The Stata Journal (2007)
7, Number 2, pp. 266267

Stata tip 44: Get a handle on your sample

Ben Jann

ETH Ziirich

Ziirich, Switzerland
jann@soz.gess.ethz.ch

Researchers producing careful and reproducible statistical analyses need to keep
track of precisely which observations are used by commands. Consider regress and
similar commands as leading examples. The observations used will depend on any if
or in conditions, any weights specified, and the incidence of missing values. Typically,
you will want to look at results for regress together with those from other commands.
For that you want the same observations to be used. Even when there is comparison
with results for different subsets, you also need to monitor which observations are used
by which commands.

if and in conditions and the use of weights are explicit in your command syntax,
so you have only yourself to blame if you fail to consider their consequences. Stata,
however, does not make a great fuss about excluding missing values from your analyses,
so more attention is needed to this detail. Since most substantial statistical datasets
contain missing values in at least some of the variables, the issue can arise often.

Researchers commonly start with a simple model and then add more predictors or
covariates. At each step, some observations may be excluded because values are missing
in the extra variables. As long as the proportion of missing values is not too large, you
may not care much about them. However, correct interpretation of the results hinges
on the subset of observations used remaining identical.

A brute force approach to the problem is to keep only those observations being used
(or conversely to drop the others). But this method can create as many problems as it
solves. Any number of different subsets analyzed would mean as many different datasets
and consequent awkwardness in setting up comparisons.

A much better way to get a grip on the samples being used is to construct binary
indicator or dummy variables that mark the observations used in any analysis. Their
values should be 0 for excluded observations and 1 for included observations. With such
variables, corresponding if conditions may be specified as desired.

Ado-file programmers (see [U] 17 Ado-files) face a similar problem and have a
special command to solve it. If you look at the source code of ado-files (using [P] view-
source; Cox 2006), you will often find the command marksample touse near the
start and many if ‘touse’ qualifiers after. Although marksample can be used only
within programs, [P] mark documents two other “programmer’s commands”, mark and
markout, that prove to be handy outside ado-files, as I will now show.

Suppose that you are analyzing a dataset containing the variables x, y, and z, all of
which contain some missing values; a group variable, g; and analytic weights, w. The

© 2007 StataCorp LP dm0030




B. Jann 267

analysis should be restricted to group g == 1. To ensure that the same observations
are used throughout the analysis, type

. mark touse [aw=w] if g == 1

. markout touse x y z
at the beginning of your analysis and include if touse in all later commands, as in
. reg x y [aw=w] if touse

The first command, mark, generates a marker variable touse (read: “to use”) that
is set to 1 in observations satisfying the if qualifier and having a strictly positive,
nonmissing weight and is set to 0 in all other observations.

The second command, markout, recodes touse to 0 if any of the specified variables
contains missing. (If your data are svyset, you might want to omit the weights from the
first command and add a third line reading svymarkout touse; see [SVY] svymark-
out.)

There are other possible ways to generate the marker variable. You could, for ex-
ample, use the missing() function (see [D] functions), or you could code

. quietly regress x y z [aw=w] if g==

. generate byte touse = e(sample)

However, using mark and markout is simple and general. Often it is a good idea to
count if touse and check that the number of observations used remains the same as
that given.

If you need to have a one-liner, then define a program such as

program marktouse

version 8

syntax anything(id="markvar") [if] [in] [aw fw iw pw]
gettoken markvar varlist : anything

mark ‘markvar’ ‘if’ ‘in’ [‘weight’ ‘exp’]

markout ‘markvar’ ‘varlist’

end

and use it as in

. marktouse touse x y z [pw=w] if g ==

References
Cox, N. J. 2006. Stata tip 30: May the source be with you. Stata Journal 6: 149-150.




	Notes and Comments
	Stata tip 44: Get a handle on your sample, B. Jann


