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Background In this module, we will study a

variety of computational techniques used to

solve dynamic models in economics and finance.

These models are dynamic because they explic-

itly consider the passage of time—as opposed

to static models, which are perhaps the most

common objects to anyone who has taken an

economics principles course. Structures such

as the simple supply and demand model of mi-

croeconomics, or the “Keynesian cross” model

of elementary macroeconomics, are static rep-

resentations of a market or an economy, and

the analysis of how they react when a par-

ticular factor is altered—e.g., shifting one of

the curves—is known as “comparative stat-

ics.” Comparative static analysis is concerned



with the analysis of two equilibria, and does not

consider the path taken between those equi-

librium points (or even whether such a path

exists). When economists construct dynamic

models, they are concerned with this transi-

tion path, and the trajectory that the system

will take when going from one equilibrium to

another.

We will use the Miranda and Fackler text Ap-

plied Computational Economics and Finance

and the MATLAB toolbox those authors have

provided, CompEcon, in our study of dynamic

economic models. As we have a very lim-

ited time for this module, we will not explicitly

cover the background material in the first six

chapters of the text in any detail. I will pro-

vide a quick summary of that material, since

some of its elements are referenced in the later

chapters.



First, we must consider the need for compu-

tation in the context of economic modeling.

Many models in economics and finance pos-

sess closed–form, or analytical solutions. If an

analytical solution exists, why should we need

to turn to computational techniques, beyond

those related to symbolic algebra and calcu-

lus? Why is it necessary to become familiar

with techniques of numerical analysis, root–

finding, numeric integration and differentiation

and interpolation?

Many interesting economic models cannot be

analytically solved. These include applied eco-

nomics models that attempt to capture real–

world complexities in economic behavior. For

instance, the simple Marshallian market model

of supply and demand, customarily depicted

as a supply curve and demand curve inter-

secting in quantity, price space, is too simpli-

fied to reflect many aspects of producers’ and



consumers’ behavior which play an important

role in the workings of markets. Such factors

as multiple goods (or goods differentiated by

bundled features), interregional trade and in-

tertemporal storage may be relevant for many

markets, as may the interventions of govern-

ments in the form of taxes, subsidies, tariffs

and trade quotas. A realistic model of a par-

ticular market may have to take some of these

factors into consideration—but in doing so may

be rendered analytically intractable.

A second class of models that are not amenable

to analytical solutions includes some of those

we will consider here: stochastic, dynamic mod-

els of rational, forward–looking economic be-

havior. These models are dynamic because

they explicitly include the timing of decisions;

they are stochastic because they incorporate

the effects of uncertainty. What is “rational,

forward–looking behavior”? Merely the notion



that economic agents will do the best they

can with the available information to make an

optimal decision, and that the decision may

be based on their evaluation of future events.

For instance, a young worker’s decision to con-

tribute toward her pension, the choice of how

much of her salary should be directed toward

retirement savings and the mix of assets should

be purchased as investments in the plan clearly

reflect forward–looking behavior, expressing a

concern over the worker’s well–being in distant

years, even though increased contributions to

the plan reduce her current income and wel-

fare. This type of model typically gives rise to

functional equations where the unknown is not

simply a vector (e.g., the amount to contribute

to the pension plan each year of working life)

but an entire function. Except in very special

cases, the functional equation lacks a known

closed–form solution, even though the solu-

tion can be shown theoretically to exist and

be unique.



Models lacking analytical solutions are hardly

special to economics nor finance; many mod-

els requiring numerical solutions appear in the

biological and physical sciences and engineer-

ing. But in those fields the need for explicit

study of computational modeling and analy-

sis has been more quickly accepted as a key

component of the disciplines. Economists are

beginning to realize the importance of these

techniques; a society to which I belong, the

Society for Computational Economics, has just

held its 10th annual conference, and the pro-

fessional journal Computational Economics is

in its 11th year of publication.

