The Stata Journal (2008)
8, Number 4, pp. 557-568

Speaking Stata: Distinct observations

Nicholas J. Cox
Department of Geography
Durham University
Durham City, UK

Gary M. Longton
Fred Hutchinson Cancer Research Center
Seattle, WA
glongton@fhcrc.org

n.j.cox@durham.ac.uk

Abstract. Distinct observations are those different with respect to one or more
variables, considered either individually or jointly. Distinctness is thus a key aspect
of the similarity or difference of observations. It is sometimes confounded with
uniqueness. Counting the number of distinct observations may be required at any
point from initial data cleaning or checking to subsequent statistical analysis. We
review how far existing commands in official Stata offer solutions to this issue, and
we show how to answer questions about distinct observations from first principles
by using the by prefix and the egen command. The new distinct command is
offered as a convenience tool.

Keywords: dm0042, distinct, by, egen, distinctness, uniqueness, data management

1 Introduction

A question common in data management is how many distinct observations there are in a
dataset. Distinctness of observations can be determined with respect to either individual
variables or several variables considered jointly. This question may arise at various
stages in a project. Initial data checking or cleaning may include counting how many
of the possible categories in a variable are represented in the data, or seeing how spiky
a distribution is, say, because of rounding or digit preference. The number of distinct
values may be a natural descriptor: How many different drugs have been prescribed
to a patient? How many different products have been bought by a customer? How
many different countries are trading partners of another? In many modeling exercises,
researchers may need to determine the number of covariate classes or patterns present,
or they may want to look more closely at the data given some puzzling results.

The question can be asked using different terminology, so the first task of this column
is to discuss the varying language that researchers might use to ask this or related
questions. Then we will consider how far the question is answered by existing Stata
commands, outline how to answer it yourself from first principles, and introduce the
distinct command as a convenience tool providing a direct answer.

2 Distinctness, duplication, and uniqueness

To Stata, the term observation has a very precise meaning: your dataset consists of
observations and variables. Privately, say, because of previous training or exposure

© 2008 StataCorp LP dm0042

558 Speaking Stata

to other software, you may continue to think of observations as rows, records, cases,
subjects, objects, individuals, or in yet other ways, and of variables as columns, fields,
attributes, properties, features, or in yet other ways. That is no problem so long as you
realize that Stata makes no formal use of any of those terms for describing datasets.
(Clearly, the terms rows and columns are used to describe matrices and tables.)

Distinctness, duplication, and uniqueness are different aspects of the similarity and
difference of observations.

Suppose the values of some numeric variable are 1, 2, 2, 3, 3, 3, 4, 4, 4, 4. Then
there are four distinct values: 1, 2, 3, and 4. Alternatively, there are, so far as this
variable is concerned, four distinct observations because, for example, the second and
third observations both containing the value 2 are identical in respect to this variable.
Of these values, 2, 3, and 4 are duplicated in the data, meaning that each occurs twice
or more.

The word duplicates taken literally implies occurring just twice, but in data man-
agement the original meaning has long been swept aside. There is a case on purely
linguistic grounds for using an alternative term such as replicates, but here is an even
stronger case against that: replicates already has an established meaning in the design
of experiments, and in any case existing usage of duplicates seems so strongly entrenched
that suggesting another term would be futile.

A more common cause of minor misunderstandings is that some people refer to the
distinct values as unique values. Dictionaries, style guides, and usage guides typically
insist that unique means occurring just once. They insist in vain because many people
persist in using the word in weaker senses, including here with unique meaning distinc-
tive. Harrell (2001) is just one example of a very careful writer on statistics who uses
unique in this way. Indeed, as we shall see, such usage is also to be found in official
Stata. Thus, in the example just given, 1, 2, 3, and 4 would be reported by many as
the unique values of the variable in question, even though such distinct values could all
be repeated in the data—and, in particular, 2, 3, and 4 are indeed repeated.

One logic behind that terminology is that if you remove all the duplicates from
these data, then you are left with four distinct values, each of which occurs once. The
Unix utility uniq does precisely that for lines in text files (see, e.g., Robbins and Beebe
[2005]). Its widespread use may have contributed to the popularity of unique, meaning
distinctive, among computer users.

If the battle over unique has long been lost, then singleton remains as a convenient
term for values that really do occur once and only once.

