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Abstract. Many economic time series exhibit important systematic fluctuations
within the year, i.e., seasonality. In contrast to usual practice, I argue that using
original data should always be considered, although the process is more compli-
cated than that of using seasonally adjusted data. Motivations to use unadjusted
data come from the information contained in their peaks and troughs and from
economic theory. One major complication is the possible unit root at seasonal
frequencies. In this article, I tackle the issue of implementing a test to identify
the source of seasonality. In particular, I follow Hylleberg et al. (1990, Journal of
Econometrics 44: 215–238) for quarterly data.
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1 Introduction

Many economic time series exhibit important systematic fluctuations within the year,
i.e., seasonality. Although applied econometricians have long used seasonally adjusted
data, there exists increasing consensus that this practice is suboptimal for at least two
reasons. First, peaks and troughs convey information that is lost during the adjustment;
second, seasonally adjusted data often conflicts with the economic theory. Consider
the rational expectation hypothesis or the permanent income hypothesis. Seasonal
adjustment, for example, by the widely known CENSUS-X11, invalidates the theory by
construction, because it is a two-sided filter, which thus violates the key orthogonality
condition between the data at time t and the available information at the same time. To
avoid these flaws, one can use the original data and either control for a set of seasonal
dummies or redefine the error term to incorporate the seasonal fluctuations. The first
solution is weak because “data adjusted by the seasonal dummy technique will [. . . ]
tend to reject the model if it contains fundamental nonlinearities” (Miron 1986, 1260).
The second solution is wrong because the error terms would be predictable to some
extent, thus invalidating the rational expectation hypothesis (Osborn 1988). These
simple facts have two important consequences: using seasonally adjusted data can have
serious consequences on our results and the treatment of seasonality requires a serious
systematic approach.
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In this article, I am particularly interested in seasonality and unit roots at seasonal
frequencies. I first review some basic theory about unit roots at seasonal frequencies
(section 2); then I describe the new sroot command, which performs a formal test for
unit roots in quarterly data (section 3); and then I give some advice for the applied
researcher based on some Monte Carlo simulations (section 4). In section 5, I use the
sroot command to detect seasonal unit roots in the original series of consumption in
the UK for the years 1955–2006.

2 Unit roots at various frequencies

The spectrum of a seasonal series has distinct peaks at seasonal frequencies ωs = 2πj/s,
where j = 1, . . . , s/2 and s is the number of periods within a year. In particular, we
deal with s = 4 because it is the most common case.

While there is consensus on the importance of seasonality, there is little agreement
on its treatment. Indeed, there are several ways to handle seasonality, each implicitly
making different assumptions about the process, namely, as if it is

• a purely deterministic seasonal process,

• a stationary seasonal process, or

• an integrated seasonal process.

In applied work, the general (incorrect) belief is that the three methodologies are equiv-
alent. In fact, they imply a very different data-generating process, as discussed below.

In a purely deterministic seasonal process, the reference model for the conditional
mean of the dependent variable, y, can be written as

y = xβ +
3∑

i=1

δi Di

where y is a vector of dimension n; x is an n×k matrix with the first column containing
only ones; β is a vector of length k; and each δi is the coefficient attached to the
vector Di, a dummy vector equal to 1 only in season i. This notation will be employed
throughout the article.

A stationary seasonal process can be written as an autoregressive model,

φ(L)yt = εt (1)

with all the roots of φ(L) outside the unit circle (but some come in complex pairs). If
s = 4, then a stationary seasonal process is yt = ρL4yt + εt, where L is the lag operator
and L4yt = yt−4. If some of the roots lie on the unit circle, the process is an integrated
seasonal process.
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Continuing with s = 4, a seasonally integrated series can be further decomposed
into

(1 − L4) yt = εt

= (1 − L)(1 + L)(1 + L2)yt
(2)

which shows that in seasonal processes, the roots of modulus 1 can be four and not only
one, as for the classical case. Also, two of the roots will be complex. Properties of each
root are very similar to those at zero frequency; in particular, shocks have a permanent
effect on the seasonal pattern, and their variances increase linearly with time, but shocks
are asymptotically uncorrelated with unit-root processes of other frequencies. To see
this more formally, consider the process in (2) as a stochastic difference process (details
are in Hylleberg et al. [1990]), whose homogeneous solutions are

s1,t =
∑t−1

j=0 εt−j for zero-frequency root;
s2,t =

∑t−1
j=0(−1)jεt−j for two-cycle-per-year root;

s3,t =
∑int{(t−1)/2}

j=0 (−1)Δεt−2j for one-cycle-per-year root
(3)

