
Wooldridge, Introductory Econometrics, 2d ed.

Chapter 10: Basic regression analysis with time series
data

dynamic

We now turn to the analysis of time series data. One of
the key assumptions underlying our analysis of cross-sectional
data will prove to be untenable when we consider time series
data; thus, we separate out the issues of time series modelling
from that of cross sections. How does time series data differ?
First of all, it has a natural ordering, that of calendar time at
some periodic frequency. Note that we are not considering here
a dataset in which some of the variables are dated at a different
point in time: e.g. a survey measuring this year’s income, and
(as a separate variable) last year’s income. In time series data
sets, the observations are dated, and thus we need to respect
their order, particularly if the model we consider has a
specification (involving variables from more than one point in
time). What is a time series? Merely a sequence of observations
on some phenomenon observed at regular intervals. Those
intervals may correspond to the passage of calendar time (e.g.
annual, quarterly, monthly data) or they may reflect an economic
process that is irregular in calendar time (such as business-daily
data). In either case, our observations may not be available for
every point in time (for instance, there are days when a given
stock does not trade on the exchange).

A second important difference between cross-sectional and
time series data: with the former, we can reaonably assume that
the sample is drawn randomly from the appropriate population,
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and could conceive of one or many alternate samples constructed
from the same population. In the case of time series data, we
consider the sequence of events we have recorded as a
of the underlying process. We only have one realization available,
in the sense that history played out a specific sequence of events.
In an alternate universe, the Yankees lost games 4 and 5 in
regulation innings, and the Diamondbacks took the World
Series. Randomness plays a role, of course, just as it does in
cross-sectional data; we do not know what will transpire until it
happens, so that time series data are random variables.
We often speak of a time series as a , or
time series process, focusing on the concept that there is some
mechanism generating that process, with a random component.

Models used in a time series context can often be grouped
into those sharing common features. By far the simplest is a

model, such as
(1)

We may note that this model is the equivalent of the cross-
sectional regression model, with the subscript in the cross
section replaced by in the time series context. Each observation
is modeled as depending only on values of
the explanatory variables. This structure implies that all of the
interactions among the variables of the model are assumed to take
place immediately–or, taking the frequency into account, within
the same time period. Thus, such a model might be reasonable
when applied to annual data, where the length of the observation
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interval is long enough to allow behavioral adjustments to take
place. If we applied the same model to higher-frequency data, we
might consider that assumption inappropriate; we might consider,
for instance, that a tax cut would not be fully reflected by higher
retail sales in the same month that it took effect. An example
of such a structure that appears in many textbooks is the static
Phillips curve:

(2)
where is this year’s inflation rate, and is this year’s
unemployment rate. Stating the model in this form not only
implies that the level of unemployment is expected to affect the
rate of inflation (presumably with a negative sign), but also that
the entire effect of changes in unemployment will be reflected in
inflation within the observation interval (e.g. one year).

In many contexts, we find a static model inadequate to reflect
what we consider to be the relationship between explanatory
variables and those variables we wish to explain. For instance,
economic theory surely predicts that changes in interest rates
(generated by monetary policy) will have an effect on firms’
capital investment spending. At lower interest rates, firms will
find more investment projects with a positive expected net
present value. But since it takes some time to carry out these
projects–equipment must be ordered, delivered, and installed,
or new factories must be built and equipped–we would not
expect that quarterly investment spending would reflect the
same quarter’s (or even the previous quarter’s) interest rates.
Presumably interest rates affect capital investment spending with
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a lag, and we must take account of that phenomenon. If we were
to model capital investment with a static model, we would be
omitting relevant explanatory variables: the prior values of the
causal factors. These omissions would cause our estimates of the
static model to be biased and inconsistent. Thus, we must use
some form of model to express the relationship
between current and past values of the explanatory variables and
the outcome. Distributed lag models may take a finite number
of lagged values into account (thus the Finite Distributed Lag
model, or FDL) or they may use an infinite distributed lag: e.g.
all past values of the variables. When an infinite DL model is
specified, some algebraic sleight-of-hand must be used to create
afinite set of regressors.

A simple FDL model would be

(3)
in which we consider the fertility rate in the population as a
function of the personal exemption, or child allowance, over this
year and the past two years. We would expect that the effect
of a greater personal exemption is positive, but realistically we
would not expect the effect to be (only) contemporaneous. Given
that there is at least a 9-month lag between the decision and the
recorded birth, we would expect such an effect (if it exists) to
be largely concentrated in the and coefficients. Indeed,
we might consider whether additional lags are warranted. In
this model, is the , or of the
personal exemption, measuring the contemporaneous change.

4



�� �t t t

1 2 3

1

1

?

