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sts15 Tests for stationarity of a time series

Christopher F. Baum, Boston College, baum@bc.edu

Abstract: Implements the Elliott—Rothenberg—Stock (1996) DF-GLS test and the Kwiatkowski—Phillips—Schmidt—Shin (1992)
KPSS tests for stationarity of a time series. The DF-GLS test is an improved version of the augmented Dickey—Fuller test.
The KPSS test has a null hypothesis of stationarity and may be employed in conjunction with the DF-GLS test to detect long
memory (fractional integration).

Keywords: stationarity, unit root, time series.

Syntax

dfgls varname [if exp] [in range] [, maxlag(#) notrend ers ]

kpss varname [if exp] [in rcmge] [, maxlag(#) notrend ]

Both tests are for use with time series data; you must tsset your data before using these tests; see [R] tsset. varname may contain time series
operators; see [U] 14.4.3 Time series varlists.

Options

maxlag(#) specifies the maximum lag order to be considered. The test statistics will be calculated for each lag up to the
maximum lag order (which may be zero). If not specified, the maximum lag order for the test is by default calculated
from the sample size using a rule provided by Schwert (1989) using ¢ = 12 and d = 4 in his terminology. Whether the
maximum lag is explicitly specified or computed by default, the sample size is held constant over lags at the maximum
available sample.

notrend specifies that no trend term should be included in the model. The critical values reported differ in the absence of a
trend term.

ERS (dfgls only) specifies that the ERS (and Dickey—Fuller) values are to be used for all levels of significance (eschewing the
response surface estimates).
Description

dfgls performs the Elliott—Rothenberg—Stock (ERS, 1996) efficient test for an autoregressive unit root. This test is similar
to an (augmented) Dickey—Fuller ¢ test, as performed by dfuller, but has the best overall performance in terms of small
sample size and power, dominating the ordinary Dickey—Fuller test. The dfgls test “has substantially improved power when an
unknown mean or trend is present” (ERS, 813).

dfgls applies a generalized least squares (GLS) detrending (demeaning) step to the varname
yfl =y — 'z
For detrending, z; = (1,t)" and BO, Bl are calculated by regressing

[yl,(]. — dL) yz,...,(l — dL) yT]

onto

[21, (1 — &L) z3, ..., (1 — &L) zr]
where @ = 1+ ¢/T with ¢ = —13.5, and L is the lag operator. For demeaning, z; = (1)' and the same regression is
run with ¢ = —7.0. The values of ¢ are chosen so that “the test achieves the power envelope against stationary alternatives

(is asymptotically MPI (most powerful invariant)) at 50 percent power” (Stock 1994, 2769; emphasis added). The augmented
Dickey—Fuller regression is then computed using the yfl series

m
Ayl =a+t+pyl +> Gyl +e
i=1
where m=maxlag. The notrend option suppresses the time trend in this regression.

Approximate 5% and 10% critical values, by default, are calculated from the response surface estimates of Table 1, Cheung
and Lai (1995, 413), which take both the sample size and the lag specification into account. Approximate 1% critical values for
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the GLS detrended test are interpolated from Table 1 of ERS (page 825). Approximate 1% critical values for the GLS demeaned
test are identical to those applicable to the no-constant, no-trend Dickey—Fuller test and are computed using the dfuller code.
The ERS option specifies that the ERS (and Dickey—Fuller) values are to be used for all levels of significance (eschewing the
response surface estimates).

If the maximum lag order exceeds one, the optimal lag order is calculated by the Ng and Perron (1995) sequential ¢ test
on the highest order lag coefficient, stopping when that coefficient’s p-value is less than 0.10. The lag minimizing the Schwarz
criterion (SC, or BIC) is printed with its minimized value.

kpss performs the Kwiatkowski—Phillips—Schmidt—Shin test introduced in Kwiatkowski et al. (1992) for stationarity of
a time series. This test differs from those in common use (such as dfuller and pperron) by having a null hypothesis of
stationarity. The test may be conducted under the null hypothesis of either trend stationarity (the default) or level stationarity.
Inference from this test is complementary to that derived from those based on the Dickey—Fuller distribution (such as dfgls,
dfuller and pperron). The KPSS test is often used in conjunction with those tests to investigate the possibility that a series is
fractionally integrated; that is, neither I(1) nor I(0); see Lee and Schmidt (1996).

