BOSTON COLLEGE

Department of Economics
EC 228 Econometrics, Prof. Baum, Ms. Yu, Fall 2003

Problem Set 5 Solutions

Problem sets should be your own work. You may work together with classmates, but if you're not figuring this out on your own, you will eventually regret it.

1. (6.4)
(i) Holding all other factors fixed we have
$\Delta \log ($ wage $)=\beta_{1} \Delta e d u c+\beta_{2} \Delta e d u c \cdot$ pareduc $=\left(\beta_{1}+\beta_{2}\right.$ pareduc $) \Delta e d u c$
Dividing both sides by $\Delta e d u c$ gives the result. The sign of β_{2} is not obvious, although $\beta_{2}>0$ if we think a child gets more out of another year of education the more highly educated are the child's parents.
(ii) We use the values pareduc $=32$ and pareduc $=24$ to interpret the coefficent on educ • pareduc. The difference in the estimated return to education is $.00078(32-24)=.0062$, or about .62 percentage points.
(iii) When we add pareduc by itself, the coefficient on the interaction term is negative. The t-statistic on educ pareduc is about -1.33 , which is not significant at the 10% level against a two-sided alternative. Note that the coefficient on pareduc is significant at the 5% level against a two-sided alternative. this provides a good example of how omitting a level effect (pareduc in this case) can lead to biased estimation of the interaction effect.
2. (6.9)
(i) . use http://fmwww.bc.edu/ec-p/data/wooldridge/WAGE1
. regress lwage educ exper expersq

Source	SS	df	MS	Number of obs $=$	526
				$\mathrm{F}(3,522)=$	74.67
Model	44.5393702	3	14.8464567	Prob > F	0.0000
Residual	103.790392	522	. 198832168	R -squared =	0.3003
				Adj R-squared =	0.2963

| Total \| 148.329762 | 525 | .28253288 | | Root MSE | |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| | | | | | |

The estimated equation is

$$
\begin{aligned}
\hat{\log \widehat{(w a g e})} & =\underset{(.106)}{.128}+\underset{(.0075)}{.0904} \text { educ }+\underset{(.0052)}{.0410 \text { exper }-\underset{(.000116)}{.000714} \text { exper }^{2}} \\
n & =526, R^{2}=.300, \bar{R}^{2}=.296
\end{aligned}
$$

(ii) The t-statistic on exper 2 is about -6.16 which has a p-value of essentially zero. So exper is significant at the 1% level (and much smaller significance levels).
(iii) To estimate the return to the fifth year of experience, we start at exper $=4$ and increase exper by one, so Δ exper $=1$:

$$
\% \Delta \widehat{w a g e} \approx 100[.0410-2(.000714) 4] \approx 3.53 \%
$$

Similarly, for the $20^{t h}$ year of experience,

$$
\% \Delta \widehat{w a g e} \approx 100[.0410-2(.000714) 19] \approx 1.39 \%
$$

(iv) The turnaround point is about $.041 /[2(.000714)] \approx 28.7$ years of experience. In the sample, there are 121 people with at least 29 years of experience. This is a fairly sizeable fraction of the sample.

3. (6.10)

(i) Holding exper (and the elements in u) fixed, we have

$$
\Delta \log (\text { wage })=\beta_{1} \Delta e d u c+\beta_{3}(\Delta e d u c) \text { exper }=\left(\beta_{1}+\beta_{3} \text { exper }\right) \Delta e d u c,
$$

or

$$
\frac{\Delta \log (\text { wage })}{\Delta e d u c}=\left(\beta_{1}+\beta_{3} \text { exper }\right)
$$

This is the approximate proportionate change in wage given one more year of education.
(ii) $H_{0}: \beta_{3}=0$. If we think that education and experience interact positively - so tat people with more experience are more productive when given another year of education - then $\beta_{3}>0$ is the appropriate alternative.
(iii) . use http://fmwww.bc.edu/ec-p/data/wooldridge/WAGE2
. gen eduexper= educ* exper
. regress lwage educ exper eduexper

Source I	SS	df MS			Number of obs $=935$	
					$F(3, \quad 931)$	$=48.41$
Model	22.3529774	37.4	99246		Prob > F	$=0.0000$
Residual \|	143.303317	931.15	24078		R-squared	$=0.1349$
					Adj R-squared	$=0.1321$
Total \|	165.656294	934.17	362199		Root MSE	$=.39233$
lwage \|	Coef.	Std. Err.	t	$P>\|t\|$	[95\% Conf.	Interval]
educ \|	. 0440498	. 0173911	2.53	0.011	. 0099195	. 0781801
exper I	-. 0214959	. 0199783	-1.08	0.282	-. 0607036	. 0177118
eduexper \|	. 003203	. 0015292	2.09	0.036	. 000202	. 006204
_cons I	5.949455	. 2408264	24.70	0.000	5.476829	6.42208

The estimated equation is

$$
\begin{aligned}
\widehat{\log (\widehat{\text { wage })}} & =\begin{array}{l}
5.95+.0440 \text { educ }+.0215 \text { exper }-.00320 \text { educ } \cdot \text { exper } \\
(0.24) \\
(.0174)
\end{array}(.0200) \\
n & =935, R^{2}=.135, \bar{R}^{2}=.132 .
\end{aligned}
$$

