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Chapter 4: Multiple regression analysis: Inference

Proposition 1

classical linear model

Wooldridge, Introductory Econometrics, 2d ed.

MLR6 (Normality) The population error is in-
dependent of the explanatory variables and is normally
distributed with zero mean and constant variance:

We have discussed the conditions under which OLS
estimators are unbiased, and derived the variances of these
estimators under the Gauss-Markov assumptions. The Gauss-
Markov theorem establishes that OLS estimators have the
smallest variance of any linear unbiased estimators of the
population parameters. We must now more fully characterize the
sampling distribution of the OLS estimators–beyond its mean
and variance–so that we may test hypotheses on the population
parameters. To make the sampling distribution tractable, we add
an assumption on the distribution of the errors:

This is a much stronger assumption than we have previously
made on the distribution of the errors. The assumption of
normality, as we have stated it, subsumes both the assumption of
the error process being independent of the explanatory variables,
and that of homoskedasticity. For cross-sectional regression
analysis, these six assumptions define the .
The rationale for normally distributed errors is often phrased in
terms of the many factors influencing being additive, appealing
to the Central Limit Theorem to suggest that the sum of a
large number of random factors will be normally distributed.
Although we might have reason in a particular context to doubt

1



j

�

�
�

� �

� �

0 1 1 2 2

j j j

j j

b

j

j

j

k k

( )

(0 1)

= + + + + +

Testing an hypothesis on a single

b N � , V ar b

b �

s
N ,

b

b

�

k

y � � x � x ... � x u

this rationale, we usually use it as a working hypothesis. Various
transformations–such as taking the logarithm of the dependent
variable–are often motivated in terms of their inducing normality
in the resulting errors.

What is the importance of assuming normality for the error
process? Under the assumptions of the classical linear model,
normally distributed errors give rise to normally distributed OLS
estimators:

(1)
which will then imply that:

(2)

This follows since each of the can be written as a linear
combination of the errors in the sample. Since we assume that
the errors are independent, identically distributed normal random
variates, any linear combination of those errors is also normally
distributed. We may also show that any linear combination of the

is also normally distributed, and a subset of these estimators
has a joint normal distribution. These properties will come in
handy in formulating tests on the coefficient vector. We may also
show that the OLS estimators will be approximately normally
distributed (at least in large samples), even if the underlying
errors are not normally distributed.

To test hypotheses about a single population parameter, we
start with the model containing regressors:

(3)
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Under the classical linear model assumptions, a test statistic
formed from the OLS estimates may be expressed as:

(4)

Why does this test statistic differ from (2) above? In that
expression, we considered the variance of as an expression
including the unknown standard deviation of the error term
(that is, In this operational test statistic (4), we have
replaced with a consistent estimate, That additional source
of sampling variation requires the switch from the standard
normal distribution to the distribution, with ( degrees
of freedom. Where is not all that large relative to the
resulting distribution will have considerably fatter tails than the
standard normal. Where is a large number–greater
than 100, for instance–the distribution will essentially be the
standard normal. The net effect is to make the critical values
larger for a finite sample, and raise the threshold at which we
will conclude that there is adequate evidence to reject a particular
hypothesis.

The test statistic (4) allows us to test hypotheses regarding
the population parameter in particular, to test the null
hypothesis

(5)
for any of the regression parameters. The “t-statistic” used
for this test is merely that printed on the output when you
run a regression in Stata or any other program: the ratio of
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if the null hypothesis is true

the estimated coefficient to its estimated standard error. If the
null hypothesis is to be rejected, the “t-stat” must be larger (in
absolute value) than the critical point on the t-distribution. The
“t-stat” will have the same sign as the estimated coefficient, since
the standard error is always positive. Even if is actually zero
in the population, a sample estimate of this parameter– will
never equal exactly zero. But when should we conclude that
it could be zero? When its value cannot be distinguished from
zero. There will be cause to reject this null hypothesis if the
value, scaled by its standard error, exceeds the threshold. For
a “two-tailed test,” there will be reason to reject the null if the
“t-stat” takes on a large negative value or a large positive value;
thus we reject in favor of the alternative hypothesis (of
in either case. This is a two-sided alternative, giving rise to a
two-tailed test. If the hypothesis is to be tested at, e.g., the 95%
level of confidence, we use critical values from the t-distribution
which isolate 2.5% in each tail, for a total of 5% of the mass of
the distribution. When using a computer program to calculate
regression estimates, we usually are given the “ ” of
the estimate–that is, the tail probability corresponding to the
coefficient’s t-value. The p-value may usefully be considered
as the probability of observing a t-statistic as extreme as that
shown . If the t-value was equal to,
e.g., the 95% critical value, the p-value would be exactly 0.05. If
the t-value was higher, the p-value would be closer to zero, and
vice versa. Thus, we are looking for small p-values as indicative
of rejection. A p-value of 0.92, for instance, corresponds to an
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hypothesis that can be rejected at the 8% level of confidence–thus
quite irrelevant, since we would expect to find a value that large
92% of the time under the null hypothesis. On the other hand, a
p-value of 0.08 will reject at the 90% level, but not at the 95%
level; only 8% of the time would we expect to find a t-statistic of
that magnitude if was true.

