
The Stata Journal (2007)
7, Number 4, pp. 556–570

Mata Matters: Structures

William Gould
StataCorp

College Station, TX

wgould@stata.com

Abstract. Mata is Stata’s matrix language. In the Mata Matters column, we
show how Mata can be used interactively to solve problems and as a programming
language to add new features to Stata. Structures are the subject of this column.
Structures are an advanced programming technique that can greatly simplify com-
plicated code.

Keywords: pr0035, Mata, structures, struct

1 Introduction

Structures simplify complicated programs, particularly those that involve many sub-
routines. Using structures makes such programs easier to design, code, and modify.
Structures can even make complicated programs easier to use.

A structure is an aggregate of variables under one name, such as

struct mystruct {
real scalar a
real scalar b

}

The above is called a structure definition and is shown exactly as you would enter it
into Mata. It defines a new type, struct mystruct, and that new type is conceptually
no different from the already existing types of real, complex, and string. Just as one
can have real scalars, real vectors, and real matrices in a program, one can have
struct mystruct scalars, struct mystruct vectors, and struct mystruct matrices.
The function below has all three:

function myfunc(...)
{

struct mystruct scalar s
struct mystruct vector v
struct mystruct matrix M

...
}

Inside myfunc(), one accesses the components of the structures s, v, and M by referring
to s.a and s.b, v[i].a and v[i].b, and M[i,j].a and M[i,j].b.

c© 2007 StataCorp LP pr0035

W. Gould 557

One can also refer to s, v, and M in their entirety, which is especially useful in making
code more readable. In what follows, we pass the entirety of s, v, and M to subroutines
mysub1(), mysub2(), and mysub3():

function myfunc(...)
{

struct mystruct scalar s
struct mystruct vector v
struct mystruct matrix M
...
real scalar x, y, z

...
x = mysub1(s) // <- new
y = mysub2(v) // <- new
z = mysub3(M) // <- new
...

}

For mysub1(), we did not code x = mysub1(s.a, s.b); we simply coded x = mysub1(s)
and that gave the subroutine access to everything in s, namely, s.a and s.b. In our
example, the structure contains 2 components, but in a real programming application,
s might contain 40. Whether 2 or 40, the code for the subroutines reads the same way:

real scalar mysub1(struct mystruct scalar s)
{

...
}

real scalar mysub2(struct mystruct vector v)
{

...
}

real scalar mysub3(struct mystruct matrix M)
{

...
}

If we need to refer to the components of the structure inside one of the subroutines, we
do that in the same way we did in the main program, namely, by coding s.a and s.b
in mysub1(), v[i].a and v[i].b in mysub2(), M[i,j].a, and M[i,j].b in mysub3().
As with arguments generally, we did not have to name the arguments s, v, and M, the
same as in the main program. The component names, however, are fixed. If mysub1()
had been declared mysub1(struct mystruct scalar hset), then inside mysub1(), we
would refer to hset.a and hset.b.

558 Mata Matters: Structures

In addition to receiving entire structures as arguments, subroutines can return entire
structures. Our main routine might call a subroutine mysub4() that returns a struct
mystruct vector:

function myfunc(...)
{

struct mystruct scalar s
struct mystruct vector v
struct mystruct matrix M
...
real scalar x, y, z

...
x = mysub1(s)
y = mysub2(v)
z = mysub3(M)
...
v = mysub4(...) // <- new
...

}

In the new line v = mysub4(. . .), mysub4() returns not just an entire structure, but a
vector of entire structures. Subroutine mysub4() would be coded

struct mystruct vector mysub4(...)
{

struct mystruct vector new

...
return(new)

}

This ability to package a collection of variables under one name can result in signifi-
cant code simplification. One can write subroutines that receive a problem and return a
solution, where problem and solution are each single variables consisting of many parts.
The code for a particular problem might read

struct problem {
...

}

struct solution {
...

}

function main_routine(dep_varname, indep_varnames, touse_varname)
{

struct problem scalar p
struct solution scalar s

p = set_up_problem(dep_varname, indep_varnames, touse_varname)
check_assumptions(p)
s = get_solution(p)
display_problem_header(p)
display_solution(s)
post_results_to_stata(s)

}

W. Gould 559

Notice how easy the code is to read and therefore to modify.