The t-statistic on the interaction term is about 2.09, which gives a p value below . 036 against $H_{1}: \beta_{3}>0$. Therefore, we reject $H_{0}: \beta_{3}=0$ against $H_{1}: \beta_{3}>0$ at the 3.6% level.
(iv) We rewrite the equation as

$$
\log (\text { wage })=\beta_{0}+\theta_{1} \text { educ }+\beta_{2} \text { exper }+\beta_{3} \text { educ }(\text { exper }-10)+u
$$

and run the regression \log (wage) on educ, exper, and educ (exper -10). We want the coefficient on educ.

```
. gen exper_10=exper-10
. gen eduexper_10= educ* exper_10
. regress lwage educ exper eduexper_10
```

Source	SS	df MS			Number of obs $=935$	
					F (3, 931)	48.41
Model	22.3529774	37.4	99246		Prob > F	$=0.0000$
Residual	143.303317	931.15	24078		R -squared	$=0.1349$
					Adj R-squared	$=0.1321$
Total	165.656294	934.17	62199		Root MSE	$=.39233$
lwage	Coef.	Std. Err.	t	$P>\|t\|$	[95\% Conf.	Interval]
educ	. 0760795	. 0066151	11.50	0.000	. 0630974	. 0890617
exper	-. 0214959	. 0199783	-1.08	0.282	-. 0607036	. 0177118
eduexper_10	. 003203	. 0015292	2.09	0.036	. 000202	. 006204
_cons	5.949455	. 2408264	24.70	0.000	5.476829	6.42208

or using the lincom command after the orignial regression
. regress lwage educ exper eduexper

Source \|	SS	df MS			Number of obs $=935$	
					F (3, 931)	48.41
Model \|	22.3529774	3	7.45099246		Prob > F	0.0000
Residual \|	143.303317	931	. 153924078		R -squared	0.1349
					Adj R-squared	0.1321
Total \|	165.656294	934	. 177362199		Root MSE	. 39233
lwage \|	Coef.	Std.	Err. t	$P>\|t\|$	[95\% Conf.	Interval]
educ \|	. 0440498	. 0173	9112.53	0.011	. 0099195	. 0781801
exper \|	-. 0214959	. 0199	$783-1.08$	0.282	-. 0607036	. 0177118

```
    eduexper | .003203 . 0015292 2.09 0.036 .000202 . 006204
    _cons | 5.949455 .2408264 24.70 0.000 5.476829 6.42208
```

. lincom educ+10* eduexper
(1) educ +10.0 eduexper $=0.0$

lwage \|	Coef.	Std. Err.	t	$P>\|t\|$	[95\% Conf	Interval]
(1) \|	. 0760795	. 0066151	11.50	0.000	. 0630974	. 0890617

We obtain $\hat{\theta_{1}} \approx .0761$ and $\operatorname{se}\left(\hat{\theta_{1}}\right) \approx .0066$. The 95% CI for θ_{1} is about .063 to .089 .
4. (6.16)
(i) . use http://fmwww.bc.edu/ec-p/data/wooldridge/NBASAL
. regress points exper expersq age educ

The estimated equation is

$$
\widehat{\text { points }}=\underset{(6.99)}{35.22}+\underset{(.405)}{2.364} \text { exper }-\underset{(.0235)}{.0770 \text { exper }^{2}}
$$

$$
\left.\begin{array}{rl}
-1.074 \text { age }-1.286 \text { edu } \\
(.295) & (.451)
\end{array}\right)
$$

(ii) The turnaround point is $2.364 /[2(.0770)] \approx 15.35$. So, the increase from 15 to 16 years of experience would actually reduce points. This is a very high level of experience, and we can essentially ignore this prediction: only two players in the sample of 269 have more than 15 years of experience.
(iii) Many of the most promising players leave college early, or, in some cases, forego college altogether, to play in the NBA. These top players command the highest salaries. it is not more college than hurts salary, but less college is indicative of super-star potential.
(iv) . regress points exper expersq age agesq educ

Source \|	SS	df MS			Number of obs $=$	
					F (5, 263)	$=8.92$
Model \|	1353.54692	5270	09385		Prob > F	$=0.0000$
Residual \|	7977.64396	263 30	333247		R-squared	$=0.1451$
					Adj R-squared	$=0.1288$
Total	9331.19088	26834.	78764		Root MSE	$=5.5076$
points	Coef.	Std. Err.	t	$P>\|t\|$	[95\% Conf.	Interval]
exper	2.863828	. 6127241	4.67	0.000	1.657359	4.070297
expersq 1	-. 1280723	. 0524378	-2.44	0.015	-. 2313237	-. 0248209
age	-3.983695	2.689078	-1.48	0.140	-9.278557	1.311168
agesq	. 0535514	. 0491917	1.09	0.277	-. 0433083	. 1504112
educ I	-1.312604	. 4510841	-2.91	0.004	-2.200799	-. 424408
_cons I	73.59034	35.93341	2.05	0.042	2.836555	144.3441

