
The Stata Journal (2008)
8, Number 2, pp. 290–292

Stata tip 60: Making fast and easy changes to files with
filefilter
Alan R. Riley
StataCorp
College Station, TX

ariley@stata.com

Stata has a command filefilter (see [D] filefilter) that makes it possible to per-
form global search-and-replace operations on a file, saving the result to another file.
Think of it as a command which copies a file, but in the process of copying it, can
search for one text pattern and replace it with another.

As its manual entry points out, filefilter has been designed to read and write the
input and output files using buffers for speed, and is thus fast at converting even large
files. filefilter can be used on files which are too large to open in a traditional text
editor, and because Stata is programmable, it is possible to use filefilter to perform
complicated global search-and-replace operations, which would not be possible in most
text editors. filefilter can even make changes to binary files.

filefilter is often used to preprocess files (perhaps to remove invalid characters
or to change a delimiter) before reading them into Stata and can be used in many other
situations as a useful file-processing tool.

For example, if you have a log file named x.log in Windows (where the end-of-
line (EOL) character combination is \r\n), and you want to convert the file to have
Unix-style EOL characters (\n), you can type in Stata

. filefilter x.log y.log, from(\r\n) to(\n)

which will replace every occurrence of the Windows EOL character sequence with the
Unix EOL character. Equivalently, you could type

. filefilter x.log y.log, from(\W) to(\U)

because filefilter understands \W as a synonym for the Windows EOL character
sequence \r\n and \U as a synonym for the Unix EOL character sequence \n.

(For the rest of this tip, I will write \W as the EOL marker, but be sure to use the
EOL shorthand in filefilter appropriate for your operating system.)

Let’s put filefilter to use on another example. Imagine that we want to replace
all occurrences of multiple blank lines in a file with a single blank line for readability.
Changing a file in this way may be desirable after, for example, the command cleanlog
(Sieswerda 2003) which reads a log file (plain text or SMCL) and removes all command
syntax and other extraneous material, leaving behind only output. However, in doing
so, cleanlog leaves behind multiple adjacent blank lines.

c© 2008 StataCorp LP pr0039



A. R. Riley 291

Consider the following lines from a file. (The file below obviously did not result from
cleanlog, but it will serve for the purpose of this example.) I will write EOL everywhere
the file contains an end-of-line character sequence.

here is a line. the next two lines are blank in the original file.EOL
EOL
EOL
here is another line. the next line is blank in the original file.EOL
EOL
this is the last line of the file.EOL

The first filefilter syntax you might think of would be

. filefilter x.log y.log, from(\r\n\r\n) to(\r\n)

but it will not do what we want. Because there are EOL characters at the end of
nonblank lines, if all adjacent pairs of EOL characters (\W\W) were replaced with single
EOL characters (\W), the file above would end up looking like

here is a line. the next two lines are blank in the original file.EOL
here is another line. the next line is blank in the original file.EOL
this is the last line of the file.EOL

with no blank lines at all. To have a blank line between sections of output, there must
be two adjacent EOL characters: one at the end of a line, and another on a line all by
itself (the blank line).

Thus, to compress multiple adjacent blank lines down to single blank lines, we need
to replace every occurrence of three adjacent EOL characters with two EOL characters:

. filefilter x.log y.log, from(\W\W\W) to(\W\W)

We still have not quite achieved the desired result. If we issue the above command
only once, there may still be adjacent empty lines left in the file. We actually need to call
filefilter multiple times, each time changing every three newlines to two newlines. I
will assume that x.log is the original file, and will use y.log and z.log as output files
with filefilter so that the original file will be left unchanged:

. filefilter x.log y.log, from(\W\W\W) to(\W\W)

. filefilter y.log z.log, from(\W\W\W) to(\W\W)

. filefilter z.log y.log, from(\W\W\W) to(\W\W) replace

. filefilter y.log z.log, from(\W\W\W) to(\W\W) replace

. filefilter z.log y.log, from(\W\W\W) to(\W\W) replace

...

The above should continue until no more changes are made. We can automate this
by checking the return results from filefilter to see if the from() pattern was found.
If it was not, we know there were no changes made, and thus, no more changes to be
made:

filefilter x.log y.log, from(\W\W\W) to(\W\W)
local nchanges = r(occurrences)
while `nchanges´ != 0 {



292 Stata tip 60

filefilter y.log z.log, from(\W\W\W) to(\W\W) replace
filefilter z.log y.log, from(\W\W\W) to(\W\W) replace
local nchanges = r(occurrences)

}
...

After the code above is executed, y.log will contain the desired file, and z.log can
be discarded. It is possible that the code above will call filefilter one more time
than is necessary, but unless we have an extremely large file that takes filefilter
some time to process, we won’t even notice.

While it may seem inefficient to use filefilter to make multiple passes through a
file until the desired result is achieved, it is a fast and easy way to make such modifi-
cations. For very large files, Stata’s file command ([P] file) or Mata’s I/O functions
([M-4] io) could be used to perform such processing in a single pass, but they require a
higher level of programming effort.

Reference
Sieswerda, L. E. 2003. cleanlog: Stata module to clean log files. Boston College Depart-

ment of Economics, Statistical Software Components S432401. Downloadable from
http://ideas.repec.org/c/boc/bocode/s432401.html.


	Notes and Comments
	Stata tip 60: Making fast and easy changes to files with filefilter, A. R. Riley