( + + )
)

� )

∂f/∂pe
pe

pe � � � .
�

y y y

steady state

long-run multiplier

How do we calculate That (total) derivative must be
considered as the effect of a one-time change in that raises
the exemption by one unit and leaves it permanently higher. It
may be computed by evaluating the of the model:
that with all time subscripts dropped. Then it may be seen that
the total effect, or , of a permanent change
in is In this specification, we presume that
there is an impact effect (allowing for a nonzero value of
but we are imposing the restriction that the entire effect will
be felt within the two year lag. This is testable, of course, by
allowing for additional lag terms in the model, and testing for
their joint significance. However the analysis of individual lag
coefficients is often hampered–especially at higher frequencies
such as quarterly and monthly data–by high autocorrelation in
the series. That is, the values of the series are closely related
to each other over time. If this is the case, then many of the
individual coefficients in a FDL regression model may not be
distinguishable from zero. This does not imply, though, that the
sum of those coefficients (i.e. the long run multiplier) will be
imprecisely estimated. We may get a very precise value for that
effect, even if its components are highly intercorrelated.

One additional concern that will apply in estimating FDL
models, especially when the number of observations is limited.
Each lagged value included in a model results in the loss of one
observation in the estimation sample. Likewise, the use of a
first difference ( on either the left or right side
of a model results in the loss of one observation. If we have a
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long time series, we may not be too concerned about this; but
if we were working with monthly data, and felt it appropriate
to consider 12 lags of the explanatory variables, we would lose
the first year of data to provide these starting values. Computer
programs such as Stata may be set up to recognize the time series
nature of the data (in Stata, we use the command to
identify the date variable, which must contain the calendar dates
over which the data are measured), and construct lags and first
differences taking these constraints into account (for instance, a
lagged value of a variable will be set to a missing value where it
is not available). In Stata, once a dataset has been established as
time series, we may use the operators and to refer to
the lag, difference or lead of a variable, respectively: so
is last period’s is the first difference, and
is next year’s value. These operators can also consider higher
lags, so is the second lag, and refers to
the first four lags, using standard Stata “numlist” notation (

for details).

How must we modify the assumptions underlying OLS to
deal with time series data? First of all, we assume that there
is a linear model linking with a set of explanatory variables,

with an additive error for a sample of It
is useful to consider the explanatory variables as being arrayed in
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For each where is the matrix
of explanatory variables.
Proposition 1

contemporaneous exogeneity

strictly exogenous.

autocorrelated

a matrix ... ...
where like a spreadsheet, the rows

are the observations (indexed by time) and the columns are the
variables (which may actually be dated differently: e.g. may
actually be the lag of etc.) To proceed with the development
of the finite sample properties of OLS, we assume:

This is a key assumption, and quite a strong one: it states
not only that the error is contemporaneously uncorrelated with
each of the explanatory variables, but also that the error is
assumed to be uncorrelated with elements of at every point in
time. The weaker statement of ,

is analogous to the assumption that
we made in the cross-sectional context. But this is a stronger
assumption, for it states that the elements of , past, present,
and future, are independent of the errors: or that the explanatory
variables in are It is important to note
that this assumption, by itself, says nothing about the correlations
over time among the explanatory variables (or their correlations
with each other), nor about the possibility that successive
elements of may be correlated (in which case we would say
that is ). The assumption only states that the
distributions of and are independent.

7



�y
x
x,

x.

x
x

x

X

X

dynamic

perfect collinearity

What might cause this assumption to fail? Clearly, omitted
variables and/or measurement error are likely causes of a
correlation between the regressors and errors. But in a time
series context there are other likely suspects. If we estimate a
static model, for instance, but the true relationship is –in
which lagged values of some of the explanatory variables also
have direct effects on then we will have a correlation between
contemporaneous and the error term, since it will contain the
effects of lagged which is likely to be correlated with current

So this assumption of strict exogeneity has strong implications
for the correct specification of the model (in this case, we would
need to specify a FDL model). It also implies that there cannot be
correlation between current values of the error process and future

values–something that would be likely in a case where some of
the variables are policy instruments. For instance, consider a
model of farmers’ income, dependent on (among other factors)
on government price supports for their crop. If unprecedented
shocks (such as a series of droughts), which are unpredictable
and random effects of weather on farmers’ income, trigger an
expansion of the government price support program, then the
errors today are correlated with future values.

The last assumption we need is the standard assumption
that the columns of are linearly independent; that is, there
are no exact linear relations, or , among the
regressors.