The series is detrended (demeaned) by regressing y on z; = (1, t)’ (z = (l)') , yielding residuals e;. Let the partial sum

series of e; be s;. Then the zero-order KPSS statistic kg = T2 Zthl s2/T~! Zle e2. For maxlag > 0, the denominator is
computed as the Newey—West estimate of the long run variance of the series; see [R] newey.

Approximate critical values for the KPSS test are taken from Kwiatkowski et al. (1992).

Examples

Data from Terence Mills’ Econometric Analysis of Financial Time Series on the UK FTA All Share Index of stock prices
(ftap) and stock returns (ftaret) are analyzed.

. use http://fmwww.bc.edu/ec-p/data/Mills2d/fta.dta

. tsset

time variable: month, 1965ml1 to 1995m12
. dfgls ftap
Number of obs = 355

Maxlag = 16 chosen by Schwert criterion

Test 1% Critical 5% Critical 10% Critical
Statistic Value Value Value

DF-GLS(tau) [16] -0.068 -3.480 -2.818 -2.536
DF-GLS (tau) [15] -0.155 -3.480 -2.824 -2.542
DF-GLS (tau) [14] -0.046 -3.480 -2.829 -2.547
DF-GLS (tau) [13] -0.234 -3.480 -2.835 -2.552
DF-GLS (tau) [12] -0.131 -3.480 -2.840 -2.557
DF-GLS (tau) [11] -0.196 -3.480 -2.846 -2.562
DF-GLS (tau) [10] -0.251 -3.480 -2.851 -2.566
DF-GLS (tau) [9] -0.173 -3.480 -2.856 -2.571
DF-GLS (tau) [8] -0.107 -3.480 -2.861 -2.575
DF-GLS (tau) [7] -0.361 -3.480 -2.865 -2.580
DF-GLS (tau) [6] -0.391 -3.480 -2.870 -2.584
DF-GLS (tau) [5] -0.476 -3.480 -2.874 -2.588
DF-GLS (tau) [4] -0.524 -3.480 -2.879 -2.592
DF-GLS (tau) [3] -0.484 -3.480 -2.883 -2.595
DF-GLS (tau) [2] -0.507 -3.480 -2.887 -2.599
DF-GLS (tau) [1] -0.789 -3.480 -2.891 -2.602

Opt Lag (Ng-Perron sequential t) = 15 with RMSE 35.59803
Min SC = 7.275482 at lag 2 with RMSE 37.0745

. kpss ftap

KPSS test for ftap

Maxlag = 16 chosen by Schwert criterion

Critical values for HO: ftap is trend stationary

10%: 0.119 5% : 0.146 2.5%: 0.176 1% : 0.216

Lag order Test statistic
0 7.90141
1 4.18402
2 2.86036
3 2.18027
4 1.76579
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5 1.48676

6 1.2861

7 1.13475

8 1.01642

9 .921225

10 .84288

11 LT77242

12 .721428

13 .673349

14 .631492

15 .594708

16 .562121
. dfgls ftaret
Number of obs = 355
Maxlag = 16 chosen by Schwert criterion

Test 1% Critical 5% Critical 10% Critical
Statistic Value Value Value
DF-GLS (tau) [16] -4.161 -3.480 -2.818 -2.536
DF-GLS (tau) [15] -4.119 -3.480 -2.824 -2.542
DF-GLS (tau) [14] -4.413 -3.480 -2.829 -2.547
DF-GLS (tau) [13] -4.733 -3.480 -2.835 -2.5562
DF-GLS (tau) [12] -4.663 -3.480 -2.840 -2.557
DF-GLS (tau) [11] -4.392 -3.480 -2.846 -2.562
DF-GLS (tau) [10] -4.653 -3.480 -2.851 -2.566
DF-GLS (tau) [9] -4.795 -3.480 -2.856 -2.571
DF-GLS (tau) [8] -4.931 -3.480 -2.861 -2.575
DF-GLS (tau) [7] -6.006 -3.480 -2.865 -2.580
DF-GLS (tau) [6] -6.203 -3.480 -2.870 -2.584
DF-GLS (tau) [5] -6.911 -3.480 -2.874 -2.588
DF-GLS (tau) [4] -7.614 -3.480 -2.879 -2.592
DF-GLS (tau) [3] -7.769 -3.480 -2.883 -2.595
DF-GLS (tau) [2] -9.176 -3.480 -2.887 -2.599
DF-GLS (tau) [1] -13.075 -3.480 -2.891 -2.602
Opt Lag (Ng-Perron sequential t) = 8 with RMSE .0593867
Min SC = -5.566828 at lag 2 with RMSE .0603119
. dfgls ftaret,notrend
Number of obs = 355
Maxlag = 16 chosen by Schwert criterion
Test 1% Critical 5% Critical 10% Critical
Statistic Value Value Value