By expanding each single component of (3), we can show that the variance of each
frequency increases linearly with time [specifically, V (s1,t) = V (s2,t) = V (s3,t) = tσ2].
Using the same technique, we can show that covariances are zero for complete years of
data when the series are excited by the same εt and, thus, that the series are uncorre-
lated; for example,

cov(s1, s2) =

s1,t︷ ︸︸ ︷
(εt + εt−1 + εt−2 + εt−3 + . . .)

s2,t︷ ︸︸ ︷
(εt − εt−1 + εt−2 − εt−3 + . . .)

= σ2 − σ2 + σ2 − σ2 + . . .
= 0

Differently from what has been suggested by many practitioners, I argue that using not
seasonally adjusted (NSA) data should always be considered. At least as a robustness
check, one should perform all the analysis with both seasonally adjusted (SA) and NSA

data. However, we showed that NSA data have more involved processes than SA data,
particularly because of unit roots at seasonal frequencies.

In what follows, I analyze a formal test to study the presence of seasonal unit roots
on a statistical basis, focusing on Hylleberg et al. (1990).

A general expression for seasonal processes combines the three seasonal processes
and is compactly represented by

d(L)a(L)(yt − μt) = εt

where the roots of a(L) = 0 lie outside the unit circle, the roots of d(L) = 0 lie on the
unit circle, and μt = xβ +

∑3
i=1 δi Di. It follows that stationary components of y are in

a(L), while deterministic seasonality is in μt when there are no seasonal unit roots in
d(L). The test by Hylleberg et al. (1990) studies this model and detects seasonal unit
roots at different seasonal frequencies, as well as at zero frequency.
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The methodology strongly relies on a Lagrangian polynomial expansion for φ(L) in
(1). Applying this representation for quarterly data, Hylleberg et al. (1990) study

φ(L)y4,t = π1 y1,t−1 + π2 y2,t−1 + π3 y3,t−2 + π4 y3,t−1 + εt (4)

where

y1,t = (1 + L + L2 + L3) yt

y2,t = −(1 − L + L2 − L3) yt

y3,t = (1 − L2) yt

y4,t = (1 − L4) yt

and πi’s are coefficients for seasonal roots, which we test to establish the nature of
seasonality. In particular, at root 1 − L the test is on coefficient π1 = 0, at seasonal
root 1 + L the test is on coefficient π2 = 0, and finally, at seasonal roots 1 + L2 the
test is joint on coefficients π3 = π4 = 0. For a unit root in a given frequency, the
associated coefficient πi is zero. If π2 and either π3 or π4 are different from zero, there
is no seasonal unit root. Similarly, if π1 is also different from zero, the series has no unit
roots at all. The natural alternative for these tests is stationarity, π1 < 0 and π2 < 0,
respectively, for π1 and π2, or that π3 and π4 are not jointly equal to zero. To consider
all the possible cases in the three seasonal processes, (4) can be augmented in various
directions, such as lagged values of y4 or deterministic components, and consistently
estimated by ordinary least squares.

Although I focus on quarterly data, this identical setup can be readily generalized
to other cases frequently encountered in practice, like biannual data or monthly data
(see Franses and Hobijn [1997]).

The asymptotic distribution of the estimator of the coefficients in (4) is nonstandard.
Because the method is analogous to that of Dickey and Fuller (1979), the distribution
theory for these tests can be extracted from Dickey and Fuller (1979) and Fuller (1976)
for π1 and π2, and from Dickey, Hasza, and Fuller (1984) for π3, if π4 is assumed to be
zero. The tests are asymptotically invariant with respect to nuisance parameters. Ac-
cording to Hylleberg et al. (1990, 224), the finite-sample results are well approximated
by the asymptotic theory, and the tests have reasonable power against each of the spe-
cific alternatives. The intercept and trend in the model affect only the distribution of
π1, whereas seasonal dummies affect only the distributions of π2, π3, and π4.

