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Wooldridge, Introductory Econometrics, 2d ed.

Chapter 16: Simultaneous equations models

simultaneity

simultaneous equations models

An obvious reason for the endogeneity of explanatory
variables in a regression model is : that is, one
or more of the “explanatory” variables are jointly determined
with the “dependent” variable. Models of this sort are known as

(SEMs), and they are widely
utilized in both applied microeconomics and macroeconomics.
Each equation in a SEM should be a behavioral equation which
describes how one or more economic agents will react to
shocks or shifts in the exogenous explanatory variables, ceteris
paribus. The simultaneously-determined variables often have an
equilibrium interpretation, and we consider that these variables
are only observed when the underlying model is in equilibrium.
For instance, a demand curve relating the quantity demanded to
the price of a good, as well as income, the prices of substitute
commodities, etc. conceptually would express that quantity for a
range of prices. But the only price-quantity pair that we observe
is that resulting from market clearing, where the quantities
supplied and demanded were matched, and an equilibrium price
was struck. In the context of labor supply, we might relate
aggregate hours to the average wage and additional explanatory
factors:

(1)
where the unit of observation might be the county. This is
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structural equationa , or behavioral equation, relating labor
supply to its causal factors: that is, it reflects the structure of
the supply side of the labor market. This equation resembles
many that we have considered earlier, and we might wonder why
there would be any difficulty in estimating it. But if the data
relate to an aggregate–such as the hours worked at the county
level, in response to the average wage in the county–this equation
poses problems that would not arise if, for instance, the unit of
observation was the individual, derived from a survey. Although
we can assume that the individual is a price- (or wage-) taker, we
cannot assume that the average level of wages is exogenous to the
labor market in Suffolk County. Rather, we must consider that it
is determined within the market, affected by broader economic
conditions. We might consider that the variable expresses wage
levels in other areas, which would cet.par. have an effect on the
supply of labor in Suffolk County; higher wages in Middlesex
County would lead to a reduction in labor supply in the Suffolk
County labor market, cet. par.

To complete the model, we must add a specification of labor
demand:

(2)
where we model the quantity demanded of labor as a function
of the average wage and additional factors that might shift the
demand curve. Since the demand for labor is a derived demand,
dependent on the cost of other factors of production, we might
include some measure of factor cost (e.g. the cost of capital)
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as this equation’s variable. In this case, we would expect that
a higher cost of capital would trigger substitution of labor for
capital at every level of the wage, so that Note that
the supply equation represents the behavior of workers in the
aggregate, while the demand equation represents the behavior
of employers in the aggregate. In equilibrium, we would equate
these two equations, and expect that at some level of equilibrium
labor utilization and average wage that the labor market is
equilibrated. These two equations then constitute a simultaneous
equations model (SEM) of the labor market.

Neither of these equations may be consistently estimated
via OLS, since the wage variable in each equation is correlated
with the respective error term. How do we know this? Because
these two equations can be solved and rewritten as two reduced
form equations in the endogenous variables and Each of
those variables will depend on the exogenous variables in the
entire system– and –as well as the structural errors and

In general, any shock to either labor demand or supply will
affect both the equilibrium quantity and price (wage). Even if
we rewrote one of these equations to place the wage variable on
the left hand side, this problem would persist: both endogenous
variables in the system are jointly determined by the exogenous
variables and structural shocks. Another implication of this
structure is that we must have separate explanatory factors in the
two equations. If for instance, we would not be able to
solve this system and uniquely identify its structural parameters.
There must be factors that are unique to each structural equation
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Simultaneity bias in OLS

that, for instance, shift the supply curve without shifting the
demand curve.

