BOSTON COLLEGE Department of Economics EC 228 Econometrics, Prof. Baum, Ms. Yu, Fall 2003 **Problem Set 7 Solutions**

Problem sets should be your own work. You may work together with classmates, but if you're not figuring this out on your own, you will eventually regret it.

1. (10.2)

We follow the hint and write

$$gGDP_{t-1} = \alpha_0 + \delta_0 int_{t-1} + \delta_1 int_{t-2} + \mu_{t-1},$$

and plug this into the right hand side of the int_t equation:

$$int_{t} = \gamma_{o} + \gamma_{1}(\alpha_{o} + \delta_{0}int_{t-1} + \delta_{1}int_{t-2} + \mu_{t-1} - 3) + \upsilon_{t}$$

= $(\gamma_{0} + \gamma_{1}\alpha_{0} - 3\gamma_{1}) + \gamma_{1}\delta_{0}int_{t-1} + \gamma_{1}\delta_{1}int_{t-2} + \gamma_{1}\mu_{t-1} + \upsilon_{t}$

Now by assumption, μ_{t-1} has zero mean and is uncorrelated with all right hand side variables in the previous equation, except itself of course. So

$$Cov(int, \mu_{t-1}) = E(int_t \cdot \mu_{t-1}) = \gamma_1 E(\mu_{t-1}^2) > 0$$

because $\gamma_1 > 0$. If $\sigma_{\mu}^2 = E(\mu_t^2)$ for all t then $Cov(int, \mu_{t-1}) = \gamma_1 \sigma_{\mu}^2$. This violates the strict exogeneity assumption, TS.2. While μ_t is uncorrelated with int_t, int_{t-1} , and so on, μ_t is correlated with int_{t+1} .

2. (10.5)

The functional form was not specified, but a reasonable one is

$$\log(hsestrts_t) = \alpha_0 + \alpha_1 t + \delta_1 Q 2_t + \delta_2 Q 3_t + \delta_3 Q 4_t + \beta_1 int_t + \beta_2 \log(pcinc_t) + \mu_t,$$

Where $Q2_t, Q3_t$, and $Q4_t$ are quarterly dummy variables (the omitted quarter is the first) and the other variables are self-explanatory. The inclusion of the linear time trend allows the dependent variable and $\log(pcinc_t)$ to trend over time (*int_t* robably does not contain a trend), and the quarterly dummies allow all variables to display seasonality. The β_2 is an elasticity and $100 \cdot \beta_1$ is a semi-elasticity.

3. (10.8)

(i)

(i) . use http://fmwww.bc.edu/ec-p/data/wooldridge/BARIUM

. regress lchnimp lchempi lgas lrtwex befile6 affile6 afdec6 t

Source	I	SS	di	£	MS	Number of	obs	=	131
	+-					F(7,	123)	=	9.95
Model	I	23.0142638	7	7	3.28775197	Prob > F		=	0.0000
Residual	I	40.637988	123	3	.330390146	R-squared	1	=	0.3616

Total	-+- 	63.6522517	130 .489	632706		Adj R-squared Root MSE	= 0.3252 = .5748
lchnimp	 -+-	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
lchempi	I	6862247	1.239712	-0.55	0.581	-3.140158	1.767709
lgas	Τ	.4656256	.8761836	0.53	0.596	-1.268726	2.199977
lrtwex	Ι	.0782138	.4724404	0.17	0.869	8569531	1.013381
befile6	Ι	.0904704	.2512888	0.36	0.719	4069404	.5878812
affile6	Ι	.0970053	.2573132	0.38	0.707	4123303	.6063409
afdec6	Ι	351502	.2825419	-1.24	0.216	9107763	.2077723
t	Ι	.0127058	.0038443	3.31	0.001	.0050963	.0203153
_cons	Ι	-2.366326	20.78231	-0.11	0.910	-43.50364	38.77099