I would like to conclude this section with a natural extension of the seasonal unit
root, i.e., a seasonal cointegration and seasonal vector error-correction model. There
are several methods for testing and estimation of cointegration at seasonal frequencies
(Lee [1995], Johansen and Schaumburg [1999], and Cubadda [2001], among others),
and each deserves a specific treatment, which we leave for future extensions. However, a
simpler approach goes back to Engle and Granger (1987) and is adapted to the seasonal
case by Engle et al. (1993). This simpler approach is a two-step estimator that simply
requires estimating the linear combination(s) of levels on data transformed to account
for seasonality and, for seasonal vector error-correction model estimation, relies on the
speed of convergence in the first step.
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3 The sroot command

The increasing variety of time-series methods in Stata has increased the number of time-
series users with Stata. Thanks to the simplicity of data management, the proposed
command makes extensive use of Stata’s routines for lag operators and the regress
command. The syntax of sroot is

sroot varname
[
if

] [
in

] [
, noconstant trend season(varlist) regress

lags(#) generate(string) residuals(string)
]

3.1 Options

noconstant suppresses the constant term (intercept) in the model and indicates that
the process under the null hypothesis is a random walk without drift. noconstant
may not be used with the trend or season(varlist) option.

trend specifies that a trend term be included in the associated regression and that the
process under the null hypothesis is a random walk, perhaps with drift. This option
may not be used with the noconstant option.

season(varlist) indicates that the process under the null hypothesis is a random walk
augmented for seasonal dummies. It is possible that varlist contains only one word
(in which case the command builds the dummies) or that varlist contains the full
set of dummies (in which case the command drops the last quarter because of mul-
ticollinearity). This option may not be used with the noconstant option.

regress specifies that the associated regression table appear in the output. By default,
the regression table is not produced.

lags(#) specifies the number of lagged difference terms to include in the covariate list.

generate(string) generates a set of variables adjusted for seasonal filtering.

residuals(string) generates a variable containing the residual terms.

4 Some practical issues

In this section, I give some advice for applied research. I first explore distinctive features
of sroot with respect to an existing similar command (section 4.1), and then I give some
practical guidelines useful in empirical applications (section 4.2).

4.1 Why a new command?

The hegy4 command in Stata performs the Hylleberg et al. (1990).1 The two commands
(hegy4 and sroot) have key distinctions that I briefly explore in this section. I conclude

1. I thank C. Baum for bringing to my attention a very similar routine (Baum and Sperling 2001).



D. Depalo 427

that hegy4 and sroot are similar; thus suggestions in section 4.2 will be valid for both
procedures.

First of all, the default in hegy4 is to run a sequential test for the proper number of
lags. A simple (unreported) simulation reveals that in some circumstances, it could be
inappropriate. I designed the simulation for 48, 100, and 200 observations (12, 25, and
50 years), and for parameters βiΔ4yt−i = {−0.8,−0.4,−0.2,−0.02, 0, 0.02, 0.2, 0.4, 0.8}
with i = 1, 2, along with their combinations (notice that coefficients are exactly equal
to zero sometimes). The performance of a sequential test increases with sample size
and with the absolute values of coefficients. However, two remarks are needed: First, as
either β1 or β2 approaches but is different from zero, the practice is questionable and only
in a bunch of cases, all with 200 observations, is the lag selection 100% correct. With
48 observations, the operational tool performs poorly. Second, undoubtable advantages
are when β1 or β2 is indeed zero. However, hegy4 offers the option “notest [that] may
be specified to suppress the lag length test and utilize the lags specified in the option
in generating the test statistic” (Baum and Sperling 2001).

Even though the Hylleberg et al. (1990) results are unaffected by nuisance parame-
ters, according to the experiments in the next section, in cases of uncertainty about the
correct number of lags, specifying the notest option seems a more convincing approach.

The second, most important, difference is in the generate() option. Engle et al.
(1993) show that it is possible to study seasonal cointegration starting from transformed
variables. The interested reader is referred to that article for further details, but for what
matters here, we can build stationary combinations from transformed nonstationary
variables in levels and study a vector autoregression augmented for these components
in a seasonal error-correction model. I view this as a key distinction to push efforts
toward the new sroot command.

A very minor difference is the regress option for sroot.