When $a g e^{2}$ is added to the regression from part (i), its coefficient is .0536 (se=.0492). Its t statistic is barely above one, so we are justified in dropping it. The coefficient on age in the same regression is -3.984 (se $=2.689$). Together, these estimates imply a negative, increasing, return to age. The turning point is roughly at 74 years old. In any case, the linear function of age seems sufficient.
(v) .regress lwage points exper expersq age educ

Source \|	SS	df MS			Number of obs $=$	
					F (5, 263)	$=50.10$
Model \|	101.561351	520.	22701		Prob > F	$=0.0000$
Residual \|	106.627377	263.40	27287		R-squared	$=0.4878$
					Adj R-squared	$=0.4781$
Total	208.188727	268.7	23609		Root MSE	$=.63673$
lwage	Coef.	Std. Err.	t	$P>\|t\|$	[95\% Conf.	Interval]
points	. 0777297	. 0071128	10.93	0.000	. 0637243	. 091735
exper	. 2178447	. 0497877	4.38	0.000	. 1198115	. 315878
expersq	-. 0070821	. 0027687	-2.56	0.011	-. 0125338	-. 0016305
age	-. 0481375	. 0349466	-1.38	0.170	-. 1169481	. 0206732
educ I	-. 0402709	. 0528725	-0.76	0.447	-. 1443781	. 0638364
_cons I	6.779038	. 8454209	8.02	0.000	5.114384	8.443693

The OLS results are:

$$
\begin{aligned}
& \widehat{\log (\text { wage })=} \begin{aligned}
& \widehat{6} \cdot 78+.078 \text { points }+\underset{(.05)}{.218 \text { exper }-\underset{(.007)}{.007 \text { exper }^{2}}} \\
&-.048 \text { age }-040 \text { edu }
\end{aligned} \\
&(.035) \quad(.053) \\
& n= 269, R^{2}=.488, \bar{R}^{2}=.478 .
\end{aligned}
$$

(vi) . test age educ
(1) age $=0.0$
(2) educ $=0.0$

$$
\begin{array}{rll}
\text { F }(2,263) & = & 1.19 \\
\text { Prob }>F & =0.3061
\end{array}
$$

The joint F test produced by Stata is about 1.19. With 2 and $263 d f$, this gives a p-value of roughly .31. Therefore, once scoring and years played are controlled for, there is no evidence for wage differnetials depending on age or years played in college.

5. (7.3)

(i) The t statistic on $h s i z e^{2}$ is over four in absolute value, so there is very strong evidence that it belongs in the equation. We obtain this by finding the turnaround point; this is the value of hsize that maximizes $\widehat{s a t}$
(other things fixed): $19.3 /(2 \cdot 2.19) \approx 4.41$. Because hsize is measured in hundreds, the optimal size of graduating class is about 441.
(ii) This is given by the coefficient on female (since black $=0$): nonblack females have SAT scores about 45 points lower than nonblack males. The t statistic is about -10.51 , so the difference is very statically significant. (The very large sample size certainly contributes to the statistical significance.)
(iii) Because female $=0$, the coefficient on black implies that a black male has an estimated SAT score almost 170 points less than a comparable nonblack male. The t statistic is over 13 in absolute value, so we easily reject the hypothesis that there is no ceteris paribus difference.
(iv) We plug in black $=1$, female $=1$ for black females and black $=0$ and female $=1$ for nonblack females. The difference is therefore $-169.81+$ $62.31=-107.50$. Because the estimate depends on two coefficients, we cannot construct a t statistic from the information given. The easiest approach is to difine dummy variables for three of the four race/gender categories and choose nonblack females as the base group. We can then obtain the t statistic we want as the coefficient on the black females dummy variable.
6. (7.5)
(i) Following the hint,

$$
\begin{aligned}
\operatorname{col} \widehat{G P} A & =\hat{\beta}_{0}+\hat{\delta_{0}}(1-n o P C)+\hat{\beta}_{1} h s G P A+\beta_{2} A C T \\
& =\left(\hat{\beta}_{0}+\hat{\delta_{0}}\right)-\hat{\delta_{0}} n o P C+\hat{\beta}_{1} h s G P A+\beta_{2} A C T
\end{aligned}
$$

For the specific estimates in equation (7.6), $\hat{\beta_{0}}=1.26$ and $\hat{\delta_{0}}=.157$, so the new intercept is $1.26+.157=1.417$. The coefficient on noPC is -.157 .
(ii) Nothing happens to the R-squared. Using noPC in place of $P C$ is simply a different way of including the same information on $P C$ ownership.
(iii) It makes no sense to include both dummy variables in the regression: we cannot hold noPC fixed while changing $P C$, we have only two
groups based on $P C$ owership so, in addition to the overall intercept, we need only to include one dummy variable. If we try to include both along with an intercept we have perfect multicollinearity (the dummy variable trap).

