
state

tab state, gen(st)
st1, st2, ... st6

Wooldridge, Introductory Econometrics, 2d ed.

Chapter 7: Multiple regression analysis with binary
(dummy) variables

binary variables
dummy variables

We often consider relationships between observed outcomes
and qualitative factors: models in which a continuous dependent
variable is related to a number of explanatory factors, some of
which are quantitative, and some of which are qualitative. In
econometrics, we also consider models of qualitative dependent
variables, but we will not explore those models in this course
due to time constraints. But we can readily evaluate the use
of qualitative information in standard regression models with
continuous dependent variables.

Qualitative information often arises in terms of some coding,
or index, which takes on a number of values: for instance, we
may know in which one of the six New England states each of
the individuals in our sample resides. The data themselves may
be coded with the biliteral “MA”, “RI”, “ME”, etc. How can we
use this factor in a regression equation? In the data, takes
on six distinct values. We must create six , or

, each of which will refer to one state–that is,
that variable will be 1 if the individual comes from that state,
and 0 otherwise. We can generate this set of 6 variables easily in
Stata with the command , which will
create 6 new variables in our dataset: .
Each of these variables are dummies–that is, they only contain 0
or 1 values. If we add up these variables, we get–exactly–a vector
of 1’s, suggesting that we will never want to use all 6 variables
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in a regression (since by knowing the values of any 5...) We may
also find the proportions of each state’s citizens in our sample
very easily: will give the descriptive statistics of
all 6 variables, and the mean of each dummy is the sample
proportion living in that state.

How can we use these dummy variables? Say that we wanted
to know whether incomes differed significantly across the 6-state
region. What if we regressed on of these
dummies?

(1)
where I have suppressed the observation subscripts. What are
the regression coefficients in this case? is the average income
in the 6 state–the dummy for which is excluded from the
regression. is the difference between the income in state 1 and
the income in state 6. is the difference between the income in
state 2 and the income in state 6, and so on. What is the ordinary
“ANOVA F” in this context–the test that all the slopes are equal
to zero? Precisely the test of the null hypothesis:

(2)
versus the alternative that not all six of the state means are the
same value. It turns out that we can test this same hypothesis by
excluding any one of the dummies, and including the remaining
five in the regression. The coefficients will differ, but the

value of the ANOVA F will be identical for any of these
regressions. In fact, this regression is an example of “classical
one-way ANOVA”–testing whether a qualitative factor (in this

2



| |

( + )

6

0 1

0 1

st
� . st

� �

lincom

state gen nen = (state==“VT”
state==“NH” state==“ME”)

generate

case, state of residence) explains a significant fraction of the
variation in income.

What if we wanted to generate point and interval estimates
of the state means of income? Then it would be most convenient
to reformulate (1) by including all 6 dummies, and removing the
constant term. This is, algebraically, the same regression. The
coefficient on the now-included will be precisely that reported
above as The coefficient reported for will be precisely

from the previous model, and so on. But now those
coefficients will be reported with confidence intervals around the
state means. Those statistics could all be calculated if you only
estimated (1), but to do so you would have to use for
each coefficient. Running this alternative form of the model is
much more convenient for estimating the state means in point and
interval form. But to test the hypothesis (2), it is most convenient
to run the original regression–since then the ANOVA F performs
the appropriate test with no further ado.

What if we fail to reject the ANOVA F null? Then it appears
that the qualitative factor “state” does not explain a significant
fraction of the variation in income. Perhaps the relevant
classification is between northern, more rural New England states
(NEN) and southern, more populated New England states (NES).
Given the nature of dummy variables, we may generate these
dummies two ways. We can express the Boolean condition in
terms of the variable:

. This expression, with
parens on the right hand side of the statement,
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evaluates that expression and returns true (1) or false (0). The
vertical bar ( ) is Stata’s OR operator; since every person in
the sample lives in one and only one state, we must use OR to
phrase the condition that they live in northern New England.
But there is another way to generate this dummy, given
that we have defined for the regression above.
Let’s say that Vermont, New Hampshire and Maine have been
coded as and , respectively. We may just

, since the sum of mutually exclusive
and exhaustive dummies must be another dummy. To check, the
resulting will have a mean equal to the percentage of the
sample that live in northern New England; the equivalent
dummy will have a mean for southern New England residents;
and the sum of those two means will of course be 1. We can then
run a simplified form of our model as ; the
ANOVA F statistic for that regression tests the null hypothesis
that incomes in northern and southern New England do not differ
significantly. Since we have excluded nes, the “slope” coefficient
on measures the amount by which northern New England
income differs from southern New England income; the mean
income for southern New England is the constant term. If we
want point and interval estimates for those means, we should

.