Adding a linear time trend to (10.22) gives

$$\begin{split} \log(\widehat{chnimp}) &= \begin{array}{c} -2.37 & -.686 \ \log(chempi) + .466 \ \log(gas) + .078 \ \log(rtwex) \\ (20.78) & (1.240) & (.876) & (.472) \\ &+ .090 \ befile6 + .097 \ affine6 - .351 \ afdec6 + .013 \ t \\ (.251) & (.257) & (.282) & (.004) \\ n &= 131, R^2 = .362, \overline{R^2} = .325. \end{split}$$

Only the trend is statistically significant. In fact, in addition to the time trend, which has a t statistic over three, only afdec6 has a t statistic bigger than one in absolute value. Accounting for a linear trend has important effects on the estimates.

(ii) . test lchempi lgas lrtwex befile6 affile6 afdec6

(1) lchempi = 0.0
(2) lgas = 0.0
(3) lrtwex = 0.0
(4) befile6 = 0.0
(5) affile6 = 0.0
(6) afdec6 = 0.0
F(6, 123) = 0.54
Prob > F = 0.7767

The F statistic for joint significance of all variables except the trend and intercept, of course, is about .54. The df in the F distribution are 6 and 123. The *p*-value is about .78, and so the explanatory variables other than the time trend are jointly very insignificant. We would have to conclude that once a positive linear trend is allowed for, nothing else helps to explain $\log(chnimp)$. This is a problem for the original event study analysis.

 (iii) . regress lchnimp lchempi lgas lrtwex befile6 affile6 afdec6 t feb mar apr may jun

jul aug sep oct nov dec

Source		SS	df		MS		Number of obs	=	131
Modol	+-		10	 1 _1	E19700		F(18, 112)	=	4.33
Pogidual	1	20.1337121	110	1.4	010729		PIOD > F	_	0.0000
	۱ ـــ		112	. 33	490090		Adi P-squared	_	0.4100
Total	т- Т	63.6522517	130	. 489	632706		Root MSE	_	.57878
	•								
lchnimp	 +-	Coef.	Std.	Err.	t	P> t	[95% Conf.	In	terval]
lchempi	İ	4516498	1.27	1527	-0.36	0.723	-2.971018	2	.067718
lgas	L	8207313	1.34	5061	-0.61	0.543	-3.485797	1	.844334
lrtwex		1971642	.529	5317	-0.37	0.710	-1.246363		8520349
befile6		.1648523	.2569	9788	0.64	0.523	3443182	•	6740229
affile6		.1534037	.2719	9856	0.56	0.574	385501	•	6923083
afdec6		2950151	.2994	4274	-0.99	0.327	8882921	•	2982619
t	L	.0123389	.0039	9163	3.15	0.002	.0045793		0200985
feb	L	3554248	.293	7527	-1.21	0.229	937458	•	2266084
mar	L	.0625648	.2548	8577	0.25	0.807	442403	•	5675327
apr	L	4406177	.2583	3976	-1.71	0.091	9525994	•	0713641
may		.0313029	.259	1999	0.12	0.904	4822683	•	5448742
jun	L	2009461	.2592	2135	-0.78	0.440	7145444	•	3126523
jul	L	.011118	.2683	3778	0.04	0.967	5206382	•	5428742
aug	L	1271059	.267	7924	-0.47	0.636	6577021	•	4034903
sep	L	0751912	.2583	3501	-0.29	0.772	5870789	•	4366964
oct		.0797634	.2570	0513	0.31	0.757	4295508	•	5890776
nov		2603022	.2530	0622	-1.03	0.306	7617125		.241108
dec	L	.0965389	.261	5528	0.37	0.713	4216944	•	6147722
_cons		27.3026	31.39	9722	0.87	0.386	-34.90697	8	9.51218

. test feb mar apr may jun jul aug sep oct nov dec

(1) feb = 0.0 (2) mar = 0.0 (3) apr = 0.0 (4) may = 0.0 (5) jun = 0.0 (6) jul = 0.0 (7) aug = 0.0 (7) aug = 0.0 (8) sep = 0.0 (9) oct = 0.0 (10) nov = 0.0 (11) dec = 0.0 F(11, 112) = 0.85 Prob > F = 0.5943

Nothing of importance changes. In fact, the *p*-value for the test of joint significance of all variables except the trend and monthly dummies is about .79. The 11 monthly dummies themselves are not jointly significant: *p*-value $\approx .59$.

