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Abstract. Problems with inferring causal relationships from nonexperimental
data are briefly reviewed, and four broad classes of methods designed to allow
estimation of and inference about causal parameters are described: panel regres-
sion, matching or reweighting, instrumental variables, and regression discontinu-
ity. Practical examples are offered, and discussion focuses on checking required
assumptions to the extent possible.
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1 Introduction

Identifying the causal impact of some variables, XT , on y is difficult in the best of cir-
cumstances, but faces seemingly insurmountable problems in observational data, where
XT is not manipulable by the researcher and cannot be randomly assigned. Never-
theless, estimating such an impact or “treatment effect” is the goal of much research,
even much research that carefully states all findings in terms of associations rather than
causal effects. I will call the variables XT the “treatment” or treatment variables, and
the term simply denotes variables of interest—they need not be binary (0/1) nor have
any medical or agricultural application.

Experimental research designs offer the most plausibly unbiased estimates, but ex-
periments are frequently infeasible due to cost or moral objections—no one proposes
to randomly assign smoking to individuals to assess health risks or to randomly as-
sign marital status to parents so as to measure the impacts on their children. Four
types of quasiexperimental research designs offering approaches to causal inference us-
ing observational data are discussed below in rough order of increasing internal validity
(Shadish, Cook, and Campbell 2002):

• Ordinary regression and panel methods

• Matching and reweighting estimators

• Instrumental variables (IV) and related methods

• Regression discontinuity (RD) designs
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Each has strengths and weaknesses discussed below. In practice, the data often dictate
the method, but it is incumbent upon the researcher to discuss and check (insofar as
possible) the assumptions that allow causal inference with these models, and to qualify
conclusions appropriately. Checking those assumptions is the focus of this paper.

A short summary of these methods and their properties is in order before we pro-
ceed. To eliminate bias, the regression and panel methods typically require confounding
variables either to be measured directly or to be invariant along at least one dimension
in the data, e.g., invariant over time. The matching and reweighting estimators require
that selection of treatment XT depend only on observable variables, both a stronger
and weaker condition. IV methods require extra variables that affect XT but not out-
comes directly and throw away some information in XT to get less efficient and biased
estimates that are, however, consistent (i.e., approximately unbiased in sufficiently large
samples). RD methods require that treatment XT exhibit a discontinuous jump at a
particular value (the “cutoff”) of an observed assignment variable and provide estimates
of the effect of XT for individuals with exactly that value of the assignment variable.
To get plausibly unbiased estimates, one must either give up some efficiency or gener-
alizability (or both, especially for IV and RD) or make strong assumptions about the
process determining XT .

1.1 Identifying a causal effect

Consider an example to fix ideas. Suppose that for people suffering from depression,
the impact of mental health treatment on work is positive. However, those who seek
mental health treatment (or seek more of it) are less likely to work, even conditional on
all other observable characteristics, because their depression is more severe (in ways not
measured by any data we can see). As a result, we estimate the impact of treatment on
work, incorrectly, as being negative.

A classic example of an identification problem is the effect of college on earnings
(Card 1999, 2001). College is surely nonrandomly assigned, and there are various im-
portant unobserved factors, including the alternatives available to individuals, their
time preferences, the prices and quality of college options, academic achievement (often
“ability” in economics parlance), and access to credit. Suppose that college graduates
earn 60 and others earn 40 on average. One simple (implausible but instructive) story
might be that college has no real effect on productivity or earnings, but those who pass
a test S that grants entry to college have productivity of 60 on average and go to college.
Even in the absence of college, they would earn 60 if they could signal (see Spence 1973)
productivity to employers by another means (e.g., by merely reporting the result of test
S). Here extending college to a few people who failed test S would not improve their
productivity at all and might not affect their earnings (if employers observed the result
of test S).

If we could see the outcome for each case when treated and not treated (assuming
a single binary treatment XT ) or an outcome y for each possible level of XT , we could
calculate the treatment effect for each individual i and compute an average. Of course,



A. Nichols 509

this is not possible as each gets some level of XT or some history of XT in a panel
setting. Thus we must compare individuals i and j with different XT to estimate
an average treatment effect (ATE). When XT is nonrandomly assigned, we have no
guarantee that individuals i and j are comparable in their response to treatment or
what their outcome would have been given another XT , even on average. The notion
of “potential outcomes” (Rubin 1974) is known as the Rubin causal model. Holland
(1986) provided the classic exposition of this now dominant theoretical framework for
causal inference, and Rubin (1990) clarified the debt that the Rubin causal model owes
to Neyman (1923) and Fisher (1918, 1925).

In all the models discussed in this paper, we assume that the effect of treatment
is on individual observations and does not spill over onto other units. This is called
the stable-unit-treatment-value assumption by Rubin (1986). Often, this may be only
approximately true, e.g., the effect of a college education is not only on the earnings of
the recipient, since each worker participates in a labor market with other graduates and
nongraduates.

What is the most common concern about observational data? If XT is correlated
with some other variable XU that also has a causal impact on y, but we do not measure
XU , we might assess the impact of XT as negative even though its true impact is
positive. Sign reversal is an extreme case, sometimes called Simpson’s paradox, though
it is not a paradox and Simpson (1951) pointed out the possibility long after Yule (1903).
More generally, the estimate of the impact of XT may be biased and inconsistent when
XT is nonrandomly assigned. That is, even if the sign of the estimated impact is not
the opposite of the true impact, our estimate need not be near the true causal impact on
average, nor approach it asymptotically. This central problem is usually called omitted-
variable bias or selection bias (here selection refers to the nonrandom selection of XT ,
not selection on the dependent variable as in heckman and related models).

1.2 Sources of bias and inconsistency

The selection bias (or omitted-variable bias) in an ordinary regression arises from en-
dogeneity (a regressor is said to be endogenous if it is correlated with the error), a
condition that also occurs if the explanatory variable is measured with error or in a
system of “simultaneous equations” (e.g., suppose that work also has a causal impact
on mental health or higher earnings cause increases in education; in this case, it is not
clear what impact, if any, our single-equation regressions identify).

Often a suspected type of endogeneity can be reformulated as a case of omitted
variables, perhaps with an unobservable (as opposed to merely unobserved) omitted
variable, about which we can nonetheless make some predictions from theory to sign
the likely bias.

The formula for omitted-variable bias in linear regression is instructive. With a true
model

y = β0 + XT βT + XUβU + ε
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where we regress y on XT but leave out XU (for example, because we cannot observe
it), the estimate of βT has bias

E(β̂T ) − βT = δβU

where δ is the coefficient of an auxiliary regression of XU on XT (or the matrix of
coefficients of stacked regressions when XU is a matrix containing multiple variables)
so the bias is proportional to the correlation of XU and XT and to the effect of XU

(the omitted variables) on y.

In nonlinear models, such as a probit or logit regression, the estimate will be
biased and inconsistent even when XT and XU are uncorrelated, though Wooldridge
(2002, 471) demonstrates that some quantities of interest may still be identified under
additional assumptions.

1.3 Sensitivity testing

Manski (1995) demonstrates how a causal effect can be bounded under very unrestric-
tive assumptions and then how the bounds can be narrowed under more restrictive
parametric assumptions. Given how sensitive the quasiexperimental methods are to as-
sumptions (selection on observables, exclusion restrictions, exchangeability, etc.), some
kind of sensitivity testing is in order no matter what method is used. Rosenbaum
(2002) provides a comprehensive treatment of formal sensitivity testing under various
parametric assumptions.

Lee (2005) advocates another useful method of bounding treatment effects, which
was used in Leibbrandt, Levinsohn, and McCrary (2005).

1.4 Systems of equations

Some of the techniques discussed here to address selection bias are also used in the
simultaneous-equations setting. The literature on structural equations models is exten-
sive, and a system of equations may encode a complicated conceptual causal model,
with many “causal arrows” drawn to and from many variables. The present exercise of
identifying the causal impact of some limited set of variables XT on a single outcome
y can be seen as restricting our attention in such a complicated system to just one
equation, and identifying just some subset of causal effects.

