# EC 362 Fall 2000 Exercise 3 

October 22, 2000

Chapter 5
Q 1.
a. From (5.42), the up and down factors are 1.2394 and 0.8109 .
b. The martingale $\operatorname{Pr}[\mathrm{up}]$ is $\frac{R(h)-D}{U-D}$ where $\mathrm{R}(\mathrm{h})=\exp [0.05 \times 0.5]=1.0253$, so $\pi=0.5004$.
c. In the lattice, only the UU state yields positive option value, so $C(0)=$ $\frac{1}{A(2)}\left[\pi^{2} 11.4445+2 \pi(1-\pi) 0+(1-\pi)^{2} 0\right]=2.7259$ given that $A(2)$ is $\exp [0.05]=$ 1.0513.
d. If the stock moves up in period 1,

$$
\begin{aligned}
m_{1} 61.4445+B_{1} 1.0253 & =11.4445 \\
m_{1} 40.2012+B_{1} 1 / 0253 & =0
\end{aligned}
$$

yielding $m_{1}=0.5387, B_{1}=-21.1234$, and $V(1)=5.5832$. If the stock moves down in period 1 , the option value $V(1)$ is zero. Thus the value in period 0 must compare 5.5832 and zero:

$$
\begin{aligned}
m_{1} 49.5760+B_{1} 1.0253 & =5.5832 \\
m_{1} 32.4360+B_{1} 1 / 0253 & =0
\end{aligned}
$$

yielding $m_{0}=0.3257, B_{0}=-10.3050$, and $V(0)=2.7246$, the value of the call option.

Q 3.
a. From (5.42), the up and down factors are 1.1019 and 0.9108.
b. The martingale $\operatorname{Pr}[\mathrm{up}]$ is $\frac{R(h)-D}{U-D}$ where $\mathrm{R}(\mathrm{h})=1.0063$, so $\pi=0.5$.
c. $F(1,2)=\pi F(2,2)^{+}+(1-\pi) F(2,2)^{0}=66.5338 . ~ F(1,2)^{-}=54.9950$. $F(0,2)=\pi F(1,2)^{+}+(1-\pi) F(2,2)^{-}=60.7644$.

Q6.
$S(0)=100 ; S(1)^{+}=121.0643 ; S(1)^{-}=85.0100 . S(2)^{+}=146.5657=$ $F(2,2)^{+} \cdot S(2)^{0}=102.9167=F(2,2)^{0} . S(2)^{-}=72.2669=F(2,2)^{-}$.

The six month investment rate $R(h)=1.03045$, and the martingale probability is $\pi=0.50023$. The futures prices $(\pi-$ weighted averages of the terminal futures prices) are $F(1,2)^{+}=124.7513, F(1,2)^{-}=87.5989, F(0,2)=106.1837$.

To replicate a long stock position using futures and riskless bonds, at $t=0$, the replicating portfolio is $V(0)=m_{0} 0+B_{0}=100$, or $B_{0}=100$. At $t=1$ if $S(1)^{+}=121.0643$,

$$
m_{0}(124.7517-106.1837)+B_{0} 1.03045=121.0643
$$

while if $S(1)^{-}=85.0100$,

$$
m_{0}(87.5989-106.1837)+B_{0} 1.03045=85.0100
$$

implying that $m_{0}=0.9704$. We can use similar logic to compute $m_{1}^{+}=1$ and $B_{1}^{+}=121.0643$ if the stock goes up, and $m_{1}^{-}=1$ and $B_{1}^{-}=85.01$ if the stock goes down. In other words you replicate the stock by investing the value of one share at all times, and reap the return ( $+/-$ ) on the corresponding futures contract to receive the capital gain (loss) income on the stock.

Chapter 8
Q 1. A longer term increases the option premium; the effect on $\delta$ depends on whether the option is in-the-money or out-of-the-money. If it is out-of-themoney $\delta$ rises with the term (and vice versa).

Q 2. (a) decreases with longer term; (b) and (c), increases with longer term. (d) For calls, the effect of longer term is always positive.

Q 4.
(a) You are long a call with strike of $\$ 30$ and short a put with strike of $\$ \mathrm{X}$.
(b) $\mathrm{c}=0.19046$.
(c) The critical strike price that (approximately) equates the put premium to the call premium is $\$ 21.70$.
(d) If the underlying volatility is higher, the critical strike price is still in the same vicinity, even though the premia are almost twice as large.

Chapter 9 Q 10. Numerical.

