Wboldridge, Introductory Econometrics, 2d ed.

Chapter 3: Multipleregression analysis. Estimation

In multiple regression analysis, we extend the simple
(two-variable) regression model to consider the possibility that
there are additional explanatory factors that have a systematic
effect on the dependent variable. The simplest extension is th:
“three-variable” model, in which a second explanatory variable
IS added:

y = By + Br1z1 + Boz2 +u (1)
where each of the slope coefficients are now partial derivative:
of y with respect to the: variable which they multiply: that is,
holding z, fixed,3; = O0y/0x;. This extension also allows us
to consider nonlinear relationships, such as a polynomial in
wherez; = z andes = z°. Then, the regression is linear in
x1 andz,, but nonlinear in : dy/0z = B, + 20,2. The key
assumption for this model, analogous to that which we specifie
for the simple regression model, involves the independence of
the error process and both regressors, or explanatory variabl

E (u | x1,29) = 0. (2)
This assumption of a zero conditional mean for the error proce
implies that it does not systematically vary with the nor
with any linear combination of the’s; « is independent, in the
statistical sense, from the distributions of tHe.
The model may now be generalized to the casé of
regressors:

Yy = B+ Bz + Bora + ... + B +u (3)
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where the coefficients have the same interpretation: each
IS the partial derivative off with respect to that  holding
all otherz’s constantcdgteris paribus ), and the term is that
nonsystematic part af not linearly related to any of e
The dependent variablg is taken to be linearly related to the
x's, which may bear any relation to each other (e.g. polynomia
or other transformations) as long as there are no exact linear
dependencies among the regressors. That ig, no variable ce
be an exact linear transformation of another, or the regressior
estimates cannot be calculated. The independence assumptic
now becomes:
E (u | x1, z9, ..., 1) = 0. (4)
Mechanics and interpretation of OLS
Consider first the “three-variable model” given above in (1)
The estimated OLS equation contains the parameters of intere
y = by + by + baws (5)
and we may define the ordinary least squares criterion in term
of the OLS residuals, calculated from a sample of size  from
this expression:

min S = Z <yz — bo — blilfz'l — b2$i2)2 (6)
1=1
where the minimization of this expression is performed with
respect to each of the three parametébg, by, b, }. In the cas

of k regressors, these expressions include terndg,in  and the
minimization is performed with respect to thle+ 1)  parametet
{by, b1, by, ...b. }. For this to be feasiblep > (kK + 1) : thatis,
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we must have a sample larger than the number of parameters
be estimated from that sample. The minimization is carried ou
by differentiating the scalas  with respect to each ofltse  in
turn, and setting the resulting first order condition to zero. This
givesrisetdk +1) simultaneous equationgint1)  unknown:s
the regression parameters, which are known a$stse squares
normal equations. The normal equations are expressions in the
sums of squares and cross products ofithe and the regresso
including a first “regressor” which is a column g , multiplying
the constant term. For the “three-variable” regression model, w
can write out the normal equations as:

Zy — nb0+blz$1+b22$2 (7)
Z:ﬁg = 6023314—[?1233%4—[922331332
Zajgy — bQZJJQ—FblZJJlJ}Q—FbQZCI}%

Just as in the “two-variable” case, the first normal equation cat
be interpreted as stating that the regression surface (in 3-spac
passes through the multivariate point of meéng z-, 4 }. The:
three equations may be uniquely solved, by normal algebraic
techniques or linear algebra, for the estimated least squares
parameters.

This extends to the case &f regressors énd- 1)
regression parameters. In each case, the regression coefficiel
are considered in theeteris paribus sense: that each coefficier
measures the partial effect of a unit change in its variable, or
regressor, holding all other regressors fixed. If a variable is
a component of more than one regressor—as in a polynomial
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relationship, as discussed above—the total effect of a change i
that variable is additive.