7. (7.10)

(i) . use http://fmwww.bc.edu/ec-p/data/wooldridge/WAGE2
. regress lwage educ exper tenure married black south urban

Source \|	SS	df MS			Number of obs $=935$	
					F (7, 927)	44.75
Model	41.8377677	5.97682396			Prob $>$ F $=0.0000$	
Residual	123.818527	927.133569069			R-squared Adj R-squared	$=0.2526$
						0.2469
Total	165.656294	934.177362199			Root MSE	. 36547
lwage	Coef.	Std. Err.	t	$P>\|t\|$	[95\% Conf. Interval]	
educ \|	. 0654307	. 0062504	10.47	0.000	. 0531642	. 0776973
exper	. 014043	. 0031852	4.41	0.000	. 007792	. 020294
tenure \|	. 0117473	. 002453	4.79	0.000	. 0069333	. 0165613
married \|	. 1994171	. 0390502	5.11	0.000	. 1227802	. 2760541
black	-. 1883499	. 0376666	-5.00	0.000	-. 2622717	-. 1144282
south	-. 0909036	. 0262485	-3.46	0.001	-. 142417	-. 0393903
urban \|	. 1839121	. 0269583	6.82	0.000	. 1310056	. 2368185
_cons \|	5.395497	. 113225	47.65	0.000	5.17329	5.617704

The estimated equation is

$$
\begin{aligned}
\log (\text { wage })= & \underset{(0.11)}{5.40}+\underset{(.0654 \text { educ }+\underset{(.0140}{.0} \text { exper }+\underset{(.0032)}{.0117} \text { tenure }}{(.0025)} \\
& +.199 \text { married }-.188 \text { black }-.091 \text { south }+\underset{(.026)}{.184 \text { urban }} \\
& (0.039) \\
n= & 935, R^{2}=.253 .
\end{aligned}
$$

The coefficient on black implies that, at given levels of the other explanatory variables, black men earn about 18.8% less than nonblack men. The t statistic is about -4.95 , and so it is very statistically significant.
(ii) . gen expersq=exper* exper

- gen tenuresq=tenure* tenure
. regress lwage educ exper tenure married black south urban expersq tenuresq

Source	SS	df	MS
Model	42.235332	9	4.69281467
Residual	123.420962	925	. 133428067
Total	165.656294	934	. 177362199

Number of obs $=935$
F (9, 925) $=35.17$
Prob > F $=0.0000$
R-squared $=0.2550$
Adj R-squared $=0.2477$
Root MSE = . 36528

lwage \|	Coef.	Std. Err.	t	$P>\|t\|$	[95\% Con	Interval]
educ \|	. 0642761	. 0063115	10.18	0.000	. 0518896	. 0766625
exper I	. 0172146	. 0126138	1.36	0.173	-. 0075403	. 0419695
tenure \|	. 0249291	. 0081297	3.07	0.002	. 0089744	. 0408838
married \|	. 198547	. 0391103	5.08	0.000	. 1217917	. 2753023
black \|	-. 1906636	. 0377011	-5.06	0.000	-. 2646533	-. 116674
south	-. 0912153	. 0262356	-3.48	0.001	-. 1427035	-. 0397271
urban \|	. 1854241	. 0269585	6.88	0.000	. 1325171	. 2383311
expersq	-. 0001138	. 0005319	-0.21	0.831	-. 0011576	. 00093
tenuresq \|	-. 0007964	. 000471	-1.69	0.091	-. 0017208	. 0001279
_cons I	5.358676	. 1259143	42.56	0.000	5.111565	5.605786

. test expersq tenuresq
(1) expersq $=0.0$
(2) tenuresq $=0.0$

$$
\begin{aligned}
& F(2,925)=1.49 \\
& \text { Prob > F = } 0.2260
\end{aligned}
$$

The F statistic for joint significance of exper ${ }^{2}$ and tenure ${ }^{2}$, with 2 and $925 d f$, is about 1.49 with p-value $\approx .226$. Because the p-value is above .20 , these quadratics are jointly insignificant at the 20% level.
(iii) . gen blackedu= black*educ
. regress lwage educ exper tenure married black south urban blackedu

Source I	SS	df	MS	Number of obs	$=$
935					

Model	42.0055536	5.2506942			Prob > F R-squared Adj R-squared Root MSE	$\begin{aligned} & =0.0000 \\ & =0.2536 \\ & =0.2471 \\ & =.36542 \end{aligned}$
Residual	123.650741	926.13	32117			
Total	165.656294	934.17	2199			
lwage	Coef.	Std. Err.	t	$P>\|t\|$	[95\% Conf.	Interval]
educ	. 0671153	. 0064277	10.44	0.000	. 0545008	. 0797299
exper	. 0138259	. 0031906	4.33	0.000	. 0075642	. 0200876
tenure	. 011787	. 0024529	4.81	0.000	. 0069732	. 0166009
married	. 1989077	. 0390474	5.09	0.000	. 1222761	. 2755394
black	. 0948094	. 2553995	0.37	0.711	-. 4064194	. 5960383
south	-. 0894495	. 0262769	-3.40	0.001	-. 1410187	-. 0378803
urban	. 1838523	. 0269547	6.82	0.000	. 130953	. 2367516
blackedu	-. 0226237	. 0201827	-1.12	0.263	-. 0622327	. 0169854
_cons	5.374817	. 1147027	46.86	0.000	5.149709	5.599924

We add the interaction black \cdot educ to the equation in part (i). The coefficient on the interaction is about -.0226 (se $\approx .0202$). Therefore, the point estimate is that the return to another year of education is about 2.3 percentage points lower for black men than nonblack men. (The estimated return for nonblack men is about 6.7%.) This is nontrivial if it really reflects difference in the population. But the t statistic is only about 1.12 in absolute value, which is not enough to reject the null hypothesis that the return to education does not depend on race.
(iv) . gen marrnonblck= married*(1- black)
. gen singblck=(1- married)* black
. gen marrblck= married* black
. regress lwage educ exper tenure south urban marrnonblck singblck marrblck

