BOSTON COLLEGE

Department of Economics
EC 228 Econometrics, Prof. Baum, Ms. Yu, Fall 2003

Problem Set 3 Solutions

Problem sets should be your own work. You may work together with classmates, but if you're not figuring this out on your own, you will eventually regret it.

1. (3.2)

(i) Yes. Because of budget constraints, it makes sense that, the more siblings there are in a family, the less education any one child in the family has. To find the increase in the number of siblings that reduces predicted education by one year, we solve $1=.094(\Delta$ sibs $)$, so Δ sibs $=$ $1 / .094 \approx 10.6$.
(ii) Holding sibs and feduc fixed, one more year of mother's education implies .131 years more of predicted education. So if a mother has four more years of education, her son is predicted to have about a half a year (.524) more years of education.
(iii) Since the number of siblings is the same, but meduc and feduc are both different, the coefficients on meduc and feduc both need to be accounted for. The predicted difference in education between B and A is $.131(4)+.210(4)=1.364$.

2. (3.5)

(i) No. By definition, study + sleep + work + leisure $=168$. So if we change study, we must change at least one of the other categories so that the sum is still 168 .
(ii) From part (i), we can write, say, study as a perfect linear function of the other independent variables: study $=168$ - sleep - work $-l e i s u r e$. This holds for every observation, so MLR. 4 is violated.
(iii) Simply drop one of the independent variables, say leisure:

$$
G P A=\beta_{0}+\beta_{1} \text { study }+\beta_{2} \text { sleep }+\beta_{3} \text { wor } k+u
$$

Now, for example, β_{1} is interpreted as the change in $G P A$ when study increases by one hour, where sleep, work, and u are all held fixed. If we are holding sleep and work fixed but increase study by one hour, then we must be reducing leisure by one hour. The other slope parameters have a similar interpretation.

3. (3.7)

Only (ii), omitting an important variable, can cause bias, and this is true only when the omitted variable is correlated with the included explanatory variables. The homoskedasticity assumption, MLR.5, played no role in showing that the OLS estimators are unbiased. (Homoskedasticity was used to obtain the standard variance formulas for the $\hat{\beta}_{j}$.) Further, the degree of collinearity between the explanatory variables in the sample, even if it is reflected in a correlation as high as .95, does not affect the Gauss-Markov assumptions. Only if there is a perfect linear relationship among two or more explanatory variables is MLR. 4 violated.

4. (3.13)

(i) Probably $\beta_{2}>0$, as more income typically means better nutrition for the mother and better prenatal care.
(ii) . use http://fmwww.bc.edu/ec-p/data/wooldridge/BWGHT50

```
- correlate cigs faminc
```

(obs=694)

On the one hand, an increase in income generally increases the consumption of a good, and cigs and faminc could be positively correlated. On the other, family incomes are also higher for families with more education, and more education and cigarette smoking tend to be negatively correlated. the sample correlation between cigs and faminc is about -.183 , indicating a negative correlation.
(iii) . regress bwght cigs

Source	SS	df	MS
Model	10394.4794	1	10394.4794
Residual	283941.338	692	410.319852
Total	294335.817	693	424.727009

| Number of obs | $=694$ |
| :--- | ---: | ---: |
| F (1, 692) | $=25.33$ |
| Prob $>$ F | $=0.0000$ |
| R-squared | $=0.0353$ |
| Adj R-squared | $=0.0339$ |
| Root MSE | $=20.256$ |

bwght I	Coef.	Std. Err.	t	$P>\|t\|$	[95\% Conf. Interval]	
cigs \|	-. 601789	. 119565	-5.03	0.000	-. 8365427	-. 3670353
_cons \|	120.3839	. 821228	146.59	0.000	118.7715	121.9963

. regress bwght cigs faminc

Source \|	SS	df MS				Number of obs $=$		694
						F (2, 691)	$=$	14.21
Model \|	11626.062	2	5813	03102		Prob > F	$=$	0.0000
Residual \|	282709.755	691	409.	31339		R-squared		0.0395
						Adj R-squared		0.0367
Total	294335.817	693	424.	27009		Root MSE	$=$	20.227
bwght I	Coef.	Std.	Err.	t	$P>\|t\|$	[95\% Conf.	In	terval]
cigs	-. 5632265	. 1214	429	-4.64	0.000	-. 8016679		. 3247851
faminc \|	. 073165	. 0421	699	1.74	0.083	-. 0096316		. 1559616
_cons \|	118.1664	1.518	518	77.82	0.000	115.185		121.1479