In the above examples, we have estimated “pure ANOVA”
models–regression models in which all of the explanatory
variables are dummies. In econometric research, we often want
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to combine quantitative and qualitative information, including
some regressors that are measurable and others that are dummies.
Consder the simplest example: we have data on individuals’
wages, years of education, and their gender. We could create
two gender dummies, male and female, but we will only need
one in the analysis: say, female. We create this variable as

. We can then estimate the
model:

(3)
The constant term in this model now becomes the wage for a

male with zero years of education. Male wages are predicted as
while female wages are predicted as

The gender differential is thus How would we test for the
existence of “statistical discrimination”–that, say, females with
the same qualifications are paid a lower wage? This would be

The statistic for will provide us with this
hypothesis test. What is this model saying about wage structure?
Wages are a linear function of the years of education. If
is significantly different than zero, then there are two “wage
profiles”–parallel lines in space, each with a slope
of , with their intercepts differing by

What if we wanted to expand this model to consider the
possibility that wages differ by both gender and race? Say that
each worker is classified as race=white or race=black. Then
we could to create the
dummy variable, and add it to (3). What, now, is the constant
term? The wage for a white male with zero years of education. Is
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there a significant race differential in wages? If so, the coefficient
which measures the difference between white and black

wages, ceteris paribus, will be significantly different from zero.
In space, the model can be represented as four
parallel lines, with each intercept labelled by a combination of
gender and race.

What if our racial data classified each worker as white, Black
or Asian? Then we would run the regression:

(4)
where the constant term still refers to a white male. In this model,

measures the difference between black and white wages,
ceteris paribus, while measures the difference between Asian
and white wages. Each can be examined for significance. But
how can we determine whether the qualitative factor, ,
affects wages? That is a joint test, that both and
and should be conducted as such. We should not make judgments
based on the individual dummies’ coefficients, but should rather
include both race variables if the null is rejected, or remove them
both if it is not. When we examine a qualitative factor, which
may give rise to a number of dummy variables, they should be
treated as a group. For instance, we might want to modify (3) to
consider the effect of state of residence:

(5)
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where we include any 5 of the 6 variables designating the
New England states. The test that wage levels differ significantly
due to state of residence is the joint test that
A judgment concerning the relevance of state of residence should
be made on the basis of this joint test (an F-test with 5 numerator
degrees of freedom).

Note that if the dependent variable was measured in log form,
the coefficients on dummies would be interpreted as percentage
changes; if (5) was respecified to place as the dependent
variable, the coefficient would measure the percentage return
to education (how many percent does the wage change for each
additional year of education), while the coefficient would
measure the (approximate) percentage difference in wage levels
between females and males, ceteris paribus. The state dummies
would, likewise, measure the percentage difference in wage
levels between that state and the excluded state (number 6).

We must be careful when working with variables that have
an ordinal interpretation, and are thus coded in numeric form, to
treat them as ordinal. For instance, if we model the interest rate
corporations must pay to borrow ( as a function of their
credit rating, we consider that Moody’s and Standard and Poor’s
assign credit ratings somewhat like grades:

et cetera. Those could be coded as 1,2,...,7. Just as
we can agree that an “A” grade is better than a “B”, a triple-A
bond rating results in a lower borrowing cost than a double-A
rating. But while GPAs are measured on a clear four-point
scale, the bond ratings are merely ordinal, or ordered: everyone
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agrees on the rating scale, but the differential between
borrowers’ rates and borrowers’ rates might be much smaller
than that between and borrowers’ rates: especially the case
if denotes “below investment grade”, which will reduce the
market for such bonds. Thus, although we might have a numeric
index corresponding to we should not assume that

is constant; we should not treat as a
cardinal measure. Clearly, the appropriate way to proceed is to
create dummy variables for each rating class, and include all but
one of those variables in a regression of on bond rating
and other relevant factors. For instance, if we leave out the
dummy, all of the ratings class dummies’ coefficients will then
measure the degree to which those borrowers’ bonds bear higher
rates than those of borrowers. But we could just as well
leave out the rating class dummy, and measure the effects of
ratings classes relative to the worst credits’ cost of borrowing.

