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Wooldridge, Introductory Econometrics, 2d ed.

Chapter 12: Serial correlation and heteroskedasticity in
time series regressions

serially correlated
What will happen if we violate the assumption that the errors

are not , or autocorrelated? We demonstrated
that the OLS estimators are unbiased, even in the presence of
autocorrelated errors, as long as the explanatory variables are
strictly exogenous. This is analogous to our results in the case
of heteroskedasticity, where the presence of heteroskedasticity
alone does not cause bias nor inconsistency in the OLS point
estimates. However, following that parallel argument, we will
be concerned with the properties of our interval estimates and
hypothesis tests in the presence of autocorrelation.

OLS is no longer BLUE in the presence of serial correlation,
and the OLS standard errors and test statistics are no longer valid,
even asymptotically. Consider a first-order Markov error process:

(1)
where the are uncorrelated random variables with mean

zero and constant variance. What will be the variance of the
OLS slope estimator in a simple ( on regression model? For
simplicity let us center the series so that Then the OLS
estimator will be:

(2)

where is the sum of squares of the series. In
computing the variance of conditional on we must account
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for the serial correlation in the process:

(3)

(4)

where and we have used the fact that
in the derivation. Notice

that the first term in this expression is merely the OLS variance
of in the absence of serial correlation. When will the second
term be nonzero? When is nonzero, and the process itself
is autocorrelated, this double summation will have a nonzero
value. But since nothing prevents the explanatory variables from
exhibiting autocorrelation–and in fact many explanatory variables
take on similar values through time–the only way in which this
second term will vanish is if is zero, and is not serially
correlated. In the presence of serial correlation, the second
term will cause the standard OLS variances of our regression
parameters to be biased and inconsistent. In most applications,
when serial correlation arises, is positive, so that successive
errors are positively correlated. In that case, the second term
will be positive as well. Recall that this expression is the true
variance of the regression parameter; OLS will only consider
the first term. In that case OLS will seriously underestimate the

2



�

� �

|

|

�
�

�

�

� �

1

0 1 1

0 1 1

1

1 2

( ) =
+

= + +

( ) = 0

t t t

t

t t t

t t

t t

t t t

t
�

t F

y x

y E y y
� � y .

y � � y u

E u y ,

y u

y , y , y ,

u

Serial correlation in the presence of lagged dependent
variables

variance of the parameter, and the statistic will be much too
high. If on the other hand is negative–so that successive errors
result from an “overshooting” process–then we may not be able
to determine the sign of the second term, since odd terms will be
negative and even terms will be positive. Surely, though, it will
not be zero. Thus the consequence of serial correlation in the
errors–particularly if the autocorrelation is positive–will render
the standard and statistics useless.

A case of particular interest, even in the context of simple
on regression, is that where the “explanatory variable”

is a lagged dependent variable. Suppose that the conditional
expectation of is linear in its past value:

We can always add an error term to this relation,
and write it as

(5)
Let us first assume that the error is “well behaved,” i.e.

so that there is no correlation between the
current error and the lagged value of the dependent variable. In
this setup the explanatory variable cannot be strictly exogenous,
since there is a contemporaneous correlation between and
by construction; but in evaluating the consistency of OLS in this
context we are concerned with the correlation between the error
and not the correlation with and so on. In this case,
OLS would still yield unbiased and consistent point estimates,
with biased standard errors, as we derived above, even if the
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process was serially correlated..
But it is often claimed that the joint presence of a lagged

dependent variable and autocorrelated errors, OLS will be
inconsistent. This arises, as it happens, from the assumption that
the process in (5) follows a particular autoregressive process,
such as the first-order Markov process in (1). If this is the case,
then we do have a problem of inconsistency, but it is arising from
a different source: the misspecification of the dynamics of the
model. If we combine (5) with (1), we really have an
model for since we can lag (5) one period and substitute it
into (1) to rewrite the model as:

(6)

so that the conditional expectation of properly depends
on two lags of not merely one. Thus the estimation of (5) via
OLS is indeed inconsistent, but the reason for that inconsistency
is that is correctly modelled as The model
is seen to be a dynamic misspecification of (6); as is always
the case, the omission of relevant explanatory variables will
cause bias and inconsistency in OLS estimates, especially if the
excluded variables are correlated with the included variables.
In this case, that correlation will almost surely be meaningful.
To arrive at consistent point estimates of this model, we merely
need add to the estimated equation. That does not deal with
the inconsistent interval estimates, which will require a different
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Testing for first-order serial correlation

Durbin-Watson

strategy.

Since the presence of serial correlation invalidates our
standard hypothesis tests and interval estimates, we should be
concerned about testing for it. First let us consider testing for
serial correlation in the variable regression model with strictly
exogenous regressors–which rules out, among other things,
lagged dependent variables.

The simplest structure which we might posit for serially
correlated errors is the first order Markov process, as
given in (1). Let us assume that is uncorrelated with the entire
past history of the process, and that is homoskedastic. The
null hypothesis is in the context of (1). If we could
observe the process, we could test this hypothesis by estimating
(1) directly. Under the maintained assumptions, we can replace
the unobservable with the OLS residual Thus a regression
of the OLS residuals on their own lagged values,

(7)
will yield a test. That regression can be run with or without an
intercept, and the option may be used to guard against
violations of the homoskedasticity assumption. It is only an
asymptotic test, though, and may not have much power in small
samples.

A very common strategy in considering the possibility of
errors is the test, which is also based on

the OLS residuals:
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Simple algebra shows that the statistic is closely linked
to the estimate of from the large-sample test:

(9)

The relationship is not exact because of the difference
between terms in the numerator and terms in the
denominator of the test. The difficulty with the test
is that the critical values must be evaluated from a table, since
they depend on both the number of regressors ( and the sample
size ( and are not unique: for a given level of confidence, the
table contains two values, and If the computed value falls
below the null is clearly rejected. If it falls above there
is no cause for rejection. But in the intervening region, the test
is inconclusive. The test cannot be used on a model without a
constant term, and it is not appropriate if there are any lagged
dependent variables. You may perform the test in Stata, after a
regression, using the command.

In the presence of one or more lagged dependent variables,
an alternative statistic may be used: statistic, which
merely amounts to augmenting (7) with the explanatory variables
from the original regression. This test statistic may readily
be calculated in Stata by installing the command
(available over the web from the ; use ),

6



2

(1)

( )

( )

= 1

AR

AR p .

AR p .
p

p
nR

p
p ,

bgtest
findit

durbinh

Testing for higher-order serial correlation

Breusch-Godfrey

Q statistic

which comes with another useful test, the Breusch-Godfrey test,
as we will next describe.

One of the disadvantages of tests for errors is that
they consider precisely that alternative hypothesis. In many
cases, if there is serial correlation in the error structure, it may
manifest itself in a more complex relationship, involving higher-
order autocorrelations; e.g. A logical extension to the test
described in 7) and the Durbin “h” test is the
test, which considers the null of nonautocorrelated errors against
an alternative that they are This can readily be performed
by regressing the OLS residuals on lagged values, as well as
the regressors from the original model. The test is the joint null
hypothesis that those coefficients are all zero, which can be
considered as another Lagrange multiplier (LM) statistic,
analogous to White’s test for heteroskedasticity. The test may
easily be performed in Stata using the command, which
as indicated above may be obtained via , packaged
together with the command. You must specify the lag
order to indicate the degree of autocorrelation to be considered.
If the test is essentially Durbin’s “h” statistic.

