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Abstract. We present a revised version of the metareg command, which performs
meta-analysis regression (meta-regression) on study-level summary data. The ma-
jor revisions involve improvements to the estimation methods and the addition of
an option to use a permutation test to estimate p-values, including an adjustment
for multiple testing. We have also made additions to the output, added an option
to produce a graph, and included support for the predict command. Stata 8.0 or
above is required.
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1 Introduction

Meta-analysis regression, or meta-regression, is an extension to standard meta-analysis
that investigates the extent to which statistical heterogeneity between results of multiple
studies can be related to one or more characteristics of the studies (Thompson and
Higgins 2002). Like meta-analysis, meta-regression is usually conducted on study-level
summary data, because individual observations from all studies (often referred to as
individual patient data in medical applications) are frequently not available.

Sharp (1998) introduced the metareg command to perform meta-regression on study-
level summary data. In this article, we present a substantially updated and largely
rewritten version of metareg. The planning and interpretation of meta-regression stud-
ies raises substantial statistical issues discussed at length elsewhere (Davey Smith, Eg-
ger, and Phillips 1997; Higgins et al. 2002; Thompson and Higgins 2002, 2005). In this
article, we will concentrate on the rationale for and the implementation and interpreta-
tion of the following new features of metareg:

• An improved algorithm for the estimation of the between-study variance, τ2, by
residual (restricted) maximum likelihood (REML)

• A modification to the calculation of standard errors, p-values, and confidence
intervals for coefficients suggested by Knapp and Hartung (2003)

• Various enhancements to the output

• An option to produce a graph of the fitted model with a single covariate
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• An option to calculate permutation-based p-values, including an adjustment for
multiple testing based on the work of Higgins and Thompson (2004)

• Support for many of Stata’s postestimation commands, including predict

We begin with a brief outline in section 2 of the statistical basis of meta-analysis
and meta-regression, and we continue with a summary in section 3 of the relationship of
metareg to other Stata commands. Section 4 introduces two example datasets that we
use to illustrate the discussion of new features in section 5, which constitutes the main
body of the article and has subsections corresponding to each of the new features listed
above. The final two sections are reference material: Section 6 gives the Stata syntax
and full list of options for metareg and predict after metareg, and lists the results
saved by the command. Finally, section 7 gives details of the methods and formulas
used.

2 Basis of meta-regression

In this section, we outline the statistical basis of random- and fixed-effects meta-
regression and their relation to random- and fixed-effects meta-analysis. We will use
mathematical formulas for brevity and precision. Less mathematically inclined read-
ers or those who are already familiar with the principles of meta-analysis and meta-
regression can skip this section.

We assume that study i of a total of n studies provides an estimate, yi, of the effect
of interest, such as a log odds-ratio, log risk-ratio, or difference in means. Each study
also provides a standard error for this estimate, σi, which we assume is known, as is
common in meta-analysis (although in practice, it will have been estimated from the
data in that study). Let us start from the simplest model:

• Fixed-effects meta-analysis assumes that there is a single true effect size, θ, so
that

yi ∼ N(θ, σ2
i )

or equivalently,
yi = θ + εi, where εi ∼ N(0, σ2

i )

• Random-effects meta-analysis allows the true effects, θi, to vary between studies
by assuming that they have a normal distribution around a mean effect, θ:

yi | θi ∼ N(θi, σ
2
i ), where θi ∼ N(θ, τ2)

So
yi ∼ N(θ, σ2

i + τ2)

or equivalently,

yi = θ + ui + εi, where ui ∼ N(0, τ2) and εi ∼ N(0, σ2
i )

Here τ2 is the between-study variance and must be estimated from the data.
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• Fixed-effects meta-regression extends fixed-effects meta-analysis by replacing the
mean, θ, with a linear predictor, xiβ:

yi ∼ N(θi, σ
2
i ), where θi = xiβ

or equivalently,
yi = xiβ + εi, where εi ∼ N(0, σ2

i )

Here β is a k × 1 vector of coefficients (including a constant if fitted), and xi is a
1 × k vector of covariate values in study i (including a 1 if a constant is fit).

• Random-effects meta-regression allows for such residual heterogeneity (between-
study variance not explained by the covariates) by assuming that the true effects
follow a normal distribution around the linear predictor:

yi | θi ∼ N(θi, σ
2
i ), where θi ∼ N(xiβ, τ2)

so
yi ∼ N(xiβ, σ2

i + τ2)

or equivalently,

yi = xiβ + ui + εi, where ui ∼ N(0, τ2) and εi ∼ N(0, σ2
i )

Random-effects meta-regression can be considered either an extension to fixed-
effects meta-regression that allows for residual heterogeneity or an extension to
random-effects meta-analysis that includes study-level covariates.

Table 1 summarizes the relationships between these models and gives the corresponding
Stata commands, which are summarized in the next section.

(Continued on next page)
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Table 1. Summary of metareg and related Stata commands

No covariates With covariate(s)

Fixed-effects fixed-effects meta-analysis fixed-effects meta-regression
model (not recommended)

metan with fixedi, peto, vwls
or no options

Random-effects random-effects meta-analysis random-effects meta-regression
model (mixed-effects meta-regression)

metan with random or metareg
randomi options

3 Relation to other Stata commands

Both fixed- and random-effects meta-analysis are available in the user-written package
metan (Harris et al. 2008). Random-effects meta-analysis can also be performed with
metareg by not including any covariates (the method-of-moments estimate for between-
study variance must be specified to produce identical results to the metan command).
metan can also be used to generate the variables required by metareg containing the
effect estimate and its standard error for each study from data in various other forms
(Harris et al. 2008).