4. (10.9)

. use http://fmwww.bc.edu/ec-p/data/wooldridge/PRMINWGE

Source	I SS	df	MS		Number of obs	= 38
Model Residual	.284429802 .035428549	4 .07 33 .00	1107451 1073592		Prob > F R-squared	= 0.0000 = 0.8892 = 0.9759
Total	.319858351	37 .0	0864482		Root MSE	= .03277
lprepop	 Coef. +	Std. Err.	t	P> t	[95% Conf.	Interval]
lprepop lmincov lusgnp lprgnp	Coef. +	Std. Err. .0401525 .2219838 .0804923	t -5.29 2.19 3.54	P> t 0.000 0.036 0.001	[95% Conf. 293952 .0344121 .1214771	Interval] 1305703 .937671 .4490027

. regress lprepop lmincov lusgnp lprgnp t

Adding $\log(prgnp)$ to equation (10.38) gives

$$\begin{split} \widehat{\log(prepop_t)} &= \begin{array}{ccc} -6.66 - .212 \ \log(mincov_t) + .486 \ \log(usgnp_t) + .285 \ \log(prgnp_t) \\ (1.26) \ (.040) \ (.222) \ (.080) \\ &- .027 \ t \\ (.005) \\ n &= 38, R^2 = .889, \overline{R^2} = .876. \end{split}$$

The coefficient on $\log(prgnp_t)$ is very statistically significant (t statistic ≈ 3.54). Because the dependent and independent variable are in logs, the estimated elasticity of prepop with respect to prgnp is .285. Including $\log(prgnp)$ actually increases the size of the minimum wage effect: the estimated elasticity of prepop with respect to mincov is now -.212, as compared with -.169 in equation (10.38).

5. (10.13)

(i) . use http://fmwww.bc.edu/ec-p/data/wooldridge/CONSUMP

. regress gc gy

	Source	SS	df	MS	Number of obs =	36
-	+-				F(1, 34) =	71.81
	Model	.003793616	1	.003793616	Prob > F =	0.0000
	Residual	.001796085	34	.000052826	R-squared =	0.6787
-	+-				Adj R-squared =	0.6692
	Total	.005589701	35	.000159706	Root MSE =	.00727

gc	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
gy	.5707806	.0673545	8.47	0.000	.4338998	.7076613
_cons	.0080792	.0018991	4.25		.0042197	.0119386

The estimated equation is

$$\widehat{gc_t} = \begin{array}{rcr} 0081 & + .571 \ gy_t \\ (.0019) & (.067) \end{array}$$
$$n = 36, R^2 = .679.$$

This equation implies that if income growth increases by one percentage point, consumption growth increases by .571 percentage points. The coefficient on gy_t is very statistically significant (t statistic ≈ 8.5).

(ii) . regress gc gy gy_1

Source	SS	df	MS		Number of obs	= 35
Model Residual + Total	.003855812 .001689785 .005545597	2 . 32 . 34 .	001927906 000052806 000163106		F(2, 32) Prob > F R-squared Adj R-squared Root MSE	= 36.51 = 0.0000 = 0.6953 = 0.6762 = .00727
gc	Coef.	Std. Er	r. t	P> t	[95% Conf.	Interval]
gy gy_1 _cons	.5522502 .0962134 .0063567	.069650	07 7.93 02 1.39 1.6 2.81	0.000 0.173 0.008	.4103763 0443741 .0017499	.6941241 .236801 .0109634

Adding gy_{t-1} to the equation gives

$$\widehat{gc_t} = \begin{array}{rrr} .0064 & + .552 \ gy_t + .096gy_{t-1} \\ (.0023) & (.070) & (.069) \end{array}$$
$$n = 35, R^2 = .695.$$

The t statistic on gy_{t-1} is only about 1.39, so it is not significant at the usual signiicance levels. (It is significant at the 20% level against a two-sided alternative.) In addition, the coefficient is not especially large. At best there is weak evidence lags in consumption.

