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Wooldridge, Introductory Econometrics, 2d ed.

Chapter 8: Heteroskedasticity

homoskedasticity

heteroskedastic

weighted
least squares

In laying out the standard regression model, we made the
assumption of of the regression error term:
that its variance is assumed to be constant in the population,
conditional on the explanatory variables. The assumption of
homoskedasticity fails when the variance changes in different
segments of the population: for instance, if the variance of the
unobserved factors influencing individuals’ saving increases
with their level of income. In such a case, we say that the error
process is . This does not affect the optimality
of ordinary least squares for the computation of point estimates–
and the assumption of homoskedasticity did not underly our
derivation of the OLS formulas. But if this assumption is not
tenable, we may not be able to rely on the interval estimates of
the parameters–on their confidence intervals, and statistics
derived from their estimated standard errors. Indeed, the Gauss-
Markov theorem, proving the optimality of least squares among
linear unbiased estimators of the regression equation, does not
hold in the presence of heteroskedasticity. If the error variance is
not constant, then OLS estimators are no longer BLUE.

How, then, should we proceed? The classical approach is to
test for heteroskedasticity, and if it is evident, try to model it. We
can derive modified least squares estimators (known as

) which will regain some of the desirable properties
enjoyed by OLS in a homoskedastic setting. But this approach
is sometimes problematic, since there are many plausible ways
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,robust regress

heteroskedasticity of unknown form
robust

in which the error variance may differ in segments of the
population–depending on some of the explanatory variables in
our model, or perhaps on some variables that are not even in the
model. We can use weighted least squares effectively if we can
derive the correct weights, but may not be much better off if we
cannot convince ourselves that our application of weighted least
squares is valid.

Fortunately, fairly recent developments in econometric the-
ory have made it possible to avoid these quandaries. Methods
have been developed to adjust the estimated standard errors in an
OLS context for –to de-
velop what are known as standard errors. Most statistical
packages now support the calculation of these robust standard
errors when a regression is estimated. If heteroskedasticity is a
problem, the robust standard errors will differ from those calcu-
lated by OLS, and we should take the former as more appropriate.
How can you compute these robust standard errors? In Stata, one
merely adds the option to the command.
The ANOVA F-table will be suppressed (as will the adjusted
measure), since neither is valid when robust standard errors are
being computed, and the term “robust” will be displayed above
the standard errors of the coefficients to remind you that robust
errors are in use.

How are robust standard errors calculated? Consider a model
with a single explanatory variable. The OLS estimator can be
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written as:

This gives rise to an estimated variance of the slope
parameter:

(1)

This expression reduces to the standard expression from
Chapter 2 if for all observations:

But if this simplification cannot be performed on (1).
How can we proceed? Halbert White showed (in a famous article
in , 1980) that the unknown error variance of the
observation, can be consistently estimated by that is, by
the square of the OLS residual from the original equation. This
enables us to compute robust variances of the parameters–for
instance, (1) can now be computed from OLS residuals, and its
square root will be the robust standard error of This carries
over to multiple regression; in the general case of explanatory
variables,

(2)

where is the square of the OLS residual, and is
the residual from regressing variable on all other ex-
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heteroskedasticity-robust standard error

heteroskedasticity-robust statistic

Testing for heteroskedasticity

planatory variables. The square root of this quantity is the
, or the “White” stan-

dard error, of the estimated coefficient. It may be used to
compute the , which then
will be valid for tests of the coefficient even in the presence
of heteroskedasticity of unknown form. Likewise, -statistics,
which would also be biased in the presence of heteroskedasticity,
may be consistently computed from the regression in which the
robust standard errors of the coefficients are available.