Fixed-effects meta-regression can be fit by weighted least squares by using the official
Stata command vwls (see [R] vwls) with the weights 1/σ2

i . Fixed-effects meta-regression
is not usually recommended, however, because it assumes that all the heterogeneity can
be explained by the covariates, and it leads to excessive type I errors when there is resid-
ual, or unexplained, heterogeneity (Higgins and Thompson 2004; Thompson and Sharp
1999).

Random-effects meta-regression is closely related to the seldom-used “between-
effects” model available in the official Stata command xtreg (see [XT] xtreg), with
studies corresponding to units. Whereas meta-regression assumes that the within-study
data have been summarized by an effect estimate, yi, and its standard error, σi, for
each study, xtreg requires data on individual observations, e.g., individual patient data.
Meta-regression is often used on binary outcomes summarized by log odds-ratios or log
risk-ratios and their standard errors, whereas xtreg is appropriate only for continuous
outcomes. xtreg also uses different estimators from those available in metareg, which
are outlined in section 5.1.
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4 Background to examples

Our first example is from a meta-analysis of 28 randomized controlled trials of cholester-
ol-lowering interventions for reducing risk of ischemic heart disease (IHD). The outcome
event was death from IHD or nonfatal myocardial infarction. These data are taken from
table 1 of Thompson and Sharp (1999). Data from 25 of these trials were also published
in Thompson (1993). The measure of effect size is the odds ratio, but statistical analysis
is conducted on its natural logarithm, the log odds-ratio, because this has a sampling
distribution more closely approximated by a normal distribution. The interventions are
varied, with 18 trials of several different drugs, 9 trials of dietary interventions, and 1
trial of a surgical intervention. The eligibility criteria also differed—19 studies recruited
only participants without known IHD on entry, 6 recruited only those with IHD, and 3
included those with or without IHD. The reduction in cholesterol varied among trials,
as quantified by the difference in mean serum cholesterol concentrations between the
treated and control subjects at the end of each trial. Interest focuses on estimating the
odds ratio for any given degree of cholesterol reduction (e.g., 1 mmol/L), assuming that
any effect on IHD is mediated through the reduction in serum cholesterol. The Stata
dataset is named cholesterol.dta.

The second example is drawn from a systematic review of 10 randomized controlled
trials of exercise as an intervention in the management of depression (Lawlor and Hopker
2001). Here the outcome, severity of depression, was measured on one of two numerical
scales, and the measure of effect size was the standardized mean difference. There was
considerable between-study heterogeneity in the results of the trials, and the authors
considered eight study-level covariates that might explain this heterogeneity. We will fo-
cus on the five covariates selected by Higgins and Thompson (2004). The Stata dataset
is named xrcise4deprsn.dta.

5 New and enhanced features

We now give details of each of the new and enhanced features available in this revision
of metareg, as listed in section 1. Sections 5.1–5.3 are relevant to all uses of metareg.
When there is a single continuous covariate, the fitted model can be presented graph-
ically, as shown in section 5.4. Section 5.5 explores a permutation-based approach to
calculating p-values, suggested by Higgins and Thompson (2004), who recommended its
use when there are few studies and as a way of adjusting for multiple testing when there
is more than one covariate of interest. Section 5.6 is intended for more advanced users
only; it describes the postestimation facilities available after a metareg model has been
fit, and it assumes some familiarity with random-effects models, as well as with Stata’s
graphics commands and postestimation tools.

5.1 Algorithm for REML estimation of τ 2

All algorithms for random-effects meta-regression first estimate the between-study vari-
ance, τ2, and then estimate the coefficients, β, by weighted least squares by using the
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weights 1/(σ2
i + τ2), where σ2

i is the standard error of the estimated effect in study
i. The default algorithm in metareg is REML, as advocated by Thompson and Sharp
(1999).

The algorithm for REML estimation has been improved in this update of metareg.
The original version used an iterative algorithm (Morris 1983) that was not guaranteed
to converge and was only an approximation when the within-study standard errors var-
ied. The original version of metareg sometimes misleadingly reported an estimate of
τ̂2 = 0 when the algorithm was in fact diverging (for example, with the cholesterol
data). This revised version of metareg instead directly maximizes the residual (re-
stricted) log likelihood by using Stata’s robust and well-tested ml command, avoiding
the approximations and convergence problems of the previous method.

We decided not to implement the standard maximum likelihood (ML) estimator in
this updated version of metareg. (To ensure all do-files written for the original version
of metareg continue to work, however, the code of the original program is included in
this package so that a request for the ML estimator can be handled by calling the original
code.) Both REML and ML are iterative methods. Unlike REML, however, ML does not
account for the degrees of freedom used in estimating the fixed effects. This can make
a particular difference in meta-regression because the number of observations (studies)
is often small. As a result, the ML estimate of τ2 is often biased downward, leading to
underestimated standard errors and anticonservative inference (Thompson and Sharp
1999; Sidik and Jonkman 2007).

Further details of the methods for the estimation of τ2 are given in section 7.1.

5.2 Knapp–Hartung variance estimator and associated t test

Knapp and Hartung (2003) introduced a novel estimator for the variances of the ef-
fect estimates in meta-regression. Their variance estimator amounts to calculating a
quadratic form, q, and multiplying the usual variance estimates by q if q > 1. This
estimator should be used with a t distribution when calculating p-values and confidence
intervals. They found this procedure to have much more appropriate false-positive rates
than the standard approach, a finding confirmed by Higgins and Thompson (2004) in
more extensive simulations.

We therefore recommend this variance estimator and have made it the default in
metareg. It is particularly suitable for estimation of standard errors and confidence
intervals. However, it can be unreasonably conservative (false-positive rates below the
nominal level) when the number of studies is particularly small, further reducing the
already limited power. When there are few studies, the permutation test detailed in
section 5.5 below has the potential to provide a better, though more computationally
intensive, method for calculating p-values.
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5.3 Enhancements to the output

The following additions have been made to the output of metareg that is displayed
above the coefficient table:

• A measure of the percentage of the residual variation that is attributable to
between-study heterogeneity (I2

res)

• The proportion of between-study variance explained by the covariates (a type of
adjusted R2 statistic)

• An overall test of all the covariates in the random-effects model

The iteration log is no longer displayed by default.