For example, in a simplified supply-and-demand system:

lnQsupply = eslnP + aTransportCost + εs

lnQdemand = edlnP + bIncome + εd

where price (lnP) is endogenously determined by a market-clearing condition lnQsupply =
lnQdemand, our present enterprise limits us to identifying only the demand elasticity ed

using factors that shift supply to identify exogenous shifts in price faced by consumers
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(exogenous relative to the second equation’s error εd), or identifying only the supply
elasticity es using factors that shift demand to identify exogenous shifts in price faced
by firms (exogenous relative to the first equation’s error εs).

See [R] reg3 for alternative approaches that can simultaneously identify parameters
in multiple equations, and Heckman and Vytlacil (2004) and Goldberger and Duncan
(1973) for more detail.

1.5 ATE

In an experimental setting, typically the only two quantities to be estimated are the
sample ATE or the population ATE—both estimated with a difference in averages across
treatment groups (equal in expectation to the mean of individual treatment effects over
the full sample). In a quasiexperimental setting, several other ATEs are commonly
estimated: the ATE on the treated, the ATE on the untreated or control group, and
a variety of local ATEs (LATE)—local to some range of values or some subpopulation.
One can imagine constructing at least 2N different ATE estimates in a sample of N
observations, restricting attention to two possible weights for each observation. Allowing
a variety of weights and specifications leads to infinitely many LATE estimators, not all
of which would be sensible.

For many decision problems, a highly relevant effect estimate is the marginal treat-
ment effect (MTE), either the ATE for the marginal treated case—the expected treatment
effect for the case that would get treatment with a small expansion of the availability of
treatment—or the average effect of a small increase in a continuous treatment variable.
Measures of comparable MTEs for several options can be used to decide where a marginal
dollar (or metaphorical marginal dollar, including any opportunity costs and currency
translations) should be spent. In other words, with finite resources, we care more about
budget-neutral improvements in effectiveness than the effect of a unit increase in treat-
ment, so we can choose among treatment options with equal cost. Quasiexperimental
methods, especially IV and RD, often estimate such MTEs directly.

If the effect of a treatment XT varies across individuals (i.e., it is not the case
that βi = β for all i), the ATE for different subpopulations will differ. We should
expect different consistent estimators to converge to different quantities. This problem
is larger than the selection-bias issue. Even in the absence of endogenous selection
of XT (but possibly with some correlation between XT

i and βi, itself now properly
regarded as a random variable) in a linear model, ordinary least squares (OLS) will not,
in general, be consistent for the average over all i of individual effects βi. Only with
strong distributional assumptions can we proceed; e.g., if we assume βi is normally
distributed then the ATE may be consistently estimated by xtmixed or xtrc, or if we
assume XT is normally distributed then the ATE may be consistently estimated by OLS.
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2 Regression and panel methods

If an omitted variable can be measured or proxied by another variable, an ordinary
regression may yield an unbiased estimate. The most efficient estimates (ignoring issues
around weights or nonindependent errors) are produced by OLS when it is unbiased.
The measurement error entailed in a proxy for an unobservable, however, could actu-
ally exacerbate bias, rather than reduce it. One is usually concerned that cases with
differing XT may also differ in other ways, even conditional on all other observables XC

(“control” variables). Nonetheless, a sequence of ordinary regressions that add or drop
variables can be instructive as to the nature of various forms of omitted-variable bias
in the available data.

A complete discussion of panel methods would not fit in any one book, much less
this article. However, the idea can be illuminated with one short example using linear
regression.

Suppose that our theory dictates a model is of the form

y = β0 + XT βT + XUβU + ε

where we do not observe XU . The omitted variables XU vary only across groups, where
group membership is indexed by i, so a representative observation can be written as

yit = β0 + XT
itβT + ui + εit

where ui = XU
i βU . Then we can eliminate the bias arising from omission of XU by

differencing
yit − yis = (XT

it − XT
is)βT + (εit − εis)

using various definitions of s.

The idea of using panel methods to identify a causal impact is to use an individual
panel i as its own control group, by including information from multiple points in time.
The second dimension of the data indexed by t need not be time, but it is a convenient
viewpoint.

A fixed-effects (FE) model such as xtreg, fe effectively subtracts the within-i mean
values of each variable, so, for example, X

T

i = 1/Ni

∑Ni

s=1 XT
is, and the model

yit − yi = (XT
it − X

T

i )βT + (εit − εi)

can be estimated with OLS. This is also called the “within estimator” and is equivalent to
a regression that includes an indicator variable for each panel i, allowing for a different
intercept term for each panel.

An alternative to the FE model is to use the first difference (FD), i.e., s = (t− 1) or

yit − yi(t−1) = (XT
it − XT

i(t−1))βT + (εit − εi(t−1))

which is regress d.y d.x in tsset data or xtivreg2 y x, fd (Schaffer and Stillman
2007), which offers more standard error (SE) corrections beyond cluster() and robust.
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A third option is to use the long difference (LD), keeping only two observations per
group. For a balanced panel, if t = b is the last observation and t = a is the first, the
model is

yib − yia = (XT
ib − XT

ia)βT + (εib − εia)

producing only one observation per group (the difference of the first and last observa-
tions).

Figure 1 shows the interpretation of these three types of estimates by showing one
panel’s contribution to the estimated effect of an indicator variable that equals one for
all t > 3 (t in 0, . . . , 10) and equals zero elsewhere—e.g., a policy that comes into effect
at some point in time (at t = 4 in the example). The FE estimate compares the mean
outcomes before and after, the FD estimate compares the outcome just prior to and just
after the change in policy, and the LD estimate compares outcomes well before and well
after the change in policy.

FE=1

FD=0.5

LD=1.2

0

.5

1

1.5

 

 Pre Post  

 

Figure 1: One panel’s contributions to FE/FD/LD estimates

Clearly, one must impose some assumptions on the speed with which XT affects y
or have some evidence as to the right time frame for estimation. This type of choice
comes up frequently when stock prices are supposed to have adjusted to some news,
especially given the frequency of data available; economists believe the new information
is capitalized in prices, but not instantaneously. Taking a difference in stock prices
between 3 p.m. and 3:01 p.m. is inappropriate but taking a difference over a year is
clearly inappropriate as well, because new information arrives continuously.

In panel models, one must usually think carefully about within-panel trends and the
frequency of measurement. (We cannot usually obtain consistent estimates of within-
panel trends for the same reason that we cannot usually obtain consistent estimates of
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FE: the number of parameters increases linearly in the number of panels, N .) Baum
(2006) discussed some filtering techniques to get different frequency “signals” from noisy
data. A simple method used in Baker, Benjamin, and Stanger (1999) is often attractive,
because it offers an easy way to decompose any variable Xt into two orthogonal com-
ponents: a high-frequency component (Xt − Xt−1)/2 and a low-frequency component
(Xt + Xt−1)/2 that together sum to Xt.

A simple example of all three (FE, FD, and LD) is

webuse grunfeld
xtreg inv ks, fe vce(cluster company)
regress d.inv d.ks, vce(cluster company)
summarize time, meanonly
generate t=time if time==r(min) | time==r(max)
tsset company t
regress d.inv d.ks, vce(cluster company)

Clearly, different assumptions about the error process apply in each case, in addition to
assumptions about the speed with which XT affects y. The FD and LD models require
an ordered t index (such as time). The vce(cluster clustvar) option used above
should be considered nearly de rigeur in panel models to allow for errors that may be
correlated within group and not identically distributed across groups. The performance
of the cluster–robust estimator is good with 50 or more clusters, or fewer if the clusters
are large and balanced (Nichols and Schaffer 2007). For LD, the vce(cluster clustvar)
option is equivalent to the vce(robust) option, because each group is represented by
one observation.