What if we have a one-sided alternative? For instance, we
may phrase the hypothesis of interest as:

(6)

Here, we must use the appropriate critical point on the
t-distribution to perform this test at the same level of confidence.
If the point estimate is positive, then we do not have cause to
reject the null. If it is negative, we may have cause to reject the
null if it is a sufficiently large negative value. The critical point
should be that which isolates 5% of the mass of the distribution
in that tail (for a 95% level of confidence). This critical value
will be smaller (in absolute value) than that corresponding to a
two-tailed test, which isolates only 2.5% of the mass in that tail.
The computer program always provides you with a p-value for a
two-tailed test; if the p-value is 0.08, for instance, it corresponds
to a one-tailed p-value of 0.04 (that being the mass in that tail).

Every regression output includes the information needed
to test the two-tailed or one-tailed hypotheses that a population
parameter equals zero. What if we want to test a different
hypothesis about the value of that parameter? For instance, we
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bdrms test

regress price bdrms sqrft
test bdrms=20000

( 1) bdrms = 20000.0

F( 1, 85) = 0.26
Prob > F = 0.6139

would not consider it sensible for the for a consumer to
be zero, but we might have an hypothesized value (of, say, 0.8)
implied by a particular theory of consumption. How might we
test this hypothesis? If the null is stated as:

(7)
where is the hypothesized value, then the appropriate test
statistic becomes:

(8)

and we may simply calculate that quantity and compare it to the
appropriate point on the t-distribution. Most computer programs
provide you with assistance in this effort; for instance, if we
believed that the coefficient on should be equal to
$20,000 in a regression of house prices on square footage and

(e.g. using HPRICE1), we would use Stata’s
command:

where we use the name of the variable as a shorthand for the
name of the coefficient on that variable. Stata, in that instance,
presents us with:

making use of an F-statistic, rather than a t-statistic, to
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Confidence intervals

. di (_b[bdrms]-20000)/_se[bdrms]
-.50633208

test

test

test
regress

perform this test. In this particular case–of an hypothesis
involving a single regression coefficient–we may show that
this F-statistic is merely the square of the associated t-statistic.
The p-value would be the same in either case. The estimated
coefficient is 15198.19, with an estimated standard error of
9483.517. Plugging in these values to (8) yields a t-statistic:

which, squared, is the F-statistic shown by the
command. Just as with tests against a null hypothesis of zero,
the results of the command may be used for one-tailed
tests as well as two-tailed tests; then, the magnitude of the
coefficient matters (i.e. the fact that the estimated coefficient
is about $15,000 means we would never reject a null that it is
less than $20,000), and the p-value must be adjusted for one
tail. Any number of commands may be given after a

command in Stata, testing different hypotheses about
the coefficients.

As we discussed in going over Appendix C, we may use
the point estimate and its estimated standard error to calculate
an hypothesis test on the underlying population parameter, or
we may form a confidence interval for that parameter. Stata
makes that easy in a regression context by providing the 95%
confidence interval for every estimated coefficient. If you want
to use some other level of significance, you may either use
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level() regress regress price
bdrms sqrft, level(90)

set level

Testing hypotheses about a single linear combination of
the parameters

the option on (e.g.
) or you may change the default

level for this run with . All further regressions will
report confidence intervals with that level of confidence. To
connect this concept to that of the hypothesis test, consider that
in the above example the 95% confidence interval for
extended from -3657.581 to 34053.96; thus, an hypothesis test
with the null that takes on any value in this interval
(including zero) will not lead to a rejection.