We will illustrate these additions by using the output of metareg in the simplest
situation where a single continuous covariate is fit, using the cholesterol data as an
example:

. use cholesterol
(Serum cholesterol reduction & IHD)

. metareg logor cholreduc, wsse(selogor)

Meta-regression Number of obs = 28
REML estimate of between-study variance tau2 = .0097
% residual variation attributable to heterogeneity I-squared_res = 31.34%
Proportion of between-study variance explained Adj R-squared = 69.02%
With Knapp-Hartung modification

logor Coef. Std. Err. t P>|t| [95% Conf. Interval]

cholreduc -.5056849 .1834858 -2.76 0.011 -.8828453 -.1285244
_cons .1467225 .1374629 1.07 0.296 -.1358367 .4292816

Residual heterogeneity of the fixed-effects model

The residual heterogeneity statistic is the weighted sum of squares of the residuals from
the fixed-effects meta-regression model and is a generalization of Cochran’s Q from meta-
analysis to meta-regression. To distinguish it from the total heterogeneity statistic Q
that would be obtained from ordinary meta-analysis, i.e., without fitting any covariates,
we will denote it by Qres (Lipsey and Wilson [2001] denote the same statistic by QE).
A test of the null hypothesis of no residual (unexplained) heterogeneity can be obtained
by comparing Qres to a χ2 distribution with n − k degrees of freedom. However, it
is often more useful to quantify heterogeneity than to test for it (Higgins et al. 2003):
The proportion of residual between-study variation due to heterogeneity, as opposed to
sampling variability, is calculated as I2

res = max[0, {Qres − (n − k)}/Qres], an obvious
extension to the I2 measure in meta-analysis (Higgins et al. 2003).

From the value of I2
res in the output above, 31% of the residual variation is due to

heterogeneity, with the other 69% attributable to within-study sampling variability.
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Adjusted R2

The proportion of between-study variance explained by the covariates can be calculated
by comparing the estimated between-study variance, τ̂2, with its value when no covari-
ates are fit, τ̂2

0 . Adjusted R2 is the relative reduction in the between-study variance,
R2

adj = (τ̂2
0 − τ̂2)/τ̂2

0 . It is possible for this to be negative if the covariates explain less of
the heterogeneity than would be expected by chance, but the same is true for adjusted
R2 in ordinary linear regression. It may be more common in meta-regression because
the number of studies is often small.

In the above example, 69% of the between-study variance is explained by the covari-
ate cholreduc, and the remaining between-study variance appears small at 0.0097. (It
is coincidence that the figure of 69% also appears in the preceding subsection.)

Joint test for all covariates

When more than one covariate is fit, metareg reports a test of the null hypothesis that
the coefficients of the covariates are all zero, obtained from a multiparameter Wald
test by using Stata’s test command (see [R] test). The test statistic is compared to
the appropriate F distribution if the default Knapp–Hartung adjustment is used. If
metareg’s z option is used to specify the use of conventional variance estimates and
tests for the effect estimates, a χ2 distribution is used for the joint test. To simplify
the output, this test is not displayed when only a single covariate is fit because it would
give an identical p-value to the one displayed for the covariate in the regression table.

This gives one way of controlling the risk of false-positive findings when performing
meta-regression with multiple covariates: we can use the overall model p-value to assess
if there is evidence for an association of any of the covariates with the outcome. However,
when a small p-value indicates that there is such evidence, it becomes harder to decide
which, and how many, of the covariates there is good evidence for. Another method of
dealing with this multiplicity issue that may help overcome this problem, though at the
expense of longer computation time, is given in section 5.5 below.
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Example

We illustrate this joint test by using all five covariates available in the data on
exercise for depression:

. use xrcise4deprsn
(Exercise for depression)

. metareg smd abstract-phd, wsse(sesmd)

Meta-regression Number of obs = 10
REML estimate of between-study variance tau2 = 0
% residual variation attributable to heterogeneity I-squared_res = 0.00%
Proportion of between-study variance explained Adj R-squared = 100.00%
Simultaneous test for all covariates Model F(5,4) = 6.57
With Knapp-Hartung modification Prob > F = 0.0460

smd Coef. Std. Err. t P>|t| [95% Conf. Interval]

abstract -1.33993 .3892562 -3.44 0.026 -2.420678 -.2591814
duration .1567629 .0616404 2.54 0.064 -.0143784 .3279041

itt .4611682 .3883635 1.19 0.301 -.6171018 1.539438
alloc -.4063866 .3503447 -1.16 0.311 -1.379099 .5663263

phd -.0138045 .440595 -0.03 0.977 -1.237092 1.209483
_cons -2.07241 .5683944 -3.65 0.022 -3.650526 -.4942942

Here τ̂2 is zero, and it follows that I2
res = 0% and R2

adj = 100%. The joint test for
all five covariates gives a p-value of 0.046, indicating some evidence for an association
of at least one of the covariates with the size of the treatment effect.

5.4 Graph of the fitted model

When a single continuous covariate is fit, one common way to present the fitted model,
sometimes referred to as a “bubble plot”, is to graph the fitted regression line together
with circles representing the estimates from each study, sized according to the precision
of each estimate (the inverse of its within-study variance, σ2

i ). The graph option to
metareg gives an easy way to produce such a plot, as illustrated in figure 1 for the
cholesterol data.