Fitted values, residuals, and their properties

Just as in simple regression, we may calculate fitted value
or predicted values, after estimating a multiple regression. Fol
observation, the fitted value is

Ui = bg + b1xj1 + boxjo + ... + brxip (8a)
and the residual is the difference between the actual value of
and the fitted value:

e; =Y — Ui (9)

As with simple regression, the sum of the residuals is zero
they have, by construction, zero covariance with each of the
x variables, and thus zero covariance with  and since the
average residual is zero, the regression surface passes throug
the multivariate point of mean$z, zo, ..., Tx, ¥ }-

There are two instances where the simple regressign of
x1 Will yield the same coefficient as the multiple regressiomy of
onzx; andr,, with respectto;. In general, the simple regressic
coefficient will not equal the multiple regression coefficient,
since the simple regression ignores the effeat,of  (and conside
that it can be viewed as nonsystematic, captured in the error
u). When will the two coefficients be equal? First, when the
coefficient ofx, Is truly zero—that is, wheny, really does not
belong in the model. Second, when and  are uncorrelated
the sample. This is likely to be quite rare in actual data. Howeve
these two cases suggest when the two coefficients will be simil;
whenz, IS relatively unimportant in explaining  or when itis
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very loosely related ta;.

We can define the same three sums of squa¥é&ss
SSE, SSR—as in simple regression, aéf s still the ratio
of the explained sum of squareS{E) to the total sum of
squares §ST'). It is no longer a simple correlation (e:g,)
squared, but it still has the interpretation of a squared simple
correlation coefficient: the correlation betwegn and-,.

A very important principle is thak? never decreases when an
explanatory variable is added to a regression—no matter how

irrelevant that variable may be, tf&  of the expanded regressi
will be no less than that of the original regression. Thus, the

regression?? may be arbitrarily increased by adding variables
(even unimportant variables), and we should not be impresset
by a high value ofR? in a model with a long list of explanatory
variables.

Just as with simple regression, it is possible to fit a model
through the origin, suppressing the constant term. It is importa
to note that many of the properties we have discussed no long
hold in that case: for instance, the least squares residgals (<
no longer have a zero sample average, anddhe  from such
an equation can actually be negative—that is, the equation doe
worse than the “model” which specifies that=y  forall If the
population intercept, differs from zero, the slope coefficients
computed in a regression through the origin will be biased.
Therefore, we often will include an intercept, and let the data
determine whether it should be zero.



Expected value of the OL S estimators

We now discuss the statistical properties of the OLS
estimators of the parameters in the population regression
function. The population model is taken to be (3). We assume
that we have a random sample of stze on the variables of thi
model. The multivariate analogue to our assumption about the
error process is now:

E(u|x1,x9,...,x5) =0 (10)
so that we consider the error process to be independent of eacl
the explanatory variables’ distributions. This assumption woulc
not hold if we misspecified the model: for instance, if we ran a
simple regression witlnc as the explanatory variable, but the
population model also containédc?. Sineez  and’ will
have a positive correlation, the simple regression’s parameter
estimates will be biased. This bias will also appear if there is ¢
separate, important factor that should be included in the mode
If that factor is correlated with the included regressors, their
coefficients will be biased.

In the context of multiple regression, with several indepen-
dent variables, we must make an additional assumption abou
their measured values:

Proposition 1 In the sample, none of the independent variables
x may be expressed as an exact linear relation of the others (in-
cluding a vector of 1s).

Every multiple regression that includes a constant term ca
be considered as having a variablg = 1 V2. This propositior
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states that each of the other explanatory variables must have
nonzero sample variance: that is, it may not be a constant in tf
sample. Second, the proposition states that there senfect
collinearity, or multicollinearity, in the sample. If we could
express oner as a linear combination of the other variables
this assumption would be violated. If we have perfect collinearit
In the regressor matrix, the OLS estimates cannot be compute
mathematically, they do not exist. A trivial example of perfect
collinearity would be the inclusion of the same variable twice,
measured in different units (or via a linear transformation,
such as temperature in degrdés  veiSys The key concep
each regressor we add to a multiple regression must contain
Information at the margin. It must tell us something abgut
that we do not already know. For instance, if we consider
proportion of football games won, :  proportion of games lost
andzs . proportion of games tied, and we try to use all three a:
explanatory variables to model alumni donations to the athletic
program, we find that there is perfect collinearity: since for
every college in the sample, the three variables sum to one by
construction. There is no information in, e.g;, once we know
the other two, so including it in a regression with the other two
makes no sense (and renders that regression uncomputable).
can leave any one of the three variables out of the regression
It does not matter which one. Note that this proposition is not
an assumption about the population model: it is an implication
of the sample data we have to work with. Note also that this
only applies to linear relations among the explanatory variable:
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a variable and its square, for instance, are not linearly related,
so we may include both in a regression to capture a nonlineat
relation betweery andg.

