
BOSTON COLLEGE
Department of Economics
EC 228 Econometrics, Prof. Baum, Ms. Yu, Fall 2003
Problem Set 4 Solutions

Problem sets should be your own work. You may work together with
classmates, but if you’re not figuring this out on your own, you will eventually
regret it.

1. (4.2)

(i) H0 : β3 = 0. H1 : β3 > 0.

(ii) The proportionate effect on salary is .00024(50) = .012. To obtain the
percentage effect, we multiply this by 100: 1.2%. Therefore, a 50 point
ceteris paribus increase in ros is predicted to increase salary by only
1.2%. Practically speaking this is a very small effect for such a large
change in ros.

(iii) The 10% critical value for a one-tailed test, using df = ∞, is obtained
from Table G.2 as 1.282. The t statistic on ros is .00024/.00054 ≈ .44,
which is well below the critical value. Therefore, we fail to reject H0

at the 10% significance level.

(iv) Based on this sample, the estimated ros coefficient appears to be dif-
ferent appears to be different from zero only because of sampling varia-
tion. One the other hand, including ros may not be causing any harm;
it depends on how correlated it is with the other independent variables
(although these are very significant even with ros in the equation).

2. (4.3)

(i) Holding profmarg fixed, ∆ ̂rdintens = .321∆ log(sales) = (.321/100)[100·
∆ log(sales)] ≈ .00321(%∆sales). Therefore, if %∆sales = 10, ∆ ̂rdintens ≈
.032, or only about 3/100 of a percentage point. For such a large per-
centage increase in sales, this seems like a practically small effect.

(ii) H0 : β1 = 0 versus H1 : β1 > 0, where β1 is the population slope on
log(scales). The t statistic is .321/.216 ≈ 1.486. The 5% critical value
for a one-tailed test, with df = 32−3 = 29, is obtained from Table G.2
as 1.699; so we cannot reject H0 at the 5% level. But the 10% critical
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value is 1.311; since the t statistic is above this value, we reject H0 in
favor of H1 at the 10% level.

(iii) Not really. Its t statistic is only 1.087, which is well below even the
10% critical value for a one-tailed test.

3. (4.5)

(i) .412± 1.96(.094), or about .228 to .596.

(ii) No, because the value .4 is well inside the 95% CI.

(iii) Yes, because 1 is well outside the 95% CI.

4. (4.7)

(i) While the standard error on hrsemp has not changed, the magnitude
of the coefficient has increased by half. The t statistics on hrsemp has
gone from about −1.47 to −2.21, so now the coefficient is statistically
less than zero at the 5% level. (From Table G.2 the 5% critical value
with 40 df is -1.684. The 1% critical value is -2.423, so the p-value is
between .01 and .05).

(ii) If we add and subtract β2 log(employ) from the right-hand-side and
collect terms, we have

log(scrap) = β0 + β1hrsemp + [β2 log(sales)− β2 log(employ)]

+[β2 log(employ) + β3 log(employ)] + u

= β0 + β1hrsemp + β2 log(sales/employ)

+(β2 + β3) log(employ) + u,

where the second equality follows from the fact that log(sales/employ) =
log(sales)− log(employ). Defining θ3 = β2 + β3 gives the result.

(iii) No, we are interested in the coefficient on log(employ), which has a t
statistic of .2, which is very small. Therefore, we conclude that the
size of the firm, as measured by employees, does not matter, once we
control for training and sales per employee (in a logarithmic functional
form).
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(iv) The null hypothesis in the model from part (ii) is H0 : β2 = −1. The t
statistic is [−.951−(−1)]/.37 = (1−.951)/.37 ≈ .132; this is very small,
and we fail to reject whether we specify a one- or two-sided alternative.

5. (4.9)

(i) With df = 706 − 4 = 702, we use the standard normal critical value
(df = ∞ in Table G.2), which is 1.96 for a two-tailed test at the 5%
level. Now teduc = −11.13/5.88 ≈ −1.89, so |teduc| = 1.89 < 1.96, and
we fail to reject H0 : βeduc = 0 at the 5% level. Also, tage ≈ 1.52, so
age is also statistically insignificant at the 5% level.

(ii) We need to compute the R-squared from of the F statistic for joint
significance. But F = [(.113 − .103)/(1 − .113)](702/2) ≈ 3.96. The
5% critical value in the F2,702 distribution can be obtained from Table
G.3b with denominator df = ∞ : cv = 3.00. Therefore, educ and age
are jointly significant at the 5% level (3.96 > 3.00). In fact, the p-value
is about .019, and so educ and age are jointly significant at the 2%
level.