. use cholesterol
(Serum cholesterol reduction & IHD)

. metareg logor cholreduc, wsse(selogor) graph

(output omitted )

(Continued on next page)
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Figure 1. “Bubble plot” with fitted meta-regression line

An additional option, randomsize, is provided for those who prefer the size of the
circles to depend on the weight of the study in the fitted random-effects meta-regression
model (the inverse of its total variance, σ2

i + τ̂2). This makes only a slight difference
to the example above because the estimated between-study variance, τ̂2, is small; in
general, though, it will give circles that vary less in size.

Those wishing to further customize the plot can use the predict command to gen-
erate fitted values followed by a graph twoway command (see section 5.6).

5.5 Permutation test

Higgins and Thompson (2004) proposed using a permutation test approach to calcu-
lating p-values in meta-regression. Permutation tests provide a nonparametric way of
simulating data under the null hypothesis (see, e.g., Manly [2006]). Calculation of exact
permutation p-values would be feasible when there are few studies by enumeration of
all possible permutations, but for simplicity, we have implemented a permutation test
based on Monte Carlo simulation, i.e., based on random permutations.

The algorithm is similar to other applications of permutation methods, and it is
implemented with Stata’s permute command (see [R] permute). The covariates are
randomly reallocated to the outcomes many times, and a t statistic is calculated each
time. The true p-value for the relationship between a given covariate and the response is
computed by counting the number of times these t statistics are greater than or equal to
the observed t statistic. When multiple covariates are included in the meta-regression,
the covariate values for a given study are kept together to preserve and account for
their correlation structure. In meta-regression, unlike other regressions, the outcome
consists of both the effect size and its standard error, and these must be kept together.
This small complication makes it impossible to use permute on metareg directly from
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the command line when there are multiple covariates, so we have written a permute()
option for metareg. This option also implements the following extension, which adjusts
p-values for multiple tests when there are several covariates.

Multiplicity adjustment

When several covariates are used in meta-regression, either in several separate univari-
able meta-regressions or in one multiple meta-regression, there is an increased chance
of at least one false-positive finding (type I error). The statistics obtained from the
random permutations can be used to adjust for such multiple testing by comparing the
observed t statistic for every covariate with the largest t statistic for any covariate in
each random permutation. The proportion of times that the former equals or exceeds
the latter gives the probability of observing a t statistic for any covariate as extreme
or more extreme than that observed for a particular covariate, under the complete null
hypothesis that all the regression coefficients are zero.

The number of random permutations must be specified—there is deliberately no
default. We suggest that a small number (e.g., 100) be specified initially to check that
the command is working as expected. The number should then be increased to at least
1,000, but 5,000 or 20,000 permutations may be necessary for sufficient precision (Manly
2006; Westfall and Young 1993). Because the permute() option uses Stata’s random-
number generator, the set seed command should be used first if replicability of results
is desired. When the permute() option is specified, the defaults are to use the method-
of-moments estimate of τ2 for reasons of speed and to not use the Knapp–Hartung
modification to the standard errors.

By default, permute() performs multivariable meta-regression; i.e., all the covariates
are entered into a single model in each permutation.

Example

We illustrate the use of the permute() option by using the data on exercise for
depression.

(Continued on next page)



504 Meta-regression in Stata

. use xrcise4deprsn
(Exercise for depression)

. set seed 15160401

. metareg smd abstract-phd, wsse(sesmd) permute(20000)

Monte Carlo permutation test for meta-regression

Moment-based estimate of between-study variance
Without Knapp & Hartung modification to standard errors

P-values unadjusted and adjusted for multiple testing

Number of obs = 10
Permutations = 20000

P
smd Unadjusted Adjusted

abstract 0.023 0.089
duration 0.056 0.201

itt 0.311 0.721
alloc 0.313 0.736

phd 0.978 1.000

largest Monte Carlo SE(P) = 0.0033

WARNING:
Monte Carlo methods use random numbers, so results may differ between runs.
Ensure you specify enough permutations to obtain the desired precision.

The first column of the results table gives permutation p-values without an adjust-
ment for multiplicity. The results are in good agreement with the p-values obtained in
section 5.3 without using the permutation option but with the Knapp–Hartung modifi-
cation. The second column gives p-values adjusted for multiplicity. We see that all the
p-values are increased. After adjusting for multiple testing, there remains some weak
evidence that results of studies published as an abstract differ on average from results
of studies published as a full article. The adjusted p-value of 0.089 gives the probability
under the complete null hypothesis (that all regression coefficients are zero) of a t statis-
tic for any of the five covariates as extreme or more extreme as that observed for the
covariate abstract. As Higgins and Thompson (2004) suggest, this can be interpreted
as describing the degree of “surprise” one might have about the observed result for this
covariate, considering that five covariates are being examined. This is less conservative
than the Bonferroni adjusted p-value of 0.0235 × 5 = 0.1175.

The output also gives the largest Monte Carlo standard error of the calculated p-
values as an indication of the degree of precision obtained by the specified number of
random permutations. Standard errors and “exact” confidence intervals for each of
the p-values can be obtained by using the detail suboption. (These can always be
calculated afterward by using the cii command if this option was not specified.)

Technical note

Higgins and Thompson (2004) originally proposed a slightly different permutation-
based multiplicity adjustment: it compared the ith largest t statistic observed (for the
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“ith most significant” covariate) with the ith largest t statistic in each random per-
mutation. This adjustment was implemented in a revised version of metareg released
previously on the Statistical Software Components archive. This adjustment has been
found to be hard to interpret in practice, however, because for the second most signifi-
cant covariate it effectively gives a joint test of the two covariates with the largest two
observed t statistics (and similarly for third and subsequent covariates if more than two
covariates are supplied). The resulting multiplicity-adjusted p-value can turn out to be
either larger or smaller than the unadjusted p-value, which can appear counter-intuitive.

