0.090 0.098 0.195 0.071 0.149
rib 0.131 0.100 0.158 0.158 0.175 0.220
ril6 0.080 0.133 0.098 0.201 0.102 0.287
cl3 cld cl1b cl6é
r13 1.000
ri4 0.242 1.000
rib5 0.464 0.176 1.000
ri6 0.264 0.315 0.369 1.000

The fuzzy command is used to generate all the possible configurations and then
create a full coincidence matrix of these configurations. We could have included the
outcome variable in this matrix, but we do not have to in this case. If we had not
entered r(sets) after the coincid command in this case, a coincidence matrix for just
the individual set variables would have been reproduced. There are also two alternative
methods for producing similar results: (1) in the fuzzy command line, the user could
have invoked the keepconfigs option and then entered

. coincid wpma - WPMA

or (2) the user could have, without running the first fuzzy command, manually entered
every possible (or desired) configuration:

. coincid wpma wpmA wpMA

K. C. Longest and S. Vaisey 99

Again, when these postestimation commands are used, only the individual sets
(named as capital letters) must exist in the dataset. For example, we could run the
following command as long as the set variables G, W, P, M, and A existed in the dataset
(even if the configuration variables did not):

. yvn G wpma Wpma WPma
Y-CONSISTENCY vs N-CONSISTENCY

Set YCons NCons F P NumBestFit
wpma 0.790 0.734 16.49 0.000 475
Wpma 0.804 0.727 6.79 0.009 113
WPma 0.819 0.715 5.70 0.017 47

When using the options as primary programs, they will accept all of the options as-
sociated with them in the main fuzzy (e.g., we could have specified sigonly, slevel(),
greater (), or a combination of these in the above example). When using the tests in
this manner, it is still necessary to specify the dependent variable in addition to the
configurations to be tested.

[Technical note

If yvo or cmvom is used in this manner, the “other” configuration that each config-
uration is tested against consists only of those configurations that are entered into the
command line. For example, had yvo been used instead of yvn in the last example, each
configuration would have been tested against the other two configurations instead of
the full possible configuration set. Additionally, if yvo or cmvom is used in this manner,
at least two configurations must be specified.

L1

(Continued on next page)

100 fuzzy: A program for performing QCA in Stata

Many of the described extensions work in this manner as well. For example, in
figure 1, we can visually see the relationship between a specific configuration and the
outcome.

. fzplot G Wpma

— OENIEO ® @ @ 00 0 o ®meo oo o ,
’

’
eanme © @ © oo o oouoo./
’

4
’

GuNES © ® O o0 O *’.O..

SOt ’
.
’
’
e
Y o e e © Moo wwmee oo
’
’
’
ounms ®© 9’ © 000 oeme ®

Figure 1. Graph of the relationship between outcome (stgrds) and configuration
(Wmpa).

Or it may be beneficial to test two configurations’ consistencies against one another.
For example, given the reduction above, we might have concluded that the configuration
Wma was perhaps the most important because of its higher consistency. But we can test
if this difference is significant with

. yvy G Wma pa

Y-CONSISTENCY vs Y-CONSISTENCY

WmaYcons paYCons F P
0.778 0.603 142.28 0.000

This test shows that, in fact, the two configurations’ consistencies are significantly
different. Further, the configurations do not have to be “full” in the sense that they use
all of the original sets. Rather, the configurations are generated by taking the minimum
value of the specified combination. reduce used as a stand-alone program does require
“full” configurations to perform the reduction properly.

Finally, these commands can be used following fuzzy (and each other) as postes-
timation commands. When this is done, the default is to use the original variable list
from the last run fuzzy (or other postestimation command). For example,

