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Chapter 3: Multiple regression analysis: Estimation
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In multiple regression analysis, we extend the simple
(two-variable) regression model to consider the possibility that
there are additional explanatory factors that have a systematic
effect on the dependent variable. The simplest extension is the
“three-variable” model, in which a second explanatory variable
is added:

(1)
where each of the slope coefficients are now partial derivatives
of with respect to the variable which they multiply: that is,
holding fixed, This extension also allows us
to consider nonlinear relationships, such as a polynomial in
where and Then, the regression is linear in

and but nonlinear in The key
assumption for this model, analogous to that which we specified
for the simple regression model, involves the independence of
the error process and both regressors, or explanatory variables:

(2)
This assumption of a zero conditional mean for the error process
implies that it does not systematically vary with the nor
with any linear combination of the is independent, in the
statistical sense, from the distributions of the

The model may now be generalized to the case of
regressors:

(3)
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Mechanics and interpretation of OLS
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where the coefficients have the same interpretation: each
is the partial derivative of with respect to that holding
all other constant ( ), and the term is that
nonsystematic part of not linearly related to any of the
The dependent variable is taken to be linearly related to the

which may bear any relation to each other (e.g. polynomials
or other transformations) as long as there are no exact linear
dependencies among the regressors. That is, no variable can
be an exact linear transformation of another, or the regression
estimates cannot be calculated. The independence assumption
now becomes:

(4)

Consider first the “three-variable model” given above in (1).
The estimated OLS equation contains the parameters of interest:

(5)
and we may define the ordinary least squares criterion in terms
of the OLS residuals, calculated from a sample of size from
this expression:

(6)

where the minimization of this expression is performed with
respect to each of the three parameters, In the case
of regressors, these expressions include terms in and the
minimization is performed with respect to the parameters

For this to be feasible, that is,
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we must have a sample larger than the number of parameters to
be estimated from that sample. The minimization is carried out
by differentiating the scalar with respect to each of the in
turn, and setting the resulting first order condition to zero. This
gives rise to simultaneous equations in unknowns,
the regression parameters, which are known as the

. The normal equations are expressions in the
sums of squares and cross products of the and the regressors,
including a first “regressor” which is a column of , multiplying
the constant term. For the “three-variable” regression model, we
can write out the normal equations as:

(7)

Just as in the “two-variable” case, the first normal equation can
be interpreted as stating that the regression surface (in 3-space)
passes through the multivariate point of means These
three equations may be uniquely solved, by normal algebraic
techniques or linear algebra, for the estimated least squares
parameters.

This extends to the case of regressors and
regression parameters. In each case, the regression coefficients
are considered in the sense: that each coefficient
measures the partial effect of a unit change in its variable, or
regressor, holding all other regressors fixed. If a variable is
a component of more than one regressor–as in a polynomial
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Fitted values, residuals, and their properties
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relationship, as discussed above–the total effect of a change in
that variable is additive.

Just as in simple regression, we may calculate fitted values,
or predicted values, after estimating a multiple regression. For
observation the fitted value is

(8a)
and the residual is the difference between the actual value of y
and the fitted value:

(9)
As with simple regression, the sum of the residuals is zero;

they have, by construction, zero covariance with each of the
variables, and thus zero covariance with and since the

average residual is zero, the regression surface passes through
the multivariate point of means,

There are two instances where the simple regression of on
will yield the same coefficient as the multiple regression of

on and with respect to In general, the simple regression
coefficient will not equal the multiple regression coefficient,
since the simple regression ignores the effect of (and considers
that it can be viewed as nonsystematic, captured in the error

When will the two coefficients be equal? First, when the
coefficient of is truly zero–that is, when really does not
belong in the model. Second, when and are uncorrelated in
the sample. This is likely to be quite rare in actual data. However,
these two cases suggest when the two coefficients will be similar;
when is relatively unimportant in explaining or when it is
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very loosely related to
We can define the same three sums of squares–

as in simple regression, and is still the ratio
of the explained sum of squares ( to the total sum of
squares ( It is no longer a simple correlation (e.g.
squared, but it still has the interpretation of a squared simple
correlation coefficient: the correlation between and
A very important principle is that never decreases when an
explanatory variable is added to a regression–no matter how
irrelevant that variable may be, the of the expanded regression
will be no less than that of the original regression. Thus, the
regression may be arbitrarily increased by adding variables
(even unimportant variables), and we should not be impressed
by a high value of in a model with a long list of explanatory
variables.

Just as with simple regression, it is possible to fit a model
through the origin, suppressing the constant term. It is important
to note that many of the properties we have discussed no longer
hold in that case: for instance, the least squares residuals ( s)
no longer have a zero sample average, and the from such
an equation can actually be negative–that is, the equation does
worse than the “model” which specifies that for all If the
population intercept differs from zero, the slope coefficients
computed in a regression through the origin will be biased.
Therefore, we often will include an intercept, and let the data
determine whether it should be zero.
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Expected value of the OLS estimators

Proposition 1 In the sample, none of the independent variables
may be expressed as an exact linear relation of the others (in-

cluding a vector of s).