Of course, the tests, ceteris paribus, give the very same numbers, as shown with the
following example:

. sroot x_nsa, lag(1) trend season(quarter)

HEGY test for SEASONAL unit roots Number of obs = 203
Test 1% Critical 5% Critical 10% Critical

Statistic Value Value Value

Z(t) - Fr 0 0.180 -4.050 -3.490 -3.180
Z(t) - Fr 1/2 2.522 -3.520 -2.910 -2.600
Z(t) - L.Ann. 0.437 -4.040 -3.410 -3.100
Z(t) - Annual 0.286 -2.650 -1.920 -1.480
Joint Annual 0.133 8.960 6.570 5.560
All SEAS. fr. 2.170 . 5.890 5.100
All freq. 1.644 . 6.380 5.610

(Continued on next page)
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. hegy4 x_nsa, lag(1) det(strend)

HEGY Quarterly seasonal unit root test for x_nsa

Number of observations : 203
Deterministic variables : Seasonal dummies + constant + trend
Lags tested: 1
Augmented by lags : 1

Stat 5% critical 10% critical
------------------------------------------------------------------------------
t[Pi1] 0.180 -3.490 -3.180
t[Pi2] 2.522 -2.910 -2.600
t[Pi3] 0.437 -3.410 -3.100
t[Pi4] 0.286 -1.920 -1.480

F[3-4] 0.133 6.570 5.560
F[2-4] 2.170 5.890 5.100
F[1-4] 1.644 6.380 5.610

4.2 Some practical guidelines

The most troublesome practical issues with this seasonal unit-root test are related to the
deterministic terms and to the appropriate number of lags. In particular, with respect
to the deterministic terms, the important question is whether they should be included
in the model specification; with respect to the lags, the important question is how many
lags should be considered. I try to answer these questions in this section by using Monte
Carlo experiments based on 5,000 repetitions and designs specified below.

Nevertheless, I strongly suggest that the researcher verify, case by case, that residuals
have desired properties, through the residuals() option. For example, Baum and
Sperling (2001) suggest the regression of the (generated) residuals on four lags and
the original regressors under the rationale that if all the information has already been
considered, the null hypothesis that all coefficients are jointly equal to zero should not be
rejected; other useful checks could be performed on specific moments of the distribution
of the residuals, like the third moment (skewness) and the fourth moment (kurtosis).

Finally, it should be clear that here I adopt an empirical approach; theoretical
consequences can be found in Ghysels, Lee, and Noh (1994).

More deterministic terms is better than fewer deterministic terms

I first examine the importance of deterministic terms in the model specification. Ac-
cording to the common wisdom, I will conclude that in the empirical applications, in
case of uncertainty, it is safer to include deterministic terms even when they are not in
the true data-generating process (DGP), rather than vice versa, neglecting deterministic
terms that, in fact, are in the true DGP.
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I use the following experiment:

yt = ρ yt−4 +
4∑

i=1

δi Di + γt + ut t = 1, . . . , T

where ρ determines the (non)stationarity of the model; Di is for seasonal dummies,
associated to parameters δi = (−0.1, 0.05,−0.05, 0.1), which correspond to a −10%
annualized drop, followed by a 5% increase, a 5% decrease, and a 10% increase, respec-
tively; γ is set equal to 0.05; and ut is white noise. The correct lag length in the DGP

is zero, but we carried on the test for different lags, from zero to four. Additional lags
will be indicative of the consequences of controlling for more lags than are needed in
the presence of deterministic components. This experiment, except for the time trend,
is used in Ghysels, Lee, and Noh (1994).

In table 1, I report the share of rejection of the null hypothesis of the unit root.
The table has two main parts: on the left-hand side, the true DGP does in fact contain
unit roots at all frequencies (ρ = 1), and the right-hand side is stationary (ρ = 0.85;
see Ghysels, Lee, and Noh [1994] for further details on this specific value). Each side
is further differentiated: in one case, the model is misspecified because we neglect the
presence of seasonal dummies, and in the other case, it is correctly specified because all
the deterministic components are controlled for. For easier readability, we report only
the share of stationary roots at zero frequency and jointly at all the frequencies. When
unit roots are in the true DGP, the entry should be zero, whereas when the model is
stationary, the entry should be one. I discuss these measures.

When the data contain unit roots at all frequencies, neglecting seasonal dummies
has serious consequences on the share of rejection. Because we control, by default of
the command, for the intercept, the consequences on frequency 0 will be attenuated (as
expected from section 2). Nevertheless, when we consider the whole set of frequencies,
the conclusion will be seriously biased. As suggested in Ghysels, Lee, and Noh (1994),
the reason is that test statistics under this misspecification are functions of the unknown
seasonal dummy coefficients.

When we consider stationary data, two main conclusions can be drawn from the
table. First, when the data are stationary but we neglect the deterministic terms in
the model specification, our conclusions about unit roots at zero frequency are biased
toward the nonrejection of the null hypothesis, which (however) is false (technically,
the power of the test against this misspecification is low). Second, once deterministic
terms are considered, a correct specification of lag length is less important, as shown by
the comparison of the first panel (labeled “Lag: 0”) with respect to lower panels. This
specific aspect is elaborated upon in the next subsection.