An even more general test often employed on time series
regression models is the Box-Pierce or Ljung-Box ,
or “portmanteau test,” which has the null hypothesis that the
error process is “white noise,” or nonautocorrelated, versus the
alternative that it is not well behaved. The “Q” test evaluates
the autocorrelation function of the errors, and in that sense is

7
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Correcting for serial correlation with strictly exogenous

closely related to the Breusch-Godfrey test. That test evaluates
the conditional autocorrelations of the residual series, whereas
the “Q” statistic uses the unconditional autocorrelations. The
“Q” test can be applied to any time series as a test for “white
noise,” or randomness. For that reason, it is available in Stata as
the command . This test is often reported in empirical
papers as an indication that the regression models presented
therein are reasonably specified.

Any of these tests may be used to evaluate the hypothesis
that the errors exhibit serial correlation, or nonindependence.
But caution should be exercised when their null hypotheses are
rejected. It is very straightforward to demonstrate that serial
correlation may be induced by simple misspecification of the
equation–for instance, modeling a relationship as linear when it is
curvilinear, or when it represents exponential growth. Many time
series models are misspecified in terms of inadequate dynamics:
that is, the relationship between and the regressors may involve
many lags of the regressors. If those lags are mistakenly omitted,
the equation suffers from misspecification bias, and the regression
residuals will reflect the missing terms. In this context, a visual
inspection of the residuals is often useful. User-written Stata
routines such as , and particularly
should be employed to better understand the dynamics of the
regression function. Each may be located and installed with
Stata’s command, and each is well documented with on–line
help.
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regressors

quasi-
differenced

feasible generalized least
squares (GLS)

Since we recognize that OLS cannot provide consistent
interval estimates in the presence of autocorrelated errors, how
should we proceed? If we have strictly exogenous regressors
(in particular, no lagged dependent variables), we may be able
to obtain an appropriate estimator through transformation of
the model. If the errors follow the process in (1), we
determine that Consider a simple

on regression with autocorrelated errors following an
process. Then simple algebra will show that the

equation

(10)
will have nonautocorrelated errors, since the error term in
this equation is in fact by assumption well behaved. This
transformation can only be applied to observations
but we can write down the first observation in static terms to
complete that, plugging in a zero value for the time-zero value of

This extends to any number of explanatory variables, as long
as they are strictly exogenous; we just quasi-difference each, and
use the quasi-differenced version in an OLS regression.

But how can we employ this strategy when we do not know
the value of It turns out that the

estimator of this model merely replaces with
a consistent estimate, The resulting model is asymptotically
appropriate, even if it lacks small sample properties. We can
derive an estimate of from OLS residuals, or from the calculated

9
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value of the Durbin-Watson statistic on those residuals. Most
commonly, if this technique is employed, we use an algorithm
that implements an iterative scheme, revising the estimate of
in a number of steps to derive the final results. One common
methodology is the estimator, which makes use
of the first observation, transforming it separately. It may be
used in Stata via the command. That same command
may also be used to employ the estimator, a
similar iterative technique that ignores the first observation. (In a
large sample, it will not matter if one observation is lost). This
estimator can be executed using the option of the
command.

We do not expect these estimators to provide the same point
estimates as OLS, as they are working with a fundamentally
different model. If they provide similar point estimates, the
FGLS estimator is to be preferred, since its standard errors
are consistent. However, in the presence of lagged dependent
variables, more complicated estimation techniques are required.

An aside on first differencing. An alternative to employing
the feasible GLS estimator, in which a value of inside the unit
circle is estimated and used to transform the data, would be to

the data: that is, transform the left and right
hand side variables into differences. This would indeed be the
proper procedure to follow if it was suspected that the variables
possessed a in their time series representation. But
if the value of in (1) is strictly less than 1 in absolute value,
first differencing approximates that value, since differencing

10
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Robust inference in the presence of autocorrelation

HAC

is equivalent to imposing on the error process. If the
process’s is quite different from 1, first differencing is not as
good a solution as applying the FGLS estimator.

Also note that if you difference a standard regression
equation in you derive an equation that does not have
a constant term. A constant term in an equation in differences
corresponds to a linear trend in the levels equation. Unless
the levels equation already contains a linear trend, applying
differences to that equation should result in a model without a
constant term..

