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Abstract. A new set of tools is described for performing analyses of an ensemble
of datasets that includes multiple copies of the original data with imputations
of missing values, as required for the method of multiple imputation. The tools
replace those originally developed by the authors. They are based on a simple data
management paradigm in which the imputed datasets are all stored along with the
original data in a single dataset with a vertically stacked format, as proposed by
Royston in his ice and micombine commands. Stacking into a single dataset
simplifies the management of the imputed datasets compared with storing them
individually. Analysis and manipulation of the stacked datasets is performed with
a new prefix command, mim, which can accommodate data imputed by any method
as long as a few simple rules are followed in creating the imputed data. mim can
validly fit most of the regression models available in Stata to multiply imputed
datasets, giving parameter estimates and confidence intervals computed according
to Rubin’s results for multiple imputation inference. Particular attention is paid
to limiting the available postestimation commands to those that are known to be
valid within the multiple imputation context. However, the user has flexibility
to override these defaults. Features of these new tools are illustrated using two
previously published examples.

Keywords: st0139, mim, mimstack, ice, micombine, miset, mifit, multiple imputa-
tion, missing data, missing at random

c© 2008 StataCorp LP st0139



50 Multiple imputation tools

1 Introduction

The presence of missing data raises challenges for many statistical analyses, especially
those based on multivariable methods where the absence of values on just one or two
variables for a case will, in general, render that observation unusable in standard meth-
ods of analysis. Loss of observations from the analysis dataset in this way raises two
potential threats: first, that of bias due to selection processes that may be related to
the variables or—more importantly—to the associations of interest, and second, that
of loss of precision (or power) due to reduction in the available sample size. Over the
past two decades, considerable literature has arisen on statistical approaches to han-
dling missing data: in particular, see the influential texts by Little and Rubin (2002)
and Schafer (1997).

The leading general approach to the problem now appears to be the method of
multiple imputation (MI). Briefly, this method has two distinct stages. First, a set
of copies of the original dataset must be created, in which each of the missing values
is imputed using an appropriate modeling procedure. Second, standard analyses are
performed on each of these completed or imputed datasets, and the results (in the
form of whatever parameter estimates are of substantive interest—typically regression
coefficients) are then combined according to Little and Rubin’s theory (2002) to obtain
a set of final estimates and standard errors. This process has been outlined in more
detail in an earlier article (Carlin et al. 2003).

Although at first glance MI may appear cumbersome for use in everyday data analy-
sis, with appropriate software tools the method is not difficult to apply. Recent publica-
tion of software both for performing imputation and for analyzing the imputed datasets
has led to an upsurge of usage in applied research papers. The boundaries for safe
application of the method have not been fully delineated although it is well understood
that the standardly available approaches all rely on an assumption that the missing
data can be regarded as missing at random. This assumption is a tricky one to char-
acterize clearly in many applications, especially those involving large datasets with
many variables (Potthoff et al. 2006). Furthermore, there are a number of possible ap-
proaches for performing imputation (Schafer 1997; van Buuren, Boshuizen, and Knook
1999). Although we think the method is very effective and reliable in many situations,
the underlying assumptions need to be considered carefully in any application, and fur-
ther research is needed to better define the types of problems where reliable answers
can be expected.

In order to facilitate better research on MI and its validity in the context of departures
from assumptions, as well as to facilitate more widespread adoption of the method in
practice, we have developed a comprehensive new architecture for managing the process
of data analysis using MI in Stata. Within this new framework, users are able to apply
all the commonly used estimation commands available in Stata, including those based
on the svy prefix, providing a substantial extension of the previously available tools for
MI analysis. We have also refined and extended the available postestimation commands,
including an implementation of predict for multiply imputed data. These advances
are provided in the form of a new prefix command, mim, which this article introduces.
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2 Overview

In this section, we give an outline of our approach and relate the new structure to
previous work by the authors.

2.1 Background

Earlier publications described a system for managing imputed datasets and performing
combined analyses in Stata (Carlin et al. 2003) and described a command for creating
imputations using the method of “chained equations” (ice) along with another com-
mand (micombine) for combined analyses (Royston 2004, 2005a, 2005b). The latter
publications were a substantial advance on the former for two reasons: (1) they pro-
vided a method for performing the imputations, and (2) they highlighted the fact that
the MI process could be handled in Stata by storing imputed versions of a dataset in a
stacked format within a single dataset.