Now consider distinctness determined jointly for two variables. Suppose the obser-
vations are 1 and "a", 2 and "b", 2 and "b", 3 and "c", 3 and "c", 3 and "d", 4 and
"c", 4 and "d", and 4 and "d". Then, as far as these two variables are concerned, there
are six distinct observations: 1 and "a", 2 and "b", 3 and "c", 3 and "d", 4 and "c",
and 4 and "d". Considering the variables individually, there are four distinct values for
the first variable and four for the second. Clearly, the same principles of considering
variables individually and jointly extend to three or more variables.

N. J. Cox and G. M. Longton 5h9

3 Official Stata commands

How could official Stata commands be used to report on the distinctness of observations
or related questions?

For concreteness, let us imagine, as above, a dataset with one numeric variable, n,
and one string variable, s, which might be entered as follows:

. input n strl s

n s

1.1 "a"
2. 2 ||bll
3. 2 ||bll
4. 3 "C"
5. 3 "C"
6. 3 "q"
7. 4 I|CII
8. 4 lld"
9. 4 "q"
10. end

The contract command (see [D] contract) will reduce such a dataset to a new
dataset consisting of distinct observations (as determined for one or more variables)
and their frequencies. If that is the form of dataset you seek, contract is ideal. But
destroying a dataset to find out its structure is an especially drastic method, which will
not appeal to those who agree with Gandalf in The Lord of the Rings that to break a
thing to find out what it is is to leave the path of wisdom. (The precept would rule out
much of the natural sciences too, but let that be.)

The inspect command (see [D] inspect) will report the number of unique values,
meaning distinct values, for numeric variables such as n—namely, four—and return it
to the user as r(N_unique). However, it gives up if that number exceeds 99, and it
ignores string variables, such as s, by treating them all as missing.

The codebook command (see [D] codebook) will report four unique values for both
n and s, but the number of unique values is not returned to the user except by display
within the Results window.

The duplicates command (see [D] duplicates) gives various methods for identify-
ing and dealing with duplicates in data. However, its dedication to those tasks leads to
the neglect of singletons, except indirectly through a mention by duplicates report
or by tagging with duplicates tag. A dataset could be reduced to singleton obser-
vations with duplicates drop, but we have already questioned the wisdom of such a
destructive tactic.

The isid command (see [D] isid) will report via error messages that neither variable
uniquely identifies the observations.

The tabulate command (see [R] tabulate oneway) will tabulate the distinct values
of a variable and (as deserves to be better known) will leave the number of rows in a
table behind in memory as r(r). Thus a quick way to count categories (and do nothing
else) is

560 Speaking Stata

. quietly tabulate n

. display r(r)
4

There are, however, limits to the size of tables that tabulate will produce. Because
the limits depend on Stata flavor and version, see help limits for those limits that
apply to you.

The levelsof command (see [P] levelsof) will display a list of the distinct values
(levels) of a variable. This command thus introduces yet another term, which will at
least be familiar to those well schooled in the design of experiments. The user can save
that list to a local macro and then use display to count the number of levels on the
fly and show it:

. levelsof n, local(N)
1234

. display °: word count "N°~
4

See [P] macro if the latter syntax is new to you. However, levelsof does not
guarantee either to display or to count all distinct levels if their number is very large.

Although graphical commands lie off the main path we are following here, it is worth
mentioning that graphical display is often effective at showing spikiness of distributions.
In addition to the more obvious bar charts and histogram commands documented in
the Graphics Reference Manual, we draw attention to [R] spikeplot.

In short, although several commands offer partial solutions on the number of distinct
observations, they all show clear limitations in one or more ways:

e The number of distinct values or levels that can be handled.

o Whether several variables can be compared without repeating a command several
times.

e Whether distinct observations can be determined jointly for two or more variables.
e Whether the information must be extracted from a mass of other output.

e Whether the information is left behind in memory for later use, especially auto-
mated use.

e Whether it is necessary to destroy the dataset to find out more about it.

e Whether both numeric and string variables can be handled.

That leaves plenty of scope for other approaches and dedicated commands.

N. J. Cox and G. M. Longton 561

4 From first principles

Let’s now back up and show how to count the number of distinct observations for
ourselves from first principles. The basic tactic is first to sort the data into groups of
distinct observations and then to count those groups.