Just as we utilized the “White” heteroskedasticity-consistent
standard errors to deal with heteroskedasticity of unknown form,
we may generate estimates of the standard errors that are robust
to both heteroskedasticity and autocorrelation. Why would
we want to do this rather than explicitly take account of the
autocorrelated errors via the feasible generalized least squares
estimator described earlier? If we doubt that the explanatory
variables may be considered strictly exogenous, then the FGLS
estimates will not even be consistent, let alone efficient. Also,
FGLS is usually implemented in the context of an AR(1) model,
since it is much more complex to apply it to a more complex
AR structure. But higher-order autocorrelation in the errors may
be quite plausible. Robust methods may take account of that
behavior.

The methodology to compute what are often termed
heteroskedasticity- and autocorrelation-consistent ( ) stan-

11
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Heteroskedasticity in the time series context

dard errors was developed by Newey and West; thus they are
often referred to as standard errors. Unlike the
White standard errors, which require no judgment, the Newey-
West standard errors must be calculated conditional on a choice
of maximum lag. They are calculated from a distributed lag of
the OLS residuals, and one must specify the longest lag at which
autocovariances are to be computed. Normally a lag length ex-
ceeding the periodicity of the data will suffice; e.g. at least 4 for
quarterly data, 12 for monthly data, etc. The Newey-West (HAC)
standard errors may be readily calculated for any OLS regression
using Stata’s command. You must provide the “option”

, which specifies the maximum lag order, and your data
must be tsset (that is, known to Stata as time series data). Since
the Newey-West formula involves an expression in the squares of
the residuals which is identical to White’s formula (as well as a
second term in the cross-products of the residuals), these robust
estimates subsume White’s correction. Newey-West standard
errors in a time series context are robust to both arbitrary auto-
correlation (up to the order of the chosen lag) as well as arbitrary
heteroskedasticity.

Heteroskedasticity can also occur in time series regression
models; its presence, while not causing bias nor inconsistency
in the point estimates, has the usual effect of invalidating the
standard errors, statistics, and statistics, just as in the
cross–sectional case. Since the Newey–West standard error
formula subsumes the White (robust) standard error component,

12
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if the Newey–West standard errors are computed, they will also be
robust to arbitrary departures from homoskedasticity. However,
the standard tests for heteroskedasticity assume independence of
the errors, so if the errors are serially correlated, those tests will
not generally be correct. It thus makes sense to test for serial
correlation first (using a heteroskedasticity–robust test if it is
suspected), correct for serial correlation, and then apply a test for
heteroskedasticity.

In the time series context, it may be quite plausible that
if heteroskedasticity—that is, variations in volatility in a time
series process—exists, it may itself follow an autoregressive pat-
tern. This can be termed a dynamic form of heteroskedasticity, in
which Engle’s (autoregressive conditional heteroskedas-
ticity) model applies. The simplest ARCH model may be written
as:

The second line is the conditional variance of given
that series’ past history, assuming that the process is serially
uncorrelated. Since conditional variances must be positive, this
only makes sense if and We can rewrite the
second line as:

which then appears as an autoregressive model in the squared
errors, with stability condition When the
squared errors contain positive serial correlation, even though the
errors themselves do not.
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If this sort of process is evident in the regression errors,
what are the consequences? First of all, OLS are still BLUE.
There are no assumptions on the conditional variance of the error
process that would invalidate the use of OLS in this context. But
we may want to explicitly model the conditional variance of the
error process, since in many financial series the movements of
volatility are of key importance (for instance, option pricing via
the standard Black–Scholes formula requires an estimate of the
volatility of the underlying asset’s returns, which may well be
time–varying).

Estimation of ARCH models—of which there are now many
flavors, with the most common extension being Bollerslev’s
GARCH (generalised ARCH)—may be performed via Stata’s

command. Tests for ARCH, which are based on the
squared residuals from an OLS regression, are provided by
Stata’s command.
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