Economic theory will often suggest that a particular linear
combination of parameters should take on a certain value: for
instance, in a Cobb-Douglas production function, that the slope
coefficients should sum to one in the case of constant returns to
scale ( :

(9)

where are the factors capital, labor, and energy,
respectively. We have added an error term to the double-log-
transformed version of this model to represent it as an empirical
relationship. The hypothesis of may be stated as:

(10)
The test statistic for this hypothesis is quite straightforward:

(11)

and its numerator may be easily calculated. The denominator,
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however, is not so simple; it represents the standard error of the
linear combination of estimated coefficients. You may recall
that the variance of a sum of random variables is not merely
the sum of their variances, but an expression also including
their covariances, unless they are independent. The random
variables are not independent of one another since the
underlying regressors are not independent of one another. Each
of the underlying regressors is assumed to be independent of the
error term but not of the other regressors. We would expect,
for instance, that firms with a larger capital stock also have a
larger labor force, and use more energy in the production process.
The variance (and standard error) that we need may be readily
calculated by Stata, however, from the variance-covariance
matrix of the estimated parameters via the command:

will provide the appropriate test statistic, again as an F-
statistic with a p-value. You may interpret this value directly. If
you would like the point and interval estimate of the hypothesized
combination, you can compute that (after a regression) with the

(linear combination) command:

will show those values (but will only test that their sum is
zero).

We may also use this technique to test other hypotheses than
adding-up conditions on the parameters. For instance, consider a
two-factor Cobb-Douglas function in which you have only labor
and capital, and you want to test the hypothesis that labor’s share
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Testing multiple linear restrictions

test
test labor - 2*cap = 0

test labor=2*cap

test

is 2/3. This implies that the labor coefficient should be twice the
capital coefficient, or:

(12)

Note that this does not allow us to test a nonlinear hypothesis
on the parameters: but considering that a ratio of two parameters
is a constant is not a nonlinear restriction. In the latter form, we
may specify it to Stata’s command as:

In fact, Stata will figure out that form if you specify the
hypothesis as:

(rewriting it in the above form), but it is not quite smart
enough to handle the ratio form. It is easy to rewrite the ratio
form into one of the other forms. Either form will produce an
F-statistic and associated p-value related to this single linear
hypothesis on the parameters which may be used to make a
judgment about the hypothesis of interest.

When we use the command, an F-statistic is reported–
even when the test involves only one coefficient–because in
general, hypothesis tests may involve more than one restriction
on the population parameters. The hypotheses discussed above–
even that of , involving several coefficients–still only
represent one restriction on the parameters. For instance, if
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is imposed, the elasticities of the factors of production must sum
to one, but they may individually take on any value. But in most
applications of multiple linear regression, we concern ourselves
with of restrictions on the parameters.

The simplest joint test is that which every regression reports:
the so-called “ANOVA F” test, which has the null hypothesis
that of the slopes is equal to zero. Note that in a multiple
regression, specifying that each slope individually equals zero is
not the same thing as specifying that their sum equals zero. This
“ANOVA” (ANalysis Of VAriance) F-test is of interest since it
essentially tests whether the entire regression has any explanatory
power. The null hypothesis, in this case, is that the “model” is

that is, none of the explanatory variables assist in
explaining the variation in We cannot test any hypothesis on
the of a regression, but we will see that there is an intimate
relationship between the and the ANOVA F:

(13)

where the ANOVA F, the ratio of mean square explained variation
to mean square unexplained variation, is distributed as
under the null hypothesis. For a simple regression, this statistic
is which is identical to that is, the square
of the statistic for the slope coefficient, with precisely the
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lsalary years
gamesyr

frstbase,
scndbase, shrtstop, thrdbase, catcher)

years gamesyr

scndbase

frstbase shrtstop
thrdbase catcher

scndbase

same value as that statistic. In a multiple regression
context, we do not often find an insignificant statistic, since
the null hypothesis is a very strong statement: that none of
the explanatory variables, taken singly or together, explain any
significant fraction of the variation of about its mean. That can
happen, but it is often somewhat unlikely.

The ANOVA F tests : that all
slope coefficients are jointly zero. We may use an F-statistic
to test that a number of slope coefficients are jointly equal
to zero. For instance, consider a regression of 353 major
league baseball players’ salaries (from MLB1). If we regress

(log of player’s salary) on (number of years
in majors), (number of games played per year), and
several variables indicating the position played (

, weget
an of 0.6105, and an ANOVA F (with 7 and 345 d.f.) of
77.24 with a value of zero. The overall regression is clearly
significant, and the coefficients on and both
have the expected positive and significant coefficients. Only
one of the five coefficients on the positions played, however, are
significantly different from zero at the 5% level: ,
with a negative value (-0.034) and a value of 0.015. The

and coefficients are also negative (but
insignificant), while the and coefficients
are positive and insignificant. Should we just remove all of these
variables (except for )? The F-test for these five
exclusion restrictions will provide an answer to that question:

12



.lsalary

. test frstbase scndbase shrtstop
thrdbase catcher

( 1) frstbase = 0.0
( 2) scndbase = 0.0
( 3) shrtstop = 0.0
( 4) thrdbase = 0.0
( 5) catcher = 0.0
F( 5, 345) = 2.37
Prob > F = 0.0390

scndbase
. test frstbase shrtstop thrdbase catcher

( 1) frstbase = 0.0
( 2) shrtstop = 0.0
( 3) thrdbase = 0.0
( 4) catcher = 0.0
F( 4, 345) = 1.56
Prob > F = 0.1858

At the 95% level of significance, these coefficients are not
each zero. That result, of course, could be largely driven by the

coefficient:

So perhaps it would be sensible to remove these four, which
even when taken together do not explain a meaningful fraction
of the variation in But this illustrates the point of the
joint hypothesis test: the result of simultaneously testing several
hypotheses (that, for instance, individual coefficients are equal to
zero) cannot be inferred from the results of the individual tests.
If each coefficient is significant, then a joint test will surely reject
the joint exclusion restriction; but the converse is assuredly false.
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Notice that a joint test of exclusion restrictions may be
easily conduced by Stata’s command, by merely listing
the variables whose coefficients are presumed to be zero under
the null hypothesis. The resulting test statistic is an F with as
many numerator degrees of freedom as there are coefficients (or
variables) in the list. It can be written in terms of the residual
sums of squares ( of the “unrestricted” and “restricted”
models:

(14)

Since adding variables to a model will never decrease
(nor decrease the “restricted” model–in which

certain coefficients are not freely estimated from the data, but
constrained–must have at least as large as the “unrestricted”
model, in which all coefficients are data-determined at their
optimal values. Thus the difference in the numerator is non-
negative. If it is a large value, then the restrictions severely
diminish the explanatory power of the model. The amount by
which it is diminished is scaled by the number of restrictions,
and then divided by the unrestricted model’s If this ratio is
a large number, then the “average cost per restriction” is large
relative to the explanatory power of the unrestricted model, and
we have evidence against the null hypothesis (that is, the
statistic will be larger than the critical point on an table with

and degrees of freedom. If the ratio is smaller
than the critical value, we do not reject the null hypothesis, and
conclude that the restrictions are consistent with the data. In
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this circumstance, we might then reformulate the model with
the restrictions in place, since they do not conflict with the data.
In the baseball player salary example, we might drop the four
insignificant variables and reestimate the more parsimonious
model.

The apparatus described above is far more powerful than
it might appear. We have considered individual tests involving
a linear combination of the parameters (e.g. and joint
tests involving exclusion restrictions (as in the baseball players’
salary example). But the “subset F” test defined in (14) is capable
of being applied to any set of linear restrictions on the parameter
vector: for instance, that and
What would this set of restrictions imply about a regression of

on That regression, in its unrestricted
form, would have with 5 estimated slope coefficients and
an intercept. The joint hypotheses expressed above would state
that a restricted form of this equation would have three fewer
parameters, since would be constrained to zero, to -1, and
one of the coefficients { expressed in terms of the
other two. In the terminology of (14), How would we
test the hypothesis? We can readily calculate but what
about One approach would be to algebraically substitute
the restrictions in the model, estimate that restricted model, and
record its value. This can be done with any computer
program that estimates a multiple regression, but it requires that
you do the algebra and transform the variables accordingly. (For
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test
regress y x1 x2 x3 x4 x5
test x1
test x2+x3+x4=1, accum
test x5=-1, accum

test

( 1) years = 0.0
( 2) frstbase + scndbase + shrtstop = 1.0
( 3) sbases = -1.0
F( 3, 347) = 38.54
Prob > F = 0.0000

accum test

instance, constraining to -1 implies that you should form
a new dependent variable, Alternatively, if you are
using a computer program that can test linear restrictions, you
may use its features. Stata will test general linear restrictions of
this sort with the command:

The final command in this sequence will print an
F-statistic for the set of three linear restrictions on the regression:
for instance,

The “ ” option on the command indicates
that these tests are not to be performed separately, but rather
jointly. The final F-test will have three numerator degrees of
freedom, because you have specified three linear hypotheses to
be jointly applied to the coefficient vector. This syntax of test
may be used to construct any set of linear restrictions on the
coefficient vector, and perform the joint test for the validity of
those restrictions. The test statistic will reject the null hypothesis
(that the restrictions are consistent with the data) if its value is
large relative to the underlying F-distribution.
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