Having eliminated bias due to unobservable heterogeneity across i units, it is often
tempting to difference or demean again. It is common to include indicator variables for
t in FE models, for example,

webuse grunfeld
quietly tabulate year, generate(d)
xtreg inv ks d*, fe vce(cluster company)

The above commands create a two-way FE model. If individuals, i, are observed in
different settings, j—for example, students who attend various schools or workers who
reside in various locales over time—we can also include indicator variables for j in
an FE model. Thus we can consider various n-way FE models, though models with
large numbers of dimensions for FE may rapidly become unstable or computationally
challenging to fit.

The LD, FD, and FE estimators use none of the cross-sectional differences across
groups (individuals), i, which can lead to lower efficiency (relative to an estimator that
exploits cross-sectional variation). They also drop any variables that do not vary over
t within i, so the coefficients on some variables of interest may not be estimated with
these methods.

The random-effects estimator (RE) available with xtreg exploits cross-sectional vari-
ation and reports coefficients on variables that do not vary over t within i, but it requires
strong assumptions about error terms that are often violated in practice. Particularly,
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for RE to be unbiased in situations where FE is unbiased, we must assume that ui is
uncorrelated with XT

it (which contradicts our starting point above, where we worried
about a XU correlated with XT ). There is no direct test of this assumption about
an unobservable disturbance term, but hausman and xtoverid (Schaffer and Stillman
2006) offer a test that the coefficients estimated in both the RE and FE models are the
same, e.g.,

ssc install xtoverid
webuse grunfeld
egen ik=max(ks*(year==1935)), by(company)
xtreg inv ks ik, re vce(cluster company)
xtoverid

where a rejection casts doubt on whether RE is unbiased when FE is biased.

Other xt commands, such as xtmixed (see [XT] xtmixed) and xthtaylor (see
[XT] xthtaylor), offer a variety of other panel methods that generally make further
assumptions about the distribution of disturbances and sources of endogeneity. Typ-
ically, there is a tradeoff between improved efficiency bought by making assumptions
about the data-generating process versus robustness to various violations of assump-
tions. See also Griliches and Hausman (1986) for more considerations related to all the
above panel methods. Rothstein (2007) offers a useful applied examination of identifying
assumptions in FE models and correlated RE models.

Generally, panel methods eliminate the bias because of some unobserved factors and
not others. Considering the FE, FD, and LD models, it is often hard to believe that all
the selection on unobservables is because of time-invariant factors. Other panel models
often require unpalatable distributional assumptions.

3 Matching estimators

For one discrete set of treatments, XT , we want to compare means or proportions much
as we would in an experimental setting. We may be able to include indicators and inter-
actions for factors (in XC) that affect selection into the treatment group (say, defined
by XT = 1), to estimate the impact of treatment within groups of identical XC using
a fully saturated regression. There are also matching estimators (Cochran and Rubin
1973; Stuart and Rubin 2007) that compare observations with XC by pairing obser-
vations that are close by some metric (see also Imai and van Dyk 2004). A set of
alternative approaches involve reweighting so the joint or marginal distributions of XC

are identical for different groups.

Matching or reweighting approaches can give consistent estimates of a huge variety of
ATEs, but only under the assumptions that the selection process depends on observables
and that the model used to match or reweight is a good one. Often we push the problems
associated with observational data from estimating the effect of XT on y down onto
estimating the effect of XC on XT . For this reason, estimates based on reweighting or
matching are unlikely to convince someone unconvinced by OLS results. Selection on
observables is not the type of selection most critics have in mind.
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3.1 Nearest-neighbor matching

Nearest-neighbor matching pairs observations in the treatment and control groups and
computes the difference in outcome y for each pair and then the mean difference across
pairs. The Stata command nnmatch was described by Abadie et al. (2004). Imbens
(2004) covered details of nearest-neighbor matching methods. The downside to nearest-
neighbor matching is that it can be computationally intensive, and bootstrapped SEs
are infeasible owing to the discontinuous nature of matching (Abadie and Imbens 2006).

3.2 Propensity-score matching

Propensity-score matching essentially estimates each individual’s propensity to receive
a binary treatment (with a probit or logit) as a function of observables and matches
individuals with similar propensities. As Rosenbaum and Rubin (1983) showed, if the
propensity was known for each case, it would incorporate all the information about se-
lection, and propensity-score matching could achieve optimal efficiency and consistency.
In practice, the propensity must be estimated and selection is not only on observables,
so the estimator will be both biased and inefficient.

Morgan and Harding (2006) provide an excellent overview of practical and theoret-
ical issues in matching and comparisons of nearest-neighbor matching and propensity-
score matching. Their expositions of different types of propensity-score matching and
simulations showing when it performs badly are particularly helpful. Stuart and Rubin
(2007) offer a more formal but equally helpful discussion of best practices in matching.

Typically, one treatment case is matched to several control cases, but one-to-one
matching is also common and may be preferred (Glazerman, Levy, and Myers 2003).
One Stata command psmatch2 (Leuven and Sianesi 2003) is available from the Statisti-
cal Software Components (SSC) archive (ssc describe psmatch2) and has a useful help
file. There is another useful Stata command pscore (Becker and Ichino 2002; findit
pscore in Stata). psmatch2 will perform one-to-one (nearest neighbor or within caliper,
with or without replacement), k-nearest neighbors, radius, kernel, local linear regression,
and Mahalanobis matching.

Propensity-score methods typically assume a common support; i.e., the range of
propensities to be treated is the same for treated and control cases, even if the density
functions have different shapes. In practice, it is rare that the ranges of estimated
propensity scores are the same for both the treatment and control groups, but they
do nearly always overlap. Generalizations about treatment effects should probably be
limited to the smallest connected area of common support.

Often a density estimate below some threshold greater than zero defines the end of
common support; see Heckman, Ichimura, and Todd (1997) for more discussion. This
is because the common support is the range where both densities are nonzero, but
the estimated propensity scores take on a finite number of values. Thus the empirical
densities will be zero almost everywhere. Generally, we need to use a kernel density
estimator like kdensity to obtain smooth estimated densities of the propensity score
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for both treatment and control groups, but then areas of zero density will have positive
density estimates. Thus some small value f0 is redefined to be effectively zero, and
the smallest connected range of estimated propensity scores λ̂ with f̂(λ̂) ≥ f0 for both
treatment and control groups is used in the analaysis, and observations outside this
range are discarded.

Regardless of whether the estimation or extrapolation of estimates is limited to a
range of propensities or ranges of XC variables, the analyst should present evidence
on how the treatment and control groups differ and on which subpopulation is being
studied. The standard graph here is an overlay of kernel density estimates of propensity
scores for treatment and control groups. This is easy to create in Stata with twoway
kdensity.

3.3 Sensitivity testing

Matching estimators have perhaps the most detailed literature on formal sensitivity
testing. Rosenbaum (2002) bounds on treatment effects may be constructed by us-
ing psmatch2 and rbounds, a user-written command by DiPrete and Gangl (2004),
who compare Rosenbaum bounds in a matching model with IV estimates. sensatt by
Nannicini (2006) and mhbounds by Becker and Caliendo (2007) are also Stata programs
for sensitivity testing in matching models.

3.4 Reweighting

The propensity score can also be used to reweight treatment and control groups so the
distribution of XC looks the same in both groups. The basic idea is to use a probit or
logit regression of treatment on XC to estimate the conditional probability λ̂ of being
in the treatment group and to use the odds λ̂/(1− λ̂) as a weight. This is like inverting
the test of randomization used in experimental designs to make the group status look
as if it were randomly assigned.

As Morgan and Harding (2006) point out, all the matching estimators can also be
thought of various reweighting schemes whereby treatment and control observations are
reweighted to allow causal inference on the difference in means. A treatment case i
matched to k cases in an interval, or k-nearest neighbors, contributes yi − k−1

∑k
1 yj to

the estimate of a treatment effect. One could easily rewrite the estimate of a treatment
effect as a weighted-mean difference.

