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Wooldridge, Introductory Econometrics, 2d ed.

Chapter 6: Multiple regression analysis: Further issues
What effects will the scale of the and variables have

upon multiple regression? The coefficients’ point estimates
are so they are in the scale of the data–for instance,
dollars of wage per additional year of education. If we were to
measure either or in different units, the magnitudes of these
derivatives would change, but the overall fit of the regression
equation would not. Regression is based on correlation, and
any linear transformation leaves the correlation between two
variables unchanged. The for instance, will be unaffected
by the scaling of the data. The standard error of a coefficient
estimate is in the same units as the point estimate, and both
will change by the same factor if the data are scaled. Thus,
each coefficient’s statistic will have the same value, with the
same value, irrespective of scaling. The standard error of
the regression (termed “Root MSE” by Stata) is in the units of
the dependent variable. The ANOVA F, based on will be
unchanged by scaling, as will be all F-statistics associated with
hypothesis tests on the parameters. As an example, consider
a regression of babies’ birth weight, measured in pounds, on
the number of cigarettes per day smoked by their mothers.
This regression would have the same explanatory power if we
measured birth weight in ounces, or kilograms, or alternatively if
we measured nicotine consumption by the number of packs per
day rather than cigarettes per day.

A corollary to this result applies to a dependent variable
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measured in logarithmic form. Since the slope coefficient in
this case is an elasticity or semi-elasticity, a change in the
dependent variable’s units of measurement does not affect the
slope coefficient at all (since but rather
just shows up in the intercept term.

In economics, we generally report the regression coeffi-
cients’ point estimates when presenting regression results. Our
coefficients often have natural units, and those units are meaning-
ful. In other disciplines, many explanatory variables are indices
(measures of self-esteem, or political freedom, etc.), and the as-
sociated regression coefficients’ units are not well defined. To
evaluate the relative importance of a number of explanatory
variables, it is common to calculate so-called beta coefficients–
standardized regression coefficients, from a regression of on

where the starred variables have been “z-transformed.” This
transformation (subtracting the mean and dividing by the sam-
ple standard deviation) generates variables with a mean of zero
and a standard deviation of one. In a regression of standard-
ized variables, the (beta) coefficient estimates express
the effect of a one standard deviation change in in terms
of standard deviations of The explanatory variable with the
largest (absolute) beta coefficient thus has the biggest “bang for
the buck” in terms of an effect on The intercept in such a
regression is zero by construction. You need not perform this
standardization in most regression programs to compute beta
coefficients; for instance, in Stata, you may just use the
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option, e.g.
which causes the beta coefficients to be printed

(rather than the 95% confidence interval for each coefficient) on
the right of the regression output.

Many econometric models make use of variables measured
in logarithms: sometimes the dependent variable, sometimes both
dependent and independent variables. Using the “double-log”
transformation (of both and we can turn a multiplicative
relationship, such as a Cobb-Douglas production function, into
a linear relation in the (natural) logs of output and the factors
of production. The estimated coefficients are, themselves,
elasticities: that is, which have the units of
percentage changes. The “single-log” transformation regresses

on measured in natural units (alternatively, some
columns of might be in logs, and some columns in levels).
If we are interpreting the coefficient on a levels variable, it
is or approximately the percentage change in
resulting from a one unit change in We often use this sort
of model to estimate an exponential trend–that is, a growth
rate–since if the variable is we have or an
estimate of the growth rate of The interpretation of regression
coefficients as percentage changes depends on an approximation,
that for small If is sizable–and we seek
the effect for a discrete change in then we must take
care with that approximation. The exact percentage change,

will give us a more accurate
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Polynomial functional forms

prediction of the change in
Why do so many econometric models utilize logs? For one

thing, a model with a log dependent variable often more closely
satisfies the assumptions we have made for the classical linear
model. Most economic variables are constrained to be positive,
and their empirical distributions may be quite non-normal
(think of the income distribution). When logs are applied, the
distributions are better behaved. Taking logs also reduces the
extrema in the data, and curtails the effects of outliers. We often
see economic variables measured in dollars in log form, while
variables measured in units of time, or interest rates, are often
left in levels. Variables which are themselves ratios are often left
in that form in empirical work (although they could be expressed
in logs; but something like an unemployment rate already has a
percentage interpretation). We must be careful when discussing
ratios to distinguish between an 0.01 change and a one unit
change. If the unemployment rate is measured as a decimal, e.g.
0.05 or 0.06, we might be concerned with the effect of an 0.01
change (a one per cent increase in unemployment)–which will be
1/100 of the regression coefficient’s magnitude!