Although an analytical solution is surely to be

preferred on the grounds of elegance and gen-

erality, it would be a mistake to shun devel-

opment of a more sophisticated model, incor-

porating key elements of economic behavior,



merely because it required the modeler to es-

chew a closed–form solution and turn to nu-

merical techniques for its solution. Models, al-

though abstractions from reality by definition,

are most useful when they capture the essen-

tial features of the relationship being mod-

eled. In a behavioral science such as eco-

nomics, those features often include the notion

that economic agents’ reactions to economic

events are not perfectly predictable, and indeed

that their actions may include “herd instincts”

that lead to seemingly irrational outcomes such

as “bubbles” in asset prices.

Let us consider a very simple example of ana-

lytical intractability in the context of a market

model. In a free market, the equilibrium price

and quantity is obtained by the juxtaposition

of supply and demand functions. The supply

function reflects the producer’s costs of offer-

ing the good to the market. Consumers of the



good are characterized by a demand function,
which expresses how many units of the good
they would be willing to buy at various prices.
Let us consider a so–called constant elasticity
demand function

q = p−0.2 (1)

which is a simple function linking the quantity
demanded (q) to the price of the good (p). It
is said to be a constant–elasticity function (as
opposed to a linear demand function) since a
one percent increase in the price will yield a
change in the quantity demanded of -0.2 per
cent (in economic terms, the good is said to be
inelastic, since the price elasticity of demand is
greater than -1.0).

If we know how many units of the good are
available at a point in time, we can invert
the demand function to determine the market–
clearing price:

p = q−5 (2)



So that in this case the so–called inverse de-

mand function (IDF) exists, and we could re-

place −0.2 with −η and represent the IDF an-

alytically. What if we wanted to consider a

more general demand function, in which there

are two terms expressing the demand for the

good from domestic consumers and from for-

eign consumers (i.e., export demand)? Such a

demand function might be

q = 0.5p−0.2 + 0.5p−0.5 (3)

That is, foreign consumers are more respon-

sive to price changes, presumably reflecting

their option to purchase locally–produced sub-

stitutes. What can we say about this demand

function? It is continuous, differentiable, and

strictly decreasing in p. We can readily cal-

culate the quantity demanded q for any level

of price, and graph the resulting functional re-

lationship. But what if we wanted to com-

pute its IDF—to consider, for instance, what



price would clear the market for a quantity of

two units? On a theoretical level, the Inter-

mediate Value and Implicit Function theorems

guarantee existence of the IDF, and indicate

that it is continuous and strictly decreasing,

and capable of generating a unique price that

would clear the market for a specific quan-

tity. But can algebra and calculus answer this

question, and indicate what that price will be?

No. A numerical solution would be required,

and could be obtained by a root–finding algo-

rithm such as Newton’s method (which utilizes

a first–order Taylor expansion of the function)

as 0.154 equalling the market–clearing price.

This is merely one example of a very sim-

ple economic relationship in which the intro-

duction of a realistic feature, the notion that

a good may be purchased by more than one

group of consumers, who may exhibit different

reactions to changes in the good’s price, has



turned the problem into one requiring numeri-

cal analysis to achieve a solution.

Let us now consider some of the building blocks

used in computational economics and finance.

The most elementary problem that arises in

computational economic analysis is the sys-

tem of linear equations, in which an n-vector

x that satisfies Ax = b is sought. Even when

complex nonlinear problems arise, their solu-

tion often includes a system of linear equa-

tions, since many solution techniques rely on

linearization or log-linearization around a trial

solution. Some of the computational methods

associated with systems of linear equations are

LU-factorization, Gaussian elimination, and a

special form of the latter—Cholesky factoriza-

tion, which may be employed when the matrix

A is symmetric and positive definite (such as

a matrix of second partials under appropriate

conditions). These methods are collectively



known as exact methods, and generally domi-
nate the direct computation of the matrix in-
verse (or that construct favored by economists,
the application of “Cramer’s rule”) in terms
of computational burden and accuracy, espe-
cially in the case of ill–conditiioned matrices
(i.e., those whose numerical determinants are
close to machine zero). There are also itera-
tive methods for solution of a system of lin-
ear equations such as the Gauss–Jacobi and
Gauss–Seidel methods. The latter method is
often employed to solve a system of nonlinear
equations.