2 When to use structures

One use of the structures is to implement new element types. For instance, if Mata had
not included built-in type complex, and we found ourselves needing complex numbers,
we could define

struct complex {
real scalar re, im

}

Because structure variables can be declared scalars, vectors, and matrices, with that
single definition, we now have complex scalars, complex vectors, and complex matrices.
We could now write the necessary complex-number manipulation functions, such as
those for complex arithmetic, and we would be on our way to a solution. The advantage
of this approach is that when we write the main part of our program, we write our code
as if Mata had complex numbers all along. The only difference is that everywhere a real
Mata program has complex, ours would have struct complex.

Another use of structures is to simplify the bookkeeping required in complicated
problems, and here structure scalars are the most useful. The way I am using the
word complicated—what distinguishes a complicated problem from a simple one—is
the amount of information necessary to describe it. Say that the problem is statistical:
there might be a vector y, a matrix X, another matrix of exogenous variables Z, a scalar
vcetype that indicates how a variance matrix is to be calculated, and yet another scalar
coding that indicates how y is coded. In solving this complicated problem, we will need
to pass various parts of this information to various subroutines. The easy way to do
that is to define one structure to hold all the information,

struct problemdef {
real vector y
real matrix X
real matrix Z
real scalar vcetype
string scalar coding

}

In our main program, we define a struct problemdef scalar, let’s call it pd, and then
we pass pd from one subroutine to the next.

One advantage of this coding style is that, if we later discover that we need to add
another element to the structure—say, results are to be optionally projected according
to matrix P —splicing in the new feature will be easy. We add the new element to the
structure definition

560 Mata Matters: Structures

struct problemdef {
real vector y
real matrix X
real matrix Z
real matrix P // Projection, optional
real scalar vcetype
string scalar coding

}

and recompile. Then we modify only the subroutines that must use P, and P will be
right at our fingertips when we need it.

Mata’s optimize() function uses this approach. optimize() finds solutions for the
minimum or maximum of a function and, in the process, uses an internal structure
containing 57 components to track problems. You can see the structure definition
by typing viewsource optimize.mata at the Stata (not Mata) prompt. In the code
the structure has the inelegant name opt struct, with two underscores between opt
and struct, but do not let the name disguise the simplification the structure itself
introduces. It is worth taking a look.

Mata’s optimize() function uses scalar structures. Vectors of structures are often
useful in programming data-management tasks. For instance, in a program dealing with
disk files, a useful structure might be

struct filedesc {
string scalar filename
real scalar creation_date
string scalar filetype
string scalar path

}

The structure is defined for holding information of one file. In the program, one would
use a struct filedesc vector to hold information on the collection of files.

3 When not to use structures

If your problem can be solved by writing a Mata function without recourse to subrou-
tines, there is no need for structures. Consider, for instance,

struct point {
real scalar x, y

}

real scalar distance(x0, y0, x1, y1)
{

struct point scalar p0, p1

p0.x = x0 ; p0.y = y0
p1.x = x1 ; p1.y = y1
return(sqrt((p1.x-p0.x)^2 + (p1.y-p0.y)^2))

}

W. Gould 561

The structure added nothing except complication, and this program would be better
written as

real scalar distance(x0, y0, x1, y1)
{

return(sqrt((x1-x0)^2 + (y1-y0)^2))
}

You might argue that a structure could be beneficial had we used the new struct
point type in the arguments of distance(). Function distance() could have been
written

real scalar distance(struct point p0, struct point p1)
{

return(sqrt((p1.x-p0.x)^2 + (p1.y-p0.y)^2))
}

Here you argue that you have reduced the number of arguments from four to two and
improved readability. You have a good argument.

The official StataCorp response is that users of your routines should not be required
to use structures because structures require a level of programming knowledge that most
users do not have. You have included a hurdle that will prevent some users from using
your routine. We at StataCorp use structures but only in hidden ways.

4 Use of structures in hidden ways

In using Mata functions written by StataCorp, you have used structures and never
noticed. Other programmers may wish to adopt our style. Obviously, we at StataCorp
might write a program that, in its internals, defines a structure, passes the structure to
various subroutines, and then returns results that were stored in the structure. That is
not what I meant when I said you have used structures and never noticed. There are
cases where we have returned a structure to you but did not tell you that it was in fact
a structure.