DF-GLS (mu) [16] -3.165 -2.580 -1.952 -1.637
DF-GLS (mu) [15] -3.161 -2.580 -1.9565 -1.640
DF-GLS (mu) [14] -3.430 -2.580 -1.958 -1.643
DF-GLS (mu) [13] -3.725 -2.580 -1.962 -1.646
DF-GLS (mu) [12] -3.711 -2.580 -1.965 -1.649
DF-GLS (mu) [11] -3.528 -2.580 -1.968 -1.652
DF-GLS (mu) [10] -3.776 -2.580 -1.971 -1.655
DF-GLS (mu) [9] -3.933 -2.580 -1.974 -1.658
DF-GLS (mu) [8] -4.087 -2.580 -1.977 -1.660
DF-GLS (mu) [7] -5.039 -2.580 -1.980 -1.663
DF-GLS (mu) [6] -5.278 -2.580 -1.982 -1.665
DF-GLS (mu) [5] -5.966 -2.580 -1.985 -1.668
DF-GLS (mu) [4] -6.679 -2.580 -1.988 -1.670
DF-GLS (mu) [3] -6.928 -2.580 -1.990 -1.672
DF-GLS (mu) [2] -8.312 -2.580 -1.993 -1.675
DF-GLS (mu) [1] -12.060 -2.580 -1.995 -1.677

Opt Lag (Ng-Perron sequential t) = 8 with RMSE .0600067
Min SC = -5.53158 at lag 2 with RMSE .0613843

Both tests indicate that ftap appears to be nonstationary. ftaret appears to be both trend and level stationary.
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Saved Results

dfgls saves the following scalars in r():

r(N) number of observations
r(optlag) optimal lag order

r(scn) Schwarz criterion at lag n
r(rmsen) root mean square error at lag n
r(dftn) DF-GLS statistic at lag n

kpss saves the following scalars in r():

r(N) number of observations
r(dftn) KPSS statistic at lag n
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sts16 Tests for long memory in a time series

Christopher F. Baum, Boston College, baum@bc.edu
Vince Wiggins, Stata Corporation, vwiggins @stata.com

Abstract: Implements the Geweke/Porter-Hudak log periodogram estimator (1983), the Phillips modified log periodogram
estimator (1999b) and the Robinson log periodogram estimator (1995) for the diagnosis of long memory, or fractional
integration, in a time series. The Robinson estimator may be applied to a set of time series.

Keywords: fractional integration, long memory, stationarity, time series.

Syntax

gphudak varname [if exp] [in range] [, powers (numlist) ]
modlpr varname [if exp] [in range] [, powers (numlist) notrend ]

roblpr varlist [if exp] [in range] [, powers (numlist) 1(#) j(#) constraints(numlist) ]

These tests are for use with time series data; you must tsset your data before using these tests; see [R] tsset. varname or varlist may contain time
series operators; see [U] 14.4.3 Time-series varlists.

Options

powers (numlist) indirectly specifies the number of ordinates to be included in the regression. A number of ordinates equal
to the integer part of 7T raised to the powers (numlist) will be used. Powers ranging from 0.50 to 0.75 are commonly
employed for gphudak and modlpr. These routines use the default power of 0.5. roblpr uses the default power of 0.9.
For roblpr, multiple powers may only be specified if a single variable appears in varlist.

notrend specifies that detrending is not to be applied by modlpr. By default, a linear trend will be removed from the series.
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1(#) specifies the number of initial ordinates to be removed from the regression for roblpr. Some researchers have found that
such exclusion improves the properties of tests based on log-periodogram regressions. The default value of 1 is zero.