If we have this better mousetrap, why would we want to
report OLS standard errors–which would be subject to bias, and
thus unreliable, if there is a problem of heteroskedasticity? If
(and only if) the assumption of homoskedasticity is valid, the
OLS standard errors are preferred, since they will have an exact

distribution at any sample size. The application of robust
standard errors is justified as the sample size becomes large. If
we are working with a sample of modest size, and the assumption
of homoskedasticity is tenable, we should rely on OLS standard
errors. But since robust standard errors are very easily calculated
in most statistical packages, it is a simple task to estimate both
sets of standard errors for a particular equation, and consider
whether inference based on the OLS standard errors is fragile. In
large data sets, it has become increasingly common practice to
report the robust standard errors.

We may want to demonstrate that the model we have
estimated does not suffer from heteroskedasticity, and justify

4



|

�

k

i i

i k k

i

: ( ) =

= + + + +

Breusch-Pagan

0 1 2
2

2 2

2
0 1 1 2 2

2

2

H V ar u x , x , ..., x �

e , � .

e d d x d x ...d x v

R
F

e

reliance on OLS and OLS standard errors in this context. How
might we evaluate whether homoskedasticity is a reasonable
assumption? If we estimate the model via standard OLS, we may
then base a test for heteroskedasticity on the OLS residuals. If the
assumption of homoskedasticity, conditional on the explanatory
variables, holds, it may be written as:

And a test of this null hypothesis can evaluate whether the
variance of the error process appears to be independent of the
explanatory variables. We cannot observe the variances of each
observation, of course, but as above we can rely on the squared
OLS residual, to be a consistent estimator of One of
the most common tests for heteroskedasticity is derived from
this line of reasoning: the test. The BP test
involves regressing the squares of the OLS residuals on a set
of variables–such as the original explanatory variables–in an
auxiliary regression:

(3)
If the magnitude of the squared residual–a consistent

estimator of the error variance of that observation–is not related
to any of the explanatory variables, then this regression will
have no explanatory power: its will be small, and its ANOVA

statistic will indicate that it does not explain any meaningful
fraction of the variation of around its own mean. (Note
that although the OLS residuals have mean zero, and are in
fact uncorrelated by construction with each of the explanatory
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variables, that does not apply to their squares). The Breusch-
Pagan test can be conducted by either the ANOVA statistic
from (3), or by a large-sample form known as the Lagrange
multiplier statistic: from the auxiliary regression.
Under of homoskedasticity, The Breusch-Pagan
test is not built in to Stata, but it may be easily installed in any
copy of Stata. Give the command , and click
on the link that appears (Baum, Cox, and Wiggins, ,
2000). As long as you are connected to the Internet, the
routine will be downloaded and properly installed in Stata. This
only need be done once. The command may then be used:

which would evaluate the residuals from the regression
for heteroskedasticity, with respect to the original explanatory
variables. The null hypothesis is that of homoskedasticity; if
a small value is received, the null is rejected in favor of
heteroskedasticity (that is, the auxiliary regression (which is not
shown) had a meaningful amount of explanatory power). The

routine displays the statistic and its value versus
the distribution. If a rejection is received, one should rely on
robust standard errors for the original regression. Although we
have demonstrated the test by employing the original
explanatory variables, the test may be used with any set of
variables–including those not in the regression, but suspected of
being systematically related to the error variance, such as the size
of a firm, or the wealth of an individual.
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The Breusch-Pagan test is a special case of
. The sort of heteroskedasticity

that will damage OLS standard errors is that which involves
correlations between squared errors and explanatory variables.
White’s test takes the list of explanatory variables {
and augments it with squares and cross products of each of these
variables. The White test then runs an auxiliary regression of

on the explanatory variables, their squares, and their cross
products. Under the null hypothesis, none of these variables
should have any explanatory power, if the error variances are
not systematically varying. The White test is another test,
of the form, but involves a much larger number of
regressors in the auxiliary regression. In the example above,
rather than just including we would
also include

and : 9 regressors in all,
giving rise to a test statistic with a distribution.