K. C. Longest and S. Vaisey 101

. fuzzy GWP M A

. yvv
Y-Consistency vs. Set Value

Set YConsist Set Value F P NumBestFit
wpma 0.790 0.800 1.78 0.182 475

wpmA 0.771 0.800 4.76 0.029 220

wpMa 0.739 0.800 69.15 0.000 882

wpMA 0.805 0.800 0.14 0.705 158

wPma 0.770 0.800 4.11 0.043 131

wPmA 0.650 0.800 83.20 0.000 318

wPMa 0.801 0.800 0.01 0.926 115

wPMA 0.759 0.800 5.51 0.019 110

Wpma 0.804 0.800 0.06 0.804 113

WpmA 0.759 0.800 3.12 0.077 83

WpMa 0.790 0.800 0.41 0.523 148

WpMA 0.843 0.800 3.95 0.047 37

WPma 0.819 0.800 0.76 0.385 a7

WPmA 0.648 0.800 47.15 0.000 198

WPMa 0.835 0.800 1.95 0.162 32

WPMA 0.796 0.800 0.03 0.869 45

This is similar to running the command on one line. But it is also possible to run post
hoc examination of limited sets of configurations. For example, if in the last run fuzzy
command the display was altered using one of the settest() options or reduce, then
it is possible to specify last or usereduction as an option with the postestimation
commands to restrict their analyses to the last displayed set of configurations.

. fuzzy G W P M A, settest(yvv yvn) sigonly greater(coll) conval(.700) common
> reduce

(output omitted)
. yvv, usered conv(.700)

Y-Consistency vs. Set Value

Set YConsist Set Value F P NumBestFit
Wma 0.778 0.700 27.39 0.000 160
pa 0.603 0.700 233.46 0.000 1618

The use of the options as postestimation commands also allows for more complex
and flexible sets of tests. For example, if the user wanted to identify and reduce all the
configurations having consistencies with the outcome that were greater than with the
negation (but not necessarily significantly so) and that were also significantly greater
than 0.700, it would be impossible to do in one call to fuzzy (because the settest()
options apply to all of the tests in settest()). But the user could accomplish this goal
using a simple series of commands:

(Continued on next page)

102 fuzzy: A program for performing QCA in Stata

. fuzzy G W P M A, settest(yvn) greater(coll)
Y-CONSISTENCY vs N-CONSISTENCY

Set YCons NCons F P NumBestFit
wpma 0.790 0.734 16.49 0.000 475
wpMa 0.739 0.646 45.83 0.000 882
wpMA 0.805 0.801 0.03 0.855 158
wPMa 0.801 0.768 1.50 0.220 115
Wpma 0.804 0.727 6.79 0.009 113
WpmA 0.759 0.756 0.00 0.949 83
WpMa 0.790 0.698 9.46 0.002 148
WpMA 0.843 0.796 1.48 0.223 37
WPma 0.819 0.715 5.70 0.017 47
WPMa 0.835 0.753 3.07 0.080 32
WPMA 0.796 0.791 0.01 0.925 45

. yvv, last conval(.700) greater(coll) sigonly

Y-Consistency vs. Set Value

Set YConsist Set Value F P NumBestFit
wpma 0.790 0.700 136.51 0.000 475
wpMa 0.739 0.700 27.20 0.000 882
wpMA 0.805 0.700 68.45 0.000 158
wPMa 0.801 0.700 48.95 0.000 115
Wpma 0.804 0.700 43.85 0.000 113
WpmA 0.759 0.700 6.45 0.011 83
WpMa 0.790 0.700 31.27 0.000 148
WpMA 0.843 0.700 43.19 0.000 37
WPma 0.819 0.700 29.96 0.000 a7
WPMa 0.835 0.700 28.48 0.000 32
WPMA 0.796 0.700 12.50 0.000 45

. reduce

11 Solutions Entered as True

Minimum Configuration Reduction Set

pa pM Ma Wp Wa WM

Final Reduction Set

Coverage

Set Raw Coverage Unique Coverage Solution Consistency
p*a 0.732 0.134 0.603
p*M 0.602 0.026 0.717
M*a 0.611 0.034 0.721
Wxp 0.152 0.013 0.666
Wka 0.153 0.012 0.696
WxM 0.129 0.011 0.750

Total Coverage = 0.847
Solution Consistency = 0.598

Finally, if the user knew the specific configurations that should be treated as true,
then reduce could be used as its own stand-alone command. As a simple illustrative
example, if the user had some reason to believe only those configurations with high work
hours and high parent monitoring should be considered true, the following command
could be used:

K. C. Longest and S. Vaisey 103

. reduce G WpMa WPMa WpMA WPMA
4 Solutions Entered as True

Minimum Configuration Reduction Set
WM

Final Reduction Set

Coverage
Set Raw Coverage Unique Coverage Solution Consistency
WM 0.129 0.129 0.750

Total Coverage = 0.129
Solution Consistency = 0.750

As expected, the configuration set reduces to just high work hours (W) and high parent
monitoring (M).