j (#) specifies that the log periodogram employed in roblpr is to be computed as an average of adjacent ordinates. The default
value of j is 1, so that no averaging is performed. If j is 2, the number of ordinates is halved; with a j of 3, divided by
three, and so on. When j is greater than 1, the value of powers should be set large enough so that the averaged ordinates
are sufficient in number.

constraints (numlist) specifies the constraint numbers of the linear constraints to be applied during estimation in roblpr. The
default is to perform unconstrained estimation. This option allows the imposition of linear constraints prior to estimation
of the pooled coefficient vector. For instance, if varlist contains prices, dividends, and returns, and your prior (or previous
findings) states that prices’ and dividends’ order of integration is indistinguishable, one might impose that constraint to
improve the power of the F' test provided by roblpr. You would specify the constraints prior to the roblpr command
and then provide the list of constraints in the constraints option to roblpr.

Technical note on constraints. When constraints are imposed it is difficult to identify the number of numerator degrees of
freedom in the test for equality of d coefficients reported at the bottom of roblpr’s output. Since constraints can be of
any general form and it is possible to specify constraints that are not unique, roblpr determines the degrees of freedom
from the rank of the matrix used to compute the Wald statistic. Determining that matrix rank from a numerical standpoint
can be problematic, in which case roblpr may overstate the number of constraints being tested and thereby incorrectly
compute the numerator degrees of freedom for the test. This rarely has a meaningful impact on the statistical test, but you
may wish to test only the unconstrained coefficients if the computed degrees of freedom are wrong.

For example, after the final example below, we could perform the test by typing test ftap == ftaret. In this case, the
degrees of freedom were correct, so we needn’t have gone to the trouble.

Description

The model of an autoregressive fractionally integrated moving average process of a time series of order (p, d, ¢), denoted
by ARFIMA(p, d, ¢), with mean p, may be written using operator notation as

®(L)(1 - L) (g — p) = O(L)ey, € ~ i.i.d.(0,0?) (1)

where L is the backward-shift operator,
®L)y=1—¢L—---—¢,L°

O(L) =1+ 9L+ +9,L9 and (1 — L)? is the fractional differencing operator defined by
> D(k—d)LF
1-L0)¥ =Y ———— = 2
-nf=3 - ®

with I'(-) denoting the gamma (generalized factorial) function. The parameter d is allowed to assume any real value. The
arbitrary restriction of d to integer values gives rise to the standard autoregressive integrated moving average (ARIMA) model.
The stochastic process y; is both stationary and invertible if all roots of (L) and ©(L) lie outside the unit circle and |d| < 0.5.
The process is nonstationary for d > 0.5, as it possesses infinite variance; for example, see Granger and Joyeux (1980).

Assuming that d € [0,0.5), Hosking (1981) showed that the autocorrelation function, p(-), of an ARFIMA process is
proportional to k*?~! as k — oo. Consequently, the autocorrelations of the ARFIMA process decay hyperbolically to zero as
k — oo in contrast to the faster, geometric decay of a stationary ARMA process. For d € (0,0.5), Zyz_n |o(7)| diverges as
n — 00, and the ARFIMA process is said to exhibit long memory, or long-range positive dependence. The process is said to
exhibit intermediate memory (anti-persistence), or long-range negative dependence, for d € ( —0.5,0). The process exhibits short
memory for d = 0, corresponding to stationary and invertible ARMA modeling. For d € [0.5,1) the process is mean reverting,
even though it is not covariance stationary, as there is no long-run impact of an innovation on future values of the process.

If a series exhibits long memory, it is neither stationary (I(0)) nor is it a unit root (I(1)) process; it is an I(d) process,
with d a real number. A series exhibiting long memory, or persistence, has an autocorrelation function that damps hyperbolically,
more slowly than the geometric damping exhibited by “short memory” (ARMA) processes. Thus, it may be predictable at long
horizons. Long memory models originated in hydrology and have been widely applied in economics and finance. An excellent
survey of long memory models is given by Baillie (1996).