Aside from the correct specification, the number of observations plays a critical
role. A performance with fewer than 100 observations is unsatisfactory, whereas a
performance with 200 or more observations is good.
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Table 1. Consequences of neglecting deterministic components

Unit root Stationary
Obser. Misspec. Correct Misspec. Correct

Fr 0 All Fr 0 All Fr 0 All Fr 0 All

Lag: 0
48 0.000 0.701 0.001 0.019 0.000 0.070 0.018 0.085
100 0.000 1.000 0.001 0.007 0.000 0.388 0.064 0.175
200 0.000 1.000 0.000 0.006 0.000 0.846 0.340 0.700
300 0.000 1.000 0.000 0.006 0.000 0.983 0.684 0.974

Lag: 1
48 0.000 0.426 0.002 0.019 0.000 0.058 0.017 0.080
100 0.000 1.000 0.001 0.010 0.000 0.311 0.063 0.169
200 0.000 1.000 0.000 0.007 0.000 0.784 0.321 0.676
300 0.000 1.000 0.000 0.007 0.000 0.973 0.657 0.967

Lag: 2
48 0.000 0.284 0.002 0.024 0.000 0.057 0.015 0.083
100 0.000 0.994 0.002 0.011 0.000 0.279 0.059 0.159
200 0.000 1.000 0.001 0.006 0.000 0.731 0.292 0.650
300 0.000 1.000 0.000 0.006 0.000 0.961 0.619 0.961

Lag: 3
48 0.000 0.183 0.004 0.025 0.000 0.049 0.012 0.074
100 0.000 0.891 0.002 0.009 0.000 0.235 0.061 0.157
200 0.000 0.990 0.000 0.008 0.000 0.679 0.272 0.614
300 0.000 0.985 0.000 0.006 0.000 0.946 0.574 0.956

Lag: 4
48 0.000 0.149 0.002 0.019 0.000 0.045 0.015 0.057
100 0.000 0.660 0.002 0.008 0.000 0.218 0.055 0.127
200 0.000 0.772 0.000 0.007 0.000 0.640 0.235 0.553
300 0.000 0.553 0.000 0.006 0.000 0.922 0.536 0.931

Of course, one can wonder what the consequences are of controlling for undue deter-
ministic terms. The same experiment from above, without deterministic terms, supports
the view that the impact of undue deterministic components in the model specification
is rather limited. Indeed, the shares of rejection of nonstationary root are close between
the misspecified model that controls for deterministic terms and the correctly specified
models (table 2).
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Table 2. Consequences of imposing deterministic components

Unit root Stationary
Obser. Misspec. Correct Misspec. Correct

Fr 0 All Fr 0 All Fr 0 All Fr 0 All

Lag: 0
48 0.022 0.060 0.035 0.048 0.030 0.106 0.051 0.130
100 0.031 0.048 0.051 0.056 0.052 0.157 0.088 0.362
200 0.040 0.046 0.051 0.055 0.107 0.491 0.211 0.907
300 0.041 0.045 0.052 0.052 0.202 0.865 0.410 0.999

Lag: 1
48 0.015 0.061 0.032 0.046 0.015 0.090 0.047 0.117
100 0.027 0.047 0.051 0.052 0.042 0.147 0.083 0.351
200 0.036 0.045 0.053 0.054 0.097 0.480 0.200 0.901
300 0.040 0.044 0.050 0.052 0.187 0.861 0.392 0.998

Lag: 2
48 0.018 0.060 0.035 0.043 0.016 0.091 0.044 0.115
100 0.033 0.048 0.049 0.051 0.041 0.146 0.084 0.350
200 0.035 0.046 0.051 0.050 0.096 0.479 0.193 0.900
300 0.039 0.044 0.050 0.053 0.177 0.861 0.383 0.998

Lag: 3
48 0.015 0.060 0.038 0.050 0.010 0.076 0.043 0.107
100 0.027 0.047 0.049 0.048 0.031 0.132 0.081 0.334
200 0.036 0.048 0.050 0.050 0.087 0.465 0.181 0.901
300 0.036 0.043 0.050 0.053 0.158 0.853 0.356 0.998

Lag: 4
48 0.016 0.048 0.032 0.045 0.020 0.067 0.036 0.080
100 0.030 0.042 0.045 0.046 0.043 0.114 0.073 0.272
200 0.037 0.044 0.050 0.048 0.096 0.385 0.176 0.826
300 0.038 0.044 0.049 0.050 0.172 0.766 0.338 0.994

For these reasons, I strongly suggest controlling for deterministic terms when per-
forming a seasonal unit-root test.

