BOSTON COLLEGE

Department of Economics
EC 228 Econometrics, Prof. Baum, Ms. Yu, Fall 2003

Problem Set 2 Solutions

Problem sets should be your own work. You may work together with classmates, but if you're not figuring this out on your own, you will eventually regret it.
1.
. use http://fmwww.bc.edu/ec-p/data/wooldridge/ceosal2,clear
. type http://fmwww.bc.edu/ec-p/data/wooldridge/ceosal2.des CEOSAL2.DES

salary age mktval lsalary	college lsales	grad comten ceoten lmktval comtensq ceotensq	sales profmarg	profits
Obs: 177				
1. salary		1990 compensation, \$1000s		
2. age		in years		
3. college		$=1$ if attended college		
4. grad		$=1$ if attended graduate school		
5. comten		years with company		
6 . ceoten		years as ceo with company		
7. sales		1990 firm sales, millions		
8. profits		1990 profits, millions		
9. mktval		market value, end 1990, mills.		
10. lsalary		\log (salary)		
11. lsales		log(sales)		
12. lmktval		\log (mktval)		
13. comtensq		comten ${ }^{\text {2 }}$		
14. ceotensq		ceoten ${ }^{\text {2 }}$		
15. profmarg		profits as \% of sales		

a.
. summarize salary ceoten

Variable \|	Obs	Mean	Std. Dev.	Min	Max
salary \|	177	865.8644	587.5893	100	5299
ceoten \|	177	7.954802	7.150826	0	37

The average salary of CEOs' is 865.8644 . The average tenure of them is 7.954802 .
b.

```
. ttest salary=1000
```

```
One-sample t test
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Variable | & Obs & Mean & Std. Err. & Std. Dev. & \multicolumn{2}{|l|}{[95\% Conf. Interval]} \\
\hline salary | & 177 & 865.8644 & 44.16591 & 587.5893 & 778.7015 & 953.0274 \\
\hline
\end{tabular}
Degrees of freedom: 176
\[
\text { Ho: mean(salary) = } 1000
\]
\begin{tabular}{rrr} 
Ha: mean \(<1000\) & Ha: mean \(\sim=1000\) & Ha: mean \(>1000\) \\
\(\mathrm{t}=-3.0371\) & \(\mathrm{t}=-3.0371\) & \(\mathrm{t}=-3.0371\) \\
\(\mathrm{P}<\mathrm{t}=0.0014\) & \(\mathrm{P}>|\mathrm{t}|=0.0028\) & \(\mathrm{P}>\mathrm{t}=0.9986\)
\end{tabular}
```

We reject the null hypothesis that the average CEO salary is a million dollars, at a 95% confidence level.
c.

```
. ttest salary, by( college)
Two-sample t test with equal variances
```

Group I	Obs	Mean	Std. Err.	Std. Dev.	[95\% Conf	Interval]
0 \|	5	1096.2	283.2906	633.4569	309.6593	1882.741
1 \|	172	859.1686	44.74565	586.8337	770.8437	947.4936
combined \|	177	865.8644	44.16591	587.5893	778.7015	953.0274
diff \|		237.0314	266.7294		-289.389	763.4518

Degrees of freedom: 175

$$
\text { Ho: } \operatorname{mean}(0)-\operatorname{mean}(1)=\operatorname{diff}=0
$$

```
        Ha: diff < O
            t = 0.8887
    P}<t=0.812
\(P<t=0.8123\)
```

Ha: diff $\sim=0$
$t=0.8887$
$P>|t|=0.3754$

Ha: diff > 0
$\mathrm{P}>\mathrm{t}=0.1877$

We cannot reject the null hypothesis that CEOs that went to college make as much money as those who did not, at a 95% confidence level.
d.
. tabulate grad

grad \|	Freq.	Percent	Cum.
0 \|	83	46.89	46.89

1		$94 \quad 53.11$		100.00		
Total		$7 \quad 100.00$				
. ttest salary, by (grad)						
Two-sample t test with equal variances						
Group \| Obs Mean Std. Err. Std. Dev. [95\% Conf. Interval]						
0 I	83	867.7349	74.11516	675.2212	720.2963	1015.174
1 \|	94	864.2128	51.71468	501.3924	761.5177	966.9079
combined \|	177	865.8644	44.16591	587.5893	778.7015	953.0274
diff \|		3.522174	88.75501		-171.6458	178.6902

