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Abstract. I present paran, an implementation of Horn’s parallel analysis criteria
for factor or component retention in common factor analysis or principal compo-
nent analysis in Stata. The command permits classical parallel analysis and more
recent extensions to it for the pca and factor commands. paran provides a needed
extension to Stata’s built-in factor- and component-retention criteria.
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1 Introduction

A method for factor or component retention is implemented in the Stata command
paran, based on classical parallel analysis (Horn 1965) and recent Monte Carlo exten-
sions to it (Glorfeld 1995). A critical aspect of principal component analysis (PCA) or
factor analysis (FA) is the researcher’s decision of how many factors to retain. This
decision can be motivated by a desire to reduce the analytic dimensionality of ob-
served data, as when multiple scores are combined into one scale, or by a desire to
unpack the structure underlying the covariance of observed data, as in exploratory FA
(Velicer and Jackson 1990; Preacher and MacCallum 2003). While several criteria for
retaining factors or components exist, a strong consensus has developed in the litera-
ture endorsing parallel analysis as among the most accurate methods (Montanelli and
Humphreys 1976; Silverstein 1977; Zwick and Velicer 1986; Cota et al. 1993; Jackson
1993; Glorfeld 1995; Velicer, Eaton, and Fava 2000; Hayton, Allen, and Scarpello 2004;
Lance, Butts, and Michels 2006). The choice of retention method is important, because
different methods are more or less likely to overestimate or underestimate the number
of factors or components.

Horn developed parallel analysis after considering the Kaiser rule, in which one
retains eigenvalues greater than 1 for principal components, or greater than 0 for com-
mon factors (Kaiser 1960). Kaiser formulated this rule following a formal treatment by
Guttman, demonstrating that in a population of P variables of infinite size, eigenvalues
greater than 1 form a theoretical lower bound on the number of components (or greater
than O for factors) that can produce a correlation structure among the P variables
through linear combination (Guttman 1954). Put another way, a PCA of uncorrelated
data would be expected to produce P eigenvalues exactly equal to 1 in uncorrelated
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data of infinite size. Horn reasoned that in a finite sample of size IV, one would expect
to see eigenvalues greater than and less than 1 simply because of “sample bias”. Indeed,
the poor performance of the Kaiser rule has resulted in its criticism in the methodolog-
ical literature (Silverstein 1977; Zwick and Velicer 1986; Jackson 1993; Glorfeld 1995;
Velicer, Eaton, and Fava 2000). Horn reasoned that this bias in the Kaiser rule could be
corrected by generating a “sufficiently large” number, K, of uncorrelated random data
of the same number of N and P as the observed data; performing a parallel PCA or FA
on each; and averaging the results. The bias estimate is thus this average eigenvalue
minus 1 for each component (minus 0 for common factors). By subtracting this bias
estimate from the eigenvalues from a PCA or FA on the observed data, one retains those
adjusted eigenvalues greater than 1 (Horn 1965), or greater than 0 for common factors.
More recently, it has been suggested that a more conservative approach would be to
generate many random datasets (e.g., 5,000), and use the 95th or 99th percentile rather
than the mean (Glorfeld 1995).

The paran command implements parallel analysis and Glorfeld’s extension to it.
paran is a comprehensive command for parallel analysis, including the adaptation for
FA, detailed reporting, graphing features including graphical representation of retained
components, and Glorfeld’s (1995) Monte Carlo extension to parallel analysis. Stata’s
user-written fapara command also implements a bare-bones parallel analysis computa-
tion after pca or factor has been run, with no options for textual or graphical output,
and no implementation of the Monte Carlo variant. However, fapara makes its com-
putations using Mata and may be faster.