There are two approaches to the estimation of an ARFIMA (p, d, q) model: exact maximum likelihood estimation, as
proposed by Sowell (1992), and semiparametric approaches, as described in this insert. Sowell’s approach requires specification
of the p and g values, and estimation of the full ARFIMA model conditional on those choices. This involves all the attendant
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difficulties of choosing an appropriate ARMA specification, as well as a formidable computational task for each combination of
p and q to be evaluated. The methods described here assume that the short memory or ARMA components of the time series
are relatively unimportant, so that the long memory parameter d may be estimated without fully specifying the data-generating
process. These methods are thus described as semiparametric.

gphudak performs the Geweke and Porter-Hudak (GPH 1983) semiparametric log periodogram regression, often described
as the “GPH test,” for long memory (fractional integration) in a time series. The GPH method uses nonparametric methods—a
spectral regression estimator—to evaluate d without explicit specification of the ARMA parameters of the series. The series is
usually differenced so that the resulting d estimate will fall in the [—0.5,0.5] interval.

Geweke and Porter-Hudak (1983) proposed a semiparametric procedure to obtain an estimate of the memory parameter d
of a fractionally integrated process X; in a model of the form

(]. - L)d Xt = €, (3)

where €, is stationary with zero mean and continuous spectral density f. (A) > 0. The estimate d is obtained from the application
of ordinary least squares to

log (I, (A\s)) =¢— dlog |1 — i]? 4 residual (4)

computed over the fundamental frequencies {\s = 2ws/n,s = 1,...,m < n}. We define

1 & ,
wz (Ng) = X, e'trs
( ) V2t tz:; !

as the discrete Fourier transform (DFT) of the time series X, I (Xs) = wz (As) wa (As)" as the periodogram, and z, =
log |1 — €|, Ordinary least squares on (4) yields

~ Z;’;l zslog I, (A,)
d= -
2 Zs:l 1‘2

(5)

Various authors have proposed methods for the choice of m, the number of Fourier frequencies included in the regression.
The regression slope estimate is an estimate of the slope of the series’ power spectrum in the vicinity of the zero frequencys; if too
few ordinates are included, the slope is calculated from a small sample. If too many are included, medium and high-frequency
components of the spectrum will contaminate the estimate. A choice of /T or 0.5 for power is often employed. To evaluate
the robustness of the GPH estimate, a range of power values (from 0.40 to 0.75) is commonly calculated as well. Two estimates
of the d coefficient’s standard error are commonly employed: the regression standard error, giving rise to a standard ¢ test, and
an asymptotic standard error, based upon the theoretical variance of the log periodogram of 72 /6. The statistic based upon that
standard error has a standard normal distribution under the null.

modlpr computes a modified form of the GPH estimate of the long memory parameter, d, of a time series, proposed by
Phillips (1999a, 1999b). Phillips (1999a) points out that the prior literature on this semiparametric approach does not address
the case of d = 1, or a unit root, in (3), despite the broad interest in determining whether a series exhibits unit-root behavior or
long memory behavior, and his work showing that the d estimate of (5) is inconsistent when d > 1, with d exhibiting asymptotic
bias toward unity. This weakness of the GPH estimator is solved by Phillips’ modified log periodogram regression estimator, in
which the dependent variable is modified to reflect the distribution of d under the null hypothesis that d = 1. The estimator
gives rise to a test statistic for d = 1 which is a standard normal variate under the null. Phillips suggests that deterministic
trends should be removed from the series before application of the estimator. Accordingly, the routine will automatically remove
a linear trend from the series. This may be suppressed with the notrend option. The comments above regarding power apply
equally to modlpr.

The Phillips (1999b) modification of the GPH estimator is based on an exact representation of the DFT in the unit root case.
The modification expresses

Wy (As) gt X,
we(As) = T, T
L—ers 1 —eirs /2
and the modified DFT as '
eits X,

Vg ()\s> = Wy ()\s) + m \/ﬁ
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with associated periodogram ordinates I, (Xs) = v, (As) vz (A)™ (Phillips 1999b, 9). He notes that both v, (A,) and, thus, I, ()\S)
are observable functions of the data. The log-periodogram regression is now the regression of log I, (As) on as = log ‘1 — s |
Defining @ = m ™! ZTZI as and x5 = as — a, the modified estimate of the long-memory parameter becomes

- ZZLZI xslog I, (Ay)
d= -
2 Zs:l xg

Phillips proves that, with appropriate assumptions on the distribution of ¢, the distribution of d follows

(6)

ﬁ(d—d)—)N(O,ﬂ—z> (7)

24

in distribution, so d has the same limiting distribution at d = 1 as does the GPH estimator in the stationary case so d is consistent
for values of d around unity. A semiparametric test statistic for a unit root against a fractional alternative is then based upon the
statistic (Phillips 1999a, 10)

vm (d—1
% (8)

with critical values from the standard normal distribution. This test is consistent against both d < 1 and d > 1 fractional
alternatives.