We now discuss the statistical properties of the OLS
estimators of the parameters in the population regression
function. The population model is taken to be (3). We assume
that we have a random sample of size on the variables of the
model. The multivariate analogue to our assumption about the
error process is now:

(10)
so that we consider the error process to be independent of each of
the explanatory variables’ distributions. This assumption would
not hold if we misspecified the model: for instance, if we ran a
simple regression with as the explanatory variable, but the
population model also contained Since and will
have a positive correlation, the simple regression’s parameter
estimates will be biased. This bias will also appear if there is a
separate, important factor that should be included in the model;
if that factor is correlated with the included regressors, their
coefficients will be biased.

In the context of multiple regression, with several indepen-
dent variables, we must make an additional assumption about
their measured values:

Every multiple regression that includes a constant term can
be considered as having a variable This proposition
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collinearity multicollinearity

states that each of the other explanatory variables must have
nonzero sample variance: that is, it may not be a constant in the
sample. Second, the proposition states that there is no

, or , in the sample. If we could
express one as a linear combination of the other variables,
this assumption would be violated. If we have perfect collinearity
in the regressor matrix, the OLS estimates cannot be computed;
mathematically, they do not exist. A trivial example of perfect
collinearity would be the inclusion of the same variable twice,
measured in different units (or via a linear transformation,
such as temperature in degrees versus The key concept:
each regressor we add to a multiple regression must contain
information at the margin. It must tell us something about
that we do not already know. For instance, if we consider
proportion of football games won, proportion of games lost,
and : proportion of games tied, and we try to use all three as
explanatory variables to model alumni donations to the athletics
program, we find that there is perfect collinearity: since for
every college in the sample, the three variables sum to one by
construction. There is no information in, e.g., once we know
the other two, so including it in a regression with the other two
makes no sense (and renders that regression uncomputable). We
can leave any one of the three variables out of the regression;
it does not matter which one. Note that this proposition is not
an assumption about the population model: it is an implication
of the sample data we have to work with. Note also that this
only applies to linear relations among the explanatory variables:
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a variable and its square, for instance, are not linearly related,
so we may include both in a regression to capture a nonlinear
relation between and

Given the four assumptions: that of the population model,
the random sample, the zero conditional mean of the process,
and the absence of perfect collinearity, we can demonstrate that
the OLS estimators of the population parameters are unbiased:

(11)
What happens if we misspecify the model by including

: variables that, unbeknowst
to us, are not in the population model? Fortunately, this does not
damage the estimates. The regression will still yield unbiased
estimates of all of the coefficients, including unbiased estimates
of these variables’ coefficients, which are zero in the population.
It may be improved by removing such variables, since including
them in the regression consumes degrees of freedom (and reduces
the precision of the estimates); but the effect of
the model is rather benign. The same applies to overspecifying
a polynomial order; including quadratic and cubic terms when
only the quadratic term is needed will be harmless, and you will
find that the cubic term’s coefficient is far from significant.

However, the opposite case–where we the
model by mistakenly excluding a relevant explanatory variable–
is much more serious. Let us formally consider the direction and
size of bias in this case. Assume that the population model is:

(12)
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but we do not recognize the importance of , and mistakenly
consider the relationship

(13)
to be fully specified. What are the consequences of estimating
the latter relationship? We can show that in this case:

(14)

so that the OLS coefficient will be biased–not equal to its
population value of even in an expected sense–in the presence
of the second term. That term will be nonzero when is nonzero
(which it is, by assumption) and when the fraction is nonzero.
But the fraction is merely a simple regression coefficient in the
auxiliary regression of on If the regressors are correlated
with one another, that regression coefficient will be nonzero, and
its magnitude will be related to the strength of the correlation
(and the units of the variables). Say that the auxiliary regression
is:

(15)
with so that and are positively correlated (e.g.
as income and wealth would be in a sample of household data).
Then we can write the bias as:

(16)
and its sign and magnitude will depend on both the relation
between and and the interrelation among the explanatory
variables. If there is no such relationship–if and are
uncorrelated in the sample–then is unbiased (since in that
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Variance of the OLS estimators

heteroskedastic

special case multiple regression reverts to simple regression). In
all other cases, though, there will be bias in the estimation of the
underspecified model. If the left side of (16) is positive, we say
that has an upward bias: the OLS value will be too large. If it
were negative, we would speak of a downward bias. If the OLS
coefficient is closer to zero than the population coefficient, we
would say that it is “biased toward zero” or attenuated.