Degrees of freedom: 175

$$
\text { Ho: } \operatorname{mean}(0)-\operatorname{mean}(1)=\operatorname{diff}=0
$$

We cannot reject the null hypothesis that CEOs attended grad school make as much money as those who did not, at a 95% confidence level.
e.

. correlate profmarg salary
(obs=177)

\[\)| \| profmarg salary |
| ---: | ---: | ---: |

\]

profmarg	1.0000	
salary \|	-0.0289	1.0000

2. (2.1)
(i) Income, age, and family background (such as number of siblings) are just a few possibilities. It seems that each of these could be correlated with years of education. (Income and eduation are probably positively correlated; age and education may be negatively correlated because women in more recent cohorts have, on average, more education; and number of siblings and education are probably negatively correlated.)
(ii) Not if the factors we listed in part (i) are correlated with educ. Because we would like to hold these factors fixed, they are part of the error term. But if u is correlated with educ then $E(u \mid e d u c) \neq 0$, and so SLR. 3 fails.
3. (2.2) In the equation $y=\beta_{0}+\beta_{1} x+u$, add and subtract α_{0} from the right hand side to get $y=\left(\alpha_{0}+\beta_{0}\right)+\beta_{1} x+\left(u-\alpha_{0}\right)$. Call the new error $e=u-\alpha_{0}$, so that $E(e)=0$. The new intercept is $\alpha_{0}+\beta_{0}$, but the slope is still β_{1}.

4. (2.3)

Note that it would be easiest to do this problem in Stata, typing the data into the Data Editor, and using the regress and predict commands to generate the desired solutions.
(i) Let $y_{i}=G P A_{i}, x_{i}=A C T_{i}$, and $n=8$. Then $\bar{x}=25.875, \bar{y}=3.2125$, $\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)=5.8125$, and $\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}=56.875$. From equation (2.9), we obtain the slope as $\hat{\beta}_{1}=5.8125 / 56.875 \approx .1022$, rounded to four places after the decimal. From (2.17), $\hat{\beta_{0}}=\bar{y}-\hat{\beta_{1}} \bar{x} \approx 3.2125-$ (.1022)25.875 $\approx .5681$. So we can write

$$
\begin{aligned}
\widehat{G P A} & =.5681+.1022 A C T \\
n & =8
\end{aligned}
$$

The intercept does not have a useful interpretation because $A C T$ is not close to zero for the population of interest. If $A C T$ is 5 points higher, $\widehat{G P A}$ increases by $.1022(5)=.511$. The effect of five units' increase of the x variable can be calculated after the regression as display $5 *$ _b [ACT].
(ii) The fitted values and residuals - rounded to four decimal places - are given along with the observation number i and $G P A$ in the following table:

i	$G P A$	$\widehat{G P A}$	\hat{u}
1	2.8	2.7143	.0857
2	3.4	3.0209	.3791
3	3.0	3.2253	-.2253
4	3.5	3.3275	.1725
5	3.6	3.5319	.0681
6	3.0	3.1231	-.1231
7	2.7	3.1231	-.4231
8	3.7	3.6341	.0659

You can verify that the residuals, as reported in the table, sum to -.0002, which is pretty close to zero given the inherent rounding error. These could be calculated with the two commands predict GPAhat and predict GPAres, resid.
(iii) When $A C T=20, \widehat{G P A}=.5681+.1022(20) \approx 2.61$. This can be calculated by adding a 9 th observation on $A C T$ in the Data Editor and then doing predict GPA20 in 9/9.
(iv) The sum of squared residuals, $\sum_{i=1}^{n} \hat{u}_{i}^{2}$ is about .4347 (rounded to four decimal places), and is given in the ANOVA table regression output as
the Residual SS. The total sum of squares, $\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}$, is about 1.0288, and is given as the Total SS. So the R-squared from the regression is

$$
R^{2}=1-S S R / S S T \approx 1-(.4347 / 1.0288) \approx .577
$$

Therefore, about 57.7% of the variation in $G P A$ is explained by $A C T$ in this small sample of students.