The earlier mitools package of commands (Carlin et al. 2003) had no facility for
generating imputed values (which had to be generated externally, for example, by using
the freeware NORM from http://www.stat.psu.edu/˜jls/misoftwa.html) and assumed
that the imputed datasets were to remain distinct files. The mifit command in that
package performed combined analysis for a range of regression commands by repeatedly
loading each imputed dataset, storing the results obtained, and performing the combined
calculations at the end. The package also introduced methods for postestimation in
the MI framework (commands milincom and mitestparm) and was a first attempt to
create a general environment for flexible management of imputed datasets. However,
the architecture adopted meant that a special-purpose command needed to be written
to perform manipulations (recoding, transformation, etc.) within each imputed dataset
because this required successive reloading of the datasets.

Royston’s focus was on developing the ice command as an implementation of the
method of “multiple imputation using chained equations”, or “MICE” (Van Buuren,
Boshuizen, and Knook 1999), with the micombine command provided to allow infer-
ences to be obtained by combining analyses over the resulting imputations. Again, a
wide range of regression estimation commands was accommodated. Stata’s ereturn
commands were used to allow the standard Stata postestimation commands test and
testparm to work as might be expected, using estimated regression coefficients and the
variance–covariance matrix obtained by pooling across the imputed datasets.

It seems clear that the best environment for managing the method of MI in Stata is
based on storing the imputed datasets in stacked form in a single dataset, as in ice and
micombine. The mim prefix command described in this article provides a new integrated
framework for MI in Stata using this paradigm. To be compatible with mim, a dataset
must contain two variables mj and mi that index, respectively, the individual datasets
within the stack and observations within the datasets. Thus mi should contain the same
value i for each observation from the ith individual across datasets, with the datasets
being identified by mj taking the values 0, 1, . . . ,m for the original data ( mj = 0) and
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each of the imputed datasets. Most mim subcommands use only the imputed data (so
ignore cases for which mj = 0), but retaining the original data in the stack enables
parallel manipulation and transformation of variables within incomplete and imputed
data. Retaining the original data also allows complete-case analyses to be performed
by applying the restriction if mj==0.

2.2 Estimation for MI datasets

mim is designed mainly for the creation of combined parameter estimates from an en-
semble of imputed datasets. It allows the creation of combined estimates for regression
coefficients obtained from any command that has the standard Stata estimation com-
mand structure. All commonly used commands,1 including those taking the svy prefix,
are recognized directly by the mim prefix command, and others can also be used by spec-
ifying the category(fit) option with mim (see section 3). In the latter case, the user
must take responsibility for the results because mim will not automatically reflect any
nonstandard characteristics of commands that are not in the recognized list. While most
Stata estimation commands—including those using multiple-equation models—should
work seamlessly with mim, the user should pay attention to a command’s handling of any
ancillary parameters. Often these are calculated on the log scale but back-transformed
for display purposes, and the associated t or z statistics, and their p-values, are some-
times suppressed. When a command that has these characteristics but is not in the
recognized list is used with mim, all parameters will be displayed on the same scale in
which they are calculated, and the corresponding t statistics and p-values will be dis-
played, whether or not they are valid. This behavior is consistent with Stata’s ereturn
display command.

2.3 Postestimation with MI

The method of MI was developed with a focus on the canonical activity of estimating
regression models. We have maintained this focus here although Rubin’s rules can be
applied to any estimand for which approximate normality of the estimate is reasonably
assured (and in a later release of mim, we plan to provide a more generic capability to
create combined estimates for any user-defined scalar estimator). Rubin’s combination
rules have been shown to work well for scalar estimands, especially when a small-sample
adjustment is applied to the degrees of freedom used for the t reference distribution
(Barnard and Rubin 1999) (and assuming that the method of imputation is proper;
Rubin [1996]). For standard fitting of regression models, the scalar approach is ade-
quate because the estimation of each coefficient in the linear predictor may be treated
separately from the other coefficients, using each coefficient’s estimated standard error
or variance.