Many interesting problems in economics and
finance cannot be expressed as a system of lin-
ear equations, but rather contain one or more
nonlinear aspects. Sets of nonlinear equations
give rise to a root–finding problem (the solu-
tion x to the functional relationship f(x) = 0)
or a fixed–point problem (the vector x satisfy-
ing the relationship g(x) = x). The two forms



are equivalent, in that a root–finding problem

may be rewritten as a fixed–point problem by

rewriting g(x) = x − f(x), while the converse

may be achieved by expressing f(x) = g(x)−x.

A related problem is the complementarity prob-

lem, where we have two n-vectors a and b,

a < b, a function f , and a solution x that sat-

isfies

xi > ai ⇒ fi(x) ≥ 0 ∀i = 1, . . . , n (4)

xi < bi ⇒ fi(x) ≤ 0 ∀i = 1, . . . , n (5)

where fi is the partial derivative of f with re-

spect to the ith element of x. The comple-

mentarity problem imposes constraints on the

optimization problem, so that a root of f (or

a fixed point of x) may imply that one of the

bounds a or b are breached. In this case, the

unconstrained optimum will not equal the con-

strained optimum. This sort of problem will

arise, for instance, in the case of a market



model where there are price supports, quan-

tity quotas, price caps, nonnegativity condi-

tions, or limited production capacity. For in-

stance, in a standard market model, excess de-

mand E(p) will be zero at the equilibrium price.

What if government imposes a price ceiling p̄,

and that price is below the free–market equilib-

rium? Then we may solve the complementar-

ity problem CP (E,0, p̄), which will imply that

excess demand could be positive if the price

ceiling is binding.

Standard root–finding methods may be consid-

ered as a special case of the complementarity

problem with ai = −∞ and bi = ∞ for all i.

Conversely, the complementarity problem may

be recast as a “minmax” root–finding prob-

lem: x solves the CP (f, a, b) iff it solves the

root–finding problem

f̂(x) = min(max(f(x), a− x), b− x) = 0 (6)



where min and max are applied row–wise. Thus,

the CP may be solved with standard root–

finding algorithms by noting that the Jacobian

of the function f̂ may be written as

Ĵi(x) =
Ji(x), for ai − xi < fi(x) < bi − xi
Ii, otherwise

(7)

where Ii is the ith row of the identity matrix.

Methods designed for the solution of root–

finding, fixed–point and complementarity prob-

lems may be derivative–free, requiring only spec-

ification of the functions involved, or may re-

quire that derivatives of the functions be either

analytically specified or be computable. The

derivative–free methods include the bisection

method (where a root is located by successive

bisection of an interval in which a root exists)

and function iteration (in which a function is

successively iterated to locate a fixed point).



Most nonlinear problems are solved with New-

ton’s method or one of its variants, which are

based on the principle of successive lineariza-

tion. In these methods, a difficult nonlinear

problem is recast as a sequence of simpler lin-

ear problems which lead to the solution. New-

ton’s method is usually considered as a root–

finding method, but as described above can be

applied to fixed–point problems with a change

of functions. It relies on a first–order Taylor

approximation to the function, so that the Ja-

cobian of the function must be computable.

Let us consider a simple application of New-

ton’s method. Let the inverse demand func-

tion for a good, which is produced by two com-

peting firms, equal

P (q) = q−1/η (8)

and let the firms face cost functions

Ci(qi) =
1

2
ciq

2
i , i = 1,2 (9)



The profit for firm i is defined as

πi(q1, q2) = P (q1 + q2)qi − Ci(qi) (10)

In a so–called Cournot duopoly model, each

firm makes its decision taking the other firm’s

choice of output as given. In this setup, firm i

will choose its output level so as to solve the

first–order conditions for a maximum of the

profit function:

∂πi/∂qi = P (q1+q2)qi+P ′(q1+q2)qi−C′i(qi) = 0

(11)