 (iii) . regress gc gy r3

Source	l SS	df	MS		Number of obs	= 36
	+				F(2, 33)	= 35.03
Model	.00379999	2 .00	1899995		Prob > F	= 0.0000
Residual	.001789711	33 .00	0054234		R-squared	= 0.6798
	+				Adj R-squared	= 0.6604
Total	.005589701	35 .00	0159706		Root MSE	= .00736
gc	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
	+					
gу	.5781102	.0715164	8.08	0.000	.432609	.7236114
r3	0002148	.0006265	-0.34	0.734	0014895	.0010599
_cons	.0082181	.0019665	4.18	0.000	.0042173	.012219

If we add $r\mathcal{J}_t$ to the model estimated in part (i) we obtain

$$\widehat{gc_t} = \begin{array}{rrr} .0082 & + .578 \ gy_t + .00021r3_t \\ (.0020) & (.072) & (.00063) \end{array}$$
$$n = 36, R^2 = .680.$$

The t statistic on $r\mathcal{J}_t$ is very small. The estimated coefficient is also practically small: a one-point increase in $r\mathcal{J}_t$ reduces consumption growth by about .021 percentage points.

6. (10.17)

- (i) The variable *beltlaw* becomes one at t = 61, which corresponds to January, 1986. The variable *spdlaw* goes from zero to one at t = 77, which corresponds to May, 1987.
- (ii) . use <code>http://fmwww.bc.edu/ec-p/data/wooldridge/TRAFFIC2</code>

. regress ltotacc t feb mar apr may jun jul aug sep oct nov dec

Source	 +-	SS	df		MS		Number of obs F(12, 95)	=	108 31.06
Model	1	1.00244222	12	.083	3536851		Prob > F	=	0.0000
Residual	I	.255498294	95	.002	2689456		R-squared	=	0.7969
	+-						Adj R-squared	=	0.7712
Total	I	1.25794051	107	.011	1756453		Root MSE	=	.05186
ltotacc		Coef.	Std.	Err.	t	P> t	[95% Conf.	In	terval]
t	i.	.0027471	.0001	611	17.06	0.000	.0024274		0030669
feb		042684	.0244	476	-1.75	0.084	0912186		0058505
mar		.0798279	.0244	491	3.27	0.002	.0312902		1283656
apr	L	.0184875	.0244	518	0.76	0.451	0300555		0670304
may	L	.0320994	.0244	555	1.31	0.192	0164509		0806497
jun		.0201944	.0244	603	0.83	0.411	0283653		0687542
jul		.037584	.0244	661	1.54	0.128	0109874		0861553

aug	1	.0539858	.024473	2.21	0.030	.0054007	.1025708
sep	1	.042362	.024481	1.73	0.087	0062389	.0909628
oct	1	.0821147	.02449	3.35	0.001	.033496	.1307334
nov	1	.07128	.0245	2.91	0.005	.0226413	.1199187
dec	1	.0961584	.0245111	3.92	0.000	.0474976	.1448191
_cons	1	10.46856	.0190029	550.89	0.000	10.43084	10.50629

. test feb mar apr may jun jul aug sep oct nov dec

(1) feb = 0.0(2) mar = 0.0(3) apr = 0.0(4) may = 0.0(5) jun = 0.0 jul = 0.0 (6) (7) aug = 0.0(8) sep = 0.0oct = 0.0(9) (10) nov = 0.0(11) dec = 0.0F(11, 95) = 5.15 Prob > F =0.0000