--						
educ \|	.0654751	.006253	10.47	0.000	.0532034	.0777469
exper \|	.0141462	.003191	4.43	0.000	.0078837	.0204087
tenure \|	.0116628	.0024579	4.74	0.000	.006839	.0164866
south \|	-.0919894	.0263212	-3.49	0.000	-.1436455	-.0403333
urban \|	.1843501	.0269778	6.83	0.000	.1314053	.2372948
marrnonblck \|	.1889147	.0428777	4.41	0.000	.1047659	.2730635
singblck \|	-.2408201	.0960229	-2.51	0.012	-.4292678	-.0523724
marrblck \|	.0094485	.0560131	0.17	0.866	-.1004788	.1193757
_cons \|	5.403793	.1141222	47.35	0.000	5.179825	5.627761

We choose the base group to be single, nonblack. Then we add dummy variables marrnonblck, singblck, and marrblck for the other three groups. The result is

$$
\begin{aligned}
\hat{\log (\text { wage })=} \begin{aligned}
& \widehat{5}+.40+.0655 \text { educ }+\underset{(.0141 \text { exper }+.0117 \text { tenure }}{(0.11) \quad(.0063) \quad(.0032)} \quad \\
&-.092 \text { south }+.184 \text { urban }+.189 \text { marrnonblck } \\
&(0.026) \quad(.027) \quad(.043) \\
&-.241 \text { singblck }+.0094 \text { marrblck } \\
&(0.096) \quad(.0560) \\
& n= 935, R^{2}=.253
\end{aligned} .
\end{aligned}
$$

We obtain the ceteris paribus differential between married blacks and married nonblacks by taking the difference of their coefficients: .0094-$.189=-.1796$, or about -.18 . That is, a married black man earns about 18% less than a comparable, married nonblack man.
8. (7.12 using dataset GPA2-20)
(i) The two signs that are pretty clear are $\beta_{3}<0$ (because hsperc is defined so that the smaller the number the btter the student) and $\beta_{4}>0$. The effect of size of graduating class is not clear. It is also unclear whether males and females have systematically different GPAs. We may think that beta $a_{0}<0$, that is, athletes do worse than other students with comparable characteristics. But remember, we are controlling for ability to some degree with hsperc and sat.
(ii) . use http://fmwww.bc.edu/ec-p/data/wooldridge/GPA2-20
. regress colgpa hsize hsizesq hsperc sat female athlete

Source \|	SS	df MS			$\begin{aligned} & \text { Number of obs }= \\ & F(6,820)= \end{aligned}$	$=827$
						$=49.59$
Model	90.9288519	615.	48087		Prob > F	$=0.0000$
Residual	250.571787	820.3	57535		R-squared	$=0.2663$
					Adj R-squared	0.2609
Total	341.500639	826.4	43903		Root MSE	. 55279
colgpa	Coef.	Std. Err.	t	$P>\|t\|$	[95\% Conf.	Interval]
hsize \|	-. 0422584	. 0378294	-1.12	0.264	-. 1165123	. 0319955
hsizesq	. 0023961	. 0054545	0.44	0.661	-. 0083104	. 0131025
hsperc \|	-. 0127884	. 0012877	-9.93	0.000	-. 015316	-. 0102608
sat \|	. 0013982	. 0001478	9.46	0.000	. 0011081	. 0016882
female \|	. 1334382	. 0394927	3.38	0.001	. 0559196	. 2109569
athlete \|	. 0035205	. 101566	0.03	0.972	-. 1958395	. 2028805
_cons \|	1.498411	. 1753761	8.54	0.000	1.154172	1.842649

The estimated equation is

$$
\begin{aligned}
& \widehat{\text { colgpa }}=\underset{(0.175)}{\text { 1.498 }} \underset{(.0378)}{.0423} \text { hsize }+\underset{(.00545)}{.00240 ~ h s i z e_{2}^{2}-\underset{(.00129)}{.0128 ~ h s p e r c ~}} \\
& -.00140 \text { sat }+.133 \text { female }+.00352 \text { athlete } \\
& \text { (0.000148) (.0395) (.102) } \\
& n=827, R^{2}=.2663 \text {. }
\end{aligned}
$$

Holding other factors fixed, an athlete is predicted to have a GPA about .00352 points higher than a nonathlete. The t statistic $.0352 / .102 \approx$.03 , which is very insignificant.
(iii) . regress colgpa hsize hsizesq hsperc female athlete

Source	SS	df	MS	Number of obs	827
				F (5, 821)	37.56
Model	63.5774308	5	12.7154862	Prob > F	0.0000
Residual	277.923208	821	. 338517915	R -squared	0.1862
				Adj R-squared	0.1812
Total	341.500639	826	. 41343903	Root MSE	. 58182

colgpa \|	Coef.	Std. Err	t	$P>\|t\|$	[95\% Conf. Interval]	
hsize \|	-. 0400371	. 0398156	-1.01	0.315	-. 1181895	. 0381152
hsizesq \|	. 0034527	. 0057398	0.60	0.548	-. 0078137	. 0147191
hsperc \|	-. 0160537	. 0013058	-12.29	0.000	-. 0186167	-. 0134907
female \|	. 0740543	. 0410386	1.80	0.072	-. 0064986	. 1546072
athlete \|	-. 1316444	. 1058377	-1.24	0.214	-. 3393888	. 0760999
_cons \|	3.02014	. 0735695	41.05	0.000	2.875733	3.164546