1. These are regress, mean, proportion, ratio, logistic, logit, ologit, mlogit, probit, oprobit,
poisson, glm, binreg, nbreg, gnbreg, blogit, clogit, cnreg, mvreg, rreg, qreg, iqreg, sqreg,
bsqreg, stcox, streg, xtgee, xtreg, xtlogit, xtnbreg, xtpoisson, xtmixed, svy: regress, svy: mean,
svy: proportion, svy: ratio, svy: logistic, svy: logit, svy: ologit, svy: mlogit, svy: probit,
svy: oprobit, and svy: poisson.
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However, several subsidiary estimation tasks or hypothesis tests that involve more
than one coefficient are often of interest. These are managed for all standard estimation
commands in Stata with a range of auxiliary commands under the heading of postesti-
mation. We believe that some, but not all, of these standard postestimation commands
can be validly translated to the MI context with our current understanding of MI. mim
currently has the facility to handle lincom, testparm, and predict, which respectively
provide estimates for linear combinations of the regression parameters, Wald-type hy-
pothesis tests for groups of regression coefficients considered simultaneously, and esti-
mates of predicted values for the units of the original dataset. (Note that postestimation
methods relying on likelihood comparisons (lrtest) are not applicable because MI does
not involve calculation of likelihood functions for the data.)

The MI version of lincom is straightforward; it simply requires application of Rubin’s
rules to the (scalar) linear combination that is of interest. However, multiparameter
hypothesis testing is less straightforward because it is not clear that a valid pooled
variance–covariance matrix (in a multiparameter problem) can always be obtained by
a simple averaging process (Schafer 1997). We have implemented an MI version of
testparm using the method of Li, Raghunathan, and Rubin (1991), but in this first
release we have not provided a full translation of the test command, of which testparm
is a special case with a more limited range of syntax. Users may apply any of Stata’s
postestimation commands that rely on the standard structure of Stata’s returned results
(in particular the vector of estimates e(b) and variance–covariance matrix e(V)) by
requesting that MI values of these quantities be placed in the standard returned results.
mim does not do this by default because we do not believe that there is adequate theory to
support all the possible resulting calculations and, in particular, because of the difficulty
just mentioned of ensuring a valid variance–covariance matrix. The user is referred to
help mim for details of the objects returned in e() when mim is used with an estimation
command.

We have also provided a limited implementation of Stata’s predict command un-
der the mim prefix. This produces estimates of predicted values at each observation in
the estimation dataset by treating the estimand Xiβ for each observation i as a scalar
parameter to which the Rubin combination formulas are applied. This calculation will
often use values of Xi that are missing in the original data. A more general approach
to prediction, which would allow predictions to be created for “synthetic” observations
(appended as new rows of data), is a more complex task that we have not yet addressed.
It requires a method for creating a joint inference for the vector β of regression coeffi-
cients in a linear predictor and then applying this to whatever set or sets of X values
are specified.

2.4 Data manipulation with MI datasets

The final category of subcommands that mim handles are those that manipulate and
transform data. Our experience is that, for practical work with complex datasets, it
is essential to have the capacity to work flexibly with data after imputation has been
performed. For example, imputation may be performed on raw variables that must
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then be categorized or transformed in various ways to be used in planned analyses.
With the previous mitools, imputed datasets were stored separately, so a command for
managing manipulation of each imputed dataset in an ensemble was needed. In the mim
environment, most data manipulations (generate, replace, recode, etc.) can be sim-
ply applied to the single stacked dataset. Assuming that the original data with missing
values has been retained in the stacked mim dataset (with mj = 0), the specification of
data transformations should appropriately allow for any missing values, i.e., in general
by explicit exclusions such as “if var!=.”.

mim was specifically programmed for three data manipulation commands (reshape,
append, and merge) that cannot simply be applied to the stacked dataset because
they require that proper attention be paid to the repeated dataset structure. The
sortorder() option is required for the use of merge, in order to guarantee preservation
of the observation identifier across merged datasets, because the mi index must be
dropped while the data manipulation is performed.

As with estimation commands, other data manipulation commands may be applied
at the user’s discretion by specifying the option category(manip), which essentially
allows a command to be applied to each dataset separately, with the resulting datasets
stacked back into the same structure as used originally. Note, however, that certain
data transformations, such as those that generate new observations (e.g., expand), may
produce meaningless results in the context of an MI dataset.