The OLS regression gives

$$\log(\widehat{totacc}) = \begin{array}{l} 10.469 + .00275 \ t - .0427 \ feb + .0798 \ mar + .0185 \ apr \\ (.019) \ (.00016) \ (.0244) \ (.0244) \ (.0245) \\ + .0424 \ sep + .0821 \ oct + .0713 \ nov + .0962 \ dec \\ (.0245) \ (.0245) \ (.0245) \ (.0245) \\ n = 108, R^2 = .797. \end{array}$$

When multiplied by 100, the coefficient on t gives roughly the average monthly percentage growth in *totacc*, ignoring seasonal factors. In other words, once seasonality is eliminated, *totacc* grew by about .275% per month over this period, or, 12(.275) = 3.3%at an annual rate.

There is pretty clear evidence of seasonality. Only February has a lower number of total accidents than the base month, January. The peak is in December:roughly, there are 9.6% more accidents in December than January in the average year. The F statistic for joint significance of the monthly dummies is F = 5.15. With 11 and 95 df, this gives a *p*-value essentially equal to zero.

 (iii) . regress ltotacc t feb mar apr may jun jul aug sep oct nov dec wkends unem spdlaw

beltlaw

Source SS df MS Number of obs =	108
-----------------------------------	-----

	+-						F(16, 91)	=	57.61
Model	I	1.14491043	16	.071	556902		Prob > F	=	0.0000
Residual	Ì	.113030083	91	.001	242089		R-squared	=	0.9101
	·+-						Adj R-squared	=	0.8943
Total	I	1.25794051	107	.011	756453		Root MSE	=	.03524
ltotacc		Coef.	Std.	Err.	t	P> t	[95% Conf.	In	terval]
t	İ	.0011011	.0002	2579	4.27	0.000	.0005889	.,	0016133
feb	Ι	0338326	.0177	684	-1.90	0.060	0691274		0014621
mar	I	.0769563	.0167	'942	4.58	0.000	.0435967	•	1103159
apr	Ι	.0104586	.017	047	0.61	0.541	0234032		0443204
may	Ι	.0237085	.016	3939	1.40	0.165	0099388		0573558
jun	Ι	.0219357	.0172	2151	1.27	0.206	0122599		0561313
jul	I	.0499305	.0167	037	2.99	0.004	.0167506		0831104
aug	I	.0559552	.0168	3174	3.33	0.001	.0225494		.089361
sep	I	.04207	.017	282	2.43	0.017	.0077414		0763986
oct	Ι	.0817182	.0169	9555	4.82	0.000	.0480381	•	1153983
nov	Ι	.0768734	.0172	2456	4.46	0.000	.042617	•	1111297
dec	Ι	.0990874	.0170	0706	5.80	0.000	.0651787	•	1329961
wkends	Ι	.0033331	.0037	762	0.88	0.380	0041678		.010834
unem	Ι	0212174	.0033	8975	-6.25	0.000	027966	(0144688
spdlaw	Ι	0537583	.0126	5037	-4.27	0.000	078794	(0287226
beltlaw	Ι	.0954529	.0142	2352	6.71	0.000	.0671765	•	1237293
_cons	Ι	10.63987	.0630	864	168.66	0.000	10.51455	1	0.76518

I will report only the coefficients on the new variables:

$$\log(\widehat{totacc}) = \begin{array}{l} 10.469 + \dots + .00333 \ wkends - .0212 \ unem \\ (.063) \qquad (.00378) \qquad (.0034) \\ - .0538 \ spdlaw + .0954 \ beltlaw \\ (.0126) \qquad (.0142) \end{array}$$
$$n = 108, R^2 = .910.$$

The negative coefficient on *unem* makes sense if we view *unem* as a measure of economic activity. As economic activity increases - *unem* decreases - we expect more driving, and therefore more accidents. The estimate is that a one percentage point increase in the unemployment rate reduces total accidents by about 2.1%. A better economy does have costs in terms of traffic accidents.