Mata’s optimize() does this. Say that you want to find the value of (p1, p2), which
maximizes y = exp(−p2

1 − p2
2 − p1p2 + p1 − p2 − 3). One way of obtaining the solution is

void myfunction(todo, p, y, g, H)
{

y = exp(-p[1]^2 - p[2]^2 - p[1]*p[2] +
p[1] - p[2] - 3)

}

S = optimize_init()
optimize_init_evaluator(S, &myfunction())
optimize_init_which(S, "max")
optimize_init_evaluatortype(S, "d0")
optimize_init_params(S, (0,0))
optimize(S)

562 Mata Matters: Structures

You can read about optimize() in the Mata Reference Manual under [M-5] optimize()
or by typing help mata optimize(). If you try the example, you will find the maximum
occurs at (1,−1).

What I want to emphasize here is the role of S. In the documentation we will tell you
that S = optimize init() is just something you have to do at the start of a problem.
We call S the problem handle and tell you that, after obtaining S, you are to pass S to
each of the other optimization functions.

We also tell you that if you feel the need to explicitly declare S, make it transmorphic.
We do not tell you that S is a structure and that it is the 57-component structure I
mentioned earlier. If you list S, you will see

: S
0x15f26f0c

The value you see may differ, but it certainly does not look like a 57-component struc-
ture. Try typing

: liststruct(S)
(output omitted)

You will see something different, namely, the 57-element structure.

When we wrote optimize(), we did not do anything special to make S list itself as
0x15f26f0c; this is just how structures look when you attempt to list them in raw form.
The code 0x15f26f0c is the memory address where the structure is stored.

Let’s review the calls to the optimize() routines, because now knowing that S is a
structure, we can see how optimize() works. To obtain the solution, we suggested you
type

S = optimize_init()
optimize_init_evaluator(S, &myfunction())
optimize_init_which(S, "max")
optimize_init_evaluatortype(S, "d0")
optimize_init_params(S, (0,0))
optimize(S)

(A boldface S is used for emphasis.)

When you typed S = optimize init(), optimize init() defined a structure, filled
it in with default values, and returned it to you. In the subsequent calls, you supplied
that same structure as an argument. The various optimize init *(S, . . .) functions
modified the information in S. Finally, when you typed optimize(S), you unknowingly
passed all 57 things optimize() needed to define the problem and to perform the
requested optimization.

There are three benefits of this design.

1. If we at StataCorp later find that we need to track 58 rather than 57 things,
we simply add another element to the structure and make the few modifications

W. Gould 563

necessary to use the new information. We need not tell you about it, except
perhaps to mention a new feature.

2. By hiding from you that S is a structure, you cannot declare S to be a struct
opt struct scalar and so cannot access the information in S. More importantly,
you cannot accidentally modify any of S’s components. To us, the programmers
of optimize(), S contains 57 things. To you, the user, it contains only an odd
hexadecimal number such as 0x15f26f0c. If optimize() fails to work as advertised,
both of us can be certain that it is our fault, not yours.
We use this same approach at StataCorp to protect us from ourselves. We manage
a large code base, and we continually struggle to keep projects separated from one
another. Our goal is that Stata internally be a well-defined set of independent
modules. We want that so that modifications to one module do not require mod-
ifications to others, so we can make improvements to one module and not worry
about unanticipated, and usually negative, side effects.
Consider a project to implement a new estimator that uses optimize() as a sub-
routine. The code we write does not include the declaration struct opt struct
scalar S. The new project treats S as a transmorphic just as we tell you to do.
Thus the new code we write cannot reach into what is properly the purview of
optimize() and that keeps us from building dependencies where none should
exist, which is always a temptation.
By following this rule, if we need to modify optimize(), we can lay our hands on
all the relevant code simply by searching for the declaration struct opt struct.
We can be certain that code not containing the declaration is irrelevant because
the code does not have access to the contents, even if it has access to the variable.

3. This brings us to the third benefit, which is that we can modify our code and that
will have no implication for yours. We can make changes in the structure, even
large ones, and you do not even have to recompile your code that uses optimize().

5 Mechanics
There are several mechanical issues involved in using structures that I need to tell you
about. First and foremost, structures must be defined before they are used. In the
program

struct point {
real scalar x, y

}

real scalar distance(struct point p0, struct point p1)
{

return(sqrt((p1.x-p0.x)^2 + (p1.y-p0.y)^2))
}

you cannot reverse the order of the definitions of struct point and real scalar
distance() because the Mata compiler would not know how to interpret p1.x, p0.x,
etc.