With sat dropped from the model, the coefficient on athlete becomes about -.132 (se $\approx .106$), the t statistic is -1.24 , which is very insignificant.
(iv) . gen femath= female* athlete
. gen maleath=(1- female)* athlete
. gen malenonath=(1- female) $*(1-$ athlete $)$
. regress colgpa hsize hsizesq hsperc sat femath maleath malenonath

Source \|	SS	df MS			Number of obs $=827$	
					F (7, 819)	$=42.46$
Model \|	90.9320164	712.	902881		Prob > F	$=0.0000$
Residual \|	250.568622	819.30	944594		R -squared	$=0.2663$
					Adj R-squared	$=0.2600$
Total	341.500639	826	343903		Root MSE	. 55312
colgpa \|	Coef.	Std. Err.	t	$P>\|t\|$	[95\% Conf.	Interval]
hsize \|	-. 0424362	. 0378927	-1.12	0.263	-. 1168144	. 0319419
hsizesq \|	. 0024077	. 005459	0.44	0.659	-. 0083075	. 013123
hsperc \|	-. 0127982	. 001292	-9.91	0.000	-. 0153343	-. 0102621
sat I	. 0013982	. 0001479	9.46	0.000	. 0011079	. 0016884
femath \|	-. 0113654	. 1781901	-0.06	0.949	-. 3611284	. 3383977
maleath \|	-. 1236811	. 1229176	-1.01	0.315	-. 3649517	. 1175895
malenonath \|	-. 1341265	. 0400919	-3.35	0.001	-. 2128215	-. 0554316
_cons \|	1.632741	. 1685775	9.69	0.000	1.301846	1.963636

To facilitate testing the hypothesis that there is no difference between women athletes and women nonathletes, we should choose one of these
as the base group. We choose female nonathletes. The estimation equation is

$$
\begin{aligned}
& \widehat{\text { colgpa }}=\underset{(.169)}{\substack{\text { (.633 }} \underset{(.0379)}{.0424} \text { hsize }+\underset{(.00546)}{.0024 ~ h s i z e}{ }^{2}-\underset{(.00129)}{.0128 ~ h s p e r c ~}} \\
& +.0014 \text { sat - . } 0114 \text { female }-.124 \text { maleath }-.134 \text { malenonath } \\
& \text { (0.00015) (.178) (.123) (.040) } \\
& n=827, R^{2}=.266 \text {. }
\end{aligned}
$$

The coefficient on femath $=$ female \cdot athlete shows that colgpa is predicted to be about .0114 points lower for a female athlete than a female nonathlete, other variables in the equation fixed.
(v) . gen femsat=female*sat
. regress colgpa hsize hsizesq hsperc sat female athlete femsat

Source \|	SS	MS			Number of obs $=$	
					F (7, 819)	$=42.47$
Model I	90.9524481	712.	32069		Prob > F	$=0.0000$
Residual \|	250.548191	819.305	19647		R-squared	$=0.2663$
					Adj R-squared	$=0.2601$
Total \|	341.500639	826.4	43903		Root MSE	. 5531
colgpa \|	Coef.	Std. Err.	t	$P>\|t\|$	[95\% Conf.	Interval]
hsize \|	-. 0419658	. 0378654	-1.11	0.268	-. 1162905	. 0323589
hsizesq \|	. 0023623	. 0054589	0.43	0.665	-. 0083528	. 0130774
hsperc \|	-. 0127783	. 001289	-9.91	0.000	-. 0153084	-. 0102483
sat I	. 0014327	. 0001932	7.42	0.000	. 0010535	. 0018119
female \|	. 2139498	. 2925759	0.73	0.465	-. 360337	. 7882366
athlete \|	. 0050122	. 1017651	0.05	0.961	-. 1947388	. 2047633
femsat \|	-. 0000781	. 0002812	-0.28	0.781	-. 00063	. 0004738
_cons \|	1.461552	. 2200118	6.64	0.000	1.029698	1.893405

. regress colgpa hsize hsizesq hsperc sat femath maleath malenonath femsat

Source	SS	df	MS	Number of obs $=$	827
				$\mathrm{F}(\mathrm{8}, \mathrm{818)}=$	37.12
Model	90.9591932	8	11.3698992	Prob > F	0.0000
Residual	250.541445	818	. 306285386	R -squared	0.2664
				Adj R-squared	0.2592