The implication here is that even if we only care about one
of these structural equations–for instance, we are tasked with
modelling labor supply, and have no interest in working with
the demand side of the market–we must be able to specify the
other structural equations of the model. We need not estimate
them, but we must be able to determine what measures they
would contain. For instance, consider estimating the relationship
between murder rate, number of police, and wealth for a number
of cities. We might expect that both of those factors would reduce
the murder rate, cet.par.: more police are available to apprehend
murderers, and perhaps prevent murders, while we might expect
that lower-income cities might have greater unrest and crime. But
can we reasonably assume that the number of police (per capita)
is exogenous to the murder rate? Probably not, in the sense that
cities striving to reduce crime will spend more on police. Thus
we might consider a second structural equation that expressed
the number of police per capita as a function of a number of
factors. We may have no interest in estimating this equation
(which is behavioral, reflecting the behavior of city officials),
but if we are to consistently estimate the former equation–the
behavioral equation reflecting the behavior of murderers–we will
have to specify the second equation as well, and collect data for
its explanatory factors.

What goes wrong if we use OLS to estimate a struc-
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tural equation containing endogeneous explanatory variables?
Consider the structural system:

(3)

in which we are interested in estimating the first equation.
Assume that the variables are exogenous, in that each is
uncorrelated with each of the error processes What is the
correlation between and If we substitute the first equation
into the second, we derive:

(4)

(5)
If we assume that we can derive the
equation for as:

(6)
where the reduced form error term Thus
depends on and estimation by OLS of the first equation
in (3) will not yield consistent estimates. We can consistently
estimate the reduced form equation (6) via OLS, and that in
fact is an essential part of the strategy of the 2SLS estimator.
But the parameters of the structural equation are nonlinear
transformations of the reduced form parameters, so being able to
estimate the reduced form parameters does not achieve the goal
of providing us with point and interval estimates of the structural
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Identifying and estimating a structural equation

equation.
In this special case, we can evaluate the simultaneity bias

that would result from improperly applying OLS to the original
structural equation. The covariance of and is equal to
the covariance of and

If we have some priors about the signs of
the parameters, we may sign the bias. Generally, it could be
either positive or negative; that is, the OLS coefficient estimate
could be larger or smaller than the correct estimate, but will not
be equal to the population parameter in an expected sense unless
the bracketed expression is zero. Note that this would happen if

that is, if was not simultaneously determined with
But in that case, we do not have a simultaneous system; the

model in that case is said to be a system, which may
be consistently estimated with OLS.

The tool that we will apply to consistently estimate structural
equations such as (3) is one that we have seen before: two-stage
least squares (2SLS). The application of 2SLS in a structural
system is more straightforward than the general application of
instrumental variables estimators, since the specification of the
system makes clear what variables are available as instruments.
Let us first consider a slightly different two-equation structural
system:

(7)
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We presume these equations describe the workings of a
market, and that the equilibrium condition of market clearing has
been imposed. Let be per capita milk consumption at the county
level, be the average price of a gallon of milk in that county,
and let be the price of cattle feed. The first structural equation
is thus the supply equation, with and : that is,
a higher cost of production will generally reduce the quantity
supplied at the same price per gallon. The second equation is
the demand equation, where we presume that reflecting
the slope of the demand curve in the plane. Given a
random sample on what can we achieve? The demand
equation is said to be identified–in fact, –since
one instrument is needed, and precisely one is available.
is available because the demand for milk does not depend on
the price of cattle feed, so we take advantage of an exclusion
restriction that makes available to identify the demand curve.
Intuitively, we can think of variations in shifting the supply
curve up and down, tracing out the demand curve; in doing so, it
makes it possible for us to estimate the structural parameters of
the demand curve.

What about the supply curve? It, also, has a problem of
simultaneity bias, but it turns out that the supply equation is

. Given the model as we have laid it out, there is
no variable available to serve as an instrument for that is, we
need a variable that affects demand (and shifts the demand curve)
but does not directly affect supply. In this case, no such variable
is available, and we cannot apply the instrumental variables
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technique without an instrument. What if we went back to the
drawing board, and realized that the price of orange juice should
enter the demand equation–although it tastes terrible on corn
flakes, orange juice might be a healthy substitute for quenching
one’s thirst? Then the supply curve would be identified–exactly
identified–since we now would have a single instrument that
served to shift demand but did not enter the supply relation.
What if we also considered the price of beer as an additional
demand factor? Then we would have two available instruments
(presuming that each is appropriately correlated), and 2SLS
would be used to “boil them down” into the single instrument
needed. In that case, we would say that the supply curve would
be .