564 Mata Matters: Structures

Second, although you can usually omit declarations of variables and arguments, you
cannot omit them for structures, or more correctly, you cannot omit them if you need
to access what is inside them. It would not do to code the above program

real scalar distance(p1, p2)
{

return(sqrt((p1.x-p0.x)^2 + (p1.y-p0.y)^2))
}

because then the Mata compiler would not know that p0 and p1 are struct points and
thus would not know how to interpret p1.x, p0.x, etc.

The requirement for explicit declarations also applies to structures used as variables
within the program. In the program

real scalar distance(x0, y0, x1, y1)
{

struct point scalar p0, p1 // <- required

p0.x = x0 ; p0.y = y0
p1.x = x1 ; p1.y = y1
return(sqrt((p1.x-p0.x)^2 + (p1.y-p0.y)^2))

}

you cannot omit the struct point scalar p0, p1.

Finally, do not omit the scalar when it applies to structures. Those with C pro-
gramming instincts will find this rule difficult to remember. The following will not
work:

real scalar distance(x0, y0, x1, y1)
{

struct point p0, p1 // <- problem here

p0.x = x0 ; p0.y = y0
p1.x = x1 ; p1.y = y1
return(sqrt((p1.x-p0.x)^2 + (p1.y-p0.y)^2))

}

The function will compile without error, but an error will be issued when the function is
executed. The error will arise because struct point p0, p1 was interpreted as meaning
struct point matrix p0, p1 rather than as a struct point scalar. Why substituting
matrix for scalar causes the problem is going to take some explaining, but it should
be obvious to you why Mata assumed matrix rather than scalar. That was based on
Mata’s standard rule that has nothing to do with structures: omit the element type,
and transmorphic is assumed; and omit the storage type, and matrix is assumed.

There is another Mata rule, also not specific to structures, that you already know
but may never have verbalized:

The entirety of an object must be defined before a component of the object
can be defined.

W. Gould 565

Applying this rule in standard cases means that you cannot define the element z[1]
before you have defined the entire vector z to be, say, 1×3. Similarly, you cannot define
the element Z[1,1] before you have defined the entire matrix Z to be, for example, 2×3.
Declaring real vector z or real matrix Z is not sufficient. This story is going to end
that you cannot define p0.x before you define p0, but it is going to take a while to
get there. Let’s explore the standard, nonstructure case first. Everything we learn will
apply to the structure case.

There are many ways you define z to be 1×3 or Z to be 2×3; there are so many ways
that you may not even be aware that you are defining the entirety of z or Z because
you do not think of it in that way. For z: 1 × 3, you might simply initialize all of z to
contain the values you want:

z = (1, 2, 3)

For Z: 2 × 3, you could follow the same approach,

Z = (1, 2, 3 \ 4, 5, 6)

or perhaps you code something that simply results in Z’s entire definition, such as

Z = pinv(A)

Here you have a preexisting matrix A: 3 × 2, and the entirety of Z simply arises from
calculation. pinv() returns the Moore–Penrose inverse.

The point is that defining the entirety of a vector or matrix object is such a common
action you do not usually think of it as something special; it is obvious that you have
to define z or Z before you can redefine z[1] or Z[1,1]. In some programs, however,
z and Z do not define themselves naturally, and then you use built-in function J() to
begin. You code

z = J(1, 3, 0)

Z = J(2, 3, 0)

J(r, c, x) returns an r×c matrix with all elements set to x. Thus J(1, 3, 0) returns a
1×3 vector with elements set to 0 and J(2, 3, 0) returns a 2×3 matrix with elements
similarly set to 0. Then you can proceed to reset the elements,

z = J(1, 3, 0)
z[1] = . . .
z[2] = . . .
z[3] = . . .

566 Mata Matters: Structures

So what is the effect of including explicit declarations such as real vector z and
real matrix Z in your programs? In the program

function example(...)
{

real vector z
real matrix Z

...
}

the result is to make z be 1 × 0 and to make Z be 0 × 0 at the outset. The type and
general shape are established, but the details have yet to be specified.