We often make use of polynomial functional forms–or their
simplest form, the quadratic–to represent a relationship that is not
likely to be linear. If is regressed on and it is important
to note that we must calculate taking account of this
form–that is, we cannot consider the effect of changing while
holding constant. Thus, and the slope in
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space will depend upon the level of at which we evaluate
the derivative. In many applications, while so
that while is increasing, is increasing at a decreasing rate, or
levelling off. Naturally, for sufficiently large will take on
smaller values, and in the limit will become negative; but in the
range of the data, will often appear to be a concave function of

We could also have the opposite sign pattern, while
which will lead to a U-shaped relation in the

plane, with decreasing, reaching a minimum, and increasing–
somewhat like an average cost curve. Higher-order polynomial
terms may also be used, but they are not as commonly found in
empirical work.

An important technique that allows for nonlinearities in
an econometric model is the use of –the
product of explanatory variables. For instance, we might
model the house as a function of , , and

, which would make the partial derivatives with
respect to each factor depend upon the other. For instance,

so that the effect
of an additional bedroom on the price of the house also depends
on the size of the house. Likewise, the effect of additional
square footage (e.g. an addition) depends on the number of
bedrooms. Since a model with no interaction terms is a special
case of this model, we may readily test for the presence of these
nonlinearities by examining the significance of the interaction
term’s estimated coefficient. If it is significant, the interaction
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term is needed to capture the relationship.

In presenting multiple regression, we established that
cannot decrease when additional explanatory variables are
added to the model, even if they have no significant effect on

A “longer” model will always appear to be superior to a
“shorter” model, even though the latter is a more parsimonious
representation of the relationship. How can we deal with this
in comparing alternative models, some of which may have
many more explanatory factors than others? We can express the
standard as:

(1)

Since all models with the same dependent variable will have the
same and cannot increase with additional variables,

is a nondecreasing function of An alternative measure,
computed by most econometrics packages, is the so-called
“R-bar-squared” or ‘Adjusted

(2)

where the numerator and denominator of are divided by their
respective degrees of freedom (just as they are in computing
the mean squared measures in the ANOVA F table). For a
given dependent variable, the denominator does not change; but
the numerator, which is may rise or fall as is increased.
An additional regressor uses one more degree of freedom, so
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Prediction and residual analysis

declines; and declines as well (or remains
unchanged). If declines by a larger percentage than the
degrees of freedom, then rises, and vice versa. Adding a
number of regressors with little explanatory power will increase

but will decrease which may even become negative!
does not have the interpretation of a squared correlation

coefficient, nor of a “batting average” for the model. But it
may be used to compare different models of the same dependent
variable. Note, however, that we cannot make statistical
judgments based on this measure; for instance, we can show
that will rise if we add one variable to the model with a

but a of unity is never significant. Thus, an increase
in cannot be taken as meaningful (the coefficients must be
examined for significance) but, conversely, if a “longer” model
has a lower its usefulness is cast in doubt. is also useful
in that it can be used to compare non-nested models–i.e. two
models, neither of which is a proper subset of the other. A
“subset F” test cannot be used to compare these models, since
there is no hypothesis under which the one model emerges from
restrictions on the other, and vice versa. may be used to make
informal comparisons of non-nested models, as long as they have
the same dependent variable. Stata presents the as the “

” on the regression output.