How can you perform White’s test? The same installation
procedure that gave you will also install the Stata
command (also published by Baum, Cox, and
Wiggins, , 2000), which will automatically generate
these additional variables and perform the test after a
command. Since Stata knows what explanatory variables were
used in the regression, you need not specify them; just give the
command after .
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sav inc

gen sd=sqrt(inc)
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gen kon=1/sd
gen winc=inc/sd
regress wsav kon winc,noc

winc

As an alternative to using heteroskedasticity-robust standard
errors, we could transform the regression equation if we had
knowledge of the form taken by heteroskedasticity. For instance,
if we had reason to believe that:

where is some function of the explanatory variables
that could be made explicit (e.g. we could
use that information to properly specify the correction for
heteroskedasticity. What would this entail? Since in this case we
are saying that then the standard deviation
of conditional on is Thus could be used
to perform –a technique in which we
transform the variables in the regression, and then run OLS on
the transformed equation. For instance, if we were estimating
a simple savings function from the dataset , in
which is regressed on , and believed that there might
be heteroskedasticity of the form above, we would perform the
following transformations:

Note that there is no constant term in the weighted least
squares (WLS) equation, and that the coefficient on still
has the same connotation–that of the marginal propensity to save.
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In this case, though, we might be thankful that Stata (and most
modern packages) have a method for estimating WLS models by
merely specifying the form of the weights:

In this case, the “aw” indicates that we are using “analytical
weights”–Stata’s term for this sort of weighting–and the ana-
lytical weight is specified to be the inverse of the observation
variance (not its standard error). If you run this regression, you
will find that its coefficient estimates and their standard errors
are identical to those of the transformed equation–with less has-
sle than the latter, in which the summary statistics (F-statistic,

predicted values, residuals, etc.) pertain to the transformed
dependent variable ( ) rather than the original variable.

The use of this sort of WLS estimation is less popular
than it was before the invention of “White” standard errors; in
theory, the transformation to homoskedastic errors will yield
more attractive properties than even the use of “White” standard
errors, conditional on our proper specification of the form of the
heteroskedasticity. But of course we are not sure about that, and
imprecise treatment of the errors may not be as attractive as the
less informed technique of using the robust estimates.

One case in which we do know the form of the heteroskedas-
ticity is that of grouped data–in which the data we are using has
been aggregated from microdata into groups of different sizes.
For instance, a dataset with 50 states’ average values of income,
family size, etc. calculated from a random sample of the U.S.
population will have widely varying precision in those average
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values. The mean values for a small state will be computed from
relatively few observations, whereas the counterpart values for a
large state will be more precisely estimated. Since we know that
the standard error of the mean is we recognize how this
effect will influence the precision of the estimates. How, then,
can we use this dataset of 50 observations while dealing with
the known heteroskedasticity of the states’ errors? This too is
weighted least squares, where the weight on the individual state
should be its population. This can be achieved in Stata by spec-
ifying “frequency weights”–a variable containing the number of
observations from which each sample observation represents. If
we had state-level data on saving, income and population, we
might to achieve
this weighting.

One additional observation regarding heteroskedasticity. We
often see, in empirical studies, that an equation has been specified
in some ratio form–for instance, with per capita dependent and
independent variables for data on states or countries, or in terms
of financial ratios for firm- or industry-level data. Although
there may be no mention of heteroskedasticity in the study, it is
very likely that these ratio forms have been chosen to limit the
potential damage of heteroskedasticity in the estimated model.
There can certainly be heteroskedasticity in a per-capita form
regression on country-level data, but it is much less likely to
be a problem than it would be if, say, the levels of GDP were
used in that model. Likewise, scaling firms’ values by total
assets, or total revenues, or the number of employees will tend
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to mitigate the difficulties caused by extremes in scale between
large corporations and corner stores. Such models should still be
examined for their errors’ behavior, but the popularity of the ratio
form in these instances is an implicit consideration of potential
heteroskedasticity.
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