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Chapter 15: Instrumental variables and two stage least
squares

instrumental variables

two-stage least squares (2SLS)

Many economic models involve endogeneity: that is, a
theoretical relationship does not fit into the framework of

on regression, in which we can assume that the
variable is determined by (but does not jointly determine)
Indeed, the simplest analytical concepts we teach in principles
of economics–a demand curve in micro, and the Keynesian
consumption function in macro–are relations of this sort, where
at least one of the “explanatory” variables is endogenous, or
jointly determined with the “dependent” variable. From a
mathematical standpoint, the difficulties that this endogeneity
cause for econometric analysis are identical to those which
we have already considered, in two contexts: that of omitted
variables, and that of errors-in-variables, or measurement error in
the variables. In each of these three cases, OLS is not capable
of delivering consistent parameter estimates. We now turn to
a general solution to the problem of endogenous regressors,
which as we will see can also be profitably applied in other
contexts, in which the omitted variable (or poorly measured
variable) can be taken into account. The general concept is
that of the estimator; a popular form of
that estimator, often employed in the context of endogeneity, is
known as .

To motivate the problem, let us consider the omitted-variable
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problem: for instance, a wage equation, which would be correctly
specified as:

(1)
This equation cannot be estimated, because ability ( is
not observed. If we had a proxy variable available, we could
substitute it for the quality of that equation would then
depend on the degree to which it was a good proxy. If we merely
ignore it becomes part of the error term in the specification:

(2)
If and are correlated, OLS will yield biased and
inconsistent estimates. To consistently estimate this equation, we
must find an : a new variable that satisfies
certain properties. Imagine that variable is uncorrelated with

, but is correlated with A variable that meets those two
conditions is an instrumental variable for We cannot (ever)
test the prior assumption, since we cannot observe but we can
readily test the latter assumption, and should do so, by merely
regressing the included explanatory variable on the instrument:

(3)
In this regression, we should easily reject . It
should be clear that there is no unique choice of an instrument
in this situation; many potential variables could meet these
two conditions, of being uncorrelated with the unobservable
factors influencing the wage (including and correlated with

Note that in this context we are not searching for a proxy
variable for if we had a good proxy for it would
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not make a satisfactory instrumental variable, since correlation
with implies correlation with the error process What
might serve in this context? Perhaps something like the mother’s
level of education, or the number of siblings, would make a
sensible instrument. If we determine that we have a reasonable
instrument, how may it be used?

Return to the misspecified equation (2), and write it in
general terms of and

(4)
If we now take the covariance of each term in the equation with
our instrument we find:

(5)
We have made use of the fact that the covariance with a constant
is zero. Since by assumption the instrument is uncorrelated with
the error process the last term has expectation zero, and we
may solve (5) for our estimate of

(6)

Note that this estimator has an interesting special case
where that is, where an explanatory variable may
serve as its own instrument, which would be appropriate if

In that case, this estimator may be seen to be
the OLS estimator of Thus, we may consider OLS as a
special case of IV, usable when the assumption of exogeneity of
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the variable(s) may be made. We may also note that the IV
estimator is consistent, as long as the two key assumptions about
the instrument’s properties are satisfied. The IV estimator is not
an unbiased estimator, though, and in small samples its bias may
be substantial.

To carry out inference–compute interval estimates and hy-
pothesis tests–we assume that the error process is homoskedastic:
in this case, conditional on the instrumental variable not the
included explanatory variable With this additional assumption,
we may derive the asymptotic variance of the IV estimator as:

(7)

where is the sample size, is the total sum of
squares of the explanatory variable, and is the (or squared
correlation) in a regression of on that is, equation (3). This
quantity can be consistently estimated; from the regression
residuals, just as with OLS. Notice that as the correlation between
the explanatory variable and the instrument increases, ceteris
paribus, the sampling variance of decreases. Thus, an
instrumental variables estimate generated from a “better”
instrument will be more precise (conditional, of course, on the
instrument having zero correlation with Note as well that
this estimated variance must exceed that of the OLS estimator
of since In the case where an explanatory
variable may serve as its own instrument, the squared correlation
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is unity. The IV estimator will always have a larger asymptotic
variance than will the OLS estimator, but that merely reflects the
introduction of an additional source of uncertainty (in the form
of the instrument, imperfectly correlated with the explanatory
variable).

What will happen if we use the instrumental variables with
a “poor” instrument? A weak correlation between and will
bring a sizable bias in the estimator. If there is any correlation
between and a weak correlation between and will render
IV estimates inconsistent. Although we cannot observe the
correlation between and we can empirically evaluate the
correlation between the explanatory variable and its instrument,
and should always do so.