It is more difficult to evaluate the potential bias in a multiple
regression, where the population relationship involves variables
and we include, for instance, of them. All of the OLS
coefficients in the underspecified model will generally be biased
in this circumstance unless the omitted variable is uncorrelated
with each included regressor (a very unlikely outcome). What
we can take away as a general rule is the asymmetric nature of
specification error: it is far more damaging to exclude a relevant
variable than to include an irrelevant variable. When in doubt
(and we almost always are in doubt as to the nature of the true
relationship) we will always be better off erring on the side of
caution, and including variables that we are not certain should be
part of the explanation of

We first reiterate the assumption of homoskedasticity, in the
context of the variable regression model:

(17)
If this assumption is satisfied, then the error variance is

identical for all combinations of the explanatory variables. If
it is violated, we say that the errors are , and
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must be concerned about our computation of the OLS estimates’
variances. The OLS estimates are still unbiased in this case, but
our estimates of their variances are not. Given this assumption,
plus the four made earlier, we can derive the sampling variances,
or precision, of the OLS slope estimators:

(18)

where is the total variation in about its mean, and
is the from an auxiliary regression from regressing

on all other variables, including the constant term. We see
immediately that this formula applies to simple regression, since
the formula we derived for the slope estimator in that instance is
identical, given that in that instance (there are no other

variables). Given the population error variance what will
make a particular OLS slope estimate more precise? Its precision
will be increased (i.e. its sampling variance will be smaller) the
larger is the variation in the associated variable. Its precision
will be decreased, the larger the amount of variable that can
be “explained” by other variables in the regression. In the case
of perfect collinearity, and the sampling variance goes
to infinity. If is very small, then this variable makes a large
marginal contribution to the equation, and we may calculate a
relatively more precise estimate of its coefficient. If is quite
large, the precision of the coefficient will be low, since it will
be difficult to “partial out” the effect of variable on from the
effects of the other explanatory variables (with which it is highly
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correlated). However, we must hasten to add that the assumption
that there is no perfect collinearity does not preclude from
being close to unity–it only states that it is less than unity. The
principle stated above when we discussed collinearity–that at the
margin, each explanatory variable must add information that we
do not already have, in whole or in large part–if that variable
is to have a meaningful role in a regression model of This
formula for the sampling variance of an OLS coefficient also
explains why we might not want to overspecify the model: if we
include an irrelevant explanatory variable, the point estimates are
unbiased, but their sampling variances will be larger than they
would be in the absence of that variable (unless the irrelevant
variable is uncorrelated with the relevant explanatory variables).

How do we make (18) operational? As written, it cannot be
computed, since it depends on the unknown population parameter

Just as in the case of simple regression, we must replace
with a consistent estimate:

(19)

where the numerator is just and the denominator is the
sample size, less the number of estimated parameters: the
constant and slopes. In simple regression, we computed
using a denominator of 2: intercept plus slope. Now, we must
account for the additional slope parameters. This also suggests
that we cannot estimate a variable regression model without
having a sample of size at least Indeed, just as two points
define a straight line, the degrees of freedom in simple regression
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Efficiency of OLS estimators

Gauss-Markov Theorem

will be positive iff For multiple regression, with slopes
and an intercept, Of course, in practice, we would
like to use a much larger sample than this in order to make
inferences about the population.

The positive square root of is known as the
, or (Stata reports on the regression

output labelled ”Root MSE”, or root mean squared error). It is
in the same units as the dependent variable, and is the numerator
of our estimated standard errors of the OLS coefficients. The
magnitude of the is often compared to the mean of the
dependent variable to gauge the regression’s ability to “explain”
the data.

In the presence of heteroskedasticity–where the variance of
the error process is not constant over the sample–the estimate
of presented above will be biased. Likewise, the estimates of
coefficients’ standard errors will be biased, since they depend
on If there is reason to worry about heteroskedasticity in a
particular sample, we must work with a different approach to
compute these measures.

An important result, which underlays the widespread use of
OLS regression, is the , describing the
relative efficiency of the OLS estimators. Under the assumptions
that we have made above for multiple regression–and making
no further distributional assumptions about the error process–we
may show that:
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Proposition 2 (Gauss-Markov)

BLUE

Among the class of linear, unbi-
ased estimators of the population regression function, OLS pro-
vides the best estimators, in terms of minimum sampling variance:
OLS estimators are best linear unbiased estimators ( ).

This theorem only considers estimators that have these
two properties of linearity and unbiasedness. Linearity means
that the estimator–the rule for computing the estimates–can
be written as a linear function of the data (essentially, as
a weighted average of the values). OLS clearly meets this
requirement. Under the assumptions above, OLS estimators
are also unbiased. Given those properties, the proof of the
Gauss-Markov theorem demonstrates that the OLS estimators
have the minimum sampling variance of any possible estimator:
that is, they are the “best” (most precise) that could possibly be
calculated. This theorem is not based on the assumption that, for
instance, the process is Normally distributed; only that it is
independent of the variables and homoskedastic (that is, that it
is
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