Total \|	341.500639	41343903		Root MSE		$=.55343$
colgpa \|	Coef.	Std. Err.	t	$P>\|t\|$	[95\% Con	Interval]
hsize \|	-. 0422033	. 0379218	-1.11	0.266	-. 1166388	. 0322323
hsizesq \|	. 0023766	. 005463	0.44	0.664	-. 0083466	. 0130998
hsperc \|	-. 0127918	. 0012929	-9.89	0.000	-. 0153297	-. 010254
sat \|	. 0014357	. 0001944	7.39	0.000	. 0010542	. 0018172
femath \|	-. 0168791	. 1792476	-0.09	0.925	-. 3687186	. 3349604
maleath \|	-. 2066222	. 3043929	-0.68	0.497	-. 8041053	. 3908609
malenonath \|	-. 2220095	. 2977459	-0.75	0.456	-. 8064454	. 3624265
femsat \|	-. 0000849	. 0002851	-0.30	0.766	-. 0006445	. 0004746
_cons \|	1.680639	. 2330368	7.21	0.000	1.223219	2.13806

Whether we add the interaction female•sat to the equation in part (ii) or part (iv), the outcome is practically the same. For example, when female•sat is added to the equation in part (ii), its coefficient is about .000078 and its t statistic is about .28. There is very little evidence that the effect of sat differs by gender.

9. (7.12 with dataset GPA2)

(i) The two signs that are pretty clear are $\beta_{3}<0$ (because hsperc is defined so that the smaller the number the btter the student) and $\beta_{4}>0$. The effect of size of graduating class is not clear. It is also unclear whether males and females have systematically different GPAs. We may think that beta $a_{0}<0$, that is, athletes do worse than other students with comparable characteristics. But remember, we are controlling for ability to some degree with hsperc and sat.
(ii) . use http://fmwww.bc.edu/ec-p/data/wooldridge/GPA2
. regress colgpa hsize hsizesq hsperc sat female athlete

Source	SS	df	MS	Number of obs $=$	4137
				F (6, 4130)	284.59
Model	524.819305	6	87.4698842	Prob > F	0.0000
Residual	1269.37637	4130	. 307355053	R -squared	0.2925
				Adj R -squared $=$	0.2915
Total	1794.19567	4136	. 433799728	Root MSE	5544

colgpa \|	Coef.	Std. Err.	t	$P>\|t\|$	[95\% Conf. Interval]	
hsize \|	-. 0568543	. 0163513	-3.48	0.001	-. 0889117	-. 0247968
hsizesq \|	. 0046754	. 0022494	2.08	0.038	. 0002654	. 0090854
hsperc \|	-. 0132126	. 0005728	-23.07	0.000	-. 0143355	-. 0120896
sat	. 0016464	. 0000668	24.64	0.000	. 0015154	. 0017774
female \|	. 1548814	. 0180047	8.60	0.000	. 1195826	. 1901802
athlete \|	. 1693064	. 0423492	4.00	0.000	. 0862791	. 2523336
_cons \|	1.241365	. 0794923	15.62	0.000	1.085517	1.397212

The estimated equation is

$$
\begin{aligned}
& -.00165 \text { sat }+.155 \text { female }+.169 \text { athlete } \\
& \text { (0.00007) (.018) (.042) } \\
& n=4,137, R^{2}=.293 .
\end{aligned}
$$

Holding other factors fixed, an athlete is predicted to have a GPA about .169 points higher than a nonathlete. The t statistic $.169 / .042 \approx 4.02$, which is very significant.
(iii) . regress colgpa hsize hsizesq hsperc female athlete

Source \|	SS	df MS			Number of obs $=4137$	
					F (5, 4131)	$=191.92$
Model \|	338.217123	567	67.6434246		Prob > F	$=0.0000$
Residual \|	1455.97855	4131	. 35245184		R-squared	$=0.1885$
					Adj R-squared	$=0.1875$
Total \|	1794.19567	4136.4	. 433799728		Root MSE	$=.59368$
colgpa \|	Coef.	Std. Err	t	$P>\|t\|$	[95\% Conf. Interval]	
hsize	-. 0534038	. 0175092	-3.05	0.002	-. 0877313	-. 0190763
hsizesq \|	. 0053228	. 0024086	2.21	0.027	. 0006007	. 010045
hsperc \|	-. 0171365	. 0005892	-29.09	0.000	-. 0182916	-. 0159814
female \|	. 0581231	. 0188162	3.09	0.002	. 0212333	. 095013
athlete \|	. 0054487	. 0447871	0.12	0.903	-. 0823582	. 0932556
_cons \|	3.047698	. 0329148	92.59	0.000	2.983167	3.112229