2 Parallel analysis of data

2.1 Syntax

paran follows a syntax similar to pca and factor:

paran wvarlist [zf] [zn] [weight] [, options]
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options description
Model
iterations (#) specify the number of iterations
centile(#) specify using a centile value instead

factor (factor_type)

citerate(#)

Reporting
quietly
nostatus
all

Graphing
graph

color

lcolors(# # # # # # # # #)

saving(filename)
replace

Miscellaneous
protect (#)

seed(#)

copyleft

of the mean
use FA instead of PCA; default is
factor (pf)
communality reestimation iterations

suppress PCA or FA output

suppress the status indicator

report all eigenvalues (default reports
only those retained)

graph unadjusted, adjusted, and random
eigenvalues

render graph in color (default is black
and white)

specify colors using three RGB triples
for observed, random, and adjusted
eigenvalues (overrides the color option)

save graph as a .gph file

replace an existing file when saving()

perform # optimizations and report the
best solution

seed the random-number generator
with the supplied integer

display the general public license for
paran

fweights and aweights are allowed; see [U] 11.1.6 weight.

2.2 Options

Model options

iterations (#) sets the number of contrast datasets to evaluate. The default value
is 30 x (the number of variables), and values less than 1 are ignored. For large
datasets with large numbers of variables, many iterations can be time consuming.
The greater the number of iterations, the more accurate the estimates of sample

bias.




294 Implementing Horn’s parallel analysis

centile(#) specifies that the supplied centile value is to be used instead of the mean
(assumed median, because the distribution is symmetrical) in estimating bias. Values
above the mean/median, such as the 95th percentile, are more conservative estimates
of chance bias in the eigenvalues from a PCA of sample data. This option supercedes
the older pnf, which was equivalent to centile(95). Values of centile () must be
greater than 0 and less than 100. Noninteger values will be rounded to the nearest
integer value. Running paran without this option uses the mean value (very close
to centile(50)). See Glorfeld (1995).

factor (factor_type) selects one of the FA estimation types: pf, pcf, ipf, or ml (prin-
cipal factors, principal component factors, iterated principal factors, or maximum-
likelihood factors, respectively). If you specify anything but one of these four ab-
breviations, you will be warned and the program will halt. Note that conducting
parallel analysis using factor methods other than pf is unorthodox. Interpret such
results at your own risk. If factor() is not used, paran performs parallel analysis
using PCA by default.

citerate(#) sets how many iterations will be used to reestimate communalities for
the iterated principal factor type. citerate() can be used only with factor (ipf).

Reporting options

quietly suppresses output for the PCA or FA. This option is used only if a varlist is
specified in the paran command.

nostatus eliminates paran’s default behavior to indicate when every 10th percent of
the computation is complete.

all reports all components or factors, not just those with unadjusted eigenvalues greater
than 1 (or greater than 0 for FA). The default is to not report all components or
factors.

Graphing options

graph draws a graph of the observed eigenvalues, the random eigenvalues, and the
adjusted eigenvalues much like the graphs presented by Horn (1965).

color (use only with graph) renders the graph in color with unadjusted eigenvalues in
red, adjusted eigenvalues in black, random eigenvalues in blue, and all lines solid.
Without the color option, the graph is rendered in black and white, the line connect-
ing the unadjusted eigenvalues is dashed, the line connecting the random eigenvalues
is dotted, and the line connecting the adjusted eigenvalues is solid.
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lcolors(# # # # # # # # # (use only with graph) specifies the colors of each
line on the graph with three RGB triples. The first triple indicates the R, G, and B
components of the observed eigenvalues, the second triple sets the values for the mean
or centile random eigenvalues, and the third triple sets the values for the adjusted
eigenvalues. These settings override the default (red, blue, and black) colors of the
color option.

saving(filename) (use only with graph) outputs the graph to the specified filename as
a .gph file.

replace overwrites an existing filename when the saving() option is used with graph.

Miscellaneous options

protect (#) sets the number of optimizations for the starting values option for the
maximum-likelihood factor type. protect() can be used only with factor (ml).

seed(#) specifies an integer seed for the random-number generator (see help set
seed) so that the results of paran for a specific dataset can be exactly reproduced.
The default behavior of paran is to not specify a seed.

copyleft displays the copying permission statement for paran. paran is free software,
licensed under GNU General Public License. The full license can be obtained by

typing
. net describe paran, from(http://www.doyenne.com/stata)

and following the on-screen directions.