The mim prefix also supports two newly written utility subcommands: check and
genmiss. The former provides a check as to whether the dataset in memory has a mim-
compatible structure containing the indexing variables mj and mi. The main checks are
that nonmissing values must be constant across imputed datasets and that all missing
values must have been imputed. genmiss creates an indicator variable to contain the
missing/observed status of a selected variable. These utility subcommands require that
the original dataset with missing values has been included in the stacked dataset.

While mim is designed to facilitate the handling of multiply imputed datasets, the user
should be aware of a number of other utilities that are available in Stata for managing
and manipulating missing data more generally. These range from the user-written
command mvpatterns, which enables a detailed summary of patterns of missing data,
to various usages of standard Stata functions. In particular, the rowmiss function of
egen is a handy tool for identifying the extent to which missing data affect observations
in a dataset, as for example in egen int nmiss = rowmiss(varlist) if mj==0, which
would create a variable containing the number of missing values in varlist .

Finally, the mim package includes one auxiliary command, mimstack, which creates
a mim-compatible dataset from an appropriate set of imputed datasets, with or without
the original incomplete data.
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3 Syntax

mim
[
, mim options

]
: command

mim
[
, replay options

]
mim options description

General
category(fit | manip) specify whether command is estimation or data

manipulation
noisily display output from execution of command within

each of the imputed datasets
Estimation (valid only for estimation commands)

dots display progress dots during model fitting
noindividual suppress capture of results from each application of

command
storebv fill the standard list (e(b), e(V), etc.) of returned

results for estimation commands with MI estimates
Manipulation (valid only for data manipulation commands)

sortorder(varlist) one or more variables that uniquely identify the
observations in a given imputed dataset following
each execution of command

replay options description

clearbv clears the standard list (e(b), e(V), etc.) of returned
results for estimation commands, but leaves intact all
other items returned by mim

j(#) fills the standard list (e(b), e(V), etc.) of returned
results for estimation commands with the estimates
corresponding to imputed dataset #

reporting options level() and eform options supported by command
storebv same as for estimation, unless j() option is specified

xi is allowed as a prefix to mim but not as a prefix to command .
svy is allowed as a prefix to command .
version is allowed as a prefix to command.
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4 Options

4.1 General

category(fit | manip) is not required for the estimation and data manipulation com-
mands that are listed in section 2. However, it is required when any other command
is used to specify the type of command that is being passed to mim: either estimation
(category(fit)) or data manipulation (category(manip)).

noisily specifies that the results of the application of command to each of the individual
imputed datasets should be displayed.

4.2 Estimation

dots specifies that progress dots should be displayed.

noindividual specifies that capture of the estimation results corresponding to the fit-
ting of the given estimation command to each of the individual imputed datasets
should be suppressed.

storebv specifies that the standard list of returned results for estimation commands be
filled using the MI results, forcing the MI coefficient and covariance matrix estimates
into e(b) and e(V), respectively. This enables subsequent application, at the user’s
discretion, of Stata postestimation commands that use these quantities directly.

4.3 Manipulation

sortorder(varlist) must specify a list of one or more variables that uniquely identifies
the observations in each of the datasets in a mim-compatible dataset after command
has been applied to the given dataset (varlist cannot include mi because the mj
and mi variables are dropped from each dataset prior to the call to command).
This option is not valid for append and reshape but is mandatory for all other data
manipulation commands.

4.4 Replay

clearbv specifies that the standard list (e(b), e(V), etc.) of returned results for esti-
mation commands be cleared. All other (eclass) items returned specifically by mim
are left intact.

j(#) specifies that the standard list (e(b), e(V), etc.) of returned results for estimation
commands be filled with the estimates from the #th imputed dataset.

reporting options may include any level() and eform options supported by command .

storebv specifies that the standard list (e(b), e(V), etc.) of returned results for esti-
mation commands be filled with the MI estimates, unless the j() option is specified.