With these assumptions in hand, we can demonstrate that
the OLS estimators are unbiased, both conditional on and
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unconditionally. The random assumption that allowed us to
prove unbiasedness in the cross-sectional context has been
replaced by the assumption of strict exogeneity in the time
series context. We now turn to the interval estimates. As
previously, we assume that the error variance, conditioned on

is homoskedastic: In a
time series context, this assumption states that the error variance
is constant over time, and in particular not influenced by the

variables. In some cases, this may be quite unrealistic. We
now add an additional assumption, particular to time series
analysis: that there is no in the errors:

This assumption
states that the errors are not –correlated with one
another–so that there is no systematic pattern in the errors over
time. This may clearly be violated, if the error in one period (for
instance, the degree to which the actual level of falls short of
the desired level) is positively (or negatively) related to the error
in the previous period. Positive autocorrelation can readily arise
in a situation where there is partial adjustment to a discrepancy,
whereas negative autocorrelation is much more likely to reflect
“overshooting,” in which a positive error (for instance, an overly
optimistic forecast) is followed by a negative error (a pessimistic
forecast). This assumption has nothing to do with the potential
autocorrelation within the matrix; it only applies to the error
process. Why is this assumption only relevant for time series?
In cross sections, we assume random sampling, whereby each
observation is independent of every other. In time series, the
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structural change

sequence of the observations makes it likely that if independence
is violated, it will show up in successive observations’ errors.

With these additional assumptions, we may state the Gauss-
Markov theorem for OLS estimators of a time series model (OLS
estimators are BLUE), implying that the variances of the OLS
estimators are given by:

(4)

where is the total sum of squares of the explanatory
variable, and is the from a regression of variable on the
other elements of Likewise, the unknown parameter may
be replaced by its consistent estimate, identical to
that discussed previously.

As in our prior derivation, we will assume that the errors are
normally distributed: If the above assumptions
hold, then the standard statistics and statistics we have
applied in a cross-sectional context will also be applicable in
time series regression models.

We find that a logarithmic transformation is very commonly
used in time series models, particularly with series that reflect
stocks, flows, or prices (rather than rates). Many models are
specified with the first difference of log( ), implying that the
dependent variable is the growth rate of Dummy variables
are also very useful to test for . We may
have information that indicates that unusual events
were experienced in particular time periods–wars, strikes, or

10



event studies

tin()
tsset

gen prefloat =
(tin(1959q1,1971q3))

presidential elections, or a market crash. In the context of
a dynamic model, we do not want to merely exclude those
observations, since that would create episodes of missing data.
Instead, we can “dummy” the period of the event, which then
allows for an intercept shift (or, with interactions, for a slope
shift) during the unusual period. The tests for significance of
the dummy coefficients permit us to identify the importance of
the period, and justify its special treatment. We may want to
test that the relationship between inflation and unemployment
(the “Phillips curve”) is the same in Republican and Democratic
presidential administrations; this may readily be done with a
dummy for one party, added to the equation and interacted to
allow for a slope change between the two parties’ equations.
Dummy variables are also used widely in financial research, to
conduct –models in which a particular event, such
as the announcement of a takeover bid, is hypothesized to trigger
“abnormal” returns to the stock. In this context, high-frequency
(e.g. daily) data on stock returns are analyzed, with a dummy set
equal to 1 on and after the date of the takeover bid announcement.
A test for the significance of the dummy coefficient allows us to
analyze the importance of this event.

Creation of these dummies in Stata is made easier by
the function (read: tee-in). If the data set has been
established as a time series via , you may refer to
natural time periods in generating new variables or specifying
the estimation sample. For instance,

will generate a dummy for
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that pre-Smithsonian period, and a model may be estimated
over a subset of the observations via

In working with time series data, we are often concerned with
series measured as index numbers, such as the Consumer Price
Index, GDP Deflator, Index of Industrial Production, etc. The
price series are often needed to generate real values from nominal
magnitudes. The usual concerns must be applied in working with
these index number series, some of which have been rebased (e.g.
from 1982=100 to 1987=100) and must be adjusted accordingly
for a new base period and value. Interesting implications arise
when we work with “real” magnitudes, expressed in logs: for
instance, labor supply is usually modelled as depending on

the real wage, If we express these variables in logs, the

log of the real wage becomes Regressing the
log of hours worked on a single variable, , is a
restricted version of a regression in which the two variables are
entered separately. In that regression, the coefficients will almost
surely differ in their absolute value. But economic theory states
that only the real wage should influence workers’ decisions;
they should not react to changes in its components (e.g. they
should not be willing to supply more hours of labor if offered a
higher nominal wage that only makes up for a decrease in their
purchasing power).
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Many economic time series are –growing over time.
One of the reasons for very high values in many time series
regressions is the common effect of time on many of the variables
considered. This brings a challenge to the analysis of time series
data, since when we estimate a model in which we consider the
effect of several causal factors, we must be careful to account
for the co-movements that may merely reflect trending behavior.
Many macro series reflect upward trends; some, such as the
cost of RAM for personal computers, exhibit strong downward
trends. We can readily model a by merely running a
regression of the series on in which the slope coefficient is then