Given the four assumptions: that of the population model,
the random sample, the zero conditional mean ofithe proces
and the absence of perfect collinearity, we can demonstrate th
the OLS estimators of the population parameters are unbiased

Eb;=0;,7=0,..,k (11)

What happens if we misspecify the model by including
Irrelevant explanatory variables. x variables that, unbeknowst
to us, are not in the population model? Fortunately, this does n
damage the estimates. The regression will still yield unbiased
estimates of all of the coefficients, including unbiased estimate
of these variables’ coefficients, which are zero in the populatiot
It may be improved by removing such variables, since including
them in the regression consumes degrees of freedom (and redt
the precision of the estimates); but the effecowér specifying
the model is rather benign. The same applies to overspecifyin
a polynomial order; including quadratic and cubic terms when
only the quadratic term is needed will be harmless, and you wi
find that the cubic term’s coefficient is far from significant.

However, the opposite case—where waler specify the
model by mistakenly excluding a relevant explanatory variable-
IS much more serious. Let us formally consider the direction ar
size of bias in this case. Assume that the population model is:

Yy = B+ P21+ Boxa +u (12)
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but we do not recognize the importance of , and mistakenly
consider the relationship

y = Py + 171+ u (13)
to be fully specified. What are the conseguences of estimating
the latter relationship? We can show that in this case:

By = 3, + Rt T = ) (14
iy (@ — 21)

so that the OLS coefficiert;  will be biased—not equal to its
population value off;, even in an expected sense—in the presel
of the second term. That term will be nonzero wlign  is nonze
(which it is, by assumption) and when the fraction is nonzero.
But the fraction is merely a simple regression coefficient in the
auxiliary regression of; om,. If the regressors are correlatec
with one another, that regression coefficient will be nonzero, ar
its magnitude will be related to the strength of the correlation
(and the units of the variables). Say that the auxiliary regressic
IS:

x1 = do+ dixg + u (15)
with d; > 0, so thatr; andr, are positively correlated (e.qg.
as income and wealth would be in a sample of household data
Then we can write the bias as:

Eby — 51 — 52d1 (16)
and its sign and magnitude will depend on both the relation
betweeny and, and the interrelation among the explanatory
variables. If there is no such relationship#if  angd are
uncorrelated in the sample—thén  is unbiased (since in that
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special case multiple regression reverts to simple regression).
all other cases, though, there will be bias in the estimation of tf
underspecified model. If the left side of (16) is positive, we say
thatb; has an upward bias: the OLS value will be too large. If i
were negative, we would speak of a downward bias. If the OLS
coefficient is closer to zero than the population coefficient, we
would say that it is “biased toward zero” or attenuated.

It is more difficult to evaluate the potential bias in a multiple
regression, where the population relationship invokves variabl
and we include, for instancé&, — 1  of them. All of the OLS
coefficients in the underspecified model will generally be biase
In this circumstance unless the omitted variable is uncorrelate
with each included regressor (a very unlikely outcome). What
we can take away as a general rule is the asymmetric nature ¢
specification error: it is far more damaging to exclude a relevar
variable than to include an irrelevant variable. When in doubt
(and we almost always are in doubt as to the nature of the tru
relationship) we will always be better off erring on the side of
caution, and including variables that we are not certain should
part of the explanation qf.

Variance of the OL S estimators

We first reiterate the assumption of homoskedasticity, in th
context of thek— variable regression model:

Var (u| z1, 22, ..., x3) = 0° (17)

If this assumption is satisfied, then the error variance is
identical for all combinations of the explanatory variables. If
It is violated, we say that the errors dneteroskedastic , and
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must be concerned about our computation of the OLS estimate
variances. The OLS estimates are still unbiased in this case,
our estimates of their variances are not. Given this assumptior
plus the four made earlier, we can derive the sampling variance
or precision, of the OLS slope estimators:

0.2

~ SST; (1 - RY)’
where SST; is the total variation im; about its mean, and
R: is the R* from an auxiliary regression from regressing

on all otherz variables, including the constant term. We see
Immediately that this formula applies to simple regression, sinc
the formula we derived for the slope estimator in that instance
Identical, given thalRJQ- = 0 Inthat instance (there are no other
z variables). Given the population error variance what will
make a particular OLS slope estimate more precise? Its precis
will be increased (i.e. its sampling variance will be smaller) the
larger is the variation in the associated variable. Its precisior
will be decreased, the larger the amount of variable  that car
be “explained” by other variables in the regression. In the case
of perfect coIIinearitijz = 1, and the sampling variance goes
to infinity. If R]? IS very small, then this variable makes a large
marginal contribution to the equation, and we may calculate a
relatively more precise estimate of its coeﬁicient}ﬂﬁ IS quite
large, the precision of the coefficient will be low, since it will
be difficult to “partial out” the effect of variablg¢ o;m from the
effects of the other explanatory variables (with which it is highly

Var (b)) j=1,..k (18)
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correlated). However, we must hasten to add that the assumpiti
that there is no perfect collinearity does not preclm@e from
being close to unity—it only states that it is less than unity. The
principle stated above when we discussed collinearity—that at t
margin, each explanatory variable must add information that w
do not already have, in whole or in large part—if that variable
IS to have a meaningful role in a regression model.of This
formula for the sampling variance of an OLS coefficient also
explains why we might not want to overspecify the model: if we
Include an irrelevant explanatory variable, the point estimates &
unbiased, but their sampling variances will be larger than they
would be in the absence of that variable (unless the irrelevant
variable is uncorrelated with the relevant explanatory variables

How do we make (18) operational? As written, it cannot be
computed, since it depends on the unknown population parame
o?. Just as in the case of simple regression, we must repface
with a consistent estimate:

&2 — D i1 e; _ D i1 e; (19)
m—(k+1) nmh—k-1)

where the numerator is justSR, and the denominator is the
sample size, less the number of estimated parameters: the
constant and:  slopes. In simple regression, we compifted
using a denominator of 2: intercept plus slope. Now, we must
account for the additional slope parameters. This also sugges
that we cannot estimateka— variable regression model withot
having a sample of size atledst+1).  Indeed, just as two poir
define a straight line, the degrees of freedom in simple regressi
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will be positive iff n > 2. For multiple regression, with  slopes
and an intercepty > (k + 1). Of course, in practice, we would
like to use a much larger sample than this in order to make
Inferences about the population.

The positive square root af is known as tstiandard
error of regression, or SE R. (Stata reports on the regression
output labelled "Root MSE”, or root mean squared error). It is
In the same units as the dependent variable, and is the numere
of our estimated standard errors of the OLS coefficients. The
magnitude of theS R is often compared to the mean of the
dependent variable to gauge the regression’s ability to “explair
the data.

In the presence of heteroskedasticity—where the variance
the error process is not constant over the sample—the estimat
of s2 presented above will be biased. Likewise, the estimates ¢
coefficients’ standard errors will be biased, since they depend
on s°. If there is reason to worry about heteroskedasticity in a
particular sample, we must work with a different approach to
compute these measures.

Efficiency of OL S estimators

An important result, which underlays the widespread use ¢
OLS regression, is thGauss-Markov Theorem , describing the
relative efficiency of the OLS estimators. Under the assumptiot
that we have made above for multiple regression—and making
no further distributional assumptions about the error process—v
may show that:
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Proposition 2 (Gauss-Markov) Among the class of linear, unbi-
ased estimators of the population regression function, OLS pro-
videsthe best estimators, in termsof minimum sampling variance:
OLSestimators are best linear unbiased estimators (BLUE).

This theorem only considers estimators that have these
two properties of linearity and unbiasedness. Linearity means
that the estimator—the rule for computing the estimates—can
be written as a linear function of the daga (essentially, as
a weighted average of theg values). OLS clearly meets this
requirement. Under the assumptions above, OLS estimators
are also unbiased. Given those properties, the proof of the
Gauss-Markov theorem demonstrates that the OLS estimators
have the minimum sampling variance of any possible estimato
that is, they are the “best” (most precise) that could possibly be
calculated. This theorem is not based on the assumption that,
Instance, thea: process is Normally distributed; only that it is
Independent of the variables and homoskedastic (that is, tha
IS .i.d.).
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