Zd =

roblpr computes the Robinson (1995) multivariate semiparametric estimate of the long memory (fractional integration)
parameters, d(g), of a set of G time series, y(g), g = 1, G with G > 1. When applied to a set of time series, the d(g) parameter
for each series is estimated from a single log-periodogram regression which allows the intercept and slope to differ for each
series. One of the innovations of Robinson’s estimator is that it is not restricted to using a small fraction of the ordinates of the
empirical periodogram of the series, that is, the reasonable values of power need not exclude a sizable fraction of the original
sample size. The estimator also allows for the removal of one or more initial ordinates and for the averaging of the periodogram
over adjacent frequencies. The rationale for using non-default values of either of these options is presented in Robinson (1995).

Robinson (1995) proposes an alternative log-periodogram regression estimator which he claims provides “modestly superior
asymptotic efficiency to d(0)”, (d(0) being the Geweke and Porter-Hudak estimator) Robinson (1995, 1052). Robinson’s
formulation of the log-periodogram regression also allows for the formulation of a multivariate model, providing justification for
tests that different time series share a common differencing parameter. Normality of the underlying time series is assumed, but

Robinson claims that other conditions underlying his derivation are milder than those conjectured by GPH.

We present here Robinson’s multivariate formulation, which applies to a single time series as well. Let X; represent a
G-dimensional vector with gt element Xgt,9 =1,...,G. Assume that X, has a spectral density matrix [ e“A f(X) dA, with
(g,h) element denoted as fgp, (A). The gth diagonal element, fgy, (A), is the power spectral density of X . For 0 < Cy < o0
and —1/2 < dy < 1/2, assume that fg, (A) ~ CygA~2% as X\ — 0+ for g = 1,...,G. The periodogram of Xy, is then denoted

as
n
§ it
the
t=1

Without averaging the periodogram over adjacent frequencies nor omission of [ initial frequencies from the regression, we may

2

I,(\) = (27n) ™" g=1,...,G (9)

define Y,; = log I, (\y). The least squares estimates of ¢ = (cy,...,cg) and d = (dy,...,dg)" are given by
c —
{J] =vec{Y'Z(Z'Z)""} (10)

where Z = (Z1,...,Zm)", Zr = (1, 2log)), Y = (Y1,...,Yg), and Y, = (Y51,... ,ngm)' for m periodogram
ordinates. Standard errors for czg and for a test of the restriction that two or more of the dy are equal may be derived from the
estimated covariance matrix of the least squares coefficients. The standard errors for the estimated parameters are derived from
a pooled estimate of the variance in the multivariate case, so that their interval estimates differ from those of their univariate
counterparts. Modifications to this derivation when the frequency-averaging (j) or omission of initial frequencies (1) options are
selected may be found in Robinson (1995).

Examples

Data from Terence Mills’ Econometric Analysis of Financial Time Series on UK FTA All Share stock returns (ftaret) and
dividends (ftadiv) are analyzed.
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. use http://fmwww.bc.edu/ec-p/data/Mills2d/fta.dta

. tsset
time variable: month, 1965ml1 to 1995m12

. gphudak ftaret,power(0.5 0.6 0.7)

GPH estimate of fractional differencing parameter

Asy.

Power Ords Est d StdErr t(HO: d4=0) P>|t] StdErr =z(HO: d=0) P>|z|
.50 20 -.00204 .160313 -0.0127 0.990 .187454 -0.0109 0.991
.60 35 .228244 .145891 1.5645 0.128 .130206 1.7529 0.080
.70 64 .141861 .089922 1.5776 0.120 .091267 1.5544 0.120

. modlpr ftaret, power(0.5 0.55:0.8)