5. (2.5)

(i) The intercept implies that when $i n c=0$, cons is predicted to be negative $\$ 124.84$. This, of course, cannot be true, and reflects that fact that this consumption function might be a poor predictor of consumption at very low-income levels. On the other hand, on an annual basis, $\$ 124.84$ is not so far from zero.
(ii) Just plug 30, 000 into the equation: $\widehat{\text { cons }}=-124.84+.853(30,000)=$ $25,465.16$ dollars.
(iii) The MPC and the APC are shown in the following graph. Even though the intercept is negative, the smallest APC in the sample is positive. The graph starts at an annual income level of $\$ 1,000$ (in 1970 dollars).
6. (2.8)
(i) From equation (2.66),

$$
\tilde{\beta}_{1}=\left(\sum_{i=1}^{n} x_{i} y_{i}\right) /\left(\sum_{i=1}^{n} x_{i}^{2}\right)
$$

Plugging in $y_{i}=\beta_{0}+\beta_{1} x_{i}+u_{i}$ gives

$$
\tilde{\beta}_{1}=\left(\sum_{i=1}^{n} x_{i}\left(\beta_{0}+\beta_{1} x_{1}+u_{i}\right)\right) /\left(\sum_{i=1}^{n} x_{i}^{2}\right)
$$

After standard algebra, the numerator can be written as

$$
\beta_{0} \sum_{i=1}^{n} x_{i}+\beta_{1} \sum_{i=1}^{n} x_{i}^{2}+\sum_{i=1}^{n} x_{i} u_{i}
$$

Putting this over the denominator shows we can write $\tilde{\beta}_{1}$ as

$$
\tilde{\beta}_{1}=\beta_{0}\left(\sum_{i=1}^{n} x_{i}\right) /\left(\sum_{i=1}^{n} x_{i}^{2}\right)+\beta_{1}+\left(\sum_{i=1}^{n} x_{i} u_{i}\right) /\left(\sum_{i=1}^{n} x_{i}^{2}\right) .
$$

Conditional on the x_{i}, we have

$$
E\left(\tilde{\beta}_{1}\right)=\beta_{0}\left(\sum_{i=1}^{n} x_{i}\right) /\left(\sum_{i=1}^{n} x_{i}^{2}\right)+\beta_{1}
$$

Because $E\left(u_{i}\right)=0$ for all i. Therefore, the bias in $\tilde{\beta}_{1}$ is given by the first term in this equation. The bias is obviously zero when $\beta_{0}=0$. It is also zero when $\sum_{i=1}^{n} x_{i}=0$, which is the same as $\bar{x}=0$. In the later case, regression through the origin is identical to regression with an intercept.
7. (2.11)
(i)
. use http://fmwww.bc.edu/ec-p/data/wooldridge/ceosal2,clear

- summarize salary ceoten

Variable \|	Obs	Mean	Std. Dev.	Min	Max
--					
salary \|	177	865.8644	587.5893	100	5299
ceoten \|	177	7.954802	7.150826	0	37

Average salary is about 865.864 , which means $\$ 865,864$ because salary is in thousands of dollars. Average ceoten is about 7.95.
(ii)

ceoten \|	Freq.	Percent	Cum.
0 \|	5	2.82	2.82
1 \|	19	10.73	13.56
2 \|	10	5.65	19.21
31	21	11.86	31.07
41	21	11.86	42.94
51	10	5.65	48.59
61	11	6.21	54.80
7 \|	6	3.39	58.19
81	11	6.21	64.41
9 \|	8	4.52	68.93
10 \|	8	4.52	73.45
11 \|	4	2.26	75.71
12 \|	7	3.95	79.66
13 \|	7	3.95	83.62
14 \|	5	2.82	86.44
15 \|	2	1.13	87.57
16 \|	2	1.13	88.70
17 \|	2	1.13	89.83
18 \|	1	0.56	90.40
19 \|	2	1.13	91.53
20 \|	4	2.26	93.79
21 \|	1	0.56	94.35
22 \|	1	0.56	94.92
24 \|	3	1.69	96.61
26 \|	2	1.13	97.74
28 \|	1	0.56	98.31
341	1	0.56	98.87
37 \|	2	1.13	100.00