It should also be noted that an measure in the context of
the IV estimator is not the “percentage of variation explained”
measure that we are familiar with in OLS terms. In the presence
of correlation between and we can no longer decompose
the variation in into two independent components, SSE and
SSR, and has no natural interpretation. In the OLS context,
a joint hypothesis test can be written in terms of measures;
that cannot be done in the IV context. Just as the asymptotic
variance of an IV estimator exceeds that of OLS, the measure
from IV will never beat that which may be calculated from
OLS. If we wanted to maximize we would just use OLS;
but when OLS is biased and inconsistent, we seek an estimation
technique that will focus on providing consistent estimates of
the regression parameters, and not mechanically find the “least
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IV estimates in the multiple regression context

structural equation

endogenous exogenous

squares” solution in terms of inconsistent parameter estimates.

The instrumental variables technique illustrated above can
readily be extended to the case of multiple regression. To
introduce some notation, consider a :

(8)
where we have suppressed the observation subscripts. The
variables are ; the variable is . The
endogenous nature of implies that if this equation is estimated
by OLS, the point estimates will be biased and inconsistent, since
the error term will be correlated with We need an instrument
for a variable that is correlated with but not correlated
with Let us write the endogenous explanatory variable in terms
of the exogenous variables, including the instrument

(9)
The key identification condition is that that is, after

partialling out and are still meaningfully correlated. This
can readily be tested by estimating the auxiliary regression (9).
We cannot test the other crucial assumption: that in this context,

Given the satisfaction of these assumptions,
we may then derive the instrumental variables estimator of (8)
by writing down the “normal equations” for the least squares
problem, and solving them for the point estimates. In this context,

serves as an instrument for itself.
We can extend this logic to include any number of additional

exogenous variables in the equation; the condition that the
analogue to (9) must have always applies. Likewise, we
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2SLS

could imagine an equation with additional endogenous variables;
for each additional endogenous variable on the right hand side,
we would have to find another appropriate instrument, which
would have to meet the two conditions specified above.

What if we have a single endogenous explanatory variable,
as in equation (8), but have more than one potential instrument?
There might be several variables available, each of which would
have a significant coefficient in an equation like (9), and could
be considered uncorrelated with Depending on which of the
potential instruments we employ, we will derive different IV
estimates, with differing degrees of precision. This is not a very
attractive possibility, since it suggests that depending on how we
implement the IV estimator, we might reach different qualitatitive
conclusions about the structural model. The technique of two-
stage least squares ( ) has been developed to deal with this
problem. How might we combine several instruments to produce
the single instrument needed to implement IV for equation (8)?
Naturally, by running a regression–in this case, an auxiliary
regression of the form of equation (9), with all of the available
instruments included as explanatory variables. The predicted
values of that regression, will serve as the instrument for

and this auxiliary regression is the “first stage” of 2SLS. In
the “second stage,” we use the IV estimator, making use of the
generated instrument . The IV estimator we developed above
can be shown, algebraically, to be a 2SLS estimator; but although
the IV estimator becomes non-unique in the presence of multiple
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instruments, the 2SLS estimation technique will always yield a
unique set of parameter values for a given instrument list.

Although from a pedagogical standpoint we speak of the two
stages, we should not actually perform 2SLS “by hand.” Why?
Because the second stage will yield the “wrong” residuals (being
computed from the instruments rather than the original variables),
which implies that all statistics computed from those residuals
will be incorrect (the estimate the estimated standard errors of
the parameters, etc.) We should make use of a computer program
that has a command to perform 2SLS (or, as some programs
term it, instrumental variables). In Stata, you use the
command to perform either IV or 2SLS estimation. The syntax
of is:

where is the dependent variable; ,
which may not be present, is the list of included exogenous
variables (such as in equation (8); contains the
included endogenous variables (such as in equation (8);
and contains the list of instruments that are not
included in the equation, but will be used to form the instrumental
variables estimator. If we wanted to estimate equation (8) with
Stata, we would give the command

. If we had additional exogenous variables in the equation,
they would follow . If we had additional instruments (and
were thus performing 2SLS), we would list them after .

The 2SLS estimator may be applied to a much more complex
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model, in which there are multiple endogenous explanatory
variables (which would be listed after in the command),
as well as any number of instruments and included exogenous
variables. The constraint that must always be satisfied is related
to the parenthesized lists: the .
Intuitively, it states that for each included endogenous variable
(e.g. ), we must have at least one instrument—that is, one
exogenous variable that does not itself appear in the equation,
or satisfies an . If there are three included
endogenous variables, then we must have no fewer than three
instruments after the equals sign, or the equation will not be

. That is, it will not be possible to solve for a unique
solution in terms of the instrumental variables estimator. In the
case (such as the example above) where the number of included
endogenous variables exactly equals the number of excluded
exogenous variables, we satisfy the order condition with equality,
and the standard IV estimator will yield a solution. Where
we have more instruments than needed, we satisfy the order
condition with inequality, and the 2SLS form of the estimator
must be used to derive unique estimates, since we have more
equations than unknowns: the equation is . If we
have fewer instruments than needed, we fail the order condition,
since there are more unknowns than equations. No econometric
technique can solve this problem of . There
are additional conditions for identification–the order condition
is necessary, but not sufficient–since it must also be the case
that each instrument has a nonzero partial correlation with the
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dependent variable. This would fail, for instance, if one of our
candidate instruments was actually a linear combination of the
included exogenous variables.