Modified LPR estimate of fractional differencing parameter

Power Ords Est d Std Err t(HO: d=0) P>t z(HO: d=1) P>|z|
.50 19 .0231191 .139872 0.1653 0.870 -6.6401 0.000
.55 25 .2519889 .1629533 1.5464 0.135 -5.8322 0.000
.60 34 .2450011 .1359888 1.8016 0.080 -6.8650 0.000
.65 46 .1024504 .1071614 0.9560 0.344 -9.4928 0.000
.70 63 .1601207 .0854082 1.8748 0.065 -10.3954 0.000
.75 84 .1749659 .08113 2.1566 0.034 -11.7915 0.000
.80 113 .0969439 .0676039 1.4340 0.154 -14.9696 0.000

. roblpr ftaret

Robinson estimates of fractional differencing parameter

Power Ords Est 4 Std Err t(HO: d=0) P>|t|
.90 205 .1253645 .0446745 2.8062 0.005

. roblpr ftap ftadiv

Robinson estimates of fractional differencing parameters

Power = .90 Ords = 205

Variable | Est d Std Err t P>t

ftap | .8698092 .0163302 53.2640 0.000

ftadiv | .8717427 .0163302 53.3824 0.000

Test for equality of d coefficients: F(1,406) = .00701 Prob > F = 0.9333

. constraint define 1 ftap=ftadiv
. roblpr ftap ftadiv ftaret, c(1)

Robinson estimates of fractional differencing parameters

Power = .90 Ords = 205
Variable | Est d Std Err t P>t
ftap | .8707759 .0205143 42.4473 0.000
ftadiv | .8707759 .0205143 42.4473 0.000
ftaret | .1253645 .0290116 4.3212 0.000

Test for equality of d coefficients: F(1,610) = 440.11 Prob > F = 0.0000

The GPH test, applied to the stock returns series, generates estimates of the long memory parameter that cannot reject the
null at the ten percent level using the t test. Phillips’ modified LPR, applied to this series, finds that d = 1 can be rejected for
all powers tested, while d = 0 (stationarity) may be rejected at the ten percent level for powers 0.6, 0.7, and 0.75. Robinson’s
estimate for the returns series alone is quite precise. Robinson’s multivariate test, applied to the price and dividends series,
finds that each series has d > 0. The test that they share the same d cannot be rejected. Accordingly, the test is applied to all
three series subject to the constraint that price and dividends series have a common d, yielding a more precise estimate of the
difference in d parameters between those series and the stock returns series.
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Saved Results
gphudak saves in e():

e(N_powers) number of powers (scalar)

e(depvar) dependent variable name (macro)

e(gph) matrix of results, 9 by N_powers
modlpr saves in e():

e(N_powers) number of powers (scalar)

e(depvar) dependent variable name (macro)

e(modlpr) matrix of results, 8 by N_powers

roblpr saves the following scalars in r():

r(N) number of observations
r(rob) d estimate

r(se) estimated standard error of d
r(t) t statistic

r(p) p-value of ¢ statistic

If more than one power is specified in roblpr, the saved results pertain to the last power used.
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sts17 Compacting time series data

Christopher F. Baum, Boston College, baum@bc.edu

Abstract: tscollap provides the ability to compact data of monthly, quarterly or half-yearly frequencies to a lower frequency
by one or more methods (e.g., average, sum, last value per period, and so on).

Keywords: time series, data frequency, collapse.

Syntax
tscollap clist, to(freq) [@erate (freqvar) ]
where clist is either
[(stat)] varlist [ [(stat)] ]
or
[(stat) target_var = varname [target_var = varname ... ] [ [(stat) ]]

or any combination of the varlist or target_var forms, and stat is one of
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Y-variable: logwt
Grouped by: foreign (Car type)
Group numbers:

Car type | Freq. Percent Cum.

Domestic | 52 70.27 70.27

Foreign | 22 29.73 100.00
Total | 74 100.00

Transformation: Fisher’s z
95% confidence interval(s) for percentile ratio(s)
between values of exp(logwt) in first and second groups:

Percent Pctl_Rat Minimum Maximum
rl 25 1.1935375 1.0341465 1.3533567
r2 50 1.4806389 1.3101849 1.6280196
r3 75 1.744916 1.6079542 1.8772724

We note that, typically, American cars are 148% heavier than foreign cars, with confidence limits ranging from 131% to
163% as heavy. The 25th percentile ratio (103% to 135%) shows that the two car types do not overlap a great deal.