This process requires an understanding of the by prefix construct. A self-contained
tutorial was given in an earlier column (Cox 2002). We will need the facts that under
by wvarlist:,

e 1 is defined as the observation number within each distinct group defined by by
varlist:. Thus _n starts over at 1 each time a new group is encountered.

e N is interpreted as the number of observations within each distinct group defined
by by wvarlist:. It is equally the observation number of the last observation in
each such group. (If there are 10 observations in a group, the last is obviously the
10th.)

We also need an understanding that true and false conditions evaluate numerically
to 1 and 0, respectively, which is also explained in the tutorial cited above. Thus the
expression n == 1 is evaluated as 1 whenever _n is indeed 1, and it is evaluated as 0
otherwise (i.e., if mn is 2, 3, or any higher integer).

Let’s illustrate with the simplest example, computing the number of distinct obser-
vations on a single variable, by using the auto dataset. We sort by that variable, and
then we tag the first observation within each distinct group. Read in the data and use
the variable rep78:

. sysuse auto, clear
(1978 Automobile Data)

. by rep78, sort: generate nvals = _n ==

The new variable, nvals, is 1 whenever a value is first in its group and is 0 otherwise.
If this were indeed the problem, we should now just type

. count if nvals
6

which would display the count, also returned as r (N). This is a contracted but equivalent
version of

. count if nvals ==
6

because the expression nvals == 1 evaluates to 1 precisely when nvals is 1. The
usefulness of count was detailed in another column (Cox 2007a).

A refinement here, important for programmers or if memory is tight, is to spell out
to generate that nvals should be created as a byte variable.

562 Speaking Stata

You may be puzzled by the result of 6, particularly because tabulate rep78 shows
just 5 categories. The mysterious 6th value is missing; more on that later.

It is unimportant here that rep78 happens to be numeric and even more unimportant
that it happens to contain just integer values. sort can group all kinds of variables,
numeric or string or both, into clusters of distinct observations. We count the number of
groups by counting the number of times a new group starts, by counting the number of
times an observation is first in its group. Another systematic way to do that is to count
the number of times a group finishes, by counting the number of times an observation
is last in its group, using the expression .n == _N rather than n == 1. Because groups
could be as small as one member, those two methods are the only possibilities.

To extend this problem to others, we need another technique. We calculate the
running or cumulative sum, and thus count the 1s, because the 0s make no difference,
and pick up the last value as our answer:

. replace nvals = sum(nvals)
. replace nvals = nvals[_N]

The variable nvals now contains the number of distinct observations. display of
any value of nvals, say, the first or the last value, shows the number of distinct values.

As already explained, we might want to define distinct observations of a variable
with respect to two or more variables. To Stata, this is the same problem. The only
trick needed is to change varlist fed to by:.

Suppose we wish to calculate the number of distinct observations as defined by the
combinations of foreign and rep78:

. drop nvals

. by foreign rep78, sort: generate nvals = _n ==
. replace nvals = sum(nvals)

. replace nvals = nvals[_N]

If you do this for the auto data, you will find that there are 10 distinct values of rep78
and foreign combined, that is, every possible pair except the pair 1 and Foreign and
the pair 2 and Foreign. This can also be shown directly by typing tabulate foreign
rep78, miss.

Alternatively, we might want to calculate the number of distinct observations of
rep78 separately for each value of foreign.

. drop nvals

. by foreign rep78, sort: generate nvals = _n ==
. by foreign: replace nvals = sum(nvals)

. by foreign: replace nvals = nvals[_N]

If you do this for the auto data, you will find that there are six distinct values of
rep78 when foreign is 0 (domestic cars), namely, 1, 2, 3, 4, 5, and . (missing); and
four distinct values of rep78 when foreign is 1 (foreign cars), namely, 3, 4, 5, and

(missing). This result can also be shown directly by typing by foreign: tabulate
rep78, miss.

N. J. Cox and G. M. Longton 563

Two complications not tackled in detail here are likely to arise in practice. First, as
already exemplified, computations of the kind above include missing values, whether .,
.a, .b, ..., .z for numeric variables or "" for string variables, just like any other value.
It is quite possible that you do not want missing values included, and if so, you need to
exclude them from the computation, say, by typing if !missing(foreign, rep78).
Second, you might have further restrictions on the computation, to be specified by if
or in.