(There are no mim options for mim: predict, mim: check, and mim: genmiss.)
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5 Example: Adolescent health cohort study

Our first illustration uses a dataset adapted from an adolescent health cohort study
that was used by Carlin et al. (2003) to introduce the original mitools commands. Im-
putation was performed for this study using the stand-alone package NORM, based on
fitting a multivariate normal distribution (followed by appropriate rounding of categor-
ical variables). This produces imputations in separate files, which we may combine into
a mim format by applying mimstack. Imputations were performed separately for males
and females in order to preserve interactions with gender, so we first load and stack
five imputed datasets (smiF*.dta) with the female participants, followed by a similar
process with the male participants:

. mimstack, m(5) sortorder(id wave) istub(smiF) clear

. save smifimp5, replace
file smifimp5.dta saved

. mimstack, m(5) sortorder(id wave) istub(smiM) clear

. save smimimp5, replace
file smimimp5.dta saved

We then join the two mim datasets into one by using mim: append, at the same time
creating a variable sex to identify the two genders. The check utility is used to verify
that we have created a dataset in mim-compatible format.

. use smifimp5, clear

. gen byte sex = 1

. mim: append using smimimp5

. replace sex = 0 if sex == .
(3420 real changes made)

. label define sexlb 0 "male" 1 "female"

. label values sex sexlb

. mim: check

..........
PASS

. save smiall, replace
file smiall.dta saved

The mim dataset smiall.dta is now ready for analysis and will remain in memory
during the course of subsequent mim commands.

(Continued on next page)
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. describe

Contains data from smiall.dta
obs: 7,020
vars: 12 13 Mar 2008 07:48
size: 140,400 (86.6% of memory free) (_dta has notes)

storage display value
variable name type format label variable label

_mj byte %8.0g imputation identifier
_mi int %8.0g observation identifier
id long %9.0g
wave byte %9.0g survey wave
mmetro byte %9.0g school in metro area
parsmk byte %9.0g either parent smokes
drkfre byte %16.0g drkfre drinking frequency
alcdos byte %21.0g alcdos av units/drinking day
alcdhi byte %9.0g drank >=5 units at least once
smk byte %13.0g smk smoking status
cistot byte %9.0g CIS total score
sex byte %8.0g sexlb

Sorted by: _mj _mi

When using MI, it is sometimes useful to informally examine the variation in values
across imputed datasets. This can be done with standard Stata syntax by using the mj
index. For example, one could examine the distribution of drinking frequency (a four-
category variable) among imputed and nonimputed cases by running tables as follows:

. mim: genmiss drkfre

. by _mj: tabulate drkfre _mim_drkfre, col
(output omitted )

To illustrate a more targeted analysis, we generate a binary variable drkreg and
obtain estimates of the frequency of regular drinking at each wave by using the com-
mand mim: proportion. (proportion is a Stata estimation command—available from
release 9—and so has been incorporated into the standard mim structure, making it
unnecessary to have a separate command such as mici in the previous mitools.)
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. gen drkreg = (drkfre >= 2) if drkfre != .
(163 missing values generated)

. forvalues num = 1/6 {
2. dis "wave: " `num´
3. mim: proportion drkreg if wave==`num´
4. }

wave: 1

Multiple-imputation estimates (proportion) Imputations = 5
Proportion estimation Minimum obs = 195

Minimum dof = 180.3

Coef. Std. Err. t P>|t| [95% Conf. Int.] MI.df

0 .876923 .023918 36.66 0.000 .829728 .924118 180.3
1 .123077 .023918 5.15 0.000 .075882 .170272 180.3

(output omitted )

Issuing the command mim on its own replays the last set of results produced by a
mim estimation command, in this case for wave==6:

. mim

Multiple-imputation estimates (proportion) Imputations = 5
Proportion estimation Minimum obs = 195

Minimum dof = 35.2

Coef. Std. Err. t P>|t| [95% Conf. Int.] MI.df

0 .644103 .040777 15.80 0.000 .561336 .726869 35.2
1 .355897 .040777 8.73 0.000 .273131 .438664 35.2

The MI (combined) estimates are displayed using a standard Stata format with a
few variations to convey important information about the MI results. The number of
imputed datasets is shown, and under this we have the minimum number of observations
available for each of the separate analyses. In many cases (including the example shown
here), the number of observations will be identical across imputed datasets, but this is
not the case if the estimation is performed on a subset of the data defined by restriction
according to a variable that is subject to missing values. In that case, the sample
used for estimation will generally differ across imputations. Displaying the minimum
sample size is a conservative approach; for some purposes, the user may prefer to obtain
the average to display in tables of results. The final column in the table contains the
approximate degrees of freedom (Barnard and Rubin 1999) that are used for defining
the t multiplier underlying the confidence interval calculation. This column also gives a
useful index of the extent to which missingness has affected the information available for
the estimation of each parameter. The value “Minimum dof” gives the minimum of the
“MI.df” across the effects that have been estimated (as well as across the datasets of
varying size, if applicable). In this example of proportion applied to a binary variable,
the standard error and associated degrees of freedom are identical for each of the two
complementary proportions.