The market equilibrium levels of output, q1 and

q2, are the roots of the two nonlinear equations

fi(q) = (q1+q2)
−1/η−(1/η)(q1+q2)

−1/η−1qi−ciqi = 0,

(12)

for i = 1,2. These equations are nonlinear

in q1, q2 space, and their intersection denotes

the optimal level of output for each Cournot

duopolist. Although these equations do not

possess an analytical solution, the solution may



readily be found by iterative methods, employ-

ing Newton’s method since the first derivatives

of the function are readily calculated. For in-

stance, if we assume that η = 1.6, c1 = 0.6 and

c2 = 0.8, and provide initial guesses of 0.2,0.2

for the solution values, Newton’s method will

yield the equilbrium quantities q1 = 0.8396 and

q2 = 0.6888 (the intuitive result that the firm

with higher marginal costs will produce at a

lower level).

While Newton’s method requires analytical first

derivatives, a variety of methods based on New-

ton’s method have been developed as derivative–

free alternatives; the so-called quasi–Newton

(QN) methods. The most widely used univari-

ate QN method is the secant method, which

replaces the analytical derivative with an ap-

proximation constructed from two successive

function evaluations. Its multivariate analogue

is Broyden’s method, which approximates the



root of f and the Jacobian f ′ at the root, and

will generally converge if the functions are rea-

sonably well behaved.

Now let us turn to finite–dimensional optimiza-

tion methods. We seek

max
x∈X

f(x) (13)

where f is a real-valued objective function, X

the feasible set, and a solution x∗ ∈ X (if it

exists) satisfies f(x∗) ≥ f(x) for all x ∈ X.

We can always recast minimization problems as

min−f(x), so that we need only consider max-

imization. An optimization problem involves

first–order conditions, which may be viewed as

a root–finding problem, as discussed earlier;

the first–order necessary conditions (known as

the Kuhn–Tucker conditions) for a constrained

optimization problem are a complementarity



problem. Problems of this nature, both uncon-

strained and constrained, are ubiquitous in eco-

nomics and finance: e.g., consumers maximiz-

ing their utility, firms maximizing profit, finan-

cial analysts optimizing a portfolio of assets,

or governments choosing policies designed to

maximize societal welfare. Derivative–free meth-

ods include the univariate golden search method

(thusly named because it chooses interior eval-

uation points by utilizing the golden ratio), or

the multivariate Nelder-Mead algorithm which

operates on the n–dimensional simplex. The

equivalent of Newton’s method for root–finding

is the Newton–Raphson method, which uses

successive quadratic approximations to the ob-

jective to locate the optimum. It is intimately

related to Newton’s method, as it amounts to

computing the root of the gradient of the ob-

jective function, working with a second–order

Taylor approximation to the objective func-

tion (requiring that the objective function is



twice continuously differentiable). The burden

of setting up the Newton–Raphson method,

and coding both first and second derivatives,

is onerous. For this reason, quasi–Newton op-

tiimization methods are often employed. The

method of steepest ascent is perhaps the sim-

plest, but does not take into account any in-

formation on the curvature of the objective

function. Two methods that do the latter

are the Davidson–Fletcher–Powell (DFP) and

Broydon–Fletcher–Goldfarb–Shanno (BFGS) meth-

ods, which employ different updating formu-

las for the numerical Hessian, but are other-

wise identical. These two “workhorse” meth-

ods are found in almost all econometric soft-

ware containing maximum likelihood estima-

tion routines. For more difficult optimization

problems, line search methods are often em-

ployed to control the length of the Newton

step.



We now consider some of the methods used for

numerical integration (or quadrature) and nu-

merical differentiation. Where analytic deriva-

tives are unavailable or their construction is

burdensome, numerical methods are often used.