(iii) Not really. This variables are jointly significant, but including them
only changes the coefficient on totwrk from −.151 to −.148.

(iv) The standard t and F statistics that we used assume homoskedasticity,
in addition to the other CLM assumptions. If there is heteroskedasticity
in the equation, the tests are no longer valid.

6. (4.10)

(i) We need to compute the F statistic for the overall significance of the
regression with n = 142 and k = 4: F = [.0395/(1− .0395)](137/4) ≈
1.41. The 5% critical value with 4 numerator df and using 120 for the
numerator df , is 2.45, which is well above the value of F . Therefore,
we fail to reject H0 : β1 = β2 = β3 = β4 = 0 at the 10% level. No
explainatory variable is individually significant at the 5% level. The
largest absolute t statistic is on dkr, tdkr ≈ 1.60, which is not significant
at the 5% level against a two-sided alternative.
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(ii) The F statistic (with the same df) is now [.330/(1− .0330)](137/4) ≈
1.17, which is even lower than in part (i). None of the t statistic is
significant at a reasonable level.

(iii) Because observation of a firm’s debt to capital ratio, i.e., dkr and the
earning per share eps, can be negative, we can not use the logs of dkr
and eps in part (ii). If we only take those observations with positive
dkr and eps, the sampling will not be random.

(iv) It seems very weak. There are no significant t statistics at the 5% level
(against a two-sided alternative), and the F statistics are insignificant
in both cases. Plus, less than 4% of the variation in return is explained
by the independent variables.

7. (4.12)

(i) Holding other factors fixed,

∆voteA = β1∆ log(expendA) = (β1/100)[100 ·∆ log(expendA)]

≈ (β1/100)(%∆expendA),

where we use the fact that 100 · ∆ log(expendA) ≈ %∆expendA. So
β1/100 is the (ceteris paribus) percentage point change in voteA when
expendA increases by one percent.

(ii) The null hypothesis is H0 : β2 = −β1, which means a z% increase in
expenditure by A and a z% increase in expenditure by B leaves voteA
unchanged. We can equivalently write H0 : β1 + β2 = 0.

(iii)
. use http://fmwww.bc.edu/ec-p/data/wooldridge/VOTE1

. regress voteA lexpendA lexpendB prtystrA

Source | SS df MS Number of obs = 173
-------------+------------------------------ F( 3, 169) = 215.23

Model | 38405.1089 3 12801.703 Prob > F = 0.0000
Residual | 10052.1396 169 59.4801161 R-squared = 0.7926

-------------+------------------------------ Adj R-squared = 0.7889
Total | 48457.2486 172 281.728189 Root MSE = 7.7123
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------------------------------------------------------------------------------
voteA | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------
lexpendA | 6.083316 .38215 15.92 0.000 5.328914 6.837719
lexpendB | -6.615417 .3788203 -17.46 0.000 -7.363246 -5.867588
prtystrA | .1519574 .0620181 2.45 0.015 .0295274 .2743873

_cons | 45.07893 3.926305 11.48 0.000 37.32801 52.82985
------------------------------------------------------------------------------

The estimated equation (with standard errors in parentheses below
estimates) is

̂voteA = 45.08 + 6.083 log(expendA) − 6.615 log(expendB) + .152 prtystrA
(3.93) (.382) (.379) (.062)

n = 173, R2 = .793.

The coefficient on log(expendA) is very significant (tstatistic ≈ 15.92),
as is the coefficient on log(expendB) (tstatistic ≈ −17.45). The esti-
mates imply that a 10% ceteris paribus increase in spending by candi-
date A increase the predicted share of the vote going to A by about .61
percentage points. [Recall that, holding other factors fixed, ∆ ̂voteA ≈
(6.083/100)%∆expendA.] Similarly, a 10% ceteris paribus increase in
spending by B reduces ̂voteA by about .66 percentage points. These
effects certainly cannot be ignored.

While the coefficients on log(expendA) and log(expendB) are of similar
magnitudes (and opposite in sign, as we expect), we do not have the
standard error of β̂1 + β̂2, which is what we would need to test the
hypothesis from part (ii).