Just as continuous variables may be interacted in regres-
sion equations, so can dummy variables. We might, for instance,
have one set of dummies indicating the gender of respon-
dents ( and another set indicating their marital status
( We could regress on these two dummies:

which gives rise to the following classification of mean
wages, conditional on the two factors (which is thus a classic
“two-way ANOVA” setup):
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We assume that the two effects, gender and marital status,
have independent effects on the dependent variable. Why?
Because this joint distribution is modelled as the product of the
marginals. What is the difference between male and female
wages? irrespective of marital status. What is the difference
between unmarried and married wages? irrespective of
gender.

If we were to relax the assumption that gender and marital
status had independent effects on wages, we would want to
consider their . Since there are only two categories
of each variable, we only need one interaction term, to
capture the possible effects. As above, that term could be
generated as a Boolean (noting that is Stata’s AND operator):

, or we could
generate it algebraically, as . In
either case, it represents the intersection of the sets. We then add
a term, to the equation, which then appears as an additive
constant in the lower right cell of the table. Now, if the coefficient
on is significantly nonzero, the effect of being female on the
wage differs, depending on marital status, and vice versa. Are the
interaction effects important–that is, does the joint distribution
differ from the product of the marginals? That is easily discerned,
since if that is so will be significantly nonzero.

Two extensions of this framework come to mind. Sticking
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with two-way ANOVA (considering two factors’ effects),
imagine that instead of marital status we consider

To run the model without interactions,
we would include two of these dummies in the regression–say,

and ; the constant term would be the mean wage of
a white male (the excluded class). What if we wanted to include
interactions? Then we would define and and
include those two regressors as well. The test for the significance
of interactions is now a joint test that these two coefficients are
jointly zero.

A second extension of the interaction concept is far more
important: what if we want to consider a regular regression, on
quantitative variables, but want to allow for different slopes for
different categories of observations? Then we create interaction
effects between the dummies that define those categories and the
measured variables. For instance,

Here, we are in essence estimating two separate regressions
in one: a regression for males, with an intercept of and a slope
of and a regression for females, with an intercept of
and a slope of Why would we want to do this? We
could clearly estimate the two separate regressions, but if we did
that, we could not conduct any tests (e.g. do males and females
have the same intercept? The same slope?). If we use interacted
dummies, we can run one regression, and test all of the special
cases of this model which are nested within: that the slopes are
the same, that the intercepts are the same, and the “pooled” case
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in which we need not distinguish between males and females.
Since each of these special cases merely involves restrictions on
this general form, we can run this equation and then just conduct
the appropriate tests.

If we extended this logic to include as defined above,
as an additional factor, we would include two of the race dummies
(say, and and interact each with This would
be a model without interactions–where the effects of gender
and race are considered to be independent–but it would allow
us to estimate different regression lines for each combination
of gender and race, and test for the importance of each factor.
These interaction methods are often used to test hypotheses about
the importance of a qualitative factor–for instance, in a sample
of companies from which we are estimating their profitability,
we may want to distinguish between companies in different
industries, or companies that underwent a significant merger, or
companies that were formed within the last decade, and evaluate
whether their expenditures on R&D or advertising have the same
effects across those categories.

All of the necessary tests involving dummy variables
and interacted dummy variables may be easily specified and
computed, since models without interacted dummies (or without
certain dummies in any form) are merely restricted forms of
more general models in which they appear. Thus, the standard
“subset F” testing strategy that we have discussed for the testing
of joint hypotheses on the coefficient vector may be readily
applied in this context. The text describes how a “Chow test”
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may be formulated by running the general regression, running
a restricted form in which certain constraints are imposed, and
performing a computation using their sums of squared errors; this
computation is precisely that done with Stata’s command.
The advantage of setting up the problem for the command
is that any number of tests (e.g. above, for the importance of
gender, or for the importance of race) may be conducted after
estimating a single regression; it is not necessary to estimate
additional regressions to compute any possible “subset F” test
statistic, which is what the “Chow test” is doing.
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