6 Acknowledgments

We would like to thank Nick Cox (University of Durham, UK) for early help with the
programming that got the larger program off the ground. We also appreciate Charles
Ragin and Sarah Strand (University of Arizona) for useful testing and feedback of
earlier versions. The development of this program was supported in part by the Center
for Developmental Sciences, University of North Carolina at Chapel Hill.

7 References

Bachman, J. G., and J. E. Schulenberg. 1993. How part-time work intensity relates to
drug use, problem behavior, time use, and satisfaction among high school seniors: Are
these consequences or merely correlates? Developmental Psychology 29: 220-235.

Greckhamer, T., V. F. Misangyi, H. Elms, and R. Lacey. 2007. Using Qualitative
Comparative Analysis in Strategic Management Research: An Examination of Com-
binations of Industry, Corporate, and Business-unit Effects. Organizational Research
Methods OnlineFirst 1-32.

Kalleberg, A. L., and S. Vaisey. 2005. Pathways to a good job: Perceived work quality
among the machinists in North America. British Journal of Industrial Relations 43:
431-454.

Lin, N., and W. M. Ensel. 1989. Life stress and health: Stressors and resources. Amer-
ican Sociological Review 54: 382-399.

Longest, K. C., and P. Thoits. 2007. The stress process and physical health: A config-
urational approach. Paper presented at the American Sociological Annual Meeting.

Mahoney, J. 2003. Long-run development and the legacy of colonialism in Spanish
America. American Journal of Sociology 109: 50-106.

104 fuzzy: A program for performing QCA in Stata

Paschall, M. J., C. Ringwalt, and R. L. Flewelling. 2002. Explaining higher levels of al-
cohol use among working adolescents: An analysis of potential explanatory variables.
Journal of Studies on Alcohol 63: 169-178.

Ragin, C. 2000. Fuzzy-Set Social Science. Chicago: University of Chicago Press.

. 2006. Set relations in social research: Evaluating the consistency and coverage.
Political Analysis 14: 291-310.

. 2008. Fuzzy set analysis: Calibration versus measurement. In Oxford Handbook
of Political Methodology, ed. J. Box-Steffensmeier, H. Brady, and D. Collier. Oxford:
Oxford University Press.

Ragin, C. C. 1987. The Comparative Method: Moving Beyond Qualitative and Quan-
titative Strategies. Berkeley: University of California Press.

Roscigno, V. J., and R. Hodson. 2004. The organizational and social foundations of
worker resistance. American Sociological Review 69: 14-39.

Safron, D. J., J. E. Schulenberg, and J. G. Bachman. 2001. Part-time work and hurried
adolescence: The links among work intensity, social activities, health behaviors, and
substance use. Journal of Health and Social Behavior 42: 425-449.

Schuit, A. J., A. J. M. Van Loon, M. Tijhuis, and M. C. Ocké. 2002. Clustering of
lifestyle risk factors in a general adult population. Preventive Medicine 35: 219-224.

Shanahan, M. J., L. D. Erikson, S. Vaisey, and A. Smolen. 2007. Helping relationships
and genetic propensities: A combinatoric study of DRD2, mentoring, and educational
continuation. Twin Research and Human Genetics 10: 285-298.

Smith, C., and M. L. Denton. 2003. Methodological design and procedures for the
National Study of Youth and Religion. Technical report, University of North Carolina,
Chapel Hill, NC. http://www.youthandreligion.org/.

Smithson, M., and J. Verkuilen. 2006. Fuzzy Set Theory: Applications in the Social
Sciences. Thousand Oaks, CA: Sage.

Thoits, P. A. 1995. Stress, coping, and social support processes: Where are we? What
next? Journal of Health and Social Behavior 35: 53-79.

Vaisey, S. 2007. Culture, structure, and community: The search for belonging in 50
urban communes. American Sociological Review 72: 851-873.

About the authors

Kyle C. Longest is a PhD candidate in the department of sociology at the University of North
Carolina at Chapel Hill. His research interests focus on adolescent development with special
attention to identity, education, substance use, and the transition out of high school.

Stephen Vaisey is a doctoral student in the department of sociology at the University of North
Carolina at Chapel Hill. His research focuses on the relationship between culture and cognition.

	Articles and Columns
	fuzzy: A program for performing qualitative comparative analyses (QCA) in Stata, K. C. Longest and S. Vaisey