The reweighting approach leads to a whole class of weighted least-squares estima-
tors and is connected to techniques described by DiNardo, Fortin, and Lemieux (1996),
Autor, Katz, and Kerney (2005), Leibbrandt, Levinsohn, and McCrary (2005), and
Machado and Mata (2005). These techniques are related to various decomposition
techniques in Blinder (1973), Oaxaca (1973), Yun (2004, 2005a,b), Gomulka and Stern
(1990), and Juhn, Murphy, and Pierce (1991, 1993). DiNardo (2002) usefully outlines
some connections between propensity-score methods and the decomposition techniques.
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The dfl (Azevedo 2005), oaxaca (Jann 2005b), and jmpierce (Jann 2005a) com-
mands available from the SSC archive are useful for the latter. The decomposition
techniques seek to attribute observed differences in an outcome y both to differences
in XC variables and differences in the associations between XC variables and y. They
are most useful for comparing two distributions where the binary variable defining the
group to which an observation belongs is properly considered exogenous, e.g., sex or
calendar year. See also Rubin (1986).

The reweighting approach is particularly useful in combining matching-type estima-
tors with other methods, e.g., FE regression. After constructing weights w = λ̂/(1 − λ̂)
(or the product of weights w = w0λ̂/(1− λ̂), where w0 is an existing weight on the data
used in the construction of λ̂) that equalize the distributions of XC , other commands
can be run on the reweighted data, e.g., areg for a FE estimator.

3.5 Examples

Imagine the outcome is wage and the treatment variable is union membership. One
can reweight union members to have distributions of education, age, race/ethnicity, and
other job and demographic characteristics equivalent to nonunion workers (or a subset
of nonunion workers). One could compare otherwise identical persons within occupation
and industry cells by using a regression approach or nnmatch with exact matching on
some characteristics. An example comparing several regressions with propensity-score
matching is

ssc install psmatch2
webuse nlswork
xi i.race i.ind i.occ
local x "union coll age ten not_s c_city south nev_m _I*"
regress ln_w union
regress ln_w `x´
generate u=uniform()
sort u
psmatch2 `x´, out(ln_w) ate
twoway kdensity _ps if _tr || kdensity _ps if !_tr
generate w=_ps/(1-_ps)
regress ln_w `x´ [pw=w] if _ps<.3
regress ln_w `x´ [pw=w]

The estimated union wage premium is about 13% in a regression but about 15% in the
matching estimate of the average benefit to union workers (the ATE on the treated) and
about 10% on average for everyone (the ATE). The reweighted regressions give differ-
ent estimates: for the more than 70% of individuals who are unlikely to be unionized
(propensity under 30%), the wage premium is about 9%, and for the full sample, it is
about 18%.

Arguably none of these estimates of wage premiums correspond to a readily specified
thought experiment, such as “what is the estimated effect on wages of being in a union
for a randomly chosen individual?” (the ATE) or “what is the estimated effect on wages
of being in a union for an individual just on the margin of being in a union or not?” (the
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LATE). DiNardo and Lee (2002) offer a much more convincing set of causal estimates of
the LATE by using an RD design (see below).

We could also have estimated the wage premium of a college education by switching
coll and union in the above syntax (to find a wage premium of 25% in a regression or
27% using psmatch2). We could use data from Card (1995a,b) on education and wages
to find a college wage premium of 29% using a regression or 30% using psmatch2.

use http://fmwww.bc.edu/ec-p/data/wooldridge/card
generate byte coll=educ>15
local x "coll age exper* smsa* south mar black reg662-reg669"
regress lw `x´
psmatch2 `x´, out(lw) ate

We return to this example in the next section.

4 Instrumental variables

An alternative to panel methods and matching estimators is to find another set of
variables Z correlated with XT but not correlated with the error term, e.g., e in

y = XT βT + XCβC + e

so Z must satisfy E(Z ′e) = 0 and E(Z ′XT ) �= 0. The variables Z are called excluded
instruments, and a class of IV methods can then be used to consistently estimate an
impact of XT on y.

Various interpretations of the IV estimate have been advanced, typically as the LATE

(Angrist, Imbens, and Rubin 1996), meaning the effect of XT on y for those who are
induced by their level of Z to have higher XT . For the college-graduate example, this
might be the average gain Ei{yi(t)− yi(0)} over all those i in the treatment group with
Z = 1 (where Z might be “lived close to a college” or “received a Pell grant”), arising
from an increase from XT = 0 to XT = t in treatment, i.e., the wage premium due to
college averaged over those who were induced to go to college by Z.

The IV estimators are generally only as good as the excluded instruments used, so
naturally criticisms of the predictors in a standard regression model become criticisms
of the excluded instruments in an IV model.

Also, the IV estimators are biased, but consistent, and are much less efficient than
OLS. Thus failure to reject the null should not be taken as acceptance of the alterna-
tive. That is, one should never compare the IV estimate with only a zero effect; other
plausible values should be compared as well, including the OLS estimate. Some other
common pitfalls discussed below include improper exclusion restrictions (addressed with
overidentification tests) and weak identification (addressed with diagnostics and robust
inference).

Since IV estimators are biased in finite samples, they are justified only for large
samples. Nelson and Startz (1990) showed how strange the finite sample behavior of an
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IV estimator can be. Bound, Jaeger, and Baker (1995) showed that even large samples
of millions of observations are insufficient for asymptotic justifications to apply in the
presence of weak instruments (see also Stock and Yogo 2005).

4.1 Key assumptions

Because IV can lead one astray if any of the assumptions is violated, anyone using an
IV estimator should conduct and report tests of the following:

• instrument validity (overidentification or overid tests)

• endogeneity

• identification

• presence of weak instruments

• misspecification of functional form (e.g., RESET)

Further discussion and suggestions on what to do when a test is failed appear in the
relevant sections below.

4.2 Forms of IV

The standard IV estimator in a model

y = XT βT + XCβC + e

where we have Z satisfying E(Z ′e) = 0 and E(Z ′XT ) �= 0 is

β̂IV =

⎛
⎝ β̂IV

T

β̂IV
C

⎞
⎠ = (X ′PZX)−1X ′PZy

(ignoring weights), where X = (XT XC) and PZ is the projection matrix Za(Z ′
aZa)−1Z ′

a

with Za = (ZXC). We use the component of XT along Z, which is exogenous, as the
only source of variation in XT that we use to estimate the effect on y.

These estimates are easily obtained in Stata 6–9 with the syntax ivreg y xc* (xt*
= z*), where xc* are all exogenous “included instruments” XC and xt* are endogenous
variables XT . In Stata 10, the syntax is ivregress 2sls y xc* (xt* = z*). For
Stata 9 and later, the ivreg2 command (Baum, Schaffer, and Stillman 2007) would be
typed as

ssc install ivreg2
ivreg2 y xc* (xt* = z*)
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Example data for using these commands can be easily generated, e.g.,

use http://fmwww.bc.edu/ec-p/data/wooldridge/card, clear
rename lw y
rename nearc4 z
rename educ xt
rename exper xc

The standard IV estimator is equivalent to two forms of two-stage estimators. The
first, which gave rise to the moniker two-stage least squares (2SLS), has you regress XT

on XC and Z, predict X̂T , and then regress y on X̂T and XC . The coefficient on X̂T

is β̂IV
T , so

foreach xt of varlist xt* {
regress `xt´ xc* z*
predict `xt´_hat

}
regress y xt*_hat xc*

will give the same estimates as the above IV commands. However, the reported SEs
will be wrong as Stata will use X̂T rather than XT to compute them. Even though IV

is not implemented in these two stages, the conceptual model of these first-stage and
second-stage regressions is pervasive, and the properties of said first-stage regressions
are central to the section on identification and weak instruments below.

The second two-stage estimator that generates identical estimates is a control-
function approach. Regress each variable in XT on the other variables in XT , XC ,
and Z to predict the errors v̂T = XT − X̂T and then regress y on XT , v̂T , and XC .
You will find that the coefficient on XT is β̂IV

T , and tests of significance on each v̂T are
tests of endogeneity of each XT . Thus

capture drop *_hat
unab xt: xt*
foreach v of loc xt {

local otht: list xt-v
regress `v´ xc* z* `otht´
predict v_`xt´, resid

}
regress y xt* xc* v_*

will give the IV estimates, though again the standard errors will be wrong. However,
the tests of endogeneity (given by the reported p-values on variables v * above) will
be correct. A similar approach works for nonlinear models such as probit or poisson
(help ivprobit and findit ivpois for relevant commands). The tests of endogeneity
in nonlinear models given by the control-function approach are also robust (see, for
example, Wooldridge 2002, 474 or 665).