The regressions without and with faminc are:

$$
\begin{aligned}
\text { bwght } & =120.38-.602 \text { cigs } \\
n & =694, R^{2}=.035
\end{aligned}
$$

and

$$
\begin{aligned}
\widehat{b g h t} & =118.17-.563 \text { cigs }+.073 \text { faminc } \\
n & =496, R^{2}=.0395
\end{aligned}
$$

The effect of cigarette smoking is slightly smaller when faminc is added to the regression, but the difference is not great. This is due to the fact that cigs and faminc are not very correlated, and the coefficient on faminc is practically small. (The variable faminc is measured in thousands, so $\$ 10,000$ more in 1988 income increases predicted birth weight by only . 93 ounces.)

5. (3.16)

(i) . use http://fmwww.bc.edu/ec-p/data/wooldridge/ATTEND
. summarize atndrte priGPA ACT

| Variable \| | Obs | Mean | Std. Dev. | Min | Max |
| ---: | :---: | :---: | :---: | ---: | ---: | ---: |
| atndrte \| | 680 | 81.70956 | 17.04699 | 6.25 | 100 |
| priGPA \| | 680 | 2.586775 | .5447141 | .857 | 3.93 |
| ACT \| | 680 | 22.51029 | 3.490768 | 13 | 32 |

The minimum, maximum, and average values for these three variables are given in the table below:

Variable	Average	Minimum	Maximum
atndrte	81.71	6.25	100
priGPA	2.59	.86	3.93
$A C T$	22.51	13	32

(ii) . regress atndrte priGPA ACT

Source \|	SS	df MS			Number of obs $=680$	
					F(2, 677)	$=138.65$
Model \|	57336.7612	2	28668.3806		Prob > F	$=0.0000$
Residual \|	139980.564	677	206.765974		R-squared	$=0.2906$
					Adj R-squared	$=0.2885$
Total	197317.325	679	290.59989		Root MSE	$=14.379$
atndrte \|	Coef.	Std.	Err. t	$P>\|t\|$	[95\% Conf.	Interval]
priGPA	17.26059	1.083	$103 \quad 15.94$	0.000	15.13395	19.38724
ACT \|	-1.716553	. 169	$012-10.16$	0.000	-2.048404	-1.384702
_cons \|	75.7004	3.884	10819.49	0.000	68.07406	83.32675

```
. list if priGPA>3.64 & ACT==20
```


Note: You can also use the command:
. list if priGPA==float(3.65)
to find the same student record.
The estimated equation is

$$
\begin{aligned}
\text { atndrte } & =75.70+17.26 \text { priGPA-1.72ACT } \\
n & =680, R^{2}=.291
\end{aligned}
$$

The intercept means that, for a student whose prior GPA is zero, and ACT score is zero, the predicted attendance rate is 75.7%. But this is clearly not an interesting segment of the population. (In fact, there are no students in the college population with $\operatorname{priGPA}=0$ and $A C T=0$.)
(iii) The coefficient on priGPA means that, if a student's prior GPA is one point higher (say, from 2.0 to 3.0), the attendance rate is about 17.3 percentage points higher. This holds $A C T$ fixed. The negative coefficent on $A C T$ is, perhaps initially a bit surprising. Five more points on the $A C T$ is predicted to lower attenance by 8.6 percentage points at a given level of priGPA. As priGPA measures performance in college (and, at least partially, could reflect, past attendance rates), while $A C T$ is a measure of potential in college, it appears that students that had more promise (which could mean more innate ability) think they can get by with missing lectures.
(iv) We have atndrte $=75.70+17.267(3.65)-1.72(20) \approx 104.3$. Of course, a student cannot have higher than a 100% attendance rate. Getting
predictions like this is always possible when using regression methods with natural upper or lower bounds on the dependent variable. In practice, we would predict a 100% attendance rate for this student. (In fact, this student had an attendance rate of only 87.5%.)
(v) The difference in predicted attendance rates for A and B is 17.26(3.1-$2.1)-1.72(21-26)=25.86$
6. (4.1) (i) and (iii) generally cause the t statistics not to have a t distribution under H_{0}. Homoskedasticity is one of the CLM assumptions. An important omitted variable violates Assumption MLR.3. The CLM assumptions contain no mention of the sample correlations among independent variables, except to rule out the case where the correlation is one.
7. (4.8)
(i) We use Property VAR. 3 from Appendix B: $\operatorname{Var}\left(\hat{\beta}_{1}-3 \hat{\beta}_{2}\right)=\operatorname{Var}\left(\hat{\beta_{1}}\right)+$ $9 \operatorname{Var}\left(\hat{\beta_{2}}\right)-6 \operatorname{Cov}\left(\hat{\beta}_{1}, \hat{\beta}_{2}\right)$.
(ii) $t=\left(\hat{\beta}_{1}-3 \hat{\beta}_{2}-1\right) / \operatorname{se}\left(\hat{\beta}_{1}-3 \hat{\beta}_{2}\right)$, so we need the standard error of $\hat{\beta_{1}}-3 \hat{\beta}_{2}$.
(iii) Because $\theta_{1}=\beta_{1}-3 \beta_{2}$, we can write $\beta_{1}=\theta_{1}+3 \beta_{2}$. Plugging this into the population model gives