(iv) Write θ1 = β1 + β2, or β1 = θ1 − β2. Plugging this into the original
equation, and rearranging, gives

̂voteA = β0+θ1 log(expendA)+β2[log(expendB)−log(expendA)]+β3prtystrA+u,

. gen leAleB= lexpendA- lexpendB

. regress voteA lexpendA leAleB prtystrA

Source | SS df MS Number of obs = 173
-------------+------------------------------ F( 3, 169) = 215.23
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Model | 38405.1089 3 12801.703 Prob > F = 0.0000
Residual | 10052.1397 169 59.4801165 R-squared = 0.7926

-------------+------------------------------ Adj R-squared = 0.7889
Total | 48457.2486 172 281.728189 Root MSE = 7.7123

------------------------------------------------------------------------------
voteA | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------
lexpendA | -.532101 .5330858 -1.00 0.320 -1.584466 .520264
leAleB | 6.615417 .3788203 17.46 0.000 5.867588 7.363246

prtystrA | .1519574 .0620181 2.45 0.015 .0295274 .2743873
_cons | 45.07893 3.926305 11.48 0.000 37.32801 52.82985

------------------------------------------------------------------------------

When we estimate this equation we obtain θ̂1 ≈ −.532 and se(θ̂1) ≈
.533. The t statistic for the hypothesis in part (ii) is −.532/.533 ≈ −1.
Therefore, we fail to reject H0 : β2 = −β1.

Note: We can also use the following command after the original re-
gression to get the estimate of θ̂1.

. lincom lexpendA+ lexpendB

( 1) lexpendA + lexpendB = 0.0

------------------------------------------------------------------------------
voteA | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------
(1) | -.5321009 .5330858 -1.00 0.320 -1.584466 .520264

------------------------------------------------------------------------------

Note: Without estimating θ̂1, we can also use the following command
to test hypothesis:

. test lexpendA=- lexpendB

( 1) lexpendA + lexpendB = 0.0

F( 1, 169) = 1.00
Prob > F = 0.3196
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8. (4.14)

(i) . use http://fmwww.bc.edu/ec-p/data/wooldridge/HPRICE1

. regress lprice sqrft bdrms

Source | SS df MS Number of obs = 88
-------------+------------------------------ F( 2, 85) = 60.73

Model | 4.71671468 2 2.35835734 Prob > F = 0.0000
Residual | 3.30088884 85 .038833986 R-squared = 0.5883

-------------+------------------------------ Adj R-squared = 0.5786
Total | 8.01760352 87 .092156362 Root MSE = .19706

------------------------------------------------------------------------------
lprice | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------
sqrft | .0003794 .0000432 8.78 0.000 .0002935 .0004654
bdrms | .0288844 .0296433 0.97 0.333 -.0300543 .0878232
_cons | 4.766027 .0970445 49.11 0.000 4.573077 4.958978

------------------------------------------------------------------------------

The estimated model is

̂log(price) =
4.76 + .000379sqrft + .0289bdrms
(.10) (.000043) (.0296)

n = 88, R2 = .588.

Therefore, θ̂1 = 150(.000379) + .0289 = .0858, which means that an
additional 150 square foot bedroom increases the predicted price by
about 8.6%.

Alternatively, using the following command:

. lincom 150*sqrft+ bdrms

( 1) 150.0 sqrft + bdrms = 0.0
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------------------------------------------------------------------------------
lprice | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------
(1) | .0858013 .0267675 3.21 0.002 .0325804 .1390223

------------------------------------------------------------------------------

(ii) β2 = θ1 − 150β1, and so

log(price) = β0 + β1sqrft + (θ1 − 150β1)bdrms + u

= β0 + β1(sqrft− 150bdrms) + θ1bdrms + u.

(iii) From part (ii), we run the regression

log(price) on (sqrft− 150bdrms) and bdrms,

. gen sqrftbdrms= sqrft-150* bdrms

. regress lprice sqrftbdrms bdrms

Source | SS df MS Number of obs = 88
-------------+------------------------------ F( 2, 85) = 60.73

Model | 4.71671468 2 2.35835734 Prob > F = 0.0000
Residual | 3.30088884 85 .038833986 R-squared = 0.5883

-------------+------------------------------ Adj R-squared = 0.5786
Total | 8.01760352 87 .092156362 Root MSE = .19706

------------------------------------------------------------------------------
lprice | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------
sqrftbdrms | .0003794 .0000432 8.78 0.000 .0002935 .0004654

bdrms | .0858013 .0267675 3.21 0.002 .0325804 .1390223
_cons | 4.766027 .0970445 49.11 0.000 4.573077 4.958978

------------------------------------------------------------------------------

and obtain the standard error on bdrms. We already know that θ̂1 =
.0858; now we also get se(θ̂1) = .0268. The 95% confidence interval
reported by my software package is .0326 to .1390 (or about 3.3% to
13.9%).
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