Univariate Newton–Cotes quadrature methods

such as the trapezoid rule and Simpson’s rule

are used to approximate the definite integral

of a real–valued continuous function. They

may be generalized to higher–dimensional inte-

gration problems. Gaussian quadrature is per-

haps most commonly employed; this method

employs the notion that any real–valued func-

tion may be approximated to arbitrary preci-

sion by fitting a sufficiently high–order polyno-

mial (equivalent to the other Gaussian tech-

nique, ordinary least squares (OLS) regression,

where n data points can be perfectly fit by a

polynomial of order n − 1). Gaussian quadra-

ture employs a weight function; if that is cho-

sen as the identity function, we have Gauss–

Legendre quadrature, which is appropriate for



computing the area under a curve. Monte

Carlo and quasi–Monte Carlo integration rou-

tines are also widely used.

Numerical differentiation involves computing fi-

nite differences of the function at adjacent points;

higher–order numerical Taylor expansions may

be used to increase accuracy. Higher–order

derivatives are also computed numerically: for

instance, many optimization methods require

a numerical Hessian (matrix of second par-

tials). Differential equations, used widely in

expressing many economic and financial prob-

lems, also require numerical derivatives, which

are often calculated via Runge–Kutta meth-

ods.

As a last topic in our survey of computational

methods, consider issues of function approxi-

mation. These include interpolation methods,

where a computationally intractible function f



is approximated by a computationally tractable

function f̂ . In the functional equation problem,

we wish to find a function f which satisfies

Tf = 0 where T is an operator that maps a

vector space of functions onto itself. Closely

related is the functional fixed–point problem,

with f = Tf . These equations are common

in dynamic economic models; for instance, the

well–known Bellman equation characterizes the

solution of an infinite–horizon dynamic opti-

mization problem. These equations are diffi-

cult to solve because the unknown is not sim-

ply a vector in Rn, but rather an entire func-

tion f (in economic problems, often known as

the policy function) whose domain contains

an infinite number of points, with an infinite

number of conditions imposed on the solution

f . These equations almost always lack ex-

plicit closed–form solutions, and thus cannot

be solved exactly; one must seek a numeri-

cal solution that satisfies the functional equa-

tion to a close approximation. Two generally



practical techniques are Chebychev polynomial

approximation and polynomial spline interpo-

lation. These methods may be generalized to

a multivariate setting in which a number of

choice variables’ trajectories must be defined

by a solution. A generalization of these meth-

ods, presented by the authors in section 6.8, is

the collocation method, which effectively re-

places the difficult infinite–dimensional func-

tional equation problem with a simpler finite–

dimensional root–finding problem that can be

solved by standard techniques, such as New-

ton’s method or Broyden’s method. The fi-

nite dimension of the resulting problem refers

to the number of collocation nodes chosen; the

collocation method requires that the approxi-

mating function satisfies the functional equa-

tion, not at all possible points of the domain,

but at the n prescribed points (the collocation

nodes). As an example, again drawing from

Cournot oligopoly: the firm equates marginal



revenue to marginal cost to maximize profit.

Realizing that its actions affect price, the firm

takes marginal revenue to be p+qdp
dq, where p is

price, q is quantity produced, and the derivative

is the marginal impact of quantity on market

price (which for an infinitesimal perfect com-

petitor would be zero). The Cournot assump-

tion implies that the firm acts as if any change

in its output will be unmatched by competi-

tors, so that dp
dq = 1

D′(p) where D(p) is the mar-

ket demand curve. What is the effective supply

function for the firm, which specifies what it

will supply at any market price?

p +
S(p)

D′(p)
−MC(S(p)) = 0 (14)

for all positive prices p, and MC is the marginal

cost function. In simple cases, this function

has an explicit solution (e.g. if MC(q) = c and

D(p) = p−η). But for that demand function

and a more realistic marginal cost function,

MC(q) = α
√

q + q2, the functional equation



does not have a closed–form solution. Colloca-

tion methods could be used to solve the equa-

tion over a grid of points on the q axis for given

values of α and η, and determine how sensitive

the resulting approximate solution might be to,

for example, the number of firms competing in

the industry. Collocation methods also may be

used to solve boundary value problems, which

often arise in economics and finance as de-

terministic optimal control problems, such as

arise in modeling the market for a periodically

produced storable commodity.