For this release of metareg, we have therefore chosen to implement a different
permutation-based algorithm for multiplicity adjustment based on the one-step
“maxT” method of Westfall and Young (1993). This adjustment compares the t statis-
tic for every covariate with the largest t statistic in each random permutation. The
resulting multiplicity-adjusted p-values are always as large as or (usually) larger than
the unadjusted p-values. This procedure ensures weak control of the familywise error
rate, defined as the probability that at least one null hypothesis is rejected when all
the null hypotheses are true (Shaffer 1995). It does not guarantee strong control of the
familywise error rate, however; i.e., when one or more null hypotheses are false, it does
not guarantee control of the proportion of the remaining true null hypotheses that are
incorrectly rejected, though such strong control should be achieved asymptotically as
the number of studies increases (Westfall and Young 1993; Shaffer 1995).

The false discovery rate (Benjamini and Hochberg 1995) and related procedures
(Newson and the ALSPAC Study Team 2003; Storey, Taylor, and Siegmund 2004; Wa-
cholder et al. 2004) have been suggested as an alternative method of multiplicity ad-
justment, but we have chosen not to implement such procedures in metareg. Such
procedures are always either step-up or (more rarely) step-down algorithms. Although
stepwise algorithms are suitable for hypothesis testing and often give greater power,
the resulting adjusted p-values cannot be interpreted as giving the strength of evidence
against the null hypothesis, the interpretation increasingly advocated in medicine and
epidemiology (Sterne and Davey Smith 2001). In particular, stepwise methods may as-
sign equal adjusted p-values to covariates with different unadjusted p-values.

Suboptions to permute()

The permute() option can also be used to perform a set of single-variable meta-
regressions at each permutation by adding the univariable suboption. This suboption
reports permutation-based p-values for fitting a separate model for each covariate rather
than including all the covariates in a multiple regression model. With several covariates,
the execution time may be considerably longer than for multivariable meta-regression.

Example

We add the univariable suboption to the previous example but reduce the number
of permutations to cut down the computation time:
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. metareg smd abstract-phd, wsse(sesmd) permute(5000, univariable)

Monte Carlo permutation test for single covariate meta-regressions

Moment-based estimate of between-study variance
Without Knapp & Hartung modification to standard errors

P-values unadjusted and adjusted for multiple testing

Number of obs = 10
Permutations = 5000

P
smd Unadjusted Adjusted

abstract 0.021 0.043
duration 0.030 0.115

itt 0.384 0.946
alloc 0.330 0.861

phd 0.715 0.999

largest Monte Carlo SE(P) = 0.0069

WARNING:
Monte Carlo methods use random numbers, so results may differ between runs.
Ensure you specify enough permutations to obtain the desired precision.

In these results, unlike those from the previous example, each covariate is fit in a
separate model and so is not adjusted for the other covariates. The p-values do not
differ greatly in this example, however.

There is also a joint() suboption that requests a permutation p-value for a joint test
of the variables specified. This can be particularly useful if a set of indicator variables
is used to model a categorical covariate.

A joint test of covariates can be obtained without using a permutation approach by
instead using the test or testparm (see [R] test) command after metareg.

A p-value for the joint test is not included in the multiplicity-adjustment procedure
because the two are neither technically nor philosophically compatible.

Example

We return to the cholesterol data, in which the ihdentry variable is a categorical
covariate with three categories indicating whether the study included participants with
known IHD on entry to the study, without known IHD, or both:

. use cholesterol
(Serum cholesterol reduction & IHD)

. tab ihdentry, gen(ihd)

Ischaemic heart
disease on entry Freq. Percent Cum.

Without known IHD 6 21.43 21.43
With IHD 19 67.86 89.29

With or without IHD 3 10.71 100.00

Total 28 100.00
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. metareg logor cholreduc ihd2 ihd3, wsse(selogor)
> permute(5000, joint(ihd2 ihd3))

Monte Carlo permutation test for meta-regression

Moment-based estimate of between-study variance
Without Knapp & Hartung modification to standard errors
joint1 : ihd2 ihd3

P-values unadjusted and adjusted for multiple testing

Number of obs = 28
Permutations = 5000

P
logor Unadjusted Adjusted

cholreduc 0.009 0.028
ihd2 0.611 0.933
ihd3 0.907 0.999

joint1 0.883

largest Monte Carlo SE(P) = 0.0069

WARNING:
Monte Carlo methods use random numbers, so results may differ between runs.
Ensure you specify enough permutations to obtain the desired precision.

The p-value of 0.883 for the joint test of ihd2 and ihd3 indicates that there is very
little evidence that the log odds-ratio differs among these three categories of studies,
after adjusting for the degree of cholesterol reduction achieved in each study.

5.6 Postestimation tools for metareg

metareg is programmed as a Stata estimation command and so supports most of Stata’s
postestimation commands (except when the permute() option is used). (One deliberate
exception is lrtest, which is not appropriate after metareg because the REML log
likelihood cannot be used to compare models with different fixed effects, while the
method of moments does not give a likelihood.)

Several quantities can be obtained by using predict after metareg, including fitted
values and predicted random effects (empirical Bayes estimates). These can be useful
for producing graphs of the fitted model and for model checking. Details of the syntax
and options are given in sections 6.4 and 6.5, and section 7.4 contains the formulas used.