$$
\begin{aligned}
y & =\beta_{0}+\left(\theta_{1}+3 \beta_{2}\right) x_{1}+\beta_{2} x_{2}+\beta_{3} x_{3}+u \\
& =\beta_{0}+\theta_{1} x_{1}+\beta_{2}\left(3 x_{1}+x_{2}\right)+\beta_{3} x_{3}+u .
\end{aligned}
$$

This last equation is what we would estimate by regressing y on x_{1}, $3 x_{1}+x_{2}$, and x_{3}. The coefficient and standard error on x_{1} are what we want.
8. (4.16)
(i) . use http://fmwww.bc.edu/ec-p/data/wooldridge/MLB1
. regress lsalary years gamesyr bavg hrunsyr

Source	SS	df	MS	Number of obs	353
				F (4, 348)	145.24
Model	307.800712	4	76.950178	Prob > F	0.0000
Residual	184.374856	348	. 529812806	R-squared	0.6254

If we drop rbisyr, the estimated equation becomes

$$
\begin{aligned}
& +.0014 \text { bavg }+.0359 \text { hrunsyr } \\
& \text { (.0011) (.0072) } \\
& n=353, R^{2}=.625 .
\end{aligned}
$$

Now hrunsyr is very statistically significant (t statistic ≈ 4.99), and its coefficient has increased by about two and one-half times.
(ii) . regress lsalary years gamesyr bavg hrunsyr runsyr fldperc sbasesyr


```
    fldperc | .0010351 .0020046 0.52 0.606 -.0029077 . 0049778
sbasesyr | -.0064191 .0051842 -1.24 0.216 -.0166156 .0037775
    _cons | 10.40827 2.003255 
```

The equation with runsyr, fldperc, and sbasesyr added is

$$
\begin{aligned}
\log \left(\widehat{\text { salary })=} \begin{array}{rl}
(10.41+.0700 \text { years }+\underset{(2.00)}{(2.0079} \text { gamesyr } \\
& +.0053 \text { bavg }+.0232 \text { hrunsyr } \\
& (.00110) \quad(.0086) \\
& +.0174 \text { runsyr }+.0010 \text { fldperc }-.0064 \text { sbasesyr } \\
& (.0051) \\
n= & 353, R^{2}=.639 .
\end{array}\right.
\end{aligned}
$$

Of the three additional independent variables, only runsyr is statistically significant $(t$ statistic $=.0175 / .0051 \approx 3.41)$. The estimate implies that one more run per year, other factors fixed, increases predicted salary by about 1.74%, a substantial increase. The stolen bases variable even has the "wrong" sing with a t statistic of about -1.23 , while fldperc has a t statistic of only .5. Most major league baseball players are pretty good fielders; in fact, the smallest fldperc is 800 (which means .800). With relatively little variation in fldperc, it is perhaps not surprising that its effect is hard to estimate.
(iii) . test bavg fldperc sbasesyr

```
( 1) bavg = 0
( 2) fldperc = 0
(3) sbasesyr = 0
    F( 3, 345) = 0.68
        Prob > F = 0.5617
```

From their t statistics, bavg, fldperc, and sbasesyr are individually insignificant. The F statistic for their joint significance (with 3 and $345 \mathrm{df})$ is about .68 with p-value $\approx .56$. Therefore, these variables are jointly very insignificant.