60 Multiple imputation tools

The variation in results underlying the combined estimate, across imputed datasets,
could be examined by replaying the single imputation results, as follows:

. forvalues num = 1/5 {
2. mim, j(`num´)
3. }

(output omitted )

An important feature is that mim can take the xi prefix to generate interactions and
dummy variables in the standard way. We illustrate this with a logistic regression that
examines evidence for a different rate of change with wave between the sexes by fitting
an interaction model. The (incorrect) independent-observations likelihood is used for
estimation (i.e., the standard logistic command) with standard errors obtained by the
robust sandwich method in order to allow for correlation between repeated measures on
the same subjects.

. xi: mim: logistic drkreg i.sex*wave, cluster(id)
i.sex _Isex_0-1 (naturally coded; _Isex_0 omitted)
i.sex*wave _IsexXwave_# (coded as above)

Multiple-imputation estimates (logistic) Imputations = 5
Logistic regression Minimum obs = 1170

Minimum dof = 228.7

drkreg Odds Rat. Std. Err. t P>|t| [95% Conf. Int.] MI.df

_Isex_1 .522541 .203362 -1.67 0.096 .243466 1.12151 975.9
wave 1.22544 .071734 3.47 0.001 1.09194 1.37526 228.7

_IsexXwave_1 1.03796 .084476 0.46 0.647 .884479 1.21807 391.7

This model may be used to illustrate the use of mim: lincom; we estimate the odds
ratio for regular drinking among males as follows:

. mim: lincom wave + _IsexXwave_1

Multiple-imputation estimates for lincom Imputations = 5

( 1) wave + _IsexXwave_1 = 0

drkreg Odds Rat. Std. Err. t P>|t| [95% Conf. Int.] MI.df

(1) 1.27195 3.37316 0.09 0.928 .006988 231.506 997.9

We note again that mim recognizes the logistic command and so by default returns
estimates in exponentiated form, labeled appropriately as odds ratios. When a similar
logistic regression model is estimated using the generalized estimating equations method,
the default display of the estimates is in the log scale, i.e., as the coefficients in the linear
predictor. However, exponentiated coefficients may be obtained as usual by using the
eform option.
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. mim: xtgee drkreg sex wave, fam(binom) i(id)

Multiple-imputation estimates (xtgee) Imputations = 5
Minimum obs = 1170
Minimum dof = 78.6

drkreg Coef. Std. Err. t P>|t| [95% Conf. Int.] MI.df

sex -.493965 .23835 -2.07 0.040 -.964602 -.023328 163.7
wave .219717 .038719 5.67 0.000 .142644 .29679 78.6
_cons -1.67304 .224338 -7.46 0.000 -2.11679 -1.22929 132.3

We illustrate the multiparameter postestimation capabilities of mim by including
further covariates in the model:

. gen cisgp = cistot
(165 missing values generated)

. recode cisgp 0/5=1 6/11=2 12/100=3
(cisgp: 6300 changes made)

. xi: mim: xtgee drkreg sex wave i.cisgp, fam(binom) i(id) eform
i.cisgp _Icisgp_1-3 (naturally coded; _Icisgp_1 omitted)

Multiple-imputation estimates (xtgee) Imputations = 5
Minimum obs = 1170
Minimum dof = 74.1

drkreg exp(b) Std. Err. t P>|t| [95% Conf. Int.] MI.df

sex .558385 .133963 -2.43 0.016 .348033 .895874 226.0
wave 1.28066 .052581 6.03 0.000 1.18006 1.38983 74.1

_Icisgp_2 1.00571 .192688 0.03 0.976 .689186 1.4676 189.2
_Icisgp_3 1.77553 .353741 2.88 0.004 1.19932 2.62857 255.8

. mim: testparm _Icis*

( 1) _Icisgp_2 = 0
( 2) _Icisgp_3 = 0

F( 2, 221.4) = 4.76
Prob > F = 0.0095

A test of the overall null hypothesis of no differences between the three groups defined
by the cisgp variable (a categorical indicator of mental health) was obtained by using
the mim: testparm command.