More lags is better than fewer lags

The second important issue is related to the appropriate specification of the number of
lags. I will conclude that it is a less important decision than that about deterministic
terms, but in case of uncertainty about the true DGP, it could be safer to control for
more lags than for fewer lags.
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This conclusion is based on the following experiment:

yt = ρ yt−4 +
2∑

j=1

αjΔyt−j + ut t = 1, . . . , T

for various combinations of α1 and α2. The correct lag length would be two, but we
carried on the test for different lags, from zero to four. In table 3, we select only lag
zero (i.e., fewer lags than needed), lag two (i.e., correctly specified), and lag four (i.e.,
more lags than needed).

The parameter ρ determines the (non)stationarity of the model. In table 3, on the
left, the true DGP is nonstationary (ρ = 1), while on the right-hand side, it is stationary
(ρ = 0.85).

The main message from table 3 is that a correct lag specification is less important
than a correct specification of deterministic terms. As expected, the best performances
are achieved when the lag is correctly specified, overall with 300 observations. However,
under lag misspecification, controlling for more lags than are needed could be safer
than controlling for fewer. Indeed, based on experiments in Ghysels, Lee, and Noh
(1994, 425), adding lags beyond what is necessary could be understood as an attempt
to control for possible moving-average components whose “bias shrinks as additional
lags of the autoregressive terms are included in the model”. Finally, from table 3, the
trade-off in the number of lags is clear, because adding lagged values reduces the power
of the test, while the size suffers if too few parameters are included (Engle et al. 1993).

Although the evidence is not clear-cut, based on theoretical considerations, the prac-
tical guidance for the applied researcher in case of uncertainty is that it is safer to control
for more lags than are needed.
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Table 3. Consequences of neglecting lags; the model is stationary

Unit root Stationary
Observ. αt−1 αt−2 Fr 0 All Fr 0 All

Lag: 0
100 0.000 0.000 0.063 0.066 0.106 0.405
100 0.020 0.000 0.063 0.066 0.106 0.405
100 0.020 0.020 0.055 0.059 0.085 0.391
100 0.400 0.000 0.063 0.066 0.106 0.405
100 0.400 0.020 0.055 0.059 0.085 0.391
100 0.400 0.400 0.086 0.403 0.000 0.885
300 0.000 0.000 0.058 0.059 0.422 0.999
300 0.020 0.000 0.058 0.059 0.422 0.999
300 0.020 0.020 0.050 0.051 0.373 0.999
300 0.400 0.000 0.058 0.059 0.422 0.999
300 0.400 0.020 0.050 0.051 0.373 0.999
300 0.400 0.400 0.100 0.487 0.000 1.000

Lag: 2
100 0.000 0.000 0.052 0.051 0.086 0.346
100 0.020 0.000 0.052 0.051 0.086 0.346
100 0.020 0.020 0.052 0.052 0.089 0.346
100 0.400 0.000 0.052 0.051 0.086 0.346
100 0.400 0.020 0.052 0.052 0.089 0.346
100 0.400 0.400 0.054 0.056 0.658 0.759
300 0.000 0.000 0.050 0.051 0.374 0.998
300 0.020 0.000 0.050 0.051 0.374 0.998
300 0.020 0.020 0.050 0.051 0.401 0.999
300 0.400 0.000 0.050 0.051 0.374 0.998
300 0.400 0.020 0.050 0.051 0.401 0.999
300 0.400 0.400 0.056 0.052 1.000 1.000

Lag: 4
100 0.000 0.000 0.046 0.051 0.078 0.267
100 0.020 0.000 0.046 0.051 0.078 0.267
100 0.020 0.020 0.046 0.050 0.078 0.264
100 0.400 0.000 0.046 0.051 0.078 0.267
100 0.400 0.020 0.046 0.050 0.078 0.264
100 0.400 0.400 0.054 0.055 0.507 0.584
300 0.000 0.000 0.048 0.051 0.331 0.993
300 0.020 0.000 0.048 0.051 0.331 0.993
300 0.020 0.020 0.048 0.051 0.357 0.994
300 0.400 0.000 0.048 0.051 0.331 0.993
300 0.400 0.020 0.048 0.051 0.357 0.994
300 0.400 0.400 0.050 0.052 1.000 1.000
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5 Example