We now illustrate the use of some of the quantities available from predict in a
graph. Using the exercise for depression data, we conduct a meta-regression of the
standardized mean difference on the single covariate duration that describes the duration
of follow-up in each study. Figure 2 shows the fitted line and the estimates from the
separate studies that would be produced by the graph option to metareg, and it also
includes the empirical Bayes estimates and shaded bands showing both confidence and
prediction intervals (we would not recommend including all these features on a single
graph in practice). It was produced by the following commands:



508 Meta-regression in Stata

. use xrcise4deprsn, clear
(Exercise for depression)

. metareg smd duration, wsse(sesmd)

Meta-regression Number of obs = 10
REML estimate of between-study variance tau2 = .2019
% residual variation attributable to heterogeneity I-squared_res = 55.83%
Proportion of between-study variance explained Adj R-squared = 55.16%
With Knapp-Hartung modification

smd Coef. Std. Err. t P>|t| [95% Conf. Interval]

duration .2097633 .0802611 2.61 0.031 .0246808 .3948457
_cons -2.907511 .7339255 -3.96 0.004 -4.599946 -1.215076

. predict fit
(option xb assumed; fitted values)

. predict stdp, stdp

. predict stdf, stdf

. predict xbu, xbu

. local t = invttail(e(df_r)-1, 0.025)

. gen confl = fit - `t´*stdp

. gen confu = fit + `t´*stdp

. gen predl = fit - `t´*stdf

. gen predu = fit + `t´*stdf

. sort duration

. twoway rarea predl predu duration || rarea confl confu duration
> || line fit duration
> || scatter smd duration [aw=1/sesmd^2], msymbol(Oh)
> || scatter xbu duration, msymbol(t)
> ||, legend(label(1 "Prediction interval") label(2 "Confidence interval")
> cols(1))
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Figure 2. Confidence and prediction intervals and empirical Bayes estimates

The stdp option to predict gives the standard error of the fitted values exclud-
ing the random effects, commonly referred to as the standard error of the prediction.
This standard error is used to draw a pointwise confidence interval, shown in light gray
in figure 2, around the fitted line, illustrating our uncertainty about the position of
the line. The stdf option to predict gives the standard deviation of the predicted
distribution of the true value of the outcome in a future study with a given value
of the covariate(s), commonly referred to as the standard error of the forecast. This
standard error is used to draw a prediction interval, shown in dark gray in figure 2,
around the fitted line, illustrating our uncertainty about the true effect we would pre-
dict in a future study with a known duration of follow-up. The prediction band will
be wider than the confidence band unless τ2 = 0. The use of a t distribution in gener-
ating the intervals is an approximation, and opinions differ over the most appropriate
degrees of freedom; we use n − k − 1 here to be consistent with the n − 2 used by
Higgins, Thompson, and Spiegelhalter (Forthcoming) for confidence and prediction in-
tervals in meta-analysis, where k = 1. The xbu option to predict gives the empirical
Bayes estimates (predictions including random effects), shown as triangles in figure 2.
These are our best estimates of the true effect in each study, assuming the fitted model
is correct. If I2

res is small, the empirical Bayes estimates will tend to lie well inside the
prediction interval; if τ2 = 0, implying I2

res = 0, they will all lie on the fitted line.

The statistics available from predict can also be useful for model checking and
checking for outliers and influential studies. This checking is best done graphically.
One possibility is a normal probability plot of the standardized predicted random ef-
fects (equivalently, standardized empirical Bayes residuals, or standardized shrunken
residuals; see figure 3). This probability plot can be used to check the assumption of
normality of the random effects, although because this assumption has been used in
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generating the predictions, only gross deviations are likely to be detected. Perhaps
more usefully, the probability plot can be used to detect outliers:

. use cholesterol, clear
(Serum cholesterol reduction & IHD)

. qui metareg logor cholreduc, wsse(selogor)

. capture drop usta

. predict usta, ustandard

. qnorm usta, mlabel(id)
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Figure 3. Normal probability plot of standardized shrunken residuals

Figure 3 suggests that the assumption of normal random effects is adequate, and
there are no notable outliers because the largest standardized shrunken residual is only
slightly over 2.

Other plots useful for model checking and identifying influential points in conven-
tional linear regression may also be useful for meta-regression, for example, leverage–
residual (L–R) plots, or plots of residuals versus either fitted values or a predictor; see
[R] regress postestimation for further details of these and other plots (the various
plot commands given there will not work after metareg, but it should be fairly straight-
forward to use predict followed by the appropriate graph twoway command to produce
similar plots).

6 Syntax, options, and saved results

6.1 Syntax

The syntax of metareg has been revised somewhat from that of the original version
(Sharp 1998). The original syntax should continue to work, but it is not documented
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here. ML estimation of τ2 is not supported by the updated metareg program, but if the
old bsest(ml) option is used, the new program simply calls the original version, which
is incorporated within the updated metareg.ado file.

metareg depvar
[
indepvars

] [
if
] [

in
]
wsse(varname)

[
, eform graph

randomsize noconstant mm reml eb knapphartung z tau2test level(#)

permute(#
[
, univariable detail joint(varlist1

[
| varlist2 . . .

]
)
]
) log

maximize options
]

by can be used with metareg; see [D] by.

6.2 Options

wsse(varname) specifies the variable containing σi, the standard error of depvar, within
each study. All values of varname must be greater than zero. wsse() is required.

eform indicates to output the exponentiated form of the coefficients and to suppress
reporting of the constant. This option may be useful when depvar is the logarithm
of a ratio measure, such as a log odds-ratio or a log risk-ratio.

graph requests a line graph of fitted values plotted against the first covariate in in-
depvars, together with the estimates from each study represented by circles. By
default, the circle sizes depend on the precision of each estimate (the inverse of its
within-study variance), which is the weight given to each study in the fixed-effects
model.

randomsize is for use with the graph option. It specifies that the size of the circles will
depend on the weights in the random-effects model rather than the precision of each
estimate. These random-effects weights depend on the estimate of τ2.

The remaining options will mainly be of interest to more advanced users:

noconstant suppresses the constant term (intercept). This is rarely appropriate in
meta-regression. Note: It might seem tempting to use the noconstant option in the
cholesterol example to force the regression line through the origin, on the reasoning
that an intervention that has no effect on cholesterol should have no effect on the
odds of IHD. We would advise against using this option, however, both here and in
most other circumstances. Using it here involves the assumption that the effect of
the intervention on IHD is mediated entirely by cholesterol reduction. It also would
not allow for measurement error in cholesterol reduction, which, through attenuation
by errors (regression dilution bias), could lead to a nonzero intercept even when a
zero intercept would be expected.