The third two-stage version of the IV strategy, which applies for one endogenous
variable and one excluded instrument, is sometimes called the Wald estimator. First,
regress XT on XC and Z (let π̂ be the estimated coefficient on Z) and then regress y
on Z and XC (let γ̂ be the estimated coefficient on Z). The ratio of coefficients on Z

(γ̂/π̂) is β̂IV, so
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regress xt z xc*
local p=_b[z]
regress y z xc*
local g=_b[z]
display `g´/`p´

will give the same estimate as the IV command ivreg2 y xc* (xt=z). The regression
of y on Z and XC is sometimes called the reduced-form regression. This name is often
applied to other regressions, so I will avoid using the term.

The generalized method of moments, limited-information maximum likelihood, and
continuously updated estimation and generalized method of moments forms of IV are
discussed at length in Baum, Schaffer, and Stillman (2007). Various implementations
are available with the ivregress and ivreg2 commands. Some forms of IV may be
expressed as k-class estimation, available from ivreg2, and there are many other forms
of IV models, including official Stata commands, such as ivprobit, treatreg, and
ivtobit, and user-written additions, such as qvf (Hardin, Schmiediche, and Carroll
2003), jive (Poi 2006), and ivpois (on SSC).

4.3 Finding excluded instruments

The hard part of IV is finding a suitable Z matrix. The excluded instruments in Z
have to be strongly correlated with the endogenous XT and uncorrelated with the
unobservable error e. However, the problem we want to solve is that the endogenous
XT is correlated with the unobservable error e. A good story is the crucial element in
any plausible IV specification. We must believe that Z is strongly correlated with the
endogenous XT but has no direct impact on y (is uncorrelated with the unobservable
error e), because the assumptions are not directly testable. However, the tests discussed
in the following sections can help support a convincing story and should be reported
anyways.

Generally, specification search in the first-stage regressions of XT on some Z does
not bias estimates or inference nor does using generated regressors. However, it is easy
to produce counterexamples to this general rule. For example, taking Z = XT + ν,
where ν is a small random error, will produce strong identification diagnostics—and
might pass overidentification tests described in the next section—but will not improve
estimates (and could lead to substantially less accurate inference).

If some Z are weak instruments, then regressing XT on Z to get X̂T and using
X̂T as the excluded instruments in an IV regression of y on XT and XC will likewise
produce strong identification diagnostics but will not improve estimates or inference.
Hall, Rudebusch, and Wilcox (1996) reported that choosing instruments based on mea-
sures of the strength of identification could actually increase bias and size distortions.

4.4 Exclusion restrictions in IV

The exclusion restrictions E(Z ′e) = 0 cannot be directly tested, but if there are more
excluded instruments than endogenous regressors, an overidentification (overid) test
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is feasible and the result should be reported. If there are exactly as many excluded
instruments as endogenous regressors, the equation is exactly identified, and no overid
test is feasible.

However, if Z is truly exogenous, it is likely also true that E(W ′e) = 0, where W
contains Z, squares, and cross products of Z. Thus there is always a feasible overid
test by using an augmented set of excluded instruments, though E(W ′e) = 0 is a
stronger condition than E(Z ′e) = 0. For example, if you have two good excluded
instruments, you might multiply them together and square each to produce five excluded
instruments. Testing the three extra overid restrictions is like Ramsey’s regression
specification-error (RESET) test of excluded instruments. Interactions of Z and XC may
also be good candidates for excluded instruments. For reasons discussed below, adding
excluded instruments haphazardly is a bad idea, and with many weak instruments,
limited-information maximum likelihood or continuously updated estimation is preferred
to standard IV/2SLS.

Baum, Schaffer, and Stillman (2007) discuss the implementation of overid tests in
ivreg2 (see also overid from Baum et al. 2006). Passing the overid test (i.e., failing
to reject the null of zero correlation) is neither necessary nor sufficient for instrument
validity, E(Z ′e) = 0, but rejecting the null in an overid test should lead you to reconsider
your IV strategy and perhaps to look for different excluded instruments.

4.5 Tests of endogeneity

Even if we have an excluded instrument that satisfies E(Z ′e) = 0, there is no guarantee
that E(XT ′ε) �= 0 as we have been assuming. If E(XT ′ε) = 0, we prefer ordinary
regression to IV. Thus we should test the null that E(XT ′ε) = 0 (a test of endogeneity),
though this test requires instrument validity, E(Z ′e) = 0, so it should follow any feasible
overid tests.

Baum, Schaffer, and Stillman (2007) describe several methods to test the endogene-
ity of a variable in XT , including the endog() option of ivreg2 and the standalone
ivendog command (both available from SSC archive, with excellent help files). Sec-
tion 4.2 also shows how the control function form of IV can be used to test endogeneity
of a variable in XT .

4.6 Identification and weak instruments

This is the second of the two crucial assumptions and presents problems of various
sizes in almost all IV specifications. The extent to which E(Z ′XT ) �= 0 determines the
strength of identification. Baum, Schaffer, and Stillman (2007) describe tests of iden-
tification, which amount to tests of the rank of E(Z ′XT ). These rank tests address
the concern that a number of excluded instruments may generate exogenous variation
in one endogenous variable and be uncorrelated with another endogenous variable, so
the equation is not identified even though it satisfies the order condition (the number
of excluded instruments is at least as great as the number of endogenous variables).
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For example, if we have two endogenous variables X1 and X2 and three excluded in-
struments, all three excluded instruments may be correlated with X1 and not with X2.
The identification tests look at the least partial correlation, or the minimum eigenvalue
of the Cragg–Donald statistic (?), for example, and measures of whether at least one
endogenous variable has no correlation with the excluded instruments.

Even if we reject the null of underidentification and conclude E(Z ′XT ) �= 0, we can
still face a “weak-instruments” problem if some elements of E(Z ′XT ) are close to zero.

Even if we have an excluded instrument that satisfies E(Z ′e) = 0, there is no guar-
antee that E(Z ′XT ) �= 0. The IV estimate is always biased but is less biased than
OLS to the extent that identification is strong. In the limit of weak instruments, there
would be no improvement over OLS for bias and the bias would be 100% of OLS. In the
other limit, the bias would be 0% of the OLS bias (though this would require that the
correlation between XT and Z be perfect, which is impossible since XT is endogenous
and Z is exogenous). In applications, you would like to know where you are on that
spectrum, even if only approximately.

There is also a distortion in the size of hypothesis tests. If you believe that you are
incorrectly rejecting a null hypothesis about 5% of the time (i.e., you have chosen a size
α = 0.05), you may actually face a size of 10% or 20% or more.

Stock and Yogo (2005) reported rule-of-thumb critical values to measure the extent
of both of these problems. Their table 1 shows the value of a statistic measuring the
predictive power of the excluded instruments that will imply a limit of the bias to some
percentage of OLS. For two endogenous variables and three excluded instruments (n = 2,
K2 = 5), the minimum value to limit the bias to 20% of OLS is 5.91. ivreg2 reports
these values as Stock–Yogo weak ID test critical values: one set for various percentages
of “maximal IV relative bias” (largest bias relative to OLS) and one set for “maximal IV

size” (the largest size of a nominal 5% test).

The key point is that all IV and IV-type specifications can suffer from bias and
size distortions, not to mention inefficiency and sometimes failures of exclusion restric-
tions. The Stock and Yogo (2005) approach measures how strong identification is in
your sample, and ranktest (Kleibergen and Schaffer 2007) offers a similar statistic for
cases where errors are not assumed to be independently and identically distributed.
Neither provides solutions in the event that weak instruments appear to be a problem.
A further limitation is that these identification statistics only apply to the linear case,
not the nonlinear analogs, including those estimated with generalized linear models.
In practice, researchers should report the identification statistics for the closest linear
analog; i.e., run ivreg2 and report the output alongside the output from ivprobit,
ivpois, etc.