Structures work the same way. Let’s return to our broken program and understand
why it is broken and what we can do about it:

real scalar distance(x0, y0, x1, y1)
{

struct point p0, p1 // <- problem here

p0.x = x0 ; p0.y = y0
p1.x = x1 ; p1.y = y1
return(sqrt((p1.x-p0.x)^2 + (p1.y-p0.y)^2))

}

To remind you, we omitted scalar from the struct point p0, p1 declaration, with
the result that matrix was assumed. We now know that matrices start their life being
0× 0, and matrices of structures are no different from any other kind of matrix. p0 and
p1 are 0×0. Hence statements such as p0.x = . . . make no sense, in the same way that
z[1] = . . . makes no sense when z is 0× 0. There is no first element of z, and similarly
there is no x component of p0.

What can we do about it? The easy solution is simply to add the word scalar back
to the declaration. Then p0 and p1 will be 1×1, and our program will work. The other
solution would be to set p0 equal to a 1 × 1 struct point, which is similar to how we
solved the previous problems for z and Z. We called a function, J(), that returned a
1×3 real vector and a 2×3 real matrix, respectively. Similarly, we could set p0 equal to
the result from a function that returned a 1× 1 struct point scalar; that is, a generic
solution to our real vector z problem was

z = ...
z[1] = ...
z[2] = ...
z[3] = ...

In the same way, a generic solution to our structure problem is

p0 = ...
p0.x = ...
p0.y = ...

The only difference between the two problems is that, in z = . . . , the dots returned a
1×3 real vector, and in p0 = . . . , the dots must return a 1×1 struct point scalar. I am

W. Gould 567

about to show you how to do that but, before I do, let me emphasize that no rational
person would use this solution because including scalar on the original declaration is
easier. This solution will have a use, however, when we need a vector or matrix of
structures. But let’s stay with the 1 × 1 case at first. The solution is

p0 = J(1, 1, point())
p0.x = ...
p0.y = ...

The solution is p0 = J(1, 1, point()), just as z = J(1, 3, 0) was a solution to our real
vector problem. The differences are that we do not want a 1× 3 result, we want a 1× 1
result, so the first two arguments to J() are 1 and 1; and we do not want a real result,
we want a struct point result, so the third argument changes from 0, an instance of a
real, to point(), an instance of a struct point. By the way, the solution simplifies to

p0 = point()
p0.x = ...
p0.y = ...

because J(1, 1, anything) simplifies to anything.

Let me explain about point(). When you declare a structure such as

struct point {
real scalar x, y

}

in addition to recording the definition, Mata also creates a function of the same name
that returns a 1 × 1 instance of the structure. Thus when we code p0 = J(1, 1,
point()), or p0 = point(), we obtain a 1× 1 struct point scalar. Doing that defines
the entirety of p0 and then we can define its components.

As I said, including scalar on the declaration line would have been easier. In
another problem, however, we might need a 1×3 struct point vector, and the solution
just given generalizes to that case. We declare struct point vector p so that p is
1 × 0, and then we code p = J(1, 3, point()), just as we coded z = J(1, 3, 0) when
we wanted a 1 × 3 real vector.

For vectors and matrices of structures, there is a variation available to the J(r, c,
point()) solution. The function point()—the function Mata automatically created
from our structure definition—allows arguments, and its full syntax is point(r, c).
The r and c are optional. In full form, the function returns an r × c struct point
vector or matrix. So rather than coding code p = J(1, 3, point()), we can code p
= point(1, 3). It does not matter which we code, although the second will execute a
little more quickly.

6 Technical notes
What follows is included to reassure you that all the generalities one would expect are
included in Mata’s implementation of structures. With the exception of items (1)–(4),
the issues addressed below seldom arise.

568 Mata Matters: Structures

1. Structures and structure references are fully compiled, the latter into address +
offset form. This means structures can be used without concerns about perfor-
mance degradation. This also means that if a structure definition is modified, all
functions that include explicit declarations of the structure must be recompiled.

2. A structure definition struct whatever { . . . } also results in the automatic cre-
ation of new function whatever(). If you are creating .mlib libraries, include
whatever() among the functions saved, and similarly, if you are saving your func-
tions in .mo files, be sure to save whatever.mo. Do this even if your other functions
do not include calls to whatever(). The Mata compiler itself will insert calls to
whatever() to construct structure scalars.

3. Let w be a struct whatever scalar and assume that w contains real matrix X. Then
you can use w.X just as you can use any other matrix. In particular, w.X[i,j]
refers to the i, j-element of matrix w.X.

4. Let w be a struct whatever vector and assume that w contains real matrix X.
Then you can use w[k].X just as you can use any other matrix. In particular,
w[k].X[i,j] refers to the i, j-element of matrix w[k].X.