The instrumental variables estimator can also be used
fruitfully to deal with the errors-in-variables model discussed
earlier–not surprisingly, since the econometric difficulties caused
by errors-in-variables are mathematically the same problem
as that of an endogenous explanatory variable. To deal with
errors-in-variables, we need an instrument for the mismeasured

variable that satisfies the usual assumptions: being well
correlated with but not correlated with the error process.
If we could find a second measurement of even one also
subject to measurement error–we could use it as an instrument,
since it would presumably be well correlated with itself, but if
generated by an independent measurement process, uncorrelated
with the original measurement error. Thus, we might conduct
a household survey which inquires about disposable income,
consumption, and saving. The respondents’ answers about their
saving last year might well be mismeasured, since it is much
harder to track saving than, say, earned income. The same could
be said for their estimates of how much they spent on various
categories of consumption. But using income and consumption
data, we could derive a second (mismeasured) estimate of
saving, and use it as an instrument to mitigate the problems of
measurement error in the direct estimate.

IV may also be used to solve proxy problems; imagine that
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Tests for endogeneity and overidentifying restrictions

reduced form

we are regressing on education and experience, using
a theoretical model that suggests that “ability” should appear as
a regressor. Since we do not have a measure of ability, we use
a test score as a proxy variable. That may introduce a problem,
though, since the measurement error in the relation of test score
to ability will cause the test score to be correlated with the error
term. This might be dealt with if we had a second test score
measure–on a different aptitude test–which could then be used
as an instrument. The two test scores are likely to be correlated,
and the measurement error in the first (the degree that it fails to
measure ability) should not be correlated with the second score.

Since the use of IV will necessarily inflate the variances of
the estimators, and weaken our ability to make inferences from
our estimates, we might be concerned about the need to apply
IV (or 2SLS) in a particular equation. One form of a test for
endogeneity can be readily performed in this context. Imagine
that we have the equation:

(10)
where is the single endogenous explanatory variable, and the

are included exogenous variables. Imagine that the equation
is overidentified for IV: that is, we have at least two instruments
(in this case, and which could be used to estimate (10)
via 2SLS. If we performed 2SLS, we would be estimating the
following equation in the “first stage”:
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(11)
which would allow us to compute OLS residuals, Those
residuals will be that part of not correlated with the If
there is a problem of endogeneity of in equation (10), it will
occur because We cannot observe but we
can calculate a consistent estimate of as Including as an
additional regressor in the OLS model

(12)
and testing for the significance of will give us the answer. If

our estimate of should not be significantly
different from zero. If that is the case, then there is no evidence
that is endogenous in the original equation, and OLS may
be applied. If we reject the hypothesis that we should
not rely on OLS, but should rather use IV (or 2SLS). This test
may also be generalized for the presence of multiple included
endogenous variables in (10); the relevant test is then an test,
jointly testing that a set of coefficients are all zero. This test is
available within Stata as the command (Baum et al.,
2003), which may be installed via .
It must be used after an IV regression (that is, following )
since it must be able to construct the list of variables to be
included (e.g. equation (11) for each included endogenous
variable. See for more details.

Although we can never directly test the maintained hypoth-
esis that the instruments are uncorrelated with the error process
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Applying 2SLS in a time series context

predetermined

we can derive indirect evidence on the suitability of the instru-
ments if we have an excess of instruments–that is, if the equation
is overidentified, so that we are using 2SLS. The ivreg residuals
may be regressed on all exogenous variables (included exoge-
nous variables plus instruments). Under the null hypothesis that
all IV’s are uncorrelated with a Lagrange multiplier statistic
of the form will not exceed the critical point on a dis-
tribution, where is the number of
(i.e. the number of excess instruments). If we reject this hypoth-
esis, then we cast doubt on the suitability of the instruments; at
least some of them do not appear to be satisfying the condition of
orthogonality with the error process. This test is available within
Stata as the command (Baum, Wiggins and Stillman,
2001), which may be installed via .
It must be used after an IV regression. See for
more details.

When there are concerns of included endogenous variables
in a model fit to time series data, we have a natural source of
instruments in terms of variables. For instance, if

is an explanatory variable, its own lagged values, or
might be used as instruments: they are likely to be correlated
with , and they will not be correlated with the error term at
time since they were generated at an earlier point in time.
The one caveat that must be raised in this context relates to
autocorrelated errors: if the errors are themselves autocorrelated,
then the presumed exogeneity of predetermined variables will be
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in doubt. Tests for autocorrelated errors should be conducted; in
the presence of autocorrelation, more distant lags might be used
to mitigate this concern.
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