There are five CEOs with ceoten $=0$. The longest tenure is 37 years.
(iii)
. regress lsalary ceoten

The estimated equation is

$$
\begin{gathered}
\log (\widehat{\text { salary }})=6.51+0.097 \text { ceoten } \\
n=177, R^{2}=.013
\end{gathered}
$$

We obtain the approximate percentage change in salary given Δ ceoten $=$ 1 by multiplying the coefficient on ceoten by $100,100(.0097)=.97 \%$. Therefore one more year as CEO is predicted to increase salary by almost 1%.
8. (2.13)
(i)
. use http://fmwww.bc.edu/ec-p/data/wooldridge/wage2, clear
. summarize wage IQ

Variable \|	Obs	Mean	Std. Dev.	Min	Max
wage \|	935	957.9455	404.3608	115	3078
IQ \|	935	101.2824	15.05264	50	145

Average salary is about $\$ 957.95$ and average IQ is about 101.28. The sample standard deviation of IQ is about 15.05 , which is pretty close to the population value of 15 .
(ii)

```
. regress wage IQ
```

Source | SS df MS
Number of obs = 935

This calls for a level-level model:

$$
\begin{gathered}
\widehat{w a g} e=116.99+8.30 I Q \\
n=935, R^{2}=.096
\end{gathered}
$$

An increase in $I Q$ of 15 increases predicted monthly salary by $8.30(15)=$ $\$ 124.50$ (in 1980 dollars). $I Q$ score does not even explain 10% of the variation in wage.
(iii)
. regress lwage IQ

Source I	SS	df MS				Number of obs $=935$	
						F (1, 933)	$=102.62$
Model I	16.4150981	1	16.	50981		Prob > F	$=0.0000$
Residual \|	149.241196	933		95841		R -squared	$=0.0991$
						Adj R-squared	$=0.0981$
Total \|	165.656294	934	. 17	62199		Root MSE	$=.39995$
lwage \|	Coef.	Std.	Err.	t	$P>\|t\|$	[95\% Conf.	Interval]
IQ \|	. 0088072	. 0008	694	10.13	0.000	. 007101	. 0105134
_cons I	5.886994	. 0890	206	66.13	0.000	5.71229	6.061698

This calls for a log-level (single-log) model:

$$
\begin{gathered}
\log \widehat{(\text { wage })}=5.89+.0088 I Q \\
n=935, R^{2}=.099
\end{gathered}
$$

If $\Delta I Q=15$ then $\Delta \log \widehat{(w a g e})=.0088(15)=.132$, which is the (approximate) proportionate change in predicted wage. The percentage increase is therefore approximaely 13.2 .
9. (3.1)
(i) hsperc is defined so that the smaller it is, the higher the student's standing in high school. Everything else equal, the worse the student's standing in high school, the lower is his/her expected college GPA.
(ii) Just plug these value into the equation:

$$
\widehat{c o l g p} a=1.392=.0135(20)+.00148(1050)=2.676 .
$$

(iii) The difference between A and B is simply 140 times the coefficient on sat, because hsperc is the same for both students. So A is predicted to have a xcore $.00148(140) \approx .207$ higher.
(iv) With hsperc fixed, Δ colgpa $=.00148 \Delta$ sat. Now we want to find $\Delta s a t$ such that Δ colgpa $=.5$, so $.5=.00148(\Delta$ sat $)$ or Δ sat $=.5 /(.00148) \approx$ 338. Perhaps not surprisingly, a large ceteris paribus difference in SAT score - almost two and one-half standard deviations - is needed to obtain a predicted difference in college GPA or a half a point.