The identification status of each structural equation thus
hinges upon : our statements that
certain variables do not appear in certain structural equations.
If they do not appear in a structural equation, they may be
used as instruments to assist in identifying the parameters of
that equation. For these variables to successfully identify the
parameters, they must have nonzero population parameters in the
equation in which they are included. Consider an example:

(8)

The first equation is a labor supply relation, expressing the
number of hours worked by a married woman as a function of
her wage, education, age, the number of preschool children, and
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non-wage income (including spouses’s earnings). The second
equation is a labor demand equation, expressing the wage to be
paid as a function of hours worked, the employee’s education,
and a polynomial in her work experience. The exclusion
restructions indicate that the demand for labor does not depend
on the worker’s age (nor should it!), the presence of preschool
kids, or other resources available to the worker. Likewise, we
assume that the woman’s willingness to participate in the market
does not depend on her labor market experience. One instrument
is needed to identify each equation; and

are available to identify the supply equation, while
and are available to identify the demand equation.

This is the for identfication, essentially counting
instruments and variables to be instrumented; each equation is
overidentified. But the order condition is only necessary; the
sufficient condition is the , which essentially
states that in the reduced-form equation:

(9)
at least one of the population coefficients on

must be nonzero. But since we can consistently estimate this
equation with OLS, we may generate sample estimates of those
coefficients, and test the joint null that both coefficients are zero.
If that null is rejected, then we satisfy the rank condition for
the first equation, and we may proceed to estimate it via 2SLS.
The equivalent condition for the demand equation is that at least
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Simultaneous equations models with time series

one of the population coefficients in
the regression of on the system’s exogenous variables is
nonzero. If any of those variables are significant in the equivalent
reduced-form equation, it may be used as an instrument to
estimate the demand equation via 2SLS.

The application of two-stage least squares (via Stata’s
command) involves identifying the endogenous explana-

tory variable(s), the exogenous variables that are included in
each equation, and the instruments that are excluded from each
equation. To satisfy the order condition, the list of (excluded)
instruments must be at least as long as the list of endogenous ex-
planatory variables. This logic carries over to structural equation
systems with more than two endogenous variables / equations; a
structural model may have any number of endogenous variables,
each defined by an equation, and we can proceed to evalu-
ate the identification status of each equation in turn, given the
appropriate exclusion restrictions. Note that if an equation is

, due to the lack of appropriate instruments, then no
econometric technique may be used to estimate its parameters.
In that case, we do not have knowledge that would allow us to
“trace out” that equation’s slope while we move along it.

One of the most common applications of 2SLS in applied
work is the estimation of structural time series models. For
instance, consider a simple macro model:

(10)

10



�

�

0 1 2

1

1

= + +

= + +
t t t

t t t t

t

t

I � � r u

Y C I G

r

r

Y

Y , predetermined variable

In this system, aggregate consumption each quarter is
determined jointly with disposable income. Even if we assume
that taxes are exogenous (and in fact they are responsive to
income), the consumption function cannot be consistently
estimated via OLS. If the interest rate is taken as exogenous (set,
for instance, by monetary policy makers) then the investment
equation may be consistently estimated via OLS. The third
equation is an identity; it need not be estimated, and holds
without error, but its presence makes explicit the simultaneous
nature of the model. If is exogenous, then we need one
instrument to estimate the consumption function; government
spending will suffice, and consumption will be exactly identified.
If is to be taken as endogenous, we would have to add
at least one equation to the model to express how monetary
policy reacts to economic conditions. We might also make the
investment function more realistic by including dynamics–that
investment depends on lagged income, for instance, (firms
make investment spending plans based on the demand for their
product). This would allow a ,
to be used as an additional instrument in estimation of the
consumption function. We may also use lags of exogenous
variables–for instance, lagged taxes or government spending–as
instruments in this context.

Although this only scratches the surface of a broad set of
issues relating to the estimation of structural models with time
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series data, it should be clear that those models will generally
require instrumental variables techniques such as 2SLS for the
consistent estimation of their component relationships.
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