3 Saved results

The results of paran are returned in the matrix r (HornEv), which is a 1 x P matrix of
the adjusted eigenvalues.

4 Example

A simulated dataset is included with this distribution. It contains 250 observations
across 20 variables that have been defined by four random components plus an amount
of noise unique to each measurement. The common variance in these data is constrained
to 0.5 of the total variance. A classical parallel analysis of a PCA performed on these
data can be obtained by typing

. use simdata
(Written by R. )

. paran X1-X20, all graph quietly seed(1)

Which, after a moment, produces the following output and figure 1.
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Computing: 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Results of Horn’s Parallel Analysis for principal components
600 iterations, using the mean estimate

Component  Adjusted Unadjusted Estimated

or Factor Eigenvalue Eigenvalue Bias
1 4.4965098 5.0115828 .51507294
2 3.6971236  4.1506432 .45351958
3 2.4540371  2.8268943 .37285721
4 1.4124735  1.6603032 .24782968
5 .86086266  1.0739862 .21312356
6 .50264634 .69026757 .18762124
7 .43161616 .57773755 .14612138
8 .4171857 .48482887 .06764317
9 .41289346 .46305685 .05016339
10 .38351215 .41568018 .03216803
11 .42688028 .38397364 -.04290664
12 .39338348 .34320168 -.05018181
13 .45403937 .31778023 -.13625914
14 .45767627 .29589049 -.16178578
15 .44264261 .25826351 -.1843791
16 .49499729 .24047616 -.25452113
17 .51687283 .23139579 -.28547704
18 .54348581 .20336817 -.34011763
19 .56823785 .18720304 -.3710348
20 .64292367 .18346663 -.45945704

Criterion: retain adjusted components > 1

Eigenvalue
3
1

2
I

Component

77777 Observed
Adjusted
Random

Figure 1. A plot showing the results of the parallel analysis of a PCA on simulated
data with four true components underlying 20 variables. Nonretained components are
marked with a hollow circle on the adjusted eigenvalues curve.
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By specifying the seed for Stata’s random-number generator, users can reproduce
these results exactly. The default uses 30 times the number of variables iterations, or 600
here. We see in the results that four adjusted eigenvalues are greater than 1. A graph
is produced, as shown in figure 1. The dashed line plots the unadjusted eigenvalues in
decreasing order, in a “scree plot” as per Cattell (1966). The dotted line is the scree
plot for the mean eigenvalues of random N by P data. The adjusted eigenvalues are
plotted with a solid line. Horn’s criterion corresponds to the point where the adjusted
eigenvalues cross the horizontal line at y = 1, which is equivalent to the point where
the unadjusted eigenvalues cross the curve of mean random eigenvalues. This example
demonstrates the sometimes different results given by parallel analysis versus Kaiser’s
“eigenvalue greater than 1” rule for the number of components or factors to retain. The
former obtained the correct number of components, while the latter overestimated the
number of components.

5 Technical notes

Horn (1965) suggested that the simulated datasets be normal with means of 0 and unit
variance. Thompson and Daniel (1996) asserted that data for the simulation be of the
same “rank” as the observed data. More recently, Hayton, Allen, and Scarpello (2004)
urged a parameterization of the random data to approximate the distribution of the
observed data with respect to the middle (midpoint) and the observed minimum and
maximum. However, PCA and FA standardize each variable to describe the total and
common variance, respectively, so any linear transformation of all variables produce
the same eigenvalues. This is born by the notable lack of difference between analyses
conducted using a variety of simulated distributional assumptions (Dinno Forthcoming).
The central limit theorem would seem to make the selection of a distributional form for
the random data moot with any sizeable number of iterations.
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