In this section, I use the sroot command to test for the presence of the unit root
at seasonal frequency for the series of consumption in the UK. The data are from the
National Institute of Statistics for the years 1955–2006 on a quarterly basis. I first test
for the presence of a unit root for NSA data:

. sroot x_nsa,lag(4) trend season(quarter) regress gen(pi1 pi2 pi3)

HEGY test for SEASONAL unit roots Number of obs = 200
Test 1% Critical 5% Critical 10% Critical

Statistic Value Value Value

Z(t) - Fr 0 0.330 -4.050 -3.490 -3.180
Z(t) - Fr 1/2 2.739 -3.520 -2.910 -2.600
Z(t) - L.Ann. 1.014 -4.040 -3.410 -3.100
Z(t) - Annual -0.023 -2.650 -1.920 -1.480
Joint Annual 0.514 8.960 6.570 5.560
All SEAS. fr. 2.842 . 5.890 5.100
All freq. 2.166 . 6.380 5.610

x_nsa Coef. Std. Err. t P>|t| [95% Conf. Interval]

x_nsa
Freq.0 .0001847 .0005594 0.33 0.742 -.0009189 .0012882

Freq.1/2 .0461743 .0168582 2.74 0.007 .0129175 .0794311
L.Annual .0154886 .0152743 1.01 0.312 -.0146435 .0456206

Annual -.0003434 .0152415 -0.02 0.982 -.0304109 .0297241
LD. .7711865 .0777132 9.92 0.000 .6178793 .9244938

L2D. .0894235 .0952005 0.94 0.349 -.0983814 .2772285
L3D. .1412389 .0953463 1.48 0.140 -.0468536 .3293314
L4D. -.2178033 .0753951 -2.89 0.004 -.3665376 -.069069

_trend .0117578 .0031245 3.76 0.000 .005594 .0179216
Q1 -.1432412 .1811381 -0.79 0.430 -.5005779 .2140954
Q2 -.0581299 .1837385 -0.32 0.752 -.4205965 .3043368
Q3 .1162713 .1815115 0.64 0.523 -.2418021 .4743447

_cons -.3112752 .1896996 -1.64 0.103 -.6855015 .0629511

Because I specified regress, the result has two main pieces, i.e., the test in the
upper panel and the regression table in the lower panel. Let’s start from the lower
panel for clarity. It is helpful to have a look at regression results because there are
four important components. The first four regressors are crucial for the test statistics.
The second component is the set of lagged values, which are included in an attempt
to remove serial correlation in εit. Third are the deterministic components, namely, a
trend and a set of seasonal dummies. The set of seasonal dummies automatically drops
the last quarter because of multicollinearity. The user may either specify the varname
for quarter or specify directly for the complete set of dummies. Fourth, there is the
constant term.

We are mainly interested in the upper panel, which is intrinsically tied to the lower
panel. In particular, the t statistics of the variables Freq.0–Annual from the lower
panel will be the very same numbers that we find in test statistics in the upper panel.
However, because the distribution is nonstandard, we also report the critical values at
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some sensible confidence level, namely, 1, 5, and 10%. Further, for frequency zero and
frequency 1/2, we can rely on the significance level for single coefficients, whereas for
L.Ann. and Annual, we should test that their coefficients are jointly equal to zero, as
we do in the line Joint Annual, along with their own critical values. The last two
lines test the joint hypotheses that all seasonal coefficients are zero, i.e., the presence of
seasonal unit roots, and that all relevant unit root coefficients are zero, i.e., full set of
unit roots at all frequencies. In these cases, critical values are available only for 5 and
10% confidence levels.

In what follows, I interpret these numbers.

According to the t statistics from Freq.0, we do not reject that π1 is different from
zero at a conventional confidence level. Equivalently, we cannot reject that the time
series has a unit root at frequency zero. According to section 2, test statistics and
critical values for this frequency could have been obtained from those already tabulated
from the Dickey–Fuller test, and most importantly, the decision is based on the same
rule.

For frequency π/2, we do not reject the presence of a (seasonal) unit root at, say, the
95% confidence level. This is because the alternative hypothesis concerning π2 in (4) is
stationarity, or π2 < 0; thus values of the t statistic smaller than the critical values at
the preferred confidence level reject the null hypothesis of unit root. Vice versa, values
of the t statistic larger than the critical values at the preferred confidence level do not
reject the null hypothesis of unit root. Here the t statistic is 2.739 against a critical
value of −2.910 at a 5% confidence level, and thus we cannot reject the presence of a
(seasonal) unit root.