Because these data relate to measures taken on repeated occasions, some analyses
may best be handled by reshaping the data to wide form. This is accomplished by using
mim: reshape:

. gen drkany = (drkfre >= 1) if drkfre != .
(163 missing values generated)

. keep _mj _mi id wave drkany cisgp sex

. mim: reshape wide drkany cisgp, i(id) j(wave)

We can now obtain an estimate of the incidence of alcohol use between waves 1
and 2:
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. mim: proportion drkany2 if drkany1 == 0

Multiple-imputation estimates (proportion) Imputations = 5
Proportion estimation Minimum obs = 136

Minimum dof = 122.6

Coef. Std. Err. t P>|t| [95% Conf. Int.] MI.df

0 .696501 .040309 17.28 0.000 .616709 .776292 122.6
1 .303499 .040309 7.53 0.000 .223708 .383291 122.6

Logistic regression can be used to examine the association between incidence and
covariates of interest:

. xi: mim: logistic drkany2 i.cisgp1 if drkany1 == 0
i.cisgp1 _Icisgp1_1-3 (naturally coded; _Icisgp1_1 omitted)

Multiple-imputation estimates (logistic) Imputations = 5
Logistic regression Minimum obs = 136

Minimum dof = 524.7

drkany2 Odds Rat. Std. Err. t P>|t| [95% Conf. Int.] MI.df

_Icisgp1_2 .864098 .406523 -0.31 0.756 .343045 2.17658 642.2
_Icisgp1_3 1.06857 .484563 0.15 0.884 .438557 2.60365 595.8

This analysis provides an example where the size of the imputed dataset used in each
of the single-imputation analyses varies because the condition drkany1==0 produces a
different set of observations (because drkany was subject to missingness and so varies
across imputations).

6 Example: Breast cancer

We use a second example, taken from Royston (2004), to illustrate the use of ice to
obtain multiply imputed data, followed by mim to handle and analyze the imputations.

First, the raw data containing missing values is loaded, and stset is used to specify
a survival time structure for later analysis. This could have been done subsequently
although the summary information provided would be potentially misleading because
it would reflect the number of imputed datasets that were created. Second, five im-
putations of the missing values are created using ice (version 1.4.0; Royston 2007),
saving the imputations to a new file, brcaeximp2b.dta. We use the match() option for
the variable mx6 because it has an extremely skewed, semicontinuous distribution that
makes it difficult to impute using a parametric model.
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. use brcaex, clear
(German breast cancer data)

. stset rectime, fail(censrec)

failure event: censrec != 0 & censrec < .
obs. time interval: (0, rectime]
exit on or before: failure

686 total obs.
0 exclusions

686 obs. remaining, representing
299 failures in single record/single failure data

771400 total analysis time at risk, at risk from t = 0
earliest observed entry t = 0

last observed exit t = 2659

. ice mx1 mx4a mx5e mx6 mhormon lnt _d using brcaeximp2b, match(mx6) m(5)
> genmiss(m_) seed(101) replace

#missing
values Freq. Percent Cum.

0 231 33.67 33.67
1 290 42.27 75.95
2 126 18.37 94.31
3 33 4.81 99.13
4 6 0.87 100.00

Total 686 100.00

Variable Command Prediction equation

mx1 regress mx4a mx5e mx6 mhormon lnt _d
mx4a logit mx1 mx5e mx6 mhormon lnt _d
mx5e regress mx1 mx4a mx6 mhormon lnt _d
mx6 regress mx1 mx4a mx5e mhormon lnt _d

mhormon logit mx1 mx4a mx5e mx6 lnt _d
lnt [No missing data in estimation sample]
_d [No missing data in estimation sample]

Imputing 1..2..3..4..5..(note: file brcaeximp2b.dta not found)
file brcaeximp2b.dta saved

A plot of the distributions of observed and imputed values of one of the variables
subject to missing data (mx1) illustrates the variability between imputations but reveals
a similar distribution for the imputed values as for the observed, although one of the
imputed distributions is somewhat different from the others (figure 1). Slightly different
results will be obtained each time the imputation procedure is performed (unless the
seed() option is used in ice); this is a natural feature of the method.