To create a time trend in Stata, you can just
, where is the observation number. It does not

matter where a trend starts, or the units in which it is expressed;
a trend is merely a series that changes by a fixed amount per
time period. A linear trend may prove to be inadequate for many
economic series, which we might expect on a theoretical basis to
exhibit constant growth, not constant increments. In this case, an

may readily be estimated (for strictly positive
by regressing on The slope coefficient is then a direct

estimate of the percentage growth rate per period. We could
also use a polynomial model, such as a ,
regressing the level of on and

Nothing about trending economic variables violates our basic
assumptions for the estimation of OLS regression models with
time series data. However, it is important to consider whether
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significant trends exist in the series; if we ignore a common
trend, we may be estimating a , in which
both and the variables appear to be correlated because of the
influence on both of an omitted factor, the passage of time. We
can readily guard against this by including a time trend (linear or
quadratic) in the regression; if it is needed, it will appear to be a
significant determinant of In some cases, inclusion of a time
trend can actually highlight a meaningful relationship between

and one or more variables: since their coefficients are now
estimates of their co-movement with –that is,
net of the trend in

We may link the concept of a regression inclusive of trend to
the common practice of analyzing data. Rather than
regressing on and we could remove the trend from and
each of the variables in How? Regress each variable on
and save the residuals (if desired, adding back the original mean
of the series). This is then the detrended call it and the
detrended explanatory variables (not including a trend term).
If we now estimate the regression of on we will find that
the slope coefficients’ point and interval estimates are exactly
equal to those from the original regression of on and Thus,
it does not matter whether we first detrend the series, and run the
regression, or estimate the regression with trend included. Those
are equvalent strategies, and since the latter is less burdensome,
it may be preferred by the innately lazy researcher.

Another issue that may often arise in time series data of
quarterly, monthly or higher frequency is . Some
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economic variables are provided in form–
in databanks and statistical publications, the acronym SAAR
(seasonally adjusted at annual rate) is often found. Other
economic series are provided in their raw form–often labelled
NSA, or not seasonally adjusted. Seasonal factors play an
important role in many series. Naturally, they reflect the seasonal
patterns in many commodities’ measures: agricultural prices
differ between harvest periods and out-of-season periods, fuel
prices differ due to winter demand for oil and natural gas, or
summer demand for gasoline. But there are seasonal factors in
many series we might consider with a more subtle interpretation.
Retail sales, naturally, are very high in the holiday period: but so
is the demand for cash, since shoppers and gift-givers will often
need more cash at that time. Payrolls in the construction industry
will exhibit seasonal patterns, as construction falls off in cold
climates, but may be stimulated by a mild winter. Many financial
series will reflect the adjustments made by financial firms to
“dress up” quarter-end balance sheets and improve apparent
performance.

If all of the data series we are using in a model have been
seasonally adjusted by their producers, we may not be concerned
about seasonality. But often we will want to use some NSA
series, or be worried about the potential for seasonal effects. In
this case, just as we dealt with trending series by including a
time trend, we should incorporate seasonality into the regression
model by including a set of . For quarterly
data, we will need 3 dummies; for monthly data, 11 dummies;
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and so on. If we are using business-daily data such as financial
time series, we may want to include “day-of-week” effects, with
dummies for four of the five business days.

How would you use quarterly dummies in Stata? First
of all, you must know what the time variable in the data set
is: give the command to find out. If it is a quarterly
variable, the range will report dates with embedded
“ ”s. Then you may create one quarterly dummy as

which will take on 1
in the first quarter, and 0 otherwise. To consider whether
series exhibits seasonality,

and examine the statistic. You could, of course,
include any three of the four quarter dummies; would
include dummies for quarters 1, 2 and 3, and yield the same

statistic. Note that inclusion of these three dummies will
require the loss of at least two observations at the beginning
of the sample. This form of seasonal adjustment will consider
the effect of each season to be linear; if we wanted to consider
multiplicative seasonality, e.g. sales are always 10% higher in
the fourth quarter, that could be achieved by regressing on
the seasonal dummies. A trend could be included in either form
of the regression to capture trending behavior over and above
seasonality; in the latter regression, of course, it would represent
an exponential (constant growth) trend.

Just as with a trend, we may either deseasonalize each series
(by regressing it on seasonal dummies, saving the residuals, and
adding the mean of the original series) and regress seasonally
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adjusted series on each other; or we may include a set of seasonal
dummies (leaving one out) in a regression of on and test for
the joint significance of the seasonal dummies. The coefficients
on the variables will be identical, in both point and interval
form, using either strategy.
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