The predictions of a multiple regression are, simply, the
evaluation of the regression line for various values of the
explanatory variables. We can always calculate for each
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observation used in the regression; these are known as “in-
sample” or “ex post” predictions. Since the estimated regression
equation is a function, we can evaluate the function for any
set of values and form the associated point
estimate which might be termed an “out-of-sample” or “ex
ante” forecast of the regression equation. How reliable are
the forecasts of the equation? Since the predicted values are
linear combinations of the values, we can calculate an

for the predicted value. This is the confidence interval
for that is, the average value that would be predicted by
the model for a specific set of values. This may be calculated
after any regression in Stata using the command’s

option: that is, will save
a variable named “ ” containing the standard error of
prediction. The 95% confidence interval will then be, for large
samples, An illustration
of this confidence interval for a simple regression is given
here. Note that the confidence intervals are parabolic, with the
minimum width interval at widening symmetrically as we
move farther from For a multiple regression, the confidence
interval will be narrowest at the multivariate point of means of
the

However, if we want a confidence interval for a specific
value of rather than for the mean of we must also take
into account the fact that a predicted value of will contain
an error, On average, that error is assumed to be zero; that
is, For a specific value of though, there will
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prediction interval for E(y)
Weight (lbs.)

 Displacement (cu. in.)  Fitted values
 plo  phi

1,760 4,840

46.1214

425
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prediction intervals for E(y) and specific value of y
Weight (lbs.)

 Displacement (cu. in.)  plof
 plo  Fitted values

1,760 4,840

−18.748

474.207

i
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standard error of forecast

be an error we do not know its magnitude, but we have
estimated that it is drawn from a distribution with standard
error Thus, the will include this
additional source of uncertainty, and confidence intervals formed
for specific values of will be wider than those associated with
predictions of the mean This standard error of forecast series
can be calculated, after a regression has been estimated, with the

command, specifying the option. If the variable
stdfc is created, the 95% confidence interval will then be, for
large samples, An illustration
of this confidence interval for a simple regression is given here,
juxtaposed with that shown earlier for the standard error of
prediction. As you can see, the added uncertainty associated with
a draw from the error distribution makes the prediction interval
much wider.
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Residual analysis

help regression diagnostics

The OLS residuals are often calculated and analyzed after
estimating a regression. In a purely technical sense, they may be
used to test the validity of the several assumptions that underly
the application of OLS. When plotted, do they appear systematic?
Does their dispersion appear to be roughly constant, or is it larger
for some values than others? Evidence of systematic behavior
in the magnitude of the OLS residuals, or in their dispersion,
would cast doubt on the OLS results. A number of formal tests,
as we will discuss, are based on the residuals, and many graphical
techniques for examining their randomness (or lack thereof) are
available. In Stata,
discusses many of them.

The residuals are often used to test specific hypotheses
about the underlying relationship. For instance, we could fit
a regression of the salaries of employees of XYZ Corp. on
a number of factors which should relate to their salary level:
experience, education, specific qualifications, job level, and
so on. Say that such a regression was run, and the residuals
retrieved. If we now sort the residuals by factors not used to
explain salary levels, such as the employee’s gender or race,
what will we find? Under nondiscrimination laws, there should
be no systematic reason for women to be paid more or less
than men, or blacks more or less than whites, after we have
controlled for these factors. If there are significant differences
between the average residual for, e.g., blacks and whites, then we
would have evidence of “statistical discrimination.” Regression
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equations have often played an important role in investigating
charges of discrimination in the workplace. Likewise, most
towns’ and cities’ assessments of real estate (used to set the tax
levy on that property) are performed by regression, in which the
explanatory factors include the characteristics of a house and
its neighborhood. Since many houses will not have been sold
in the recent past, the regression must be run over a sample of
houses that have been sold, and out-of-sample predictions used
to estimate the appropriate price for a house that has not been
sold recently, based on its attributes and trends in real estate
transactions prices in its neighborhood. A mechanical evaluation
of the fair market value of the house may be subject to error,
but previous methods used–in which knowledgeable individuals
attached valuations based on their understanding of the local real
estate market–are more subjective.
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