(Continued on next page)
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Figure 1. Frequency plots of the observed and imputed values of the variable mx1 in
the breast cancer example. The left-hand panel superimposes the distribution of the
five sets of imputed values (light-gray lines) on the distribution of the observed values
(black lines), while the right-hand panel displays the distribution of the completed
data—observed and imputed values combined—along with the incomplete observed
data distribution.

Fractional polynomial transformations are applied to mx1 and mx6 for modeling
purposes:

. use brcaeximp2b, clear
(German breast cancer data)

. fracgen mx1 -2 -0.5
-> gen double mx1_1 = X^-2
-> gen double mx1_2 = X^-0.5

(where: X = mx1/10)

. fracgen mx6 0.5
-> gen double mx6_1 = X^0.5

(where: X = (mx6+1)/1000)

The model is fitted in each imputed dataset and combined estimates are obtained:

. mim: stcox mx1_1 mx1_2 mx4a mx5e mx6_1 mhormon, nohr

Multiple-imputation estimates (stcox) Imputations = 5
Minimum obs = 686
Minimum dof = 8.8

_t Coef. Std. Err. t P>|t| [95% Conf. Int.] MI.df

mx1_1 36.459 19.3132 1.89 0.092 -7.38798 80.3059 8.8
mx1_2 -14.9337 8.25602 -1.81 0.103 -33.5639 3.69646 9.1
mx4a .5223 .290443 1.80 0.075 -.053744 1.09834 102.7
mx5e -1.86353 .273425 -6.82 0.000 -2.417 -1.31005 38.1
mx6_1 -1.97985 .440288 -4.50 0.000 -2.87119 -1.0885 38.0

mhormon -.422055 .163597 -2.58 0.016 -.757682 -.086429 27.1
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7 Conclusions

The field of MI data analysis is still young, but it is quickly growing and increasingly of-
fers the possibility of more efficient and more informative analyses of important datasets,
particularly in the social and health sciences. Following the success of our earlier pack-
age mitools (Carlin et al. 2003) and of the package ice for multiple imputation of
missing values (Royston 2004, 2005b), our new package mim further rationalizes and ad-
vances the management and analysis of MI datasets. The approach used by mim requires
all imputed copies of the dataset to be stored together in stacked format, allowing all
analysis to take place using the single dataset in memory. This approach is conceptually
appealing in that it reminds the analyst that the individual imputed datasets should
not be taken too seriously on their own: it is only by analyzing the multiply imputed
datasets and appropriately combining results that valid inferences may be obtained. In
this sense, the imputed data are naturally viewed as an extension of the original data.
Use of the mim framework does, however, require that the user not forget that they
are using a multiply imputed dataset; it is easy to mistakenly apply commands to the
entire stacked dataset with the illusion of having several times more observations than
actually exist. Clearly, there is an inherent complexity in using MI, which requires that
the user always needs to be alert to such issues.

While there is certainly room for further development of mim (for example, to extend
the test postestimation command), we believe the current version already provides a
rich set of facilities for the analysis of MI data and for research on MI inference. Examples
of research questions with MI data include how to build multivariable models from a
set of candidate variables and how to construct suitable model performance summaries
and diagnostics. More broadly, important questions remain unanswered about the use
of MI: for example, how sensitive are results to the use of inappropriate imputation
methods, and are there ways in which users can check the validity of their imputations
and resulting analytic conclusions? As mentioned in this article’s introduction, the only
imputation methods that are widely available in standard software assume that the data
are “missing at random” according to Rubin’s technical definition (Little and Rubin
2002). Although this assumption cannot, by definition, be tested in the data being
analyzed, the user should consider whether it has a good basis in the context of his
or her application, and it would be helpful to have more research on the sensitivity
of results to departures from missing at random (e.g., Carpenter, Kenward, and White
2007).

We hope to be able to update mim on a regular basis as relevant research on han-
dling statistical issues with MI data is published and in response to user queries and
suggestions. We also hope that users will develop Stata implementations of alternative
methods for imputation and make them compatible with the mim environment so that
comparative analyses are facilitated. (For example, it would be valuable to have a Stata
version of Schafer’s NORM.) Therefore, we welcome user input to help us further develop
mim.
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