The mm, reml, and eb options are alternatives that specify the method of estimation of
the additive (between-study) component of variance τ2:
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mm specifies the use of method of moments to estimate the additive (between-study)
component of variance τ2; this is a generalization of the DerSimonian and Laird
(1986) method commonly used for random-effects meta-analysis. For speed, this is
the default when the permute() option is specified, because it is the only noniterative
method.

reml specifies the use of REML to estimate the additive (between-study) component
of variance τ2. This is the default unless the permute() option is specified. This
revised version uses Stata’s ML facilities to maximize the REML log likelihood. It
will therefore not give identical results to the previous version of metareg, which
used an approximate iterative method.

eb specifies the use of the “empirical Bayes” method to estimate τ2 (Morris 1983).

knapphartung makes a modification to the variance of the estimated coefficients sug-
gested by Knapp and Hartung (2003) and supported by Higgins and Thompson
(2004), accompanied by the use of a t distribution in place of the standard normal
distribution when calculating p-values and confidence intervals. This is the default
unless the permute() option is specified.

z requests that the knapphartung modification not be applied and that the standard
normal distribution be used to calculate p-values and confidence intervals. This is
the default when the permute() option is specified with a fixed-effects model.

tau2test adds to the output two tests of τ2 = 0. The first is based on the residual
heterogeneity statistic, Qres. The second (not available if the mm option is also
specified) is a likelihood-ratio test based on the REML log likelihood. These are
two tests of the same null hypothesis (the fixed-effects model with τ2 = 0), but
the alternative hypotheses are different, as are the distributions of the test statistics
under the null, so close agreement of the two tests is not guaranteed. Both tests are
typically of little interest because it is more helpful to quantify heterogeneity than
to test for it (see section 5.3).

level(#) specifies the confidence level, as a percentage, for confidence intervals. The
default is level(95) or as set by set level; see [U] 20.7 Specifying the width
of confidence intervals.

permute(. . .) calculates p-values by using a Monte Carlo permutation test. See sec-
tion 6.3 below for more information about this option.

log requests the display of the iteration log during estimation of τ2. This is ignored if
the mm option is specified, because this uses a noniterative method.

maximize options are ignored unless estimation of τ2 is by REML. These options control
the maximization process; see [R] maximize. They are ignored if the mm option is
specified. You should never need to specify them; they are supported only in case
problems in the REML estimation of τ2 are ever reported or suspected.



R. M. Harbord and J. P. T. Higgins 513

6.3 Option for permutation test

The permute() option calculates p-values by using a Monte Carlo permutation test, as
recommended by Higgins and Thompson (2004). To address multiple testing, permute()
also calculates p-values for the most- to least-significant covariates, as the same authors
also recommend.

The syntax of permute() is

permute(#
[
, univariable detail joint(varlist1

[
| varlist2 . . .

]
)
]
)

where # is required and specifies the number of random permutations to perform.
Larger values give more precise p-values but take longer.

There are three suboptions:

univariable indicates that p-values should be calculated for a series of single covariate
meta-regressions of each covariate in varlist separately, instead of a multiple meta-
regression of all covariates in varlist simultaneously.

detail requests lengthier output in the format given by [R] permute.

joint(varlist1
[
| varlist2 . . .

]
) specifies that a permutation p-value should also be

computed for a joint test of the variables in each varlist.

The eform, level(), and z options have no effect when the permute() option is
specified.

6.4 Syntax of predict

The syntax of predict (see [R] predict) following metareg is

predict
[
type

]
newvar

[
if
] [

in
] [

, statistic
]

statistic description

xb fitted values; the default
stdp standard error of the prediction
stdf standard error of the forecast
u predicted random effects
ustandard standardized predicted random effects
xbu prediction including random effects
stdxbu standard error of xbu
hat leverage (diagonal elements of hat matrix)

These statistics are available both in and out of sample; type predict . . . if
e(sample) . . . if wanted only for the estimation sample.
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6.5 Options for predict

xb, the default, calculates the linear prediction, xib, that is, the fitted values excluding
the random effects.

stdp calculates the standard error of the prediction (the standard error of the fitted
values excluding the random effects).

stdf calculates the standard error of the forecast. This gives the standard deviation
of the predicted distribution of the true value of depvar in a future study, with the
covariates given by varlist. stdf2 = stdp2 + τ̂2.

u calculates the predicted random effects, ui. These are the best linear unbiased predic-
tions of the random effects, also known as the empirical Bayes (or posterior mean)
estimates of the random effects, or as shrunken residuals.

ustandard calculates the standardized predicted random effects, i.e., the predicted ran-
dom effects, ui, divided by their (unconditional) standard errors. These may be
useful for diagnostics and model checking.

xbu calculates the prediction including the random effects, xib + ui, also known as the
empirical Bayes estimates of the effects for each study.

stdxbu calculates the standard error of the prediction including random effects.

hat calculates the leverages (the diagonal elements of the projection hat matrix).