Saved results

cendif saves in r():

Scalars
r(N) number of observations r(N_clust) number of clusters
r(N_1) sample size N r(N_2) sample size No
r(df_r) residual degrees of freedom (if tdist present)
Macros
r (depvar) name of dependent variable r(by) name of by variable defining groups
r(clustvar) name of cluster variable r(tdist) tdist if specified
r(wtype) weight type r(wexp) weight expression
r(centiles) list of percents for percentiles r(Dslist) list of D*-values for percentiles
r(transf) transformation specified by transf r(tranlab) transformation label in output
r(level) confidence level r (eform) eform if specified
Matrices
r(cimat) confidence intervals for differences or ratios r(Dsmat) upper and lower limits for D*(0)
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sts15.1

Tests for stationarity of a time series: update

Christopher F. Baum, Boston College, baum@bc.edu
Richard Sperling, The Ohio State University, rsperling@boo.net

Abstract: Enhances the Elliott—Rothenberg-Stock DF-GLS test and the Kwiatkowski—Phillips—Schmidt—Shin KPSS tests for sta-
tionarity of a time series introduced in Baum (2000) and corrects an error in both routines.

Keywords: stationarity, unit root, time series.
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Changes to dfgls

dfgls did not handle missing initial values properly. That is, if the time series variable specified had initial values not
excluded by if or in conditions, those values were improperly considered in the construction of the sample size. This would
apply as well to the consideration of variables with time series operators, such as D.gdp, since those variables will have at least
one missing observation at the outset. This has been corrected.

The dfgls routine has been enhanced to add a very powerful lag selection criterion, the “modified AIC” (MAIC) criterion
proposed by Ng and Perron (2000). They have established that use of this MAIC criterion may provide “huge size improvements”
in the dfgls test. The criterion, indicating the appropriate lag order, is printed on dfgls output and may be used to select the
test statistic from which inference is to be drawn.

It should be noted that all of the lag length criteria employed by dfgls (the sequential ¢ test of Ng and Perron 1995, the
SC, and the MAIC) are calculated, for various lags, by holding the sample size fixed at that defined for the longest lag. These
criteria cannot be meaningfully compared over lag lengths if the underlying sample is altered to use all available observations.
That said, if the optimal lag length (by whatever criterion) is found to be much less than that picked by the Schwert criterion, it
would be advisable to rerun the test with the maxlag option specifying that optimal lag length, especially when using samples
of modest size.

New syntax for kpss

kpss varname [if exp] [in range] [, maxlag(#) notrend gs auto ]

kpss did not make use of all available observations in the computation of the autocovariance function. This has been
corrected. The online help file now provides instructions for reproducing the statistics reported in Kwiatkowski et al. (1992)
from a dataset available online.

The kpss routine has been enhanced to add two options recommended by the work of Hobijn et al. (1998). An automatic
bandwidth selection routine has been added, rendering it unnecessary to evaluate a range of test statistics for various lags. An
option to weight the empirical autocovariance function by the quadratic spectral kernel, rather than the Bartlett kernel employed
by KPSS, has also been introduced. These options may be used separately or in combination. It is in combination that Hobijn et
al. found the greatest improvement in the test: “Our Monte Carlo simulations show that the best small sample results of the test
in case the process exhibits a high degree of persistence are obtained using both the automatic bandwidth selection procedure
and the Quadratic Spectral kernel” (1998, 14).

New options

gs specifies that the autocovariance function is to be weighted by the quadratic spectral kernel, rather than the Bartlett kernel.
Andrews (1991) and Newey and West (1994) “indicate that it yields more accurate estimates of 062 than other kernels in
finite samples” (Hobijn et al. 1998, 6).

auto specifies that the automatic bandwidth selection procedure proposed by Newey and West (1994), as described by Hobijn
et al. (1998, 7), is used to determine maxlag in two stages. First, the “a priori nonstochastic bandwidth parameter” ny is
chosen as a function of the sample size and the specified kernel. The autocovariance function of the estimated residuals
is calculated and used to generate 7y as a function of sums of autocorrelations. The maxlag to be used in computing the
long-run variance, mr, is then calculated as min [T, int HTGH where § = 1/3 for the Bartlett kernel and # = 1/5 for the
quadratic spectral kernel.

Additional saved results
dfgls saves the modified AIC at lag n in r(maicn).
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