With sat dropped from the model, the coefficient on athlete becomes about .0054 ($\mathrm{se} \approx .0448$), which is practically and statistically not different from zero. this happens because we do not control for SAT scores, and athletes score lower on average than nonathletes. Part (ii) shows that, once we account for SAT differences, athletes do better than nonathletes. Even if we do not control for SAT score, there is no difference.

```
(iv) . gen femath= female* athlete
. gen maleath=(1- female)* athlete
. gen malenonath=(1- female)*(1- athlete)
. regress colgpa hsize hsizesq hsperc sat femath maleath malenonath
\begin{tabular}{|c|c|c|c|c|c|}
\hline Source & SS & df & MS & Number of obs \(=\) & 4137 \\
\hline & & & & F ( 7, 4129) & 243.88 \\
\hline Model & 524.821272 & 7 & 74.9744674 & Prob > F & 0.0000 \\
\hline Residual & 1269.3744 & 4129 & . 307429015 & R-squared & 0.2925 \\
\hline & & & & Adj R-squared = & 0.2913 \\
\hline Total & 1794.19567 & 4136 & . 433799728 & Root MSE & . 55446 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline colgpa & Coef. & Std. Err. & t & \(P>|t|\) & \multicolumn{2}{|l|}{[95\% Conf. Interval]} \\
\hline hsize & -. 0568006 & . 0163671 & -3.47 & 0.001 & -. 0888889 & -. 0247124 \\
\hline hsizesq & . 0046699 & . 0022507 & 2.07 & 0.038 & . 0002573 & . 0090825 \\
\hline hsperc & -. 0132114 & . 000573 & -23.06 & 0.000 & -. 0143349 & -. 012088 \\
\hline sat & . 0016462 & . 0000669 & 24.62 & 0.000 & . 0015151 & . 0017773 \\
\hline femath & . 1751106 & . 0840258 & 2.08 & 0.037 & . 0103748 & . 3398464 \\
\hline maleath & . 0128034 & . 0487395 & 0.26 & 0.793 & -. 0827523 & . 1083591 \\
\hline malenonath & -. 1546151 & . 0183122 & -8.44 & 0.000 & -. 1905168 & -. 1187133 \\
\hline _cons & 1.39619 & . 0755581 & 18.48 & 0.000 & 1.248055 & 1.544324 \\
\hline
\end{tabular}
```

To facilitate testing the hypothesis that there is no difference between women athletes and women nonathletes, we should choose one of these as the base group. We choose female nonathletes. The estimation
equation is

$$
\begin{aligned}
& \widehat{\text { colgpa }}=\underset{(0.076)}{\substack{1.396 \\
(.0164)}} \underset{(.0568}{\text { h }} \text { size }+\underset{(.00225)}{.00467 \text { hsize }^{2}-\underset{(.0006)}{.0132 ~ h s p e r c ~}}
\end{aligned}
$$

$$
\begin{aligned}
& n=4,137, R^{2}=.293 .
\end{aligned}
$$

The coefficient on femath $=$ female \cdot athlete shows that colgpa is predicted to be about .175 points higher for a female athlete than a female nonathlete, other variables in the equation fixed.
(v) . gen femsat=female*sat
. regress colgpa hsize hsizesq hsperc sat female athlete femsat

Source	SS	df MS			Number of obs $=4137$	
					$\begin{aligned} & \mathrm{F}(7,4129)= \\ & \text { Prob > F }= \end{aligned}$	$=243.91$
Model	524.867644	$7 \quad 74.981092$				$=0.0000$
Residual	1269.32803	4129.307417784			R -squared	$=0.2925$
					Adj R-squared	$=0.2913$
Total	1794.19567	4136.433799728			Root MSE	$=.55445$
colgpa	Coef.	Std. Err.	t	$P>\|t\|$	[95\% Conf.	Interval]
hsize	-. 0569121	. 0163537	-3.48	0.001	-. 0889741	-. 0248501
hsizesq	. 0046864	. 0022498	2.08	0.037	. 0002757	. 0090972
hsperc	-. 013225	. 0005737	-23.05	0.000	-. 0143497	-. 0121003
sat	. 0016255	. 0000852	19.09	0.000	. 0014585	. 0017924
female	. 1023066	. 1338023	0.76	0.445	-. 1600179	. 3646311
athlete	. 1677568	. 0425334	3.94	0.000	. 0843684	. 2511452
femsat	. 0000512	. 0001291	0.40	0.692	-. 000202	. 0003044
_cons	1.263743	. 0974952	12.96	0.000	1.0726	1.454887

. regress colgpa hsize hsizesq hsperc sat femath maleath malenonath femsat

Source	SS	df	MS	Number of obs	4137
				F (8, 4128)	213.37
Model	524.873728	8	65.6092161	Prob > F	0.0000
Residual	1269.32195	4128	. 307490781	R -squared	0.2925
				Adj R-squared	0.2912
Total	1794.19567	4136	. 433799728	Root MSE	. 55452

colgpa	Coef. Std. Err.		t	$P>\|t\|$	[95\% Con	Interval]
hsize	-. 0568198	. 0163688	-3.47	0.001	-. 0889114	-. 0247282
hsizesq	. 0046773	. 002251	2.08	0.038	. 0002641	. 0090904
hsperc	-. 0132236	. 0005738	-23.04	0.000	-. 0143487	-. 0120986
sat	. 001624	. 0000858	18.93	0.000	. 0014558	. 0017922
femath	. 1779989	. 0843247	2.11	0.035	. 0126771	. 3433207
maleath	. 0652958	. 1361172	0.48	0.631	-. 2015673	. 3321589
malenonath	-. 0990198	. 1358427	-0.73	0.466	-. 3653447	. 1673051
femsat	. 0000539	. 0001306	0.41	0.680	-. 0002021	. 00031
_cons	1.364334	. 1079746	12.64	0.000	1.152646	1.576023

Whether we add the interaction female•sat to the equation in part (ii) or part (iv), the outcome is practically the same. For example, when female•sat is added to the equation in part (ii), its coefficient is about .000051 and its t statistic is about .40. There is very little evidence that the effect of sat differs by gender.