Readers familiar with egen (see [D] egen) may know of an essentially equivalent
approach. We can tag just one in any group of observations in wvarlist by using egen,
tag (). Tagging here means giving a value of 1 to one observation in a group of identical
observations and 0 to all the others that may exist in that group. The logic is that
whenever a group is identical, then for many problems we need to look at only one
observation because the others are, indeed, identical. This is useful, for example, in
graphing, where there may be no point to plotting exactly the same coordinates again
and again.

Thus the number of distinct values of rep78 can be obtained by typing

. egen tag = tag(rep78)
. count if tag

and the number of distinct values of foreign and rep78 jointly, by typing

. egen tag = tag(foreign rep78)
. count if tag

and the number of distinct values of rep78 within categories of foreign, by typing

. egen tag = tag(foreign rep78)
. egen nvals = total(tag), by(foreign)
. tabdisp foreign, cell(nvals)

For more on tabdisp, see [P| tabdisp or Cox (2003a). Note, however, that the
tag() function of egen ignores missing values unless the missing option is specified.
For most problems, that will be the right way around.

5 Adding a twist

We have seen that counting distinct observations can be broken down into easy steps.
Let’s add a twist to the problem, by considering data collected in sequence, and a
desire to count the number of distinct values seen so far in the sequence. This situation
arises in several contexts. One is that many birdwatchers like to monitor the number of
distinct species they have observed during a career or since the beginning of the current
year. The example will underline that although distinctness may be of interest from
different viewpoints, Stata solutions remain based on the same basic principles.

564 Speaking Stata

For example, suppose we have these data:

. clear

. input x

= O WO N O WN -
WO D WL, WNDN e

=

end

The number of distinct values increases from 1 at observation 1 (where 1 first occurs),
to 2 at observation 2 (where 2 first occurs), to 3 at observation 4 (where 3 first occurs),
and so forth.

As in previous problems, the key is to use the by prefix. All we need to do is tag the
first occurrence of each distinct value and then count those first occurrences in sequence.

The by prefix goes hand in hand with sorting. We should keep a record of the
current order of observations because we will want to return to it. If the dataset already
includes a time, or some other identifier indicating sequence, we can use that. Otherwise,
generate a variable recording current order:

. generate order = _n

If your dataset is really big, that should be
. generate long order = _n

We will sort into groups of x and ensure that within those groups the original order
of observations is followed. Then we tag the first occurrence of each value of x. This
process can all be telescoped into one statement:

. by x (order), sort: generate first = _n ==
That statement can be thought of as a condensed version of

. sort x order
. by x: generate first = _n == 1

The sort order is first by x and then by order. Then, within groups of x, the first
observation is tagged as 1; all others within the same group are tagged as 0.

After that, we need to sort back to the original order. Then we need a cumulative
or running sum of first, because the number of distinct values seen so far is equal to
the number of first occurrences seen so far.

N. J. Cox and G. M. Longton 565

. sort order
. replace first = sum(first)

order has served its purpose, so type
. drop order
What do we have now?

. list x first

X first
1 1 1
2 2 2
3 2 2
4 3 3
5 1 3
6. 3 3
7. 4 4
8. 1 4
9. 5 5
10. 3 5

first is no longer a good variable name, so you might want to rename it, but the
problem is solved. A good feature of the solution is that it extends readily to counting
the number of distinct combinations of values seen so far, in exactly the same manner
as in the previous section: you just change the varlist fed to by:.

6 Examining distinct observations

Counting distinct observations is all very well, but at some point you will want to look
at the values concerned. For individual variables, that should already be clear: use
tabulate or levelsof, as convenient. If either breaks down because you have too
many levels, then you can always use egen, tag() and list the tagged values.

For variables considered jointly, the problem may seem a little harder but yields
to similar approaches. After using egen, tag() to create a tagged variable, you can
list tagged observations to again show the distinct combinations. After using egen,
group() label to produce a new composite variable, you can use tabulate to count
those distinct combinations. A convenience command, groups, was described in an ear-
lier column (Cox 2003b). See also Cox (2007b) about generating composite categorical
variables.

7 The distinct command

A new version of the distinct command to report the number of distinct observations
is published formally with this column. (Earlier versions publicly available and down-

566 Speaking Stata

loadable from the Statistical Software Components archive by using the ssc command
date back to 2002.)

7.1 Syntax

distinct [varlz’st} [zf} [m] [, missing abbrev(#) ioint]

by is allowed; see [U] 11.1.10 Prefix commands.