(iv) At least initially, the coefficients on *spdlaw* and *beltlaw* are not what we might expect. The coefficient on *spdlaw* implies that accidents dropped by about 5.4% *after* the highway speed limit was increased from 55 to 65 miles per hour. There are at least a couple of possible explanations. One is that people become safer drivers after the increased speed limiting, recognizing that they must be more cautious. It could also be that some other change - other than the increased speed limit or the relatively new seat belt law - caused a lower total number of accidents, and we have not properly accounted for this change.

The coefficient on *beltlaw* also seems counterintuitive at first. But, perhaps people became less cautious once they were forced to wear seatbelts.

 $\left(v \right)$. summ prcfat

Variable	l Obs	Mean	Std. Dev.	Min	Max
prcfat	108	.8856363	.0997777	.7016841	1.216828

The average of *prcfat* is about .886, which means, on average, slightly less than one percent of all accidents result in a fatality. The highest value of *prcfat* is 1.217, which means there was one month where 1.2% of all accidents resulted in a fatality.

(vi)

. regress prcfat t feb mar apr may jun jul aug sep oct nov dec wkends unem spdlaw

beltlaw

Source	Ι	SS	df		MS		Number of obs	=	108
	+-						F(16, 91)	=	14.44
Model	I	.764228341	16	.047	7764271		Prob > F	=	0.0000
Residual	I	.301019813	91	.00	0330791		R-squared	=	0.7174
	+-						Adj R-squared	=	0.6677
Total	I	1.06524815	107	.00	0995559		Root MSE	=	.05751
prcfat	I	Coef.	Std.	Err.	t	P> t	[95% Conf.	In	terval]
t	+-	0022352	.0004	 4208	-5.31	0.000	0030711		0013993
feb	Ι	.0008607	.0289	9967	0.03	0.976	0567377		0584592
mar	I	.0000923	.0274	4069	0.00	0.997	0543481		0545327
apr	I	.0582201	.0278	3195	2.09	0.039	.0029601		1134801
may	I	.0716392	.0276	6432	2.59	0.011	.0167293		1265492
jun	L	.1012618	.0280	0937	3.60	0.001	.0454571		1570665
jul	L	.1766121	.0272	2592	6.48	0.000	.122465		2307592
aug	L	.1926116	.0274	4448	7.02	0.000	.1380958		2471274
sep	L	.1600165	.028	3203	5.67	0.000	.1039948		2160382
oct	L	.1010357	.0276	6702	3.65	0.000	.0460722		1559991
nov	L	.013949	.028	1436	0.50	0.621	0419548	•	0698528
dec	L	.0092005	.02	7858	0.33	0.742	046136		.064537
wkends	L	.0006259	.006	1624	0.10	0.919	0116151	•	0128668
unem	L	0154259	.005	5444	-2.78	0.007	0264392		0044127
spdlaw	I	.0670876	.020	5683	3.26	0.002	.0262312		.107944
beltlaw	I	0295053	.0232	2307	-1.27	0.207	0756503		0166397
_cons	I	1.029799	.1029	9524	10.00	0.000	.8252965	1	.234301

As in part (iii), I do not report the coefficients on the time trend and seasonal dummy

variables:

$$\widehat{prcfat} = \frac{1.030 + \dots + .00063 \ wkends - .0154 \ unem}{(.103)} (.00616) (.0055) \\ - .0671 \ spdlaw + .0295 \ beltlaw \\ (.0206) (.0232) \\ n = 108, R^2 = .717.$$

Higher speed limits are estimated to increase the percent of fatal accidents, by .067 percentage points. This is a statistically significant effect. The new seat belt law is estimated to decrease the percent of fatal accidents by about .03, but the two-sided p-value is about .21.

Interestingly, increases economic activity also increases the percent of fatal accidents. This may be because more commercial trucks are on the roads, and these probably increase the chance that an accident results in a fatality.