6.6 Saved results

When the permute() option is not specified, metareg saves the following in e():

Scalars
e(N) number of observations e(tau2) estimate of τ2

e(df m) model degrees of freedom e(Q) Cochran’s Q
e(df Q) degrees of freedom for test e(I2) I-squared

of Q = 0 e(q KH) Knapp–Hartung variance
e(df r) residual degrees of freedom modification factor

(if t tests used) e(remll c) REML log likelihood,
e(remll) REML log likelihood comparison model
e(chi2 c) χ2 for comparison test e(tau2 0) τ2, constant-only model
e(F) model F statistic e(chi2) model χ2

Macros
e(cmd) metareg e(depvar) name of dependent variable
e(predict) program used to implement

predict
e(method) REML, Method of moments, or

Empirical Bayes
e(wsse) name of wsse() variable e(properties) b V

Matrices
e(b) coefficient vector e(V) variance–covariance matrix of

estimators

Functions
e(sample) marks estimation sample
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metareg, permute() saves the following in r():

Scalars
r(N) number of observations

Matrices
r(b) observed t statistics, Tobs r(p) observed proportions
r(c) count when |T | ≥ |Tobs | r(reps) number of nonmissing results

7 Methods and formulas

The residual heterogeneity statistic, Qres, is the residual weighted sum of squares from
the fixed-effects model and is the same as the goodness-of-fit statistic computed by
vwls:

Qres =
∑

i

(
yi − xiβ̂

σi

)2

The proportion of residual variation due to heterogeneity is

I2 = max
{

Qres − (n − k)
Qres

, 0
}

The proportion of the between-study variance explained by the covariates (adjusted
R-squared) is R2

a = (τ̂2
0 −τ̂2)/τ̂2

0 , where τ̂2 and τ̂2
0 are the estimates of the between-study

variance in models with and without the covariates, respectively.

7.1 Estimation of τ 2

Several different algorithms have been proposed for estimation of the between-study
variance, τ2, in meta-analysis (Sidik and Jonkman 2007) and meta-regression (Thomp-
son and Sharp 1999). Three algorithms are available in this version of metareg. In each
case, if the estimated value of τ2 is negative, it is set to zero.

Method of moments is the only noniterative method, so it has the advantages of
speed and robustness. It is the natural extension of the DerSimonian and Laird (1986)
estimate commonly used in random-effects meta-analysis. The method-of-moments es-
timate of τ2 is obtained by equating the observed value of Qres to its expected value
under the random-effects model, giving (DuMouchel and Harris 1983, eq. 3.12)

τ̂2
MM =

Qres − (n + k)∑
i{1/σ2

i (1 − hi)}

Here hi is the ith diagonal element of the hat matrix X(X′V−1
0 X)−1XV−1

0 , where
V0 = diag(σ2

1 , σ2
2 , . . . , σ2

n).

The iterative methods below use τ̂2
MM as a starting value (this is a change from the

original version of metareg (Sharp 1998), which used zero as a starting value).
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REML estimation of τ2 is based on maximization of the residual (or restricted) log
likelihood,

LR(τ2) = −1
2

∑
i

{
log(σ2

i + τ2) +
(yi − xiβ̂)2

σ2
i + τ2

}
− 1

2
log |X′V−1X |

where V = diag(σ2
1 + τ2, σ2

2 + τ2, . . . , σ2
n + τ2) and β̂ = (X′V−1X)−1X′V−1y (Harville

1977). This log likelihood is maximized by Stata’s ml command, using the d0 method,
which calculates all derivatives numerically.

The “empirical Bayes” estimator of τ2 is so named because of its introduction in an
article on empirical Bayes inference by Morris (1983), although as he states, any approx-
imately unbiased estimate of τ2 could be used in such a setting. Thompson and Sharp
(1999) found it to give substantially larger estimates of τ2 than other methods. Oth-
ers suggest it performs well in simulations based on 2 × 2 tables (Berkey et al. 1995;
Sidik and Jonkman 2007), although this may be due to overestimation of the within-
study standard errors in small studies by the conventional (Woolf) estimate rather
than the properties of the empirical Bayes method itself (Sutton and Higgins 2008). It
can also be considered to be a method-of-moments estimator, formed by equating the
weighted sum of squares of the residuals from the random-effects model to its expected
value (Knapp and Hartung 2003). It is found by iterating the following equation (Morris
1983; Berkey et al. 1995):

τ̂2
EB =

n/(n − k)
∑

i

{
(yi − xiβ̂)2/(σ2

i + τ̂2
EB) − σ2

i

}
∑

i(σ
2
i + τ̂2

EB)−1

At each iteration, β̂ must be reestimated using a weighted least-squares regression of y
on X with the weights 1/(σ2

i + τ̂2
EB).

7.2 Estimation of β

Once τ2 has been estimated by one of the methods above, the estimated coefficients, β̂,
are obtained by a weighted least-squares regression of y on X with the weights 1/(σ2

i +
τ̂2). The conventional estimate of the variance–covariance matrix of the coefficients is
(X′V̂−1X)−1, where V̂ = diag(σ2

1 + τ̂2, σ2
2 + τ̂2, . . . , σ2

n + τ̂2).

7.3 Knapp–Hartung variance modification

Knapp and Hartung (2003) proposed multiplying the conventional estimate of the vari-
ance of the coefficients given above by max(q, 1), where the Knapp–Hartung variance
modification factor is

q =
1

n − k

∑
i

(yi − xiβ̂)2

σ2
i + τ̂2

With the “empirical Bayes” estimator of τ̂2, q = 1, so this modification has no effect
(Knapp and Hartung 2003).
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7.4 Methods and formulas for predict

The standard error of the prediction (stdp) is spi
=
√

xi(X′V̂−1X)−1x′
i.

The leverages, or diagonal elements of the projection matrix (hat), are

hi = s2
pi

/(σ2
i + τ2)

The standard error of the forecast (stdf) is sfi
=
√

s2
pi

+ τ2.

Denote the previously estimated coefficient vector by b, and let λi = τ̂2/(σ2
i + τ̂2)

denote the empirical Bayes shrinkage factor for the ith observation.

The predicted random effects (u) are ui = λi(yi − xib).

The standardized predicted random effects (ustandard) are

usj
= (yi − xib)

/√
σ2

i + τ2 − s2
pi

The prediction including random effects (xbu), or empirical Bayes estimate, is

xib + ui = λiyi + (1 − λi)xib

The standard error of the prediction including random effects (stdxbu) is√
λ2

i (σ
2
i + τ2) + (1 − λ2

i )s2
pi
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