7.2 Description

The distinct command displays the number of distinct observations with respect to
the variables in varlist. By default, each variable is considered separately so that the
number of distinct observations for each variable is reported; the number of distinct
observations is the same as the number of distinct values. Optionally, variables can
be considered jointly so that the number of distinct groups defined by the values of
variables in varlist is reported.

By default, missing values are not counted. warlist can contain both numeric and
string variables.

7.3 Options

missing specifies that missing values are to be included in counting distinct observa-
tions.

abbrev(#) specifies that variable names are to be displayed abbreviated to at most #
characters. This option has no effect with joint.

joint specifies that distinctness is to be determined jointly for the variables in varlist.

7.4 Saved results

distinct saves the following in r():

Scalars
r(ndistinct) distinct count (for last variable, or jointly considered group of variables,
and, if specified, last by group)
r(N) number of observations (for last variable, or jointly considered group of
variables, and, if specified, last by group)

7.5 Examples

The distinct command is intended simply as a reporting tool. Above all, it does
not tackle the creation of variables; the logic of sections 4 and 5 indicates how to do
that. But distinct does allow examination of several variables (both individually and

N. J. Cox and G. M. Longton

567

jointly), subdivision according to a by wvarlist:, and exclusion or inclusion of missing

values. Here it is in action with the auto data:

sysuse auto, clear
(1978 Automobile Data)
. distinct
Observations
total distinct
make 74 74
price 74 74
mpg 74 21
rep78 69 5
headroom 74 8
trunk 74 18
weight 74 64
length 74 47
turn 74 18
displacement 74 31
gear_ratio 74 36
foreign 74 2

. distinct fo
Obser

total
69

r rep78, joint

vations
distinct
8

. by foreign, sort: distinct rep78

-> foreign =

Domestic

Observations

total distinct

rep78 48 5
-> foreign = Foreign
Observations

total distinct

rep78

. by foreign, sort: distinct rep78, missing

21

3

-> foreign =

Domestic

Observations

total distinct

rep78 52 6
-> foreign = Foreign
Observations

total distinct

rep78

22

4

568 Speaking Stata

8 Conclusions

Questions about counting distinct or unique observations continue to arise on Statalist
and at the Stata Users Group meetings. Hence, we have attempted to review the topic
concisely yet comprehensively in this column. As is often the case, existing official
commands do offer at least partial solutions to the question. An approach from first
principles with the by prefix and associated tricks or an equivalent approach with the
egen command are alternatives that can be tuned to both simple and more challenging
versions of the problem. Finally, the distinct command is offered as another small
tool for the data manager’s Stata toolbox.

9 Acknowledgments

The distinct command grew out of one originally posted to Statalist by Patrick Roys-
ton for Stata 4. Steven Samuels made helpful comments on an earlier version of one
section.

10 References
Cox, N. J. 2002. Speaking Stata: How to move step by: step. Stata Journal 2: 86-102.

. 2003a. Speaking Stata: Problems with tables, Part I. Stata Journal 3: 309-324.
. 2003b. Speaking Stata: Problems with tables, Part II. Stata Journal 3: 420-439.

. 2007a. Speaking Stata: Making it count. Stata Journal 7: 117-130.

. 2007b. Stata tip 52: Generating composite categorical variables. Stata Journal
7: 582-583.

Harrell Jr., F. E. 2001. Regression Modeling Strategies: With Applications to Linear
Models, Logistic Regression, and Survival Analysis. New York: Springer.

Robbins, A., and N. H. F. Beebe. 2005. Classic Shell Scripting. Sebastopol, CA: O’Reilly.

About the authors

Nicholas Cox is a statistically minded geographer at Durham University. He contributes talks,
postings, FAQs, and programs to the Stata user community. He has also coauthored 15 com-
mands in official Stata. He wrote several inserts in the Stata Technical Bulletin and is an editor
of the Stata Journal.

Gary M. Longton is a biostatistician at the Fred Hutchinson Cancer Research Center in Seattle,
Washington. In addition to providing statistical support for investigators at the Center from a
variety of disciplines, he has written several Stata programs implementing statistical methods
developed by Margaret Pepe for the evaluation of medical screening and diagnostic tests.

	Articles and Columns
	Speaking Stata: Distinct observations, N. J. Cox and G. M. Longton