5. Let w be a struct whatever matrix and assume that w contains real matrix X.
Then you can use w[k,l].X just as you can use any other matrix. In particular,
w[k,l].X[i,j] refers to the i, j-element of matrix w[k,l].X.

6. Let w be a struct whatever vector. Then w[i] is a struct whatever scalar. w[i]
could be passed as an argument to any function expecting a struct whatever
scalar.

7. Let w be a struct whatever matrix. Then w[i,j] is a struct whatever scalar.
w[i,j] could be passed as an argument to any function expecting a struct what-
ever scalar.

w[i,.] is a struct whatever rowvector. w[i,.] could be passed as an argument
to any function expecting a struct whatever rowvector.

w[.,j] is a struct whatever colvector. w[.,j] could be passed as an argument
to any function expecting a struct whatever colvector.

8. Structures may contain other structures. For instance,

struct point {
real scalar x, y

}

struct line {
struct point scalar p0, p1

}

Let li be a struct line scalar. Then li.p0 and li.p1 are struct point scalars.
li.p0 and li.p1 could be passed as arguments to any function expecting a struct
point scalar.

W. Gould 569

li.p0.x is a real scalar and presumably is the x coordinate of p0.

li.p0.y is a real scalar and presumably is the y coordinate of p0.

9. Structures may contain structures may contain structures, and so on. a.b.c.d
refers to the component d of structure c of structure b of structure a.

10. Structures may not contain themselves.

11. Structure pointers are allowed but are used less in Mata than in languages such as
C. Structure pointers are necessary in Mata when you need structures to contain
themselves, just as they are in C. Such constructs are commonly used to construct
linked lists.

12. Let w be a struct whatever scalar. Then &w is a pointer to the scalar, which is to
say, a pointer(struct whatever scalar). &(w.x) is a pointer to the component
x of the structure.

Let w be a struct whatever vector. Then &w is a pointer to the vector, which
is to say, a pointer(struct whatever vector). &(w[i]) is a pointer(struct
whatever scalar).

Let w be a struct whatever matrix. Then &w is a pointer to the matrix, which
is to say, a pointer(struct whatever matrix). &(w[i,j]) is a pointer(struct
whatever scalar).

13. p->x refers to component x of the structure pointed to by p and is equivalent to
(*p).x. p must be explicitly declared a pointer(struct whatever) scalar.

14. Pointers to pointers of structures and pointers to pointers to pointers of struc-
tures, etc., are allowed. (*p)->x refers to component x of the structure pointer
pointed to by p and is equivalent to (**p).x. p must be explicitly declared a
pointer(pointer(struct whatever) scalar) scalar.

15. Be careful to distinguish between a pointer(struct whatever) vector) scalar
and pointer(struct whatever) scalar) vector. (*p)[i] is appropriate for the
first and (*(p[i])), equivalent to (*p[i]), for the second. The same applies to
matrices.

16. Memory management, and in particular the allocating and freeing of memory for
structures, is automatic. If you do not use pointers to structures, this is simple and
easy and works exactly as you would expect. If you do use pointers to structures,
this is still simple and easy for you, but you may be surprised at the features
provided by Mata. If you use pointers, the memory associated with a structure
is not released until (1) the value of the last pointer pointing to the structure is
changed or (2) the pointer itself ceases to exist because the program in which the
pointer appears returns. For instance, consider a linked list. Let *p be a member
of the list and assume p->next points to the next member. Assume that p->next
is the only pointer pointing to *(p->next). Simply coding p->next = NULL is
sufficient to free *(p->next). You may code this even if freeing *(p->next)

570 Mata Matters: Structures

implies subsequent structures will need to be freed, such as *(p->next->next),
*(p->next->next->next), and so on. Mata handles all of this for you.

7 Conclusion

Structures have two important uses: (1) introduction of new types such as complex
(if Mata did not already have them) or quaternions (which Mata does not have), and
(2) in programming complicated problems, where complicated means lots of information
is required simply to describe what is to be done. In both cases, structures make it easy
to share information across functions and make code more readable by hiding details.
Hidden structures can also be used to enforce separation of complicated systems into
independent modules. There is a cost to learning how to use structures, but those who
program complicated tools will find the investment profitable.

About the author

William Gould is President of StataCorp, head of development, and principal architect of Mata.

	Articles and Columns
	Mata Matters: Structures, W. Gould