In (4), we have the annual frequency and its lag, and in principle they can return
contrasting results. However, from section 2 we know that results depend on the joint
test on coefficients. Being an F -type statistic, we reject the null hypothesis in cases
where the test statistic is larger than the critical value. For the example at hand, we
cannot reject the unit root at the annual frequency based on the line Joint Annual.

The test for unit roots at all seasonal frequencies and the test for unit roots at all
frequencies are also F -type; thus the decision is based on the same rule of the annual
frequency. From the line All SEAS. fr., we do not reject the joint significance of
seasonal unit roots, and from the line All freq., the joint significance of the full set of
unit roots, at seasonal and nonseasonal frequencies.

The evidence indicates that UK consumption has a unit root at frequency zero,
as could be inferred from the classical Dickey–Fuller test. The new sroot command
indicates that there are two more roots, one at frequency 1/2 (or biannual) and the
other at annual frequency. hegy4 returns the same qualitative conclusions. In general,
hegy4 and sroot test statistics need not be equal because hegy4 uses an automatic lag
selection method unless notest is specified. In the case at hand, the sequential tests on
lags of the dependent variable select only lags 1 and 4:
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. hegy4 x_nsa, lag(1 2 3 4) det(strend)

HEGY Quarterly seasonal unit root test for x_nsa

Number of observations : 200
Deterministic variables : Seasonal dummies + constant + trend
Lags tested: 1 2 3 4
Augmented by lags : 1 4

Stat 5% critical 10% critical
------------------------------------------------------------------------------
t[Pi1] 0.354 -3.490 -3.180
t[Pi2] 2.812 -2.910 -2.600
t[Pi3] 0.589 -3.410 -3.100
t[Pi4] 0.414 -1.920 -1.480

F[3-4] 0.254 6.570 5.560
F[2-4] 2.731 5.890 5.100
F[1-4] 2.084 6.380 5.610

For comparison purposes, we repeat the Hylleberg et al. (1990) test for SA data. As
expected, they have only one unit root, found at frequency zero:

. sroot x_sa, lag(4) trend season(quarter)

HEGY test for SEASONAL unit roots Number of obs = 200
Test 1% Critical 5% Critical 10% Critical

Statistic Value Value Value

Z(t) - Fr 0 0.290 -4.050 -3.490 -3.180
Z(t) - Fr 1/2 -4.784 -3.520 -2.910 -2.600
Z(t) - L.Ann. -5.310 -4.040 -3.410 -3.100
Z(t) - Annual -4.676 -2.650 -1.920 -1.480
Joint Annual 28.976 8.960 6.570 5.560
All SEAS. fr. 32.859 . 5.890 5.100
All freq. 24.734 . 6.380 5.610

The actual existence of seasonal unit roots in the series of consumption sheds more
light on the potentially dramatic impact that a suboptimal econometric technique can
have on a test of an economic theory. In this sense, the results from sroot are important
per se. However, we can go a step further.

In particular, the generate() option is crucial to consider one possible extension
of the unit root at seasonal frequencies, namely, cointegration at seasonal frequencies.
Indeed, the option stores three different variables obtained from the transformation
employed in the procedure. We just plot the transformed series in figure 1 as they
are generated by sroot (i.e., with no editing adjustment). Although not pursued here,
notice that the option allows the replication of the procedure by Engle et al. (1993) to
fit a seasonal vector error-correction model.
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Figure 1. Series of consumption and its transformations

6 Conclusion

In this article, I presented the new sroot command, which implements a test to detect
unit roots at frequencies other than zero, in quarterly data. The motivation for the new
command is that many time series may have seasonal unit roots. Although the usual
practice is to work with seasonally adjusted data, I view this as a weak solution because
fluctuations do contain information and because adjustments can be responsible for
rejection of economic theories even though the underlying model is correct. I argue that
one should always consider using seasonally unadjusted data, which can be characterized
by seasonal unit roots. It is important to go beyond the classical test at frequency zero,
as I propose with sroot, paying much attention to the model specification. Finally,
a promising extension is cointegration at seasonal frequencies that can be studied by
exploiting the generate() option in sroot, even though more efficient methods are
available in the literature.
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