If you suspect weak instruments may be producing large bias or size distortions, you
have several options. You can find better excluded instruments, possibly by transform-
ing your existing instruments. You can use limited-information maximum likelihood
or continuously updated estimation, which are more robust to many weak instruments
than standard IV. Perhaps best of all, you can conduct inference that is robust to
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weak instruments: with one endogenous variable, use condivreg (Mikusheva and Poi
2006), or with more than one, use tests described by Anderson and Rubin (1949) and
Baum, Schaffer, and Stillman (2007, sec. 7.4 and 8).

4.7 Functional form tests in IV

As Baum, Schaffer, and Stillman (2007, sec. 9) and Wooldridge (2002, 125) discuss, the
RESET test regressing residuals on predicted y and powers thereof is properly a test of
a linearity assumption or a test of functional-form restrictions. ivreset performs the
IV version of the test in Stata. A more informative specification check is the graphical
version of RESET: predict X̂T after the first-stage regressions, compute forecasts ŷ =
XT β̂IV

T + XC β̂C and ŷf = X̂T β̂IV
T + XC β̂C , and graph a scatterplot of the residuals

ε̂ = y − ŷ against ŷf . Any unmodeled nonlinearities may be apparent as a pattern in
the scatterplot.

4.8 Standard errors in IV

The largest issue in IV estimation is often that the variance of the estimator is much
larger than ordinary regression. Just as with ordinary regression, the SEs are asymp-
totically valid for inference under the restrictive assumptions that the disturbances are
independently and identically distributed. Getting SEs robust to various violations of
these assumptions is easily accomplished by using the ivreg2 command (Baum, Schaf-
fer, and Stillman 2007). Many other commands fitting IV models offer no equivalent
robust SE estimates, but it may be possible to assess the size and direction of SE cor-
rections by using the nearest linear analog in the spirit of using estimated design effects
in the survey regression context.

4.9 Inference in IV

Assuming that we have computed consistent SEs and the best IV estimate we can by
using a good set of Z and XC variables, there remains the question of how we interpret
the estimates and tests. Typically, IV identifies a particular LATE, namely the effect of
an increase in XT due to an increase in Z. If XT were college and Z were an exogenous
source of financial aid, then the IV estimate of the effect of XT on wages would be the
college wage premium for those who were induced to attend college by being eligible for
the marginally more generous aid package.

Angrist and Krueger (1991) estimated the effect of education on earnings by using
compulsory schooling laws as a justification for using quarter of birth dummies as in-
struments. Even if the critiques of Bound, Jaeger, and Baker (1995) did not apply, the
identified effect would be for an increase in education due to being forced to remain
in school a few months more. That is, the measured wage effect of another year of
education is roughly for the eleventh grade and only for those who would have dropped
out if not for compulsory schooling laws.
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Sometimes a LATE of this form is exactly the estimate desired. If, however, we cannot
reject that the IV estimate differs from the OLS estimate or the IV confidence region
includes the OLS confidence region, we may not have improved estimates but merely
produced noisier ones. Only where the IV estimate differs can we hope to ascertain the
nature of selection bias.

4.10 Examples

We can use the data from Card (1995a,b) to estimate the impact of education on wages,
where nearness to a college is used as a source of exogenous variation in educational
attainment:

use http://fmwww.bc.edu/ec-p/data/wooldridge/card
local x "exper* smsa* south mar black reg662-reg669"
regress lw educ `x´
ivreg2 lw `x´ (educ=nearc2 nearc4), first endog(educ)
ivreg2 lw `x´ (educ=nearc2 nearc4), gmm
ivreg2 lw `x´ (educ=nearc2 nearc4), liml

The return to another year of education is found to be about 7% by using ordinary
regression or 16% or 17% by using IV methods. The Sargan statistic fails to reject that
excluded instruments are valid, the test of endogeneity is marginally significant (giving
different results at the 95% and 90% levels), and the Anderson–Rubin and Stock–Wright
tests of identification strongly reject that the model is underidentified.

The test for weak instruments is the F test on the excluded instruments in the
first-stage regression, which at 7.49 with a p-value of 0.0006 seems to indicate that the
excluded instruments influence educational attainment, but the size of Wald tests on
educ, which we specify as 5%, might be roughly 25%. To construct an Anderson–Rubin
confidence interval, we can type

generate y=.
foreach beta in .069 .0695 .07 .36 .365 .37 {

quietly replace y=lw-`beta´*educ
quietly regress y `x´ nearc2 nearc4
display as res "Test of beta=" `beta´
test nearc2 nearc4

}

This gives a confidence interval of (.07, .37); see Nichols (2006, 18) and Baum, Schaffer,
and Stillman (2007, 30). Thus the IV confidence region includes the OLS estimate and
nearly includes the OLS confidence interval, so the evidence on selection bias is weak.
Still, if we accept the exclusion restrictions as valid, the evidence does not support a
story where omitting ability (causing both increased wages and increased education)
leads to positive bias. If anything, the bias seems likely to be negative, perhaps due to
unobserved heterogeneity in discount rates or credit market failures. In the latter case,
the omitted factor may be a social or economic disadvantage observable by lenders.

A similar set of conclusions apply if we model the education response as a binary
treatment, college:
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generate byte coll=educ>15
regress lw coll `x´
treatreg lw `x´, treat(coll=nearc2 nearc4)
ivreg2 lw `x´ (coll=nearc2 nearc4), first endog(coll)
ivreg2 lw `x´ (coll=nearc2 nearc4), gmm
ivreg2 lw `x´ (coll=nearc2 nearc4), liml

These regressions also indicate that the OLS estimate may be biased downward, but the
OLS confidence interval is contained in the treatreg and IV confidence intervals. Thus
we cannot conclude much with confidence.

5 RD designs

The idea of the RD design is to exploit an observable discontinuity in the level of treat-
ment related to an assignment variable Z, so the level of treatment XT jumps dis-
continuously at some value of Z, called the cutoff. Let Z0 denote the cutoff. In the
neighborhood of Z0, under some often plausible assumptions, a discontinuous jump in
the outcome y can be attributed to the change in the level of treatment. Near Z0, the
level of treatment can be treated as if it is randomly assigned. For this reason, the RD

design is generally regarded as having the greatest internal validity of the quasiexperi-
mental estimators.

Examples include share of votes received in a U.S. Congressional election by the
Democratic candidate as Z, which induces a clear discontinuity in XT , the probability
of a Democrat occupying office the following term, and XT may affect various outcomes
y, if Democratic and Republican candidates actually differ in close races (Lee 2001).
DiNardo and Lee (2002) use the share of votes received for a union as Z, and unions
may affect the survival of a firm (but do not seem to). They point out that the union
wage premium, y, can be consistently estimated only if survival is not affected (no
differential attrition around Z0), and they find negligibly small effects of unions on
wages.

The standard treatment of RD is Hahn, Todd, and van der Klaauw (2001), who clar-
ify the link to IV methods. Recent working papers by Imbens and Lemieux (2007) and
McCrary (2007) focus on some important practical issues related to RD designs.

Many authors stress a distinction between “sharp” and “fuzzy” RD. In sharp RD

designs, the level of treatment rises from zero to one at Z0, as in the case where treatment
is having a Democratic representative in the U.S. Congress or establishing a union, and
a winning vote share defines Z0. In fuzzy RD designs, the level of treatment increases
discontinuously, or the probability of treatment increases discontinuously, but not from
zero to one. Thus we may want to deflate by the increase in XT at Z0 in constructing
our estimate of the causal impact of a one-unit change in XT .

In sharp RD designs, the jump in y at Z0 is the estimate of the causal impact of
XT . In a fuzzy RD design, the jump in y divided by the jump in XT at Z0 is the local
Wald estimate (equivalent to a local IV estimate) of the causal impact. The local Wald
estimate reduces to the jump in y at Z0 in a sharp RD design as the jump in XT is one,
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so the distinction between fuzzy and sharp RD is not that sharp. Some authors, e.g.,
Shadish, Cook, and Campbell (2002, 229), seem to characterize as fuzzy RD a wider
class of problems, where the cutoff itself may not be sharply defined. However, without
a true discontinuity, there can be no RD. The fuzziness in fuzzy RD arises only from
probabilistic assignment of XT in the neighborhood of Z0.

5.1 Key assumptions and tests

The assumptions that allow us to infer a causal effect on y because of an abrupt change in
XT at Z0 are the change in XT at Z0 is truly discontinuous, Z is observed without error
(Lee and Card 2006), y is a continuous function of Z at Z0 in the absence of treatment
(for individuals), and that individuals are not sorted across Z0 in their responsiveness
to treatment. None of these assumptions can be directly tested, but there are diagnostic
tests that should always be used.

The first is to test the null that no discontinuity in treatment occurs at Z0, since
without identifying a jump in XT we will be unable to identify the causal impact of said
jump. The second is to test that there are no other extraneous discontinuities in XT or
y away from Z0, as this would call into question whether the functions would be smooth
through Z0 in the absence of treatment. The third and fourth test that predetermined
characteristics and the density of Z exhibit no jump at Z0, since these call into question
the exchangeability of observations on either side of Z0. Then the estimate itself usually
supplies a test that the treatment effect is nonzero (y jumps at Z0 because XT jumps
at Z0).

Abusing notation somewhat so that Δ is an estimate of the discontinuous jump in
a variable, we can enumerate these tests as

• (T1) ΔXT (Z0) �= 0

• (T2) ΔXT (Z �= Z0) = 0 and Δy(Z �= Z0) = 0

• (T3) ΔXC(Z0) = 0

• (T4) Δf(Z0) = 0

• (T5) Δy(Z0) �= 0 or
(

Δy(Z0)
ΔXT (Z0)

)
�= 0

5.2 Methodological choices

Estimating the size of a discontinuous jump can be accomplished by comparing means
in small bins of Z to the left and right of Z0 or with a regression of various powers of
Z, an indicator D for Z > Z0, and interactions of all Z terms with D (estimating a
polynomial in Z on both sides of Z0, and comparing the intercepts at Z0). However,
since the goal is to compute an effect at precisely one point (Z0) using only the closest
observations, the standard approach is to use local linear regression, which minimizes
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bias (Fan and Gibels 1996). In Stata 10, this is done with the lpoly command; users
of previous Stata versions can use locpoly (Gutierrez, Linhart, and Pitblado 2003).

Having chosen to use local linear regression, other key issues are the choice of band-
width and kernel. Various techniques are available for choosing bandwidths (see e.g.,
Fan and Gibels 1996, Stone 1974, 1977), and the triangle kernel has good properties in
the RD context, due to being boundary optimal (Cheng, Jianqing, and Marron 1997).

There are several rule-of-thumb bandwidth choosers and cross-validation techniques
for automating bandwidth choice, but none is foolproof. McCrary (2007) contains a
useful discussion of bandwidth choice and claims that there is no substitute for visual
inspection comparing the local polynomial smooth with the pattern in a scatterplot.
Because different bandwidth choices can produce different estimates, the researcher
should report at least three estimates as an informal sensitivity test: one using the
preferred bandwidth, one using twice the preferred bandwidth, and another using half
the preferred bandwidth.

5.3 (T1) XT jumps at Z0

The identifying assumption is that XT jumps at Z0 because of some known legal or
program-design rules, but we can test that assumption easily enough. The standard
approach to computing SEs is to bootstrap the local linear regression, which requires
wrapping the estimation in a program, for example,

program discont, rclass
version 10
syntax [varlist(min=2 max=2)] [, *]
tokenize `varlist´
tempvar z f0 f1
quietly generate `z´=0 in 1
local opt "at(`z´) nogr k(tri) deg(1) `options´"
lpoly `1´ `2´ if `2´<0, gen(`f0´) `opt´
lpoly `1´ `2´ if `2´>=0, gen(`f1´) `opt´
return scalar d=`=`f1´[1]-`f0´[1]´
display as txt "Estimate: " as res `f1´[1]-`f0´[1]
ereturn clear

end

In the program, the assignment variable Z is assumed to be defined so that the cutoff
Z0 = 0 (easily done with one replace or generate command subtracting Z0 from Z).
The triangle kernel is used and the default bandwidth is chosen by lpoly, which is
probably suboptimal for this application. The local linear regressions are computed
twice: once using observations on one side of the cutoff for Z < 0 and once for Z ≥ 0.
The estimate of a jump uses only the predictions at the cutoff Z0 = 0, so these are the
only values computed by lpoly.
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We can easily generate data to use this example program:

ssc install rd, replace
net get rd
use votex if i==1
rename lne y
rename win xt
rename d z
foreach v of varlist pop-vet {

rename `v´ xc_`v´
}
bs: discont y z

In a more elaborate version of this program called rd (which also supports earlier
versions of Stata), available by typing ssc inst rd in Stata, the default bandwidth is
selected to include at least 30 observations in estimates at both sides of the boundary.
Other options are also available. Try findit bandwidth to find more sophisticated
bandwidth choosers for Stata. The key point is to use the at() option of lpoly so that
the difference in local regression predictions can be computed at Z0.

A slightly more elaborate version of this program would save local linear regression
estimates at a number of points and offer a graph to assess fit:

program discont2, rclass
version 10
syntax [varlist(min=2 max=2)] [, s(str) Graph *]
tokenize `varlist´
tempvar z f0 f1 se0 se1 ub0 ub1 lb0 lb1
summarize `2´, meanonly
local N=round(100*(r(max)-r(min)))
cap set obs `N´
quietly generate `z´=(_n-1)/100 in 1/50
quietly replace `z´=-(_n-50)/100 in 51/`N´
local opt "at(`z´) nogr k(tri) deg(1) `options´"
lpoly `1´ `2´ if `2´<0, gen(`f0´) se(`se0´) `opt´
quietly replace `f0´=. if `z´>0
quietly generate `ub0´=`f0´+1.96*`se0´
quietly generate `lb0´=`f0´-1.96*`se0´
lpoly `1´ `2´ if `2´>=0, gen(`f1´) se(`se1´) `opt´
quietly replace `f1´=. if `z´<0
quietly generate `ub1´=`f1´+1.96*`se1´
quietly generate `lb1´=`f1´-1.96*`se1´
return scalar d=`=`f1´[1]-`f0´[1]´
return scalar f1=`=`f1´[1]´
return scalar f0=`=`f0´[1]´
forvalues i=1/50 {

return scalar p`i´=`=`f1´[`i´]´
}
forvalues i=51/`N´ {

return scalar n`=`i´-50´=`=`f0´[`i´]´
}
display as txt "Estimate: " as res `f1´[1]-`f0´[1]
if "`graph´"!="" {

label var `z´ "Assignment Variable"
local lines "|| line `f0´ `f1´ `z´"
local a "tw rarea `lb0´ `ub0´ `z´ || rarea `lb1´ `ub1´ `z´"
`a´ || sc `1´ `2´, mc(gs14) leg(off) sort `lines´

}
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if "`s´"!="" {
rename `z´ `s´`2´
rename `f0´ `s´`1´0
rename `lb0´ `s´`1´lb0
rename `ub0´ `s´`1´ub0
rename `f1´ `s´`1´1
rename `lb1´ `s´`1´lb1
rename `ub1´ `s´`1´ub1
}

ereturn clear
end

In this version, the local linear regressions are computed at a number of points on
either side of the cutoff Z0 (in the example, the maximum of Z is assumed to be 0.5, so
the program uses hundredths as a convenient unit for Z), but the estimate of a jump
still uses only the two estimates at Z0. The s() option in the above program saves the
local linear regression predictions (and lpoly confidence intervals) to new variables that
can then be graphed. Graphs of all output are advisable to assess the quality of the
fit for each of several bandwidths. This program may also be bootstrapped, although
recovering the standard errors around each point estimate from bootstrap for graphing
the fit is much more work than using the output of lpoly as above.

5.4 (T2) y and XC continuous away from Z0

Although we need only assume continuity at Z0 and need no assumption that the
outcome and treatment variables are continuous at values of Z away from the cutoff Z0

(i.e., ΔXT (Z �= Z0) = 0 and Δy(Z �= Z0) = 0), it is reassuring if we fail to reject the
null of a zero jump at various values of Z away from the cutoff Z0 (or reject the null
only in 5% of cases or so). Having defined a program discont, we can easily randomly
choose 100 placebo cutoff points Zp �= Z0, without replacement in the example below,
and test the continuity of XT and y at each.

by z, sort: generate f=_n>1 if z!=0
generate u=uniform()
sort f u
replace u=(_n<=100)
levelsof z if u, loc(p)
foreach val of local p {

capture drop newz
generate newz=z-`val´
bootstrap r(d), reps(100): discont y znew
bootstrap r(d), reps(100): discont xt znew

}

5.5 (T3) XC continuous around Z0

If we can regard an increase in treatment XT as randomly assigned in the neighborhood
of the cutoff Z0, then predetermined characteristics XC such as race or sex of treated
individuals should not exhibit a discontinuity at the cutoff Z0. This is equivalent to the
standard test of randomization in an experimental design, using a test of the equality
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of the mean of every variable in XC across treatment and control groups (see help
hotelling in Stata), or the logically equivalent test that all the coefficients on XC in a
regression of XT on XC are zero. As in the experimental setting, in practice the tests
are usually done one at a time with no adjustment for multiple hypothesis testing (see
help mtest in Stata).

In the RD setting, this is simply a test that the measured jump in each predetermined
XC is zero at the cutoff Z0 or ΔXC(Z0) = 0 for all XC . If we fail to reject that the
measured jump in XC is zero, for all XC , we have more evidence that observations on
both sides of the cutoff are exchangeable, at least in some neighborhood of the cutoff, and
we can treat them as if they were randomly assigned treatment in that neighborhood.

Having defined the programs discont and discont2, we can simply type

foreach v of varlist xc* {
bootstrap r(d), reps(100): discont `v´ z
discont2 `v´ z, s(h)
scatter `v´ z, mc(gs14) sort || line h`v´0 h`v´1 hz, name(`v´)
drop hz

}

5.6 (T4) Density of Z continuous at cutoff

McCrary (2007) gives an excellent account of a violation of exchangability of observa-
tions around the cutoff. If individuals have preferences over treatment and can manip-
ulate assignment, for instance by altering their Z or misreporting it, then individuals
close to Z0 may shift across the boundary. For example, some nonrandomly selected
subpopulation of those who are nearly eligible for food stamps may misreport income,
whereas those who are eligible do not. This creates a discontinuity in the density of Z
at Z0. McCrary (2007) points out that the absence of a discontinuity in the density
of Z at Z0 is neither necessary nor sufficient for exchangability. However, a failure to
reject the null hypothesis, which indicates the jump in the density of Z at Z0 is zero, is
reassuring nonetheless.

McCrary (2007) discussed a test in detail and advocated a bandwidth chooser. We
can also adapt our existing program to this purpose by using multiple kdensity com-
mands to estimate the density to the left and right of Z0:

kdensity z if z<0, gen(f0) at(z) tri nogr
count f0 if z>=0
replace f0=f0/r(N)*`=_N´/4
kdensity z if z>=0, gen(f1) at(z) tri nogr
count f1 if z<0
replace f1=f1/r(N)*`=_N´/4
generate f=cond(z>=0,f1,f0)
bootstrap r(d), reps(100): discont f z
discont2 f z, s(h) g

We could also wrap the kdensity estimation inside the program that estimates
the jump, so that both are bootstrapped together; this approach is taken by the rd
command available by typing ssc inst rd.
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5.7 (T5) Treatment-effect estimator

Having defined the program discont, we can type

bootstrap r(d), reps(100): discont y z

to get an estimate of the treatment effect in a sharp RD setting, where XT jumps from
zero to one at Z0. For a fuzzy RD design, we want to compute the jump in y scaled by
the jump in XT at Z0, or the local Wald estimate, for which we need to modify our
program to estimate both discontinuities. The program rd available by typing ssc inst
rd does this, but the idea is illustrated in the program below by using the previously
defined discont program twice.

program lwald, rclass
version 10
syntax varlist [, w(real .06) ]
tokenize `varlist´
display as txt "Numerator"
discont `1´ `3´, bw(`w´)
local n=r(d)
return scalar numerator=`n´
display as txt "Denominator"
discont `2´ `3´, s(`sd´) bw(`w´)
local d=r(d)
return scalar denominator=`d´
return scalar lwald=`n´/`d´
display as txt "Local Wald Estimate:" as res `n´/`d´
ereturn clear

end

This program takes three arguments—the variables y, XT , and Z—assumes Z0 = 0,
and uses a hardwired default bandwidth of 0.06. The default bandwidth selected by
lpoly is inappropriate for these models, because we do not use a Gaussian kernel and
are interested in boundary estimates. The rd program from SSC archive is similar to the
above; however, it offers more options—particularly with regard to bandwidth selection.

5.8 Examples

Voting examples abound. A novel estimate in Nichols and Rader (2007) measures the
effect of electing as a Representative a Democratic incumbent versus a Republican
incumbent on a district’s receipt of federal grants:

ssc install rd
net get rd
use votex if i==1
rd lne d, gr
bs: rd lne d, x(pop-vet)

The above estimates that the marginally victorious Democratic incumbent brings 20%
less to his home district than a marginally victorious Republican incumbent. However,
we cannot reject the null of zero difference. This is true for a variety of bandwidth
choices (figure 2 shows the small insignificant effect). The above is a sharp RD design,
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but the Wald estimator can be used to estimate effect, because the jump in win at 50%
of vote share is one and dividing by one has no impact on estimates.

20

21
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23

−.3 −.2 −.1 0 .1 .2 .3 .4 .5

Spending in District, from ZIP Code Match

Local Linear Regression for Democratic Incumbents

Local Linear Regression for Republican Incumbents

Federal Spending in Districts, 102nd U.S. Congress

Figure 2: RD example

Many good examples of fuzzy RD designs concern educational policy or interven-
tions (e.g., van der Klaauw 2002 or Ludwig and Miller 2005). Many educational grants
are awarded by using deterministic functions of predetermined characteristics, lending
themselves to evaluation using RD. For example, some U.S. Department of Education
grants to states are awarded to districts with a poverty (or near-poverty) rate above
a threshold, as determined by data from a prior Census, which satisfies all of the re-
quirements for RD. The size of the discontinuity in funding may often be insufficient
to identify an effect. Often a power analysis is warranted to determine the minimum
detectable effect.

Returning to the Card (1995a,b) example of the effect of education on earnings,
we can imagine exploiting a discontinuity in the availability of college to residents of
certain U.S. states at the state boundary. College applicants who live 4.8 miles and
5 miles from a college may look similar in various observable characteristics, but if a
state boundary separates them at 4.9 miles from the college, and the college is a state
institution, they may face different probabilities of admission or tuition costs. The data
in Card (1995a,b) do not support this strategy, of course, because we would need to
know the exact locations of all individuals relative to state boundaries. However, it
helps to clarify the assumptions that justify the IV approach. We need to assume that
location relative to colleges is randomly sprinkled over potential applicants, which seems
questionable (Black 1999), especially when one considers including parental education
in the model.
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6 Conclusions

Often exploring data using quasiexperimental methods is the only option for estimating
a causal effect when experiments are infeasible, and may sometimes be preferred even
when an experiment is feasible, particularly if a MTE is of interest. However, the methods
can suffer several severe problems when assumptions are violated, even weakly. For this
reason, the details of implementation are frequently crucial, and a kind of cookbook or
checklist for verifying that essential assumptions are satisfied has been provided above
for the interested researcher. As the topics discussed continue to be active research
areas, this cookbook should be taken merely as a starting point for further explorations
of the applied